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Highlights 
• An acquired prosopagnosic with a right occipitotemporal lesion completed three fMRI 

experiments. 
• Results showed an impaired response in his right OFA and right FFA. 
• The response in his right pSTS was comparable with controls despite his prosopagnosia. 
• These results suggest pSTS has functional inputs independent of the OFA. 
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Abstract  

To investigate the functional connections between the core components of the face 

processing network we tested Herschel, an acquired prosopagnosic patient with a right 

ventral occipitotemporal lesion. In Experiment 1, Herschel, and control participants, were 

scanned with functional magnetic resonance imaging (fMRI) while viewing videos of moving 

faces, or static images taken from the videos. In Experiment 2, participants viewed videos of 

actors making facial expressions, or static images taken from the videos. In Experiment 3, 

participants viewed videos of moving faces presented in the left or right visual field. Results 

showed the neural response in Herschel’s right occipital face area (OFA) was impaired for 

moving and static faces (Experiment 1), moving expressions (Experiment 2) and moving 

faces in the left visual field (Experiment 3). The response in Herschel’s right fusiform face 

area (FFA) to moving and static faces was impaired in Experiment 1 only, in Experiments 2 

and 3 Herschel’s FFA response was not significantly different from controls. By contrast, the 

response in Herschel’s right posterior superior temporal sulcus (rpSTS) to moving and static 

faces and expressions (Experiments 1 and 2) and the visual field response (Experiment 3) 

was not significantly different from control participants. Our results demonstrate there are 

cortico-cortical inputs to the pSTS from early visual cortex that are independent of the OFA, 

a conclusion inconsistent with established models of face processing. 
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1. Introduction 

Detailed studies of neuropsychological patients exhibiting category-selective visual agnosias 

have provided seminal insights into high-level visual processing (Vaina et al., 1990, Moscovitch et 

al., 1997, Moro et al., 2008, Susilo et al., 2015) and this is especially true in the case of face 

perception (Sergent and Signoret, 1992, McNeil and Warrington, 1993, Barton et al., 2002, Rossion 

et al., 2003, Steeves et al., 2006, Riddoch et al., 2008, Dalrymple et al., 2011). Faces are complex 

visual stimuli that convey an individual’s identity, emotions, state of mind and the direction of their 

attention. This wealth of information is processed by a network of face-selective areas distributed 

across the brain that have been linked together in models of face processing  (Haxby et al., 2000, 

Calder and Young, 2005). These models propose there are two functionally distinct face processing 

pathways beginning in the occipitotemporal cortex. The ventral pathway includes the fusiform face 

area (FFA) (Kanwisher et al., 1997, McCarthy et al., 1997) and preferentially processes invariant 

facial aspects, such as identity (Grill-Spector et al., 2004, Rotshtein et al., 2005). The lateral pathway 

includes the face-selective area in the posterior superior temporal sulcus (pSTS) (Puce et al., 1996) 

and preferentially processes changeable facial aspects, such as facial expression and eye gaze 

direction (Andrews and Ewbank, 2004, Winston et al., 2004, Hoffman and Haxby, 2000). Despite 

these functional differences both pathways are thought to begin in the occipital face area (OFA) 

(Gauthier et al., 2000), an area that acts as the gateway for the extended face processing network 

(Haxby et al., 2000). In the current, study we tested the hypothesis that the OFA is the sole entry 

point for the face network by testing Herschel, an acquired prosopagnosic patient with a lesion in 

his right ventral occipitotemporal cortex. 

 

Herschel suffered two strokes and two transient ischemic attacks in 2008. Subsequent 

investigation revealed a lesion in his right ventral occipitotemporal cortex, the area of the brain 
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where the OFA and FFA are typically located. Behavioral testing demonstrated he was impaired at 

tasks measuring face matching, famous face recognition, face memory, learning new faces, gender 

discrimination and facial expression recognition (Rezlescu et al., 2012, Rezlescu et al., 2014). The 

aim of the current study was to systematically compare the functional responses of Herschel’s core 

face-selective areas (OFA, FFA, pSTS) with control participants in three fMRI experiments. We 

hypothesized that if the OFA is the sole entry point for the face processing network, then the 

damage to Herschel’s right OFA should impair the neural response in his right pSTS. However, if the 

functional profile of Herschel’s right pSTS is comparable with controls, then it is likely that the right 

pSTS receives functional input from brain areas that are independent of the right OFA. 

 

Neuroimaging studies of healthy participants demonstrate that the pSTS exhibits a greater 

response to moving faces than static faces, while the OFA and FFA show little or no preference for 

moving faces (Puce et al., 1998, LaBar et al., 2003, Fox et al., 2009, Schultz and Pilz, 2009, Pitcher et 

al., 2011a, Pitcher et al., 2019a). This preferential response to motion suggests that the pSTS is 

receiving functional input from the motion-selective brain area hMT+ (O'Toole et al., 2002). This 

hypothesis is consistent with anatomical studies in humans and macaques that report cortical 

connections between motion-selective areas and the STS (Gschwind et al., 2012, Ungerleider and 

Desimone, 1986b, Boussaoud et al., 1990). These cortical pathways project along the superior 

temporal sulcus across the lateral brain surface. Evidence for this lateral pathway was also 

demonstrated in our earlier combined transcranial magnetic stimulation (TMS) and fMRI study 

