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Investigation of the effect of e-platform information security breaches: an 
SME supply chain perspective 

 
Abstract 

 
Many small and medium enterprises (SMEs) engage in dyadic information integration partnerships or 

partial integration with their direct suppliers and customers. They often utilize e-commerce or cloud 

computing technology platforms hosted by third-party providers to leverage such partnerships. 

However, information security breaches and disruptions caused by cyber-attacks are commonplace in 

the IT industry. The effects of said disruptions and breaches on e-commerce businesses under varied 

disruption conditions are still uncertain. Furthermore, the effect of security breaches on non-

participating members of the supply chain is poorly understood, especially under various disruption 

profiles. Using discrete event modeling, this study explores the impact of disruption caused by 

information security breaches on supply chain performance and the externality effect of partial 

integration on non-participants. We also examine the impact of breach disruption frequency and 

remediation length on supply chain performance with varying levels of information sharing. These 

impacts were studied under two typical inventory replenishment policies for SMEs. It was determined 

that remediation length should be a prioritized factor in impact management and that flexibility in the 

inventory replenishment policy can help mitigate the impact of information disruption on the inventory 

performance of businesses, especially that of non-participants, in information-sharing partnerships. 

 
Keywords: information security breach, simulation, information integration, disruption impact, supply 

chain integration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Introduction  

Small and medium-scale enterprises (SMEs) are heavily reliant on IT, mostly hosted by third-party 

technology service providers on e-commerce platforms such as Shopify and BigCommerce (Meng, 

2017). These technologies or platforms are used by SMEs to facilitate the exchange and sharing of 

relevant information such as demand and inventory data (Holland & Gutiérrez-Leefmans, 2018). As 

increasing numbers of firms rely on information technology (IT) to run their day-to-day operations, the 

impact of disruptions caused by information security breaches (ISBs) or cyber-attacks on these firms 

and their supply chains becomes increasingly important. Thus far, the focus has largely been on those 

platform providers that are directly breached with little attention being paid to the small businesses that 

utilize said third-party platforms for their own operations and supply chain transactions. For example, 

analysts estimated the effect of the data breach experienced by eBay in 2014 to be a loss of 

approximately $200 million in revenue (Drinkwater, 2014), but that figure does not reflect the cost to 

the small businesses using the e-commerce platform. Despite small businesses accounting for the 

majority of private businesses in most developed and developing economies (Wright, 2018), there is a 

paucity of research into how their supply chains are impacted by disruptions caused to their service 

providers. The effects reported usually include loss of revenue, costs of remedial action or litigation and 

share price drops, but the effect on inventory management, arguably the most important cost component 

for small businesses, is seldom discussed (Kim, 2020). A 2019 Zogby Analytics survey of 1006 small-

business decision-makers, conducted on behalf of the National Cyber Security Alliance, revealed that 

10% of SMEs fail after experiencing a data breach (Small Business Cybercriminal Target Survey Data, 

2019). Therefore, it is vital to understand the nature and extent of the impact of ISBs affecting e-platform 

providers on the performance of SMEs and their supply chains. 

Another factor that can affect the nature and extent of the impact of ISBs on SMEs is the extent to which 

information is shared. It has been reported that it is beneficial to supply chain members to engage in the 

sharing of important information such as demand, inventory, supply lead time and capacity information 

(Devaraj, Krajewski, & Wei, 2007; Kovtun, Giloni, & Hurvich, 2019; Mukhopadhyay & Kekre, 2002; 

Rached, Bahroun, & Campagne, 2015; Yu, Ting, & Chen, 2010). In order to take advantage of said 

information-sharing benefits, SMEs try to share real-time information with their suppliers, utilizing 

varying degrees of information-sharing partnerships ranging from sharing solely with their direct 

suppliers (partial information integration) to sharing all along the supply line, all the way to the 

manufacturer (full information integration). Many SMEs adopt partial information integration 

partnerships due to the higher costs associated with full integration partnerships. This decision often has 

inadvertent consequences on non-participating members of the chain (such as the manufacturer), 

hereafter referred to as the ‘externality effect’. This externality effect in an information disruption 

scenario is poorly understood, especially on non-participating members of the supply chain. Although 

past research reveals that partial and full information integration benefits participating businesses, it is 



still not clear how the disruption of the integration platform (e-commerce sites) in the event of an ISB 

erodes those benefits for participating members and affects non-participating members.  

Another critical factor that can affect the nature and extent of ISB impact on performance is the profile 

of the ISB itself, defined as the frequency with which it occurs and the level of sophistication of the 

breach. The incidence of ISBs disrupts access to technology, which means businesses may be deprived 

of useful, time-sensitive information needed to run their operation and supply chain efficiently. Several 

surveys have shown that technology service providers experience the highest frequency of ISBs or 

cyber-attacks compared to other industries (Bromiley, 2016; Miller, Horne, & Potter, 2015). The cost 

implications of the frequency of ISBs to these small and medium businesses are not sufficiently reported 

or understood. Additionally, the level of sophistication determines how long it takes to detect and 

remediate the breach. The remediation duration is understood as the time taken to restore functionality 

and accessibility to users to the software or hardware technology in order to allow them to resume 

business after being compromised by an ISB. The remediation duration, also referred to as disruption 

duration, is also an indicator of the resilience of the platform. The longer the remediation time, the less 

resilient the platform is deemed to be. Similarly, the shorter the remediation duration, the more resilient 

the platform is. The remediation period brings delays in information transmission, which has inventory 

management cost implications. This has not been sufficiently explored for SMEs. This study, therefore, 

aims to explore the impact of the frequency and remediation length of ISBs on supply chain performance 

and the purported benefits of information integration partnerships formed by SMEs, which are hosted 

on third-party platform providers.  

Motivated by the above empirical evidence and the research gap in the literature, this paper aims to 

deepen our understanding of the impact of ISB incidences at third-party e-platforms on SMEs and their 

supply chains by using different information integration profiles. To this end, the study addresses the 

following questions: 

a) What is the nature and extent of ISB impact on SME supply chain performance? 

b) How is the benefit of information integration via shared platforms affected by the frequency and 

remediation length of an ISB? 

c) To what extent are non-participants affected by the externality effect of partial supply chain 

information integration, and to what extent is this externality effect exacerbated or improved by 

ISBs? 

To answer the above questions, we examined two levels of information integration partnerships where 

the sharing platform is inclusive of i) the downstream partners only (partial information integration 

mode); and ii) both upstream and downstream partners (full information integration mode). There are 

different ISB types, which cause varying levels of difficulty in remediating and varying frequencies of 

occurrence. We have focused on ISB profiles in terms of remediation duration and frequency of 



occurrence rather than on individual ISB types. The three ISB profiles, hereafter called ‘disruption 

profiles’ (DP), used in this study are i) low remediation length, low frequency of breach incidences 

(BP1); ii) low remediation length, high frequency of breach incidences (BP2); and iii) high remediation 

length, low frequency of breach incidences (BP3). Additionally, because our focus is on goods supply 

chains rather than services, we examined the impact of DP under two replenishment policies i) 

parameter-based replenishment (base stock policy) and ii) non-parameter-based replenishment (batch 

ordering policy). Since our focus is on SMEs using e-commerce platforms, we expect that their greatest 

expense would be inventory management costs; therefore, our focus is on the inventory performance of 

the supply chain and the typical inventory costs, including backlog, inventory holding and ordering 

costs. We have not considered other costs associated with information security breaches such as punitive 

costs, reputational costs, remediation costs or lost sales as these losses are borne, to a large extent, by 

the platform provider.  

The rest of this paper is organized as follows: Section 2 examines the gap in the literature and the validity 

of the approach used. Section 3 presents the model setup and the validity of the simulation models and 

experimental parameters. Section 4 discusses the results, and Section 5 concludes this paper and 

proposes future work. 

 

2. Literature Review  

This study falls at the intersection between two research areas, namely: i) information sharing and ii) 

the disruption impact caused by information security incidents. The subsequent review is not intended 

to be exhaustive but rather to indicate where the current study fits within these two research areas. 

Over the years, extensive studies in operations research have been conducted in the area of information-

sharing partnerships and how agents in the supply chain derive benefit from it (Bourland, Powell, & 

Pyke, 1996; Chan & Chan, 2009; Huang, Ho, & Fang, 2017; Li et al. 2006; S. Li & Lin, 2006; Zhenxin, 

2001). Other studies have shown that the benefit may be disproportionately distributed among supply 

chain members (Sahin & Robinson Jr, 2005; Yao & Dresner, 2008). Therefore there has been some 

discussion about ways to incentivize members in the chain that participate in, but do not benefit from, 

an information-sharing partnership (Dominguez et al. 2018b; Yao, Dong, & Dresner, 2010), while 

incentives are not offered for non-participating members. To our knowledge, the focus of past research 

into information-sharing benefits has been on one of the following three scenarios: i) a dyadic 

partnership in a two-stage supply chain setting (Cachon & Fisher, 2000; Huang et al., 2017; Khan, 

Hussain, & Saber, 2016; Kovtun et al., 2019; Lee, So, & Tang, 2000; Teunter et al. 2018; Zhou & Benton 

Jr, 2007), ii) dyadic partnership in a multi-stage supply chain setting without any consideration for the 

other members in the supply chain (Dominguez et al. 2018a), or iii) full partnership in a multi-stage 



supply chain setting (Dominguez et al., 2018b; Ganesh, Raghunathan, & Rajendran, 2014; Lau, Huang, 

& Mak, 2004). Studies of scenario i) are very limited in scope because the interaction is only between 

two players, which does not account for the complexities of supply chain interactions where processes 

in one part of the supply chain have a bearing on what goes on in other parts (Chatfield, 2013). For 

example, Huang et al. (2017) concluded that sharing too much information in a dyadic partnership can 

result in a negative outcome, which suggests that the amount of information shared should be moderated 

for optimal benefits. While informative, it is difficult to conclude that the same strategy for optimizing 

benefits will apply in a multi-stage setting. Studies in scenarios ii) and iii) tend to overcome some of the 

limitations of scenario i) by examining dyadic partnerships and full partnerships in multi-stage settings. 