(Pitcher et al., 2014). TMS disruption of the right OFA and right FFA did not reduce the response to 

moving faces in the right pSTS, suggesting that the pSTS has functionally independent cortical 

inputs. 
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Likely alternate sources of functional input for the right pSTS are face-selective areas in the 

left hemisphere, notably the left pSTS. While evidence from different methodologies demonstrates 

that face processing is right lateralized (Kanwisher et al., 1997, Landis et al., 1986, Pitcher et al., 

2007, Yovel et al., 2003), it is clear that face-selective areas in the left hemisphere are also 

important. For example, TMS delivered over the left pSTS impairs facial expression recognition, but 

to a lesser extent than TMS delivered over the right pSTS (Sliwinska and Pitcher, 2018). More 

recently, our dual-site TMS of the bilateral pSTS demonstrated that the right and left pSTS are 

functionally connected when recognizing facial expressions (Sliwinska et al., 2020). In this study, 

offline thetaburst TMS (TBS) delivered over the left pSTS prior to online TMS stimulation of the 

right pSTS doubled the size of the task impairment compared to TMS stimulation of the right pSTS 

alone.  

 

To further investigate the functional connectivity between face areas across the two 

hemispheres we also conducted a visual field mapping fMRI study in which face videos were 

presented alternately in the two visual fields (Pitcher et al., 2020). Consistent with prior studies 

(Hemond et al., 2007, Kay et al., 2015) we observed a greater response for faces presented in the 

contralateral visual field in the FFA and the OFA. By contrast, we observed no visual field bias for 

faces in the pSTS. This lack of visual field bias in the pSTS is consistent with non-human primate 

studies reporting that motion-selective visual areas (MT, MST, FST) show an increasing 

representation of the ipsilateral visual field when moving anteriorly along the STS (Ungerleider and 

Desimone, 1986a). In humans, this suggests that the contralateral visual input into the pSTS comes 

from the ipsilateral hMT+, while the ipsilateral visual input comes from the contralateral 

hemisphere, possibly the contralateral pSTS. Because Herschel’s lesion is in his right 
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occipitotemporal cortex (encompassing his right FFA and right OFA), we predicted that the visual 

field responses in Herschel’s right pSTS would be comparable with normal participants. 

 

To measure the functional profile of Herschel’s pSTS, we ran three separate fMRI experiments. 

In Experiment 1, participants viewed short videos, or static images taken from those videos of 

faces, bodies, objects and scenes. In Experiment 2, participants viewed short videos, or static 

images taken from those videos of actors making different facial expressions; these were taken 

from movies on the Internet. In Experiment 3, participants viewed short face videos presented in 

the two visual fields. Based on prior studies, we predicted a greater response to moving faces than 

static faces in the pSTS in Herschel and control participants in Experiments 1 and 2 (Puce et al., 

1998, LaBar et al., 2003, Fox et al., 2009, Schultz and Pilz, 2009, Pitcher et al., 2011a). In Experiment 

3, we predicted there would be a greater response for faces presented in the contralateral visual 

field in the bilateral FFA and OFA, but there would be no visual field bias in the bilateral pSTS 

(Pitcher et al., 2020). We hypothesized that if there are independent cortico-cortical connections 

from early visual cortex via hMT+ into the pSTS that bypass the OFA, then the pattern of responses 

in Herschel’s right pSTS should be comparable with control participants (Figure 1). 



 7 

 

Figure 1. Left panel: structural MRI of Herschel’s lesion in the right ventral occipitotemporal 
cortex (images shown in radiological format). Right panel: the present study tests the hypothesis 
that dynamic face information reaches Herschel’s pSTS via a cortical pathway that projects via 
V5/MT+ and is independent of the OFA (represented by the dotted red line). This model was 
adapted from O’Toole et al., 2002. 
 
 
 
 

2. Method 

2.1.1 Patient Herschel 

Herschel is a 62-year-old (born 1956) right-handed British man. He holds a degree in astronomy (he 

selected his own patient name in honor of his favorite astronomer) and currently manages a 

science and technology team. In February 2008, he suffered a stroke that caused severe face-

related visual recognition impairments, severe navigation problems, and an upper left 

quadrantanopia. In June 2008, he experienced a second stroke that produced a temporary loss of 
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color perception and upper right quadrantanopia. In August 2008, he suffered two transient 

ischemic attacks that produced temporary loss of control of the left leg and temporary speech 

problems. Currently, he reports only face recognition difficulties and an upper visual field loss 

(complete left and two thirds right). Herschel’s navigation abilities and color perception largely 

returned, although he reports that both are different since his strokes. Behavioral testing 

demonstrated that Herschel was severely impaired at recognizing familiar faces, discriminating 

between unfamiliar identities, and the perception of facial expression and gender (Rezlescu et al., 

2012). He showed normal recognition memory for a wide variety of object classes in several 

paradigms, normal ability to discriminate between highly similar items within a novel object 

category, and an intact ability to name basic objects (except four-legged animals). Functional brain 

imaging revealed atypical activation of all core face areas in the right hemisphere, with reduced 

signal difference between faces and objects compared to controls (Rezlescu et al., 2012). Before 

participating in any studies Herschel gave informed consent as directed by University College 

London Ethics committee (Experiment 1) and the York Neuroimaging Centre Research Ethics 

Committee at the University of York (Experiments 2 and 3). 

 

2.1.2 Control participants 

In Experiment 1, we tested 9 right-handed participants (4 males, 5 females, 27 to 58 years old) with 

normal, or corrected-to-normal, vision and no history of neurological disorders. All participants 

gave informed consent as directed by the University College London Ethics committee and were 

paid for their time. In Experiments 2 and 3 we tested 10 right-handed male participants (40 to 65 

years old) with normal, or corrected-to-normal, vision and no history of neurological disorders. All 

participants gave informed consent as directed by the York Neuroimaging Centre Research Ethics 

Committee at the University of York. 
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2.2 Stimuli 

2.2.1 Experiment 1 – Moving and static faces 

Participants viewed dynamic and static stimuli from five different categories (faces, bodies, scenes, 

objects and scrambled objects). These stimuli were used in previous fMRI studies of face perception 

(Pitcher et al., 2011a, Pitcher et al., 2019a).  

 

Dynamic stimuli. Dynamic stimuli were 3-second movie clips of faces, bodies, scenes, objects and 

scrambled objects. There were sixty movie clips for each category in which distinct exemplars 

appeared multiple times. Movies of faces and bodies were filmed on a black background, and 

framed close-up to reveal only the faces or bodies of 7 children as they danced or played with toys 

or adults (who were out of frame). Fifteen different locations were used for the scene stimuli which 

were mostly pastoral scenes shot from a car window while driving slowly through leafy suburbs, 

along with some other films taken while flying through canyons or walking through tunnels that 

were included for variety. Fifteen different moving objects were selected that minimized any 

suggestion of animacy of the object itself or of a hidden actor pushing the object (these included 

mobiles, windup toys, toy planes and tractors, balls rolling down sloped inclines). Within each block 

stimuli were randomly selected from within the entire set for that stimulus category. This meant 

that the same actor or object could appear within the same block. 

 

Static stimuli. Static stimuli were identical in design to the dynamic stimuli except that in place of 

each 3-second movie we presented three different static images taken from the beginning, middle 

and end of the corresponding movie clip.  Each still image was presented for one second with no 
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inter stimulus interval (ISI), to equate the total presentation time with the corresponding dynamic 

movie clip. 

 

hMT+ localizer. hMT+ was localized used an on/off block design to identify parts of the brain that 

respond more strongly to coherent dot motion than random dot motion. Stimuli were presented in 

12 alternating blocks of coherent and random motion (11.43 sec each). In both conditions, 150 

white dots (dot diameter: 0.04 degrees, speed: 5.0 degrees/sec) appeared in a circular aperture 

(diameter: 9 degrees). During blocks of coherent motion, dots changed their coherent direction 

every second to avoid adaptation to any maintained direction of motion. The dots in the incoherent 

condition changed every second but the changes were not coordinated with each other to generate 

the appearance of random motion. Participants were instructed to focus on a red fixation dot 

presented at the center of the screen. hMT+ was identified using a contrast of activation evoked by 

coherent dot motion greater than that evoked by random dot motion (noise). 

 

2.2.2. Experiment 2 – Moving and static facial expressions 

Participants viewed dynamic and static stimuli of actors making one of five different facial 

expressions (anger, happiness, fear, sadness and surprise). 

 

Dynamic stimuli. Eighty 2-second video clips were taken from Internet video platforms (e.g., 

YouTube, Vimeo). Videos were parts of movies, television shows and homemade clips. 16 clips 

were found for each of the 5 expressions. The relevant parts of the videos were screen captured 

and each clip was cropped down to the two seconds of the clip showing a face presenting that 

particular expression. Only clips presenting clear faces with an obvious expression were used. 
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Static stimuli. Static stimuli were identical in design to the dynamic stimuli except that in place of 

each 2-second movie we presented a static image taken from a movie clip used for the dynamic 

stimuli. We selected an image in which the facial expression was most prominent. Each static image 

was presented for two seconds with no ISI, to equate the total presentation time with the 

corresponding dynamic movie clip. 

 

2.2.3. Experiment 3 – Visual field responses in face areas  

Visual field responses in face-selective regions were mapped using the same 3-second video clips of 

dynamic faces described in the dynamic stimuli section above (Pitcher et al., 2011a). Videos were 

presented at 12 × 13 degrees of visual angle but were shown centered in the two visual hemifields 

at a distance of 8 degrees from fixation to the center of the stimulus (Figure 2).  

 

 

Figure 2. A static image taken from the hemifield visual field mapping stimulus used in 
Experiment 3. 3-second videos of children interacting with an adult (offscreen) were shown in the 
left or right visual hemifield. Participants maintained fixation on a centrally presented cross. 



 12 

 
2.3 Brain Imaging  

Scanning for Experiment 1 was performed using a Siemens 1.5 Tesla MR scanner at the 

Birkbeck-UCL Neuroimaging Centre at University College London. Functional images were 

recorded with a Siemens 12-channel phased array head-coil using a gradient-echo EPI 

sequence (23 interleaved slices, repetition time (TR) = 2000 sec; echo time (TE) = 50 msec; 

voxel size = 3 × 3 × 3 mm; and a 0.6mm interslice gap). Slices were aligned with the 

anterior/posterior commissure. In addition, a high-resolution T-1 weighted MPRAGE 

anatomical scan were also acquired for anatomically localizing functional activations.  