However, most of these studies utilize a single inventory replenishment policy which limits 

generalizability as different replenishment policies behave differently under specific conditions, leading 

to different outcomes or conclusions (Lau, Xie, & Zhao, 2008). For example, Dominguez et al. (2018b), 

Ganesh et al. (2014) and Lau et al. (2004) found that some supply agents favor information sharing at 

certain points in the supply chain over other points, but they all utilized single replenishment policies in 

their studies. They all utilized Order-Up-To (OUT) policy, which is a parameter-based replenishment 

policy where the quantity ordered from the upstream agent is determined by the difference between two 

key parameters: the inventory position (IP) and the target inventory level (S). It is, therefore, necessary 

to examine information-sharing benefit in a multi-stage supply chain setting under different 

replenishment policies. To the authors’ knowledge, Dominguez et al. (2018a) is the only study that has 

attempted to do this, but this is also parameter-based like the rest of the studies. Only two different 

variances were utilized to compute the target inventory level (S). However, the size of the order quantity 

was still determined by the difference between the two parameters: IP and S. This parameter-based 

policy has been shown to behave differently to other policies such as the batch policy, where a certain 

fixed amount is ordered. Our study, in one sense, will try to fill this gap by examining the benefit of 

information integration under two distinct replenishment policies in order to gain an incremental picture 

of information-sharing benefits. This increased understanding is even more pertinent when studying this 

benefit under disruption conditions such as incidences of an information security breach. In addition, 

previous studies have not considered these issues within the context of SMEs’ supply chains. Those that 

have considered the SME context for supply chain partnerships have mostly been focused around 

building innovation capabilities (Mei, Zhang, & Chen, 2019; Radziwon & Bogers, 2019; Rehm & Goel, 

2017; Yanes-Estévez, 2019). Our study is unique in that it uses a three-stage supply chain with two 

separate replenishment policies to investigate the benefits of information sharing not only among 

participants but also on non-participants of said sharing. 

In the area of disruption, some studies in the field of operations and technology management have 

focused primarily on the disruption effect on supply chains without any regard to specific causes (Munoz 

& Clements, 2008; Schmitt & Singh, 2009; Snoeck, Udenio, & Fransoo, 2019) while others have looked 



more specifically at how specific disruption types (threats) affect the supply chain (Altay & Ramirez, 

2010; Craighead et al. 2007; Rodger & George, 2017; Świerczek, 2014). The former approach gives a 

more general assessment of the effect of disruption, while the latter gives a clearer understanding of the 

dynamics of specific threats and how they impact the chain. Table 1 provides a summary of work that 

has been done on disruption risk assessment at the organizational level as well as the supply chain level 

and brings to light those studies that have provided real and objective estimations of the cost impact of 

certain threats on business operations and those that have looked at specific IT security risks. The third 

column of the table reveals the approach taken in undertaking the study. From the last three columns of 

Table 1, it can be seen that no single study has covered all three aspects of disruption risk assessment, 

at least not for small businesses. While some of these studies have examined the effect of physical 

disruption such as natural disasters (Dani, 2009), it is notable that only a small number have examined 

the effect of IT security incidents (Deane et al. 2009; Kim et al. 2011; Loch, Carr, & Warkentin, 1992; 

Rees et al. 2011), despite it being described as a persistent business risk in the 2015 survey conducted 

by PwC. Rodger and George (2017) developed an optimized sustainability model that reduces supply 

chain global cybersecurity vulnerability in the natural gas industry, but the direct impact of cybersecurity 

disruption on supply chain performance remained unclear. In addition, only a handful of these research 

papers have examined the impact of ISBs on inventory management, and those that have been mostly 

conceptual (Durowoju & Chan, 2012; Durowoju, Chan, & Wang, 2011). It is, therefore, imperative to 

determine how these threats affect the inventory performance of supply chain agents, before agreeing to 

specific information integration initiatives, as this is crucial for effective disruption risk planning and 

management. To the authors’ knowledge, there is no single study examining the impact of information 

security disruption on multi-echelon supply chain inventory cost performances under varying supply 

conditions such as ordering policy and level of information integration.  

Table 1: Summary of some relevant disruption risk studies 

Authors Subject Approach 

Cost 
Impact 
study? 