 

Scanning for Experiments 2 and 3 was performed using a 3T Siemens Magnetom Prisma 

MRI scanner (Siemens Healthcare, Erlangen, Germany) at the York Neuroimaging Centre. 

Functional images for the main and localisation tasks were recorded using a gradient-echo 

EPI sequence (35 interleaved slices, repetition time (TR) = 2000 msec, echo time (TE) = 30 

msec; voxel size = 3 × 3 × 3 mm) providing whole brain coverage. Slices were aligned with 

the anterior to posterior commissure line. T-1 weighted MPRAGE anatomical scan were also 

acquired for anatomically localizing functional activations.  

 

2.4 Procedure 

2.4.1 Experiment 1 – Moving and static faces 

Functional data were acquired over 6 blocked-design functional runs lasting 234 

seconds each. Each functional run contained three 18-second rest blocks, at the beginning, 

middle, and end of the run, during which a series of six uniform colour fields were presented 

for three seconds each. Each run contained two sets of five consecutive stimulus blocks 
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(faces, bodies, scenes, objects or scrambled objects) sandwiched between these rest blocks, 

to make two blocks per stimulus category per run. Each block lasted 18 seconds and 

contained stimuli from one of the five stimulus categories. The order of stimulus category 

blocks in each run was palindromic (e.g. fixation, faces, objects, scenes, bodies, scrambled 

objects, fixation, scrambled objects, bodies, scenes, objects, faces, fixation) and was 

randomized across runs. Functional runs presented either movie clips (the four dynamic 

runs) or sets of static images taken from the same movies (the two static runs). For the 

dynamic runs, each 18-second block contained six 3-second movie clips from that category. 

For the static runs, each 18-second block contained 18 one-second still snapshots, 

composed of six triplets of snapshots taken at one second intervals from the same movie 

clip. Participants were instructed to watch the movies and static images but were not asked 

to perform any overt task. At the end of the session a T1-weighted structural brain scan was 

also collected to anatomically localise the functional data for each participant. 

 

2.4.2 Experiment 2 – Moving and static facial expressions 

Functional data were acquired over 8 blocked-design functional runs lasting 176 

seconds each. Each functional run contained six 16-second rest blocks during which a grey 

screen was presented. Between these rest blocks five stimulus blocks were shown. Each 

stimulus block presented different actors portraying the same facial expression (anger, fear, 

happy, sad and surprise). Facial expressions were always presented in the same order. 

Functional runs presented either movie clips (the four dynamic runs) or static images taken 

from the same movies (the four static runs). For the dynamic runs, each 16-second block 

contained eight 2-second movie clips from that category. For the static runs, each 16-second 

block contained eight two-second still snapshots taken from the corresponding movie clip. 
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Participants were instructed to watch the movies and static images but were not asked to 

perform any overt task.  

 

Face-selective ROIs were identified using the dynamic face localiser task described 

above (Pitcher et al., 2011a). Data were acquired over four runs using a block-design runs, 

lasting 234 sec each. The number of localizer runs was increased to 4 runs for Experiments 2 

and 3 in order to successfully localize the core face-selective areas (OFA, FFA and pSTS) in all 

participants. At the end of the session a T1-weighted structural brain scan was also collected 

to anatomically localise the functional data for each participant. In addition, we also 

collected a T1-FLAIR scan was acquired to improve co-registration of the functional and 

structural scans. 

 

After exiting the scanner, all participants were asked to identify the emotions of the 

dynamic (40 items) and static stimuli (40 items). Moving and static stimuli were presented 

over 4 blocked design runs (2 moving, 2 static). The same stimuli from the scanner session 

were used (2-second videos or 2-second static images taken from the videos) but unlike in 

the scanner session the expressions were interleaved. The interleave constituted of a 5-

second gap between each presentation during which the participant verbally named the 

expression being presented. 

 

2.4.3 Experiment 3 – Visual field responses in face areas 

Functional data were acquired over 6 blocked-design functional runs lasting 270 

seconds each. There was a 10-second rest block at the beginning and end of each run. 

Participants fixated the center of the screen while 2-sec video clips of children performing 
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different facial expressions were shown in the two hemifields of the visual field (these are 

the same stimuli described in Experiment 1). Each functional run contained ten 16-sec 

blocks during which eight videos were shown. A 10-second rest block was included after 

each visual mapping block during which a blank black screen was shown. This was included 

to allow the haemodynamic response to return to baseline before the next visual mapping 

block began. 

 

2.5 Data analysis 

Functional MRI data from all three experiments were analysed using the fMRI Expert 

Analysis Tool (FEAT) included in the FMRIB (v6.0) Software Library (www.fmrib.ox.ac.uk/fsl). 

After deleting the first four volumes of each run to allow for T1 equilibrium, the functional 

images were realigned to correct for small head movements (Jenkinson et al., 2002). The 

images were then smoothed with a 5mm FWHM Gaussian filter and pre-whitened to 

remove temporal auto-correlation (Woolrich et al., 2001). Blocks were convolved with a 

double gamma “canonical HRF” to generate the main regressors. In addition, the estimated 

motion parameters were entered in as covariates of no interest, to reduce structured noise 

due to minor head motion. First-level functional results for each participant were registered 

to their anatomical scan and then to the Montreal Neurological Institute (MNI) 152-mean 

brain using a 12 degree-of-freedom affine registration. The T1-FLAIR scan was added as an 

expanded functional image to help aid registration (Jenkinson et al., 2002) 

 

Face-selective ROIs were identified for each participant using a contrast of greater 

activation evoked by dynamic faces than that evoked by dynamic objects, calculating 

significance maps of the brain using an uncorrected statistical threshold (p = 0.01). We 
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identified face areas using anatomical landmarks, these were the bilateral: fusiform face 

area (FFA), occipital face area (OFA), posterior superior temporal sulcus (pSTS). The peak 

voxel of activation was identified for each area and a 5mm sphere was drawn around this 

point for individually for each participant. In addition to face-selective ROIs we also 

identified cortical regions selective for bodies, scenes and objects and motion. The 

extrastriate body area (EBA) (Downing et al., 2001) was identified using a contrast of 

dynamic bodies greater than dynamic objects. The lateral occipital area (LO) (Malach et al., 

1995) was identified using a contrast of dynamic objects greater than dynamic scrambled 

objects. V5/MT+ (Watson et al., 1993) was identified using a contrast of coherent motion 

greater than random motion. Within each functionally defined ROI, we then calculated the 

magnitude of response (percent signal change from a fixation baseline) for the experimental 

data. 

 

In order to test whether the responses in Herschel were different from control participants we used 

the single-case statistical methods for neuropsychology developed by Crawford and Howell 

(https://homepages.abdn.ac.uk/j.crawford/pages/dept/SingleCaseMethodology.htm).  (Crawford 

et al., 1998, Karahalios et al., 2010).  

 

No part of this study was pre-registered. The sample size of the control participants 

was determined prior to testing but no power analysis was performed. No data were 

excluded from analysis. 

 

 

 

https://homepages.abdn.ac.uk/j.crawford/pages/dept/SingleCaseMethodology.htm
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3.1 Results 

3.1.1 Identifying ROIs 

 

Figure 3. Functional imaging of Herschel’s face areas (rOFA, rFFA and rpSTS) in orange and the 
motion-selective area V5/MT+ in blue. Images are shown in radiological format. 
 

In Experiment 1, face-selective ROIs were identified based on the data from two runs 

of the dynamic localizer using a contrast of moving faces greater than moving objects. While 

we were able to localize the OFA, FFA and pSTS in the right hemisphere of all participants, 

we were unable to successfully localise these same areas in the left hemisphere. We were 

able to identify the OFA, FFA and pSTS in Herschel’s left hemisphere, but this was not the 

case for all of the controls. Across the nine control participants 5 had on OFA, 5 had an FFA 

and 6 had the pSTS. The EBA was identified using a contrast of moving bodies greater than 
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moving objects. LO was identified using a contrast of moving objects greater than moving 

scrambled objects. hMT+ was identified using a contrast of coherent motion greater than 

scrambled motion (localiser data for two control participants were not acquired due to 

technical issues). Herschel’s functionally localised right OFA, right FFA, right pSTS and right 

hMT+ are shown in Figure 3. 

 

In Experiments 2 and 3, the number of dynamic localiser runs was increased from 

two to four in order to more robustly identify face-selective areas. Face-selective ROIs were 

identified using a contrast of moving faces greater than moving objects. We were able to 

successfully localise the OFA, FFA and pSTS in both hemispheres in all participants.  

 

3.1.2 Experiment 1 

We compared the response profile of the core face-selective areas in the right hemisphere 

(OFA, FFA and pSTS) and the motion-selective area hMT+ to moving and static faces in Herschel 

with control participants (Figure 4). To confirm the pattern of differences between the pSTS and 

other face areas, we analyzed two interaction effects (patient/controls x ROI) using Crawford & 

Garthwaite’s (2005) RSDT test. Comparing moving faces in rOFA and rpSTS gives t(8) = 2.466, 

p=0.038 (one-tailed). Comparing moving faces in rFFA and rpSTS gives t(8)=1.86, p=0.049 (one-

tailed). This demonstrates a significant difference in response across the different ROIs for Herschel 

and controls.  

 

To further test whether the neural responses across Herschel’s ROIs were significantly lower 

than the control participants we used the single-case statistical methods for neuropsychology 

developed by Crawford and Howell (Crawford et al., 1998, Karahalios et al., 2010). The results of 
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this analysis are shown in Table 1. Results showed that Herschel exhibited an impaired response to 

moving faces in his right FFA and right OFA. There was also an impaired response to static faces in 

his right OFA but the difference in the right FFA did not reach significance (p = 0.066). This impaired 

response in the OFA and FFA is consistent with the lesion to Herschel’s right ventral 

occipitotemporal cortex. By contrast, the response to moving and static faces in Herschel’s right 

pSTS and in hMT+ was equivalent, or greater, to that of control subjects. There was also no 

difference in response to moving and static objects in right LO and between moving and static 

bodies in the right EBA.  