Y/N 

IT 
security 

incident? 
Y/N 

Supply 
chain 

study? 
Y/N 

Snoeck et al. 
(2019) 

A stochastic program to 
evaluate disruption mitigation 
investments in the supply 
chain 

Stochastic 
programming Y N Y 

Rodger and 
George 
(2017) 

Reducing supply chain global 
cybersecurity vulnerability in 
the natural gas industry using 
an optimized sustainment 
model 

Linear 
programming, 
fuzzy integrated 
linguistic operator, 
weighted average 

N Y Y 

Świerczek 
(2014) 

The impact of supply chain 
integration on the “snowball 
effect” in the transmission of 
disruptions 

Quantitative 
survey N N Y 



Altay and 
Ramirez 
(2010) 

Impact of disasters on firms in 
different sectors: implications 
for supply chains 

Fixed-effect 
regression Y N Y 

Schmitt and 
Singh (2009) 

Quantifying supply chain 
disruption risk 

Monte Carlo and 
discrete event 
simulation 

Y N Y 

Deane et al. 
(2009) 

Managing supply chain risk 
and disruption from IT 
security incidents 

Mixed-integer 
linear 
programming 

N Y Y 

Munoz and 
Clements 

(2008) 

Disruptions in information 
flow: a revenue-costing supply 
chain dilemma 

Discrete event 
simulation of beer 
distribution game 

Y N Y 

Rees et al. 
(2011) 

Decision support for 
cybersecurity risk planning Genetic algorithm N Y N 

Whitman 
(2003) 

Profiling threats to information 
security 

Interviews and 
survey N Y N 

Wilson 
(2007) 

The impact of transportation 
disruptions on supply chain 
performance 

Dynamic 
simulation 
modeling 

Y N Y 

Bellefeuille 
(2005)  

Quantifying and managing the 
risk of information security 
breaches to the supply chain 

Descriptive 
research N Y Y 

Yeh and 
Chang 
(2007) 

Threats and countermeasures 
for information system 
security: A cross-industry 
study 

Questionnaires 
and analysis of 
covariances 
(ANCOVAs) 

N Y N 

Goel and 
Shawky 
(2009) 

Estimating the market impact 
of security breach 
announcements on firm values 

Event-study 
methodology Y N N 

Craighead et 
al. (2007) 

The severity of supply chain 
disruptions 

Multiple-method, 
multiple-source 
empirical research 
design 

N N Y 

Kim et al. 
(2011) 

The dark side of the Internet: 
Attacks, costs and responses 

Explorative 
research N Y N 

Loch et al. 
(1992) 

Threats to information 
systems: Today's reality, 
yesterday's understanding 

Questionnaires N Y N 

 

3. Simulation Approach 

This study focuses on the disruption in information flow resulting from a breach of information security. 

According to Lau et al. (2004), the simulation approach has an advantage over the analytical approach 

in that the effect of information sharing on supply chains can be investigated under various scenarios. 

Discrete event simulations (DES) are a powerful tool used in mimicking the dynamics of a real system 

as it evolves over time (Ingalls, 2008; Law, 2007). A multi-agent approach where each tier of the supply 

chain has at least one agent (or member as they are sometimes called) making decisions is accurately 

representative of a real-world situation, hence making it the approach of choice (Swaminathan, Smith, 

& Sadeh, 1998). For this study, we have used the Java program JDK 1.6, which is widely used for 

simulation studies, as the simulation tool.  



3.1 Modeling the Supply Chain 

The supply chain is conceptualized as a series of agents working autonomously to deliver goods to the 

end consumer. For simplicity, the number of echelons within the supply chain is limited to three, 

consisting of the retailer, wholesaler and manufacturer, as this represents an ideal supply chain scenario. 

The decision on when to order and how much to order is determined internally by each agent, who 

operate independently and strive to achieve the minimum operating cost possible. Depending on their 

position in the supply chain, each agent places an order to the upstream agent, and the upstream agent 

delivers goods to the downstream agent. Essentially, the retailer experiences the demand from the end 

customer (market demand) and determines when and what quantity of order to place with the wholesaler. 

In turn, the wholesaler works out when to order and how much to order from the manufacturer. The 

manufacturer then produces the product and delivers it to the wholesaler who, in turn, determines the 

quantity of goods to deliver to the retailer and then supplies it. The sequence of activities involved in 

determining when to order and how much to order for each agent is similar to Lau et al. (2004) and is 

shown below. Each agent makes their decision using key parameters, which are shown in Table 2.  

Table 2: Key modeling parameters 

Parameter Notation Retailer Wholesaler Manufacturer 
Market demand D *   
Order quantity Q * *  
Production quantity PQ   * 
Mean of orders from downstream agent μ * * * 
Standard deviation of orders σ * * * 
Stock received by agent SR * *  
Stock shipped by agent SS * * * 
Stock from production SFP   * 
On-hand inventory OH * * * 
On-order/pipeline inventory OO * * * 
Backlog quantity BL * * * 
Inventory position IP * * * 
Transportation lead time L  * * 
Production lead time PL   * 
Production capacity PC   * 
Re-order point ROP * * * 
Order-up-to-level OUT * * * 
New order quantity NQ * *  
New production quantity NPQ   * 
Unit shortage cost b * * * 
Unit holding cost h * * * 
Unit ordering cost o * *  
Unit production cost om   * 
Fixed ordering cost f * *  
Production setup cost p   * 
Safety factor k * * * 



Table 2 shows the parameters of operation and their mathematical representation (notation). The use of 

‘*’ indicates whether the parameters relate to a specific agent or not. For example, Market demand (D) 

relates only to the retailer and stock received by the agent (SR) relates only to the retailer and wholesaler, 

while stock from production refers only to the manufacturer. To help distinguish information describing 

the activities of a particular agent from that relating to other agents, subscripts x and y are used. Subscript 

‘y’ represents information relating to the upstream agent, while ‘x’ refers to parameters relating to the 

downstream agent. The sequence of activities and the mathematical model are described as follows. 

 

Step 1: At the beginning of each operating day, an agent receives stock delivered by an upstream 

agent 

The stock sent by the upstream agent is received at the current period by the downstream agent after the 

transportation lead time of the upstream agent. This stock is received at the start of business. 

SRt= SSy,t-L         (1) 

For the manufacturer, SSy is replaced with SFP, which is stock received from production after the 

production lead time. 

i.e. SRt= SFPt-PL         (2) 

Step 2: Update of inventory position 

Once the stock is received, the state of the on-hand inventory and the on-order inventory is updated as 

follows: 

OHt= OHt-1 + SRt               (3) 

OOt= OOt-1 - SRt        (4)  

The inventory position is then updated as shown below: 

IPt= OHt + OOt - BLt-1        (5) 

Step 3: A decision is made as to whether an order should be placed and what quantity to order 

A decision to order is made when the inventory position is below the re-order point, and the quantity to 

order (Qt) at a given period, t, is governed by the ordering option adopted by the agent. This is discussed 

later in the study. It is assumed in the simulation model that each supply chain agent orders from the 

upstream agent when the inventory position, IP, (also called installation stock) falls to the re-order point, 

ROP, (eq. (6)) and the magnitude of order is decided by the choice of ordering policy adopted.  



𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 =  𝜇𝜇�𝐿𝐿𝑦𝑦 + 1� + 𝑘𝑘𝑘𝑘�𝐿𝐿𝑦𝑦 + 1                                                                                    (6) 

The safety factor (k) is computed using eq. (7), which gives the optimal value of k, which is the 

solution to the standard newsvendor problem as expressed in Lau et al. (2002). 

𝑘𝑘 = Φ−1 �
𝑏𝑏

𝑏𝑏 + ℎ
�                                                                                                                   (7) 

Step 4: Update of on-order inventory 

The order information above (if any) is passed to the upstream agent, and the on-order inventory is 

updated. 

𝑅𝑅𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑅𝑅 + 𝑄𝑄𝑡𝑡        (8) 

Step 5: Receipt of order from downstream agent 

The order information for the day is received from the adjacent customer (downstream agent), and this 

is added to the pending order previously placed to determine the new order quantity for that period. If 

the agent is the retailer, the adjacent customer is the end customer, and the customer order is called 

market demand.  

𝑁𝑁𝑄𝑄𝑥𝑥,𝑡𝑡 = 𝑄𝑄𝑥𝑥,𝑡𝑡 + 𝐵𝐵𝐿𝐿𝑡𝑡−1        (9) 

Step 6: Calculation of quantity to deliver to fulfill orders from downstream agent 

Each agent tries to fulfill all demands/orders placed by a downstream customer. However, whatever the 

agent is unable to fulfill is back-ordered. 

𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝑁𝑁𝑄𝑄𝑥𝑥,𝑡𝑡 ,𝑅𝑅𝑂𝑂𝑡𝑡�           (10) 

𝐵𝐵𝐿𝐿𝑡𝑡 = 𝑁𝑁𝑄𝑄𝑥𝑥,𝑡𝑡 − 𝑆𝑆𝑆𝑆𝑡𝑡        (11)  

Step 7: Update of on-hand inventory information 

𝑅𝑅𝑂𝑂𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅𝑂𝑂 − 𝑆𝑆𝑆𝑆𝑡𝑡, 0)       (12) 

Step 8: Calculation of mean and standard deviation for orders 

The mean of orders and standard deviation of orders is computed using the moving average (MA) 

technique. For the retailer, the mean of orders is represented as mean of demand instead.  

Step 9: Calculation of the operating cost for the day 



The operating costs this study is interested in are the holding cost, the backlog cost, and the ordering 

cost. These are computed using eq. (13), (14) and (15) respectively. 