 

 

Figure 4. Percentage signal change data for the moving and static stimuli in the OFA, FFA, pSTS, 
hMT+, LO and EBA in the right hemisphere of Herschel and the control participants. Consistent 
with the location of his lesion in the right ventral occipitotemporal cortex we observed impaired 
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responses for moving and static faces in Herschel’s OFA and an impaired response for moving 
faces in his FFA. 
 
 

 Right OFA Right FFA Right pSTS Right EBA Right LO Right hMT+ 
Moving 
Faces 

Static  
Faces 

Moving 
Faces 

Static  
Faces 

Moving 
Faces 

Static  
Faces 

Moving 
Faces 

Static  
Faces 

Moving 
Faces 

Static  
Faces 

Moving 
Faces 

Static  
Faces 

Hershel 
 

0.2 0.3 0.4 0.4 0.7 0.1 1.5 0.8 1.4 1.2 1.0 0.2 
 

Control 
Mean 

1.5 1.3 1.1 1.0 0.5 0.2 1.5 0.8 1.0 0.6 0.8 0.4 

Control 
STDEV 

0.5 0.5 0.4 0.4 0.1 0.1 0.6 0.4 0.3 0.5 0.3 0.3 

Sample 
Size 

9 9 9 9 9 9 9 9 9 9 7 7 

p Value 
 

0.014* 0.05* 0.047* 0.07 0.12 0.3 0.43 0.47 0.1 0.14 0.33 0.24 

Population 
Below Score 

1% 5% 5% 7% 88% 30% 56% 53% 89% 85% 67% 25% 

 
Table 1. The results of the statistical analysis performed on the percentage signal change data in 
Experiment 1. We observed impaired responses for moving and static faces in Herschel’s right 
OFA and an impaired response for moving faces in his right FFA. 
 

3.1.3 Experiment 2 – Moving and static facial expressions 

In Experiment 2, we compared the neural response to moving and static facial expressions 

in the core face-selective areas of both hemispheres in Herschel and control participants. The data 

for each participant is shown in Figure 5. The results of the single case neuropsychology analysis are 

shown in Table 2. This analysis showed a significantly lower response to moving faces in Herschel’s 

right OFA. While the response to static faces in the right OFA and to moving and static faces in the 

Herschel’s right FFA were both low they were not significantly different than controls. However, as 

in Experiment 1, the response to moving and static faces in Herschel’s right pSTS was comparable 

with controls. This pattern was confirmed by an analysis of two interaction effects (patient/controls 

x ROI) using Crawford & Garthwaite’s (2005) RSDT test:  Comparing moving faces in rOFA and rpSTS 

gives t(10) = 2.558 , p = 0.014 (one-tailed);  Comparing moving faces in rFFA and rpSTS gives 

t(10)=2.121, p=0.029 (one-tailed).  We observed no significant differences in the face-selective 

areas in the left hemisphere. 
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After exiting the scanner, all participants were asked to name the emotions of the 

dynamic and static stimuli. The same stimuli from the scanner session were used (2-second 

videos or 2-second static images taken from the videos), but unlike in the scanner session 

the expressions were interleaved. Results (Herschel: 70%; Controls 81%, SD = 4.5%) showed 

that Herschel was able to correctly identify fewer moving facial expressions than control 

participants (t = -2.35, p = 0.022). Results (Herschel: 70%; Controls 79%, SD = 3.38%) also 

showed that Herschel was also able to identify fewer static facial expressions than control 

participants (t = -2.74, p = 0.011). 

 

 

Figure 5. Percent signal change data for the dynamic and static face stimuli in the bilateral FFA, 
OFA and pSTS. Results showed that an impaired response to dynamic and static faces in 
Herschel’s right OFA, right FFA and left pSTS compared to age-matched controls. However, the 
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response to dynamic and static faces in Herschel’s left OFA, left FFA and right pSTS was not 
significantly different from controls. 

 
 
 
 
 
 

 Right OFA Right FFA Right pSTS Left OFA Left FFA Left pSTS 
Moving 
Faces 

Static  
Faces 

Moving 
Faces 

Static  
Faces 

Moving 
Faces 

Static  
Faces 

Moving 
Faces 

Static  
Faces 

Moving 
Faces 

Static  
Faces 

Moving 
Faces 

Static  
Faces 

Hershel 
 

1.0 1.1 0.7 0.5 1.5 0.8 2.1 1.6 1.1 0.9 0.5 
 

0.2 
 

Control 
Mean 

2.1 1.8 1.8 1.5 0.7 0.4 1.9 1.6 1.3 1.1 0.6 0.2 

Control 
STDEV 

0.5 0.6 0.7 0.7 0.5 0.4 0.5 0.7 0.4 0.5 0.4 0.2 

Sample 
Size 

10 10 10 10 10 10 10 10 10 10 10 10 

p Value 
 

0.046* 0.12 0.09 0.1 0.09 0.17 0.34 0.46 0.34 0.32 0.27 0.25 

Population 
Below Score 

5% 11% 9% 10% 91% 83% 65% 53% 35% 32% 27% 25% 

Table 2. The results of the statistical analysis performed on the percentage signal change data in 
Experiment 2. We observed impaired responses for moving faces in Herschel’s right OFA only. 
 

 

3.1.4 Experiment 3 – Visual field responses in face areas 

In Experiment 3, we compared the neural response to moving faces presented in the two 

visual fields in the core face-selective areas of both hemispheres in Herschel and control 

participants. The data for each participant is shown in Figure 6. As above, we analysed two 

interaction effects (patient/controls x ROI) using Crawford & Garthwaite’s (2005) RSDT test.  