 𝑂𝑂𝐻𝐻𝑡𝑡 = ℎ ∗ 𝑅𝑅𝑂𝑂𝑡𝑡         (13) 

𝐵𝐵𝐻𝐻𝑡𝑡 = 𝑏𝑏 ∗ 𝐵𝐵𝐿𝐿𝑡𝑡         (14) 

𝑅𝑅𝐻𝐻𝑡𝑡 = 𝑝𝑝 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑄𝑄𝑡𝑡 , 0) + 𝑜𝑜 ∗ 𝑄𝑄𝑡𝑡       (15) 

For the manufacturer, the fixed ordering cost is known as production setup cost (p), and the unit ordering 

cost is called the unit production cost (op). Each cost is computed at the end of the day and averaged 

over the effective simulation period only. 

3.2 Modeling the Ordering Policies 

The first alternative (Option I), which determines its order size by computing the difference between 

two decision parameters (which we call parameter-based ordering) is the order-up-to base stock policy. 

The second alternative, which uses a predetermined batch size (batch ordering), is represented in this 

study as Option II- the optimal economic order quantity (EOQ*) in a stochastic environment specified 

by Axsäter (Axsäter, 1996). These two policies were selected as they have been extensively researched 

and validated in literature and are quite dissimilar in their computation. Therefore, the aim is to find out 

if the incentive for some supply agents to favor certain types of information-sharing partnerships remain 

the same, given the behavior of ordering policies under various disruption scenarios. 

3.2.1 Option I (The base stock policy) 

The base stock policy has been used by several authors (Agrawal, Sengupta, & Shanker, 2009; Beamon 

& Chen, 2001; Bensoussan, Cakanyildirim, & Sethi, 2007;  Chen et al. 2000). Here, an order is placed 

to raise inventory to the base stock level (otherwise called order-up-to level, OUT) when the inventory 

position falls below the base stock level. This option is also called an adaptive model because the order-

up-to-level, or base stock level in this case, is recalculated every replenishment period. The base stock 

level is calculated in a similar way to eq. (6). The ordering decision for this policy is shown in eq. (16). 

𝑄𝑄𝑡𝑡 = �max (𝑅𝑅𝑂𝑂𝑂𝑂𝑡𝑡 − 𝐼𝐼𝑅𝑅𝑡𝑡, 0), 𝐼𝐼𝑅𝑅𝑡𝑡 < 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡
0, 𝐼𝐼𝑅𝑅𝑡𝑡 ≥ 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡

    (16) 

Here, the order quantity is determined by two decision parameters: the order-up-to level and the 

inventory position (Cimino, Longo, & Mirabelli, 2010), which is why it is referred to as parameter-

based ordering.  

 
3.2.2 Option II (The optimal EOQ model) 



In contrast to the base stock policy, in an (R, Q) option, when the inventory position falls to the re-order 

point (R), a batch (Q) is ordered. However, according to Vasconcelos and Marques (2000), Q is usually 

set to the economic order quantity (EOQ), which is predetermined, while R is the re-order point 

computed for each replenishment period. The EOQ model, being deterministic, usually fails and causes 

a significant increase in cost when used in a stochastic environment. However,  Axsäter (1996) proposed 

an optimal solution for Q. The standard solution for EOQ in a stochastic environment is given by eq. 

(17). 

𝐸𝐸𝑅𝑅𝑄𝑄𝑡𝑡 = �2𝜇𝜇𝜇𝜇(𝑏𝑏 + ℎ)
𝑏𝑏ℎ

                                                                                           (17) 

However, according to Axsäter (1996), multiplying the EOQ by square root of 1+α2 becomes optimal 

when α=2. This optimal model is used as one of the ordering options in the current study.  

 

𝑄𝑄𝑡𝑡 = �max (𝐸𝐸𝑅𝑅𝑄𝑄𝑡𝑡 ∗ 2.2361, 0), 𝐼𝐼𝑅𝑅𝑡𝑡 < 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡
0, 𝐼𝐼𝑅𝑅𝑡𝑡 ≥ 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡

                            (18)  

3.3 Modeling the Extent of Information Integration Partnership 

This study adopts the conceptual model of information-sharing levels validated in Lau et al. (2002) and 

Lau et al. (2004). Information integration (also termed information sharing) is conceptualized here as a 

strategy where an upstream agent is privy to the demand and other related inventory information of a 

downstream agent such as the inventory position, safety factor, lead time, ordering cost, backlog cost 

and holding cost. The extent of information integration (EII), therefore, refers to how far up the chain 

information is being shared. Figure 2 (b) and (c) show the two main EII scenarios examined in this 

study, including the non-integrated model called the base model. The performance of each of the two 

EII scenarios is evaluated against the base model. The base model, in Figure 2 (a), represents a supply 

chain where each supply agent acts independently and does not share information with any other agent. 

In this model, only the order information is passed from a downstream agent to the preceding upstream 

agent. 



 

Figure 2 Three levels of information sharing 

3.3.1 Downstream integration (DI mode) 

This is the integration between retailer and wholesaler only. In Figure 2 (b), the DI mode is a supply 

chain where the retailer shares market demand information and other related inventory information with 

the wholesaler. The wholesaler, in turn, uses this information to make inventory decisions. The retailer 

and manufacturer control their inventory as previously described, but certain decision parameters are 

changed for the wholesaler. Instead of using the installation stock, the wholesaler uses the echelon stock 

instead, represented as IP′, as shown in eq. (19). The echelon inventory position at the current period t 

is the sum of the inventory position of the agent calculated normally in eq. (5) and that of the retailer, 

also calculated using eq. (5).  The re-order point also changes to ROP′, as shown in eq. (20) while the 

EOQ computation changes from (17) to (21). 

𝐼𝐼𝑅𝑅𝑡𝑡′ = 𝐼𝐼𝑅𝑅𝑡𝑡 + 𝐼𝐼𝑅𝑅𝑥𝑥,𝑡𝑡       (19)  

𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡′ =  𝜇𝜇𝑥𝑥(𝐿𝐿𝑦𝑦 + 𝐿𝐿 + 2) + 𝑘𝑘𝑥𝑥𝑘𝑘𝑥𝑥�𝐿𝐿𝑦𝑦 + 𝐿𝐿 + 2     (20) 

𝐸𝐸𝑅𝑅𝑄𝑄′𝑡𝑡 = �2𝜇𝜇(𝑓𝑓+𝑓𝑓𝑥𝑥)(𝑏𝑏+ℎ)
𝑏𝑏ℎ

      (21) 

Here, μx and σx are the average market demand and standard deviation of market demand, respectively, 

rather than the retailer order, since the wholesaler is now privy to this information from the retailer. 

3.3.2 Full integration (FI Mode) 

The final information-sharing mode considered is the FI mode (Figure 2 (c)), which is a scenario in 

which the wholesaler and the manufacturer are privy to the retailer’s market demand and other related 

inventory information. The manufacturer is also privy to the wholesaler’s inventory information. The 

decision parameters of the retailer do not change but that of the wholesaler and the manufacturer change. 

The wholesaler’s parameters are similar to those in the DI mode, and the manufacturer’s parameters 
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now include the retailer’s inventory information. Therefore, the echelon stock for the manufacturer 

becomes the summation of the inventory position of the manufacturer, calculated normally, and the 

entire downstream agent (wholesaler and retailer) as shown in eq. (22). Equations (20) and (21) also 

changes to (23) and (24) for the manufacturer. 

𝐼𝐼𝑅𝑅𝑡𝑡′ = 𝐼𝐼𝑅𝑅𝑡𝑡 + ∑𝐼𝐼𝑅𝑅𝑥𝑥,𝑡𝑡       (22)  

𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡′ =  𝜇𝜇𝑥𝑥(𝐿𝐿𝑥𝑥 + 𝐿𝐿 + 𝑅𝑅𝐿𝐿 + 3) + 𝑘𝑘𝑥𝑥𝑘𝑘𝑥𝑥�𝐿𝐿𝑥𝑥 + 𝐿𝐿 + 𝑅𝑅𝐿𝐿 + 3   (23) 

𝐸𝐸𝑅𝑅𝑄𝑄′𝑡𝑡 = �2𝜇𝜇𝑥𝑥(𝑝𝑝+𝑓𝑓𝑥𝑥+𝑓𝑓𝑟𝑟)(𝑏𝑏𝑥𝑥+ℎ𝑥𝑥)(𝑏𝑏𝑟𝑟+ℎ𝑟𝑟)
(𝑏𝑏𝑥𝑥ℎ𝑥𝑥)(𝑏𝑏𝑟𝑟+ℎ𝑟𝑟)      (24) 

μx and σx in eq. (23) represent the average and standard deviation of retailer order, respectively, while 

μx and subscript ‘r’ in eq. (24) represent the average market demand information and retailer 

parameter, respectively. 

3.3 The Disruption Model 

A 2017 cybersecurity survey (Klahr et al., 2017) revealed that 1 in 5 organizations experience a security 

breach which results in temporary loss of access to files/network or have had their software/systems 

corrupted or damaged. This is a major concern, as many organizations rely on access to these 

files/networks in order to store and retrieve real-time demand and/or inventory information. Various 

breach surveys have reported typical frequencies of ISBs to be a few times per day, one per day, one per 

week, one per month, less than one per month, and one per year. However, having studied data from 

various surveys, and based on our investigation, we have only considered frequencies of one per quarter 

(low frequency)-BP1, and one per week (high frequency)-BP2, in order to show the effect of an 

increased frequency of ISBs on supply chain performance. 

 

According to the SANS Institute survey of 591 respondents in 2016, remedial actions are largely manual 

and can include activities such as rebuilding a server or replacing a workstation (Bromiley, 2016). The 

survey further revealed that remedial action can typically take less than one day (29% of respondents) 

or between 2 to 7 days (33% of respondents). Therefore, in our study, we examined the impact of an 

average of 1-day (low) and 5-day (high) remediation length as they are typical figures in the industry. 

Comparing the impact of low remediation length (BP1) with the impact of high remediation length 

(BP3) gives an indication of the effect of increased remediation length (or rather decreased resilience) 

on supply chain performance.  

Breach Model Assumption:  
It is assumed that the service provider’s interfaces with end consumer and supply chain 
operators are off-line during the remediation period, but become available after the disruption 
period. Therefore, the remediation time is seen in this study as the ‘delay period’ for the supply 



chain operators in getting access to real time demand and inventory information. During this 
period, the supply chain partners are unable to know what the actual demand is, but they 
continue to forecast demand based on moving average forecasting technique. The demand is not 
actually lost during the remediation period but only delayed. The assumption that demand is not 
lost is supported by various industry experts who comment that since 2013, most retail 
customers and shareholders are becoming desensitized and are more forgiving owing to the 
frequency with which security breaches occur in the retail industry (C. Chen, 2018; Kvochko & 
Pant, 2015). 

 
3.4 Simulation Experiments  

The simulation was run for 800 days. Using the time series method (Kelton, Sadowski, & Swets, 2010), 

the warm-up period was set to 100 days, resulting in an effective period of 701 days, and the average 

statistics were computed over this period. The number of replications required to obtain a 98% 

confidence level was determined to be 45, using the confidence interval method described in Law (Law, 

2007). The same random number streams were used for each experiment to ensure that input bias is 

eliminated and to ensure direct comparison between scenarios. To test for significance during result 

comparison, we employed the Paired-t Confidence Intervals for Mean Differences with Bonferroni 

Correction and standard-t Confidence Intervals for Mean Differences with Bonferroni Correction at 95% 

confidence level (Law, 2007; Robinson, 2004). The following assumptions, which are routine 

assumptions used in most simulation studies of this nature, were made in the model:  

• In the serial supply chain model, there is only one product and a single agent in each tier of the 
supply chain; the downstream agent places an order to the adjacent upstream agent. As supply 
structures may be more complex in reality, and this complexity consequently affects the 
outcome, this study only focuses on the interaction between the integration and disruption 
profiles. Hence the simplest structure (serial type) was adopted in this evaluation.  

• Demand is normally distributed with a mean of ten quantities and a standard deviation of two 
quantities. 

• All the lead times are constant.  
• All members of the supply chain use the same ordering policy. 
• If on-order quantity cannot be met with current on-hand inventory, then the on-hand inventory 

is shipped, and the rest is back-ordered, leaving the agent with zero inventory.  
• Each unfulfilled order is back-ordered, and a shortage or backlog cost is incurred by the supplier 

per unit item.  
• The total production capacity at the manufacturer tier is assumed to be 80 units. 
• A unit of production capacity makes a unit of the product for the duration of the production lead 

time.  

Table 3 shows the parameters considered for these experiments, similar to those used in Lau et al. 

(2002); Lau et al. (2004). The demand follows a normal distribution with a mean of ten units and a 

standard deviation of two units and is reviewed at the end of each day. 

 

Table 3: Simulation parameters 

Parameter Value 
Demand (units) NORM (10,2) 
Demand Arrival End of Day 
Production Lead Time 3 days 



Manufacturer Capacity 80 
Transportation Lead Time from Wholesaler to Retailer 2 days 
Transportation Lead Time from Manufacturer to Wholesaler 5 days 
Retailer Unit Holding Cost, Backlog Cost, Ordering Cost £5, 10, 5 
Wholesaler Unit Holding Cost, Backlog Cost, Ordering Cost £3, 10, 5 
Manufacturer Unit Holding Cost, Backlog Cost, Production Cost £3, 10, 5 

 
3.5 Sensitivity of the Simulation Model 

To ensure that the result is not biased against our input parameters, we conducted a sensitivity analysis 

by examining the simulation output under two varying conditions. The first sensitivity analysis was 

conducted on the only variable input parameter (demand stream) by changing the demand variance from 

low to high (2 to 4) and the second by halving the lead time across the supply chain. The result revealed 

that, at 95% confidence level, changing the demand variance does not affect the ‘nature of impact’, and, 

as expected, the higher the demand variance, the higher the magnitude of impact of information security 

breach. However, the nature of the effect, whether negative or positive, of high recurrence rate and high 

disruption duration remains the same. On the other hand, reducing the lead time by half did not have a 

significant impact on the performance