Comparing moving faces in LVF of rOFA and rpSTS gives t(9) = 5.365 , p = 0.0002 (one-tailed).   

Comparing moving faces of LVF in rFFA and rpSTS gives t(9) =1.94 , p=0.0425 (one-tailed).  These 

results show reliable differences in the pattern of response in pSTS and both OFA and FFA .  Further 

results of the single case neuropsychology analysis are shown in Table 3. This analysis showed a 

significantly lower response to faces in the left visual field in Herschel’s right OFA. While the 

response to faces in the right visual field in the right OFA was low it was not significantly different 
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than controls. In the right FFA, there was no significant difference for faces in both visual fields, 

although the response for left visual field faces was low. By contrast, the responses for faces in both 

visual fields in Herschel’s pSTS was significantly higher than that of control participants.  

 
 
Figure 6. Percentage signal change data for face videos shown in the left and right visual field in 
the bilateral OFA, FFA and pSTS. Consistent with the lesion in Herschel’s right ventral 
occipitotemporal cortex, we observed an impaired response to faces shown in his left visual field 
in bilateral OFA and FFA compared with controls. However, there was no impairment in the left 
visual response in the bilateral pSTS. There was an impairment in the right visual field in 
Herschel’s rOFA only.  
 
 

 Right OFA Right FFA Right pSTS Left OFA Left FFA Left pSTS 
Left 
Visual 
Field 

Right 
Visual 
Field 

Left 
Visual 
Field 

Right 
Visual 
Field 

Left 
Visual 
Field 

Right 
Visual 
Field 

Left 
Visual 
Field 

Right 
Visual 
Field 

Left 
Visual 
Field 

Right 
Visual 
Field 

Left 
Visual 
Field 

Right 
Visual 
Field 

Hershel 
 

-0.3 0.1 0.5 0.6 0.5 0.6 0.1 1.2 0.1 0.8 0.1 0.2 
 

Control 
Mean 

1.2 0.8 0.9 0.6 0.2 0.2 0.5 1.0 0.4 0.6 0.2 0.2 

Control 
STDEV 

0.4 0.4 0.3 0.2 0.2 0.2 0.5 0.6 0.2 0.3 0.1 0.2 
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Sample 
Size 

10 10 10 10 10 10 10 10 10 10 10 10 

p Value 
 

0.002* 0.07 0.1 0.5 0.02* 0.009* 0.2 0.38 0.09 0.2 0.22 0.4 

Population 
Below Score 

0% 7% 11% 50% 98% 99% 20% 61% 9% 80% 22% 59% 

Table 3. The results of the statistical analysis performed on the percentage signal change data in 
Experiment 3. We observed impaired responses for faces in the left visual in Herschel’s OFA and a 
significantly higher response than controls for faces in both visual fields in the rpSTS. 
 

4. Discussion 

Influential models propose there are two functionally distinct pathways for face 

processing in the human brain (Haxby et al., 2000, Calder and Young, 2005). The ventral 

pathway, that includes the fusiform face area (FFA), preferentially processes invariant facial 

aspects such as identity. The lateral pathway, that includes the posterior superior temporal 

sulcus (pSTS), preferentially processes changeable facial aspects such as facial expression. 

Despite these functional differences, both pathways are thought to begin in the occipital 

face area (OFA). In the current study, we measured the neural response to moving and 

static faces in these face-selective areas in Herschel, an acquired prosopagnosic patient with 

a right ventral occipitotemporal lesion. Herschel and control participants were scanned 

using fMRI while viewing moving and static face stimuli (Experiment 1), moving and static 

facial expressions (Experiment 2) and moving faces in the left and right visual fields 

(Experiment 3). Results showed a reduced response in Herschel’s right OFA and right FFA, 

compared with controls in all three experiments. However, the neural response to moving 

and static faces and the visual field responses in Herschel’s pSTS were comparable with 

control participants.  

 

This pattern of results suggests that the pSTS has functional cortico-cortical inputs that 

are independent of the FFA and OFA. This conclusion is inconsistent with established models 
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of face processing, which propose the OFA is sole source of face information for the pSTS 

(Haxby et al., 2000, Calder and Young, 2005, Pitcher et al., 2011b). The current data are 

consistent with the alternate hypothesis that the pSTS is part of an anatomically and 

functionally distinct lateral pathway with independent inputs from early visual cortex that 

includes the motion-selective area hMT+ (O'Toole et al., 2002). 

 

The results of Experiment 1 demonstrated that the response to moving and static faces 

in Herschel’s right pSTS was comparable with that of controls. This greater response to 

moving more than static stimuli was also seen in the bilateral pSTS for the facial expression 

stimuli presented in Experiment 2 in both Herschel and the control participants. Many prior 

neuroimaging studies have demonstrated that the pSTS shows a greater response to moving 

faces than static faces (Puce et al., 1998, LaBar et al., 2003, Fox et al., 2009, Schultz and Pilz, 

2009, Pitcher et al., 2011a, Pitcher et al., 2019a) suggesting that a possible source of 

functional input into the pSTS is the motion-selective area hMT+ (O'Toole et al., 2002). An 

anatomical connection between motion-selective areas and the STS has been shown in both 

humans (Gschwind et al., 2012) and macaques (Ungerleider and Desimone, 1986a, 

Boussaoud et al., 1990). Neuropsychological patients with a face-selective pSTS, despite 

having lesions encompassing the brain area in which the FFA and OFA are typically located, 

also support the hypothesis that the pSTS has separate cortical inputs from other face-

selective areas  (Steeves et al., 2006, Dalrymple et al., 2011). Figures 3 and 4 demonstrate 

that Herschel has area hMT+ in his right hemisphere and that the response to moving and 

static faces in his hMT+ is comparable with that control participants (Table 1). This result, 

combined with the normal response to faces in Herschel’s pSTS is consistent with the 

hypothesis that there is a functional pathway from early visual cortex that projects into the 
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pSTS via hMT+ that is independent of the ventral OFA and FFA (O'Toole et al., 2002, 

Gschwind et al., 2012, Pitcher, 2014, Duchaine and Yovel, 2015, Pitcher et al., 2017). 

 

Additional likely sources of functional input into the right pSTS are face-selective areas 

in the left hemisphere. For example, a recent dual-site TMS study demonstrated that 

disruption of the bilateral pSTS doubled accuracy impairment on an expression recognition 

compared to disruption of the right pSTS alone (Sliwinska et al., 2020). This is also consistent 

with our study that mapped the neural responses in face-selective areas to faces presented 

in different parts of the visual field (Pitcher et al., 2020). Results from this study 

demonstrated a greater response for faces in the contralateral visual field more than 

ipsilateral visual field in the bilateral OFA and FFA, a finding consistent with prior studies 

(Hemond et al., 2007, Kay et al., 2015). By contrast, there was no visual field for faces 

presented in any part of the visual field in the bilateral pSTS. The results of Experiment 3 

replicate and extend the findings of our earlier study by demonstrating that there is no 

visual field bias in Herschel’s bilateral pSTS despite the impaired contralateral visual field 

response in his right OFA. At least part of the contralateral visual field response in Herschel’s 

right pSTS and right FFA must come from the left hemisphere. The contralateral visual 

advantage for faces in the FFA observed in control participants is absent in Herschel’s right 

FFA, presumably because of the damage to earlier visual areas in the right hemisphere, 

including his right OFA. However, we observed an equal response to faces in the 

contralateral and ipsilateral visual fields in the bilateral pSTS in both Herschel and in control 

participants. This result is further consistent with an anatomically distinct pathway running 

from early visual cortex along the STS that is independent of the ventral pathway that 

includes the OFA and FFA. 
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Despite the comparable neural response for faces in Herschel’s pSTS, he is still profoundly 

prosopagnosic. Prior testing demonstrated he was impaired at face matching, famous face 

recognition, face memory, learning new faces, gender discrimination and facial expression 

discrimination (Rezlescu et al., 2012, Rezlescu et al., 2014). In the current study, all 

participants were asked to name the emotions expressed by the actors in the videos in 

Experiment 2 after they exited the scanner. Results showed that Herschel’s performance at 

naming dynamic and static expressions was significantly lower than control participants. It 

therefore seems likely that despite having separate functional inputs from early visual 

cortex the ventral and lateral face processing pathways share information at higher levels 

(e.g. between the FFA and pSTS). For example, TMS delivered over the right occipital face 

area of neurologically normal experimental participants has been shown to impair facial 

expression recognition (Pitcher et al., 2008). In addition, our prior combined TMS / fMRI 

study demonstrated that transient disruption of the right pSTS impaired the response to 

static faces in the right FFA (Pitcher et al., 2014). These results, combined with prior 

examples of acquired prosopagnosic patients with lesions to single face-selective areas 

(Rossion et al., 2003) demonstrates that typical face recognition is dependent on the 

functional integrity of all the nodes in the face processing network.  

 

In Experiment 2 there were no significant differences between moving and static 

recognition for either the control participants or for Herschel, despite the normal neural 

responses in his right pSTS. This suggests that while the pSTS preferentially responds to 

moving more than static face stimuli the accurate processing of moving face information is 

still dependent on the ventral face areas like the FFA (Bernstein & Yovel, 2015; Yovel & 
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O’Toole, 2016). fMRI studies show that information that facilitates identification of 

expressions and identity can be decoded from both the FFA and the pSTS (Said et al., 2011; 

Hahn et al., 2017).This is also consistent with behavioural evidence showing that motion 

information can aid the identification of both facial expressions (Trautmann et al., 2009; 

Lander & Butcher, 2015) and facial identity (Lander et al., 1999).  

 

In conclusion, the results of the current study demonstrate a comparable response in 

Herschel’s right pSTS with that of control participants. This normal response is interesting 

because the response in Herschel’s right OFA and right FFA is impaired, a result consistent 

with the lesion to his right occipitotemporal cortex and his behavioural face recognition 

impairments. The pattern of neural responses across the face-selective areas in Herschel is 

consistent with recent evidence that has proposed the existence of functionally and 

anatomically distinct pathway along the lateral brain surface. This pathway projects from 

early visual cortex, via the motion-selective area hMT+, into the superior temporal sulcus 

and preferentially responds to moving, more than static faces. 
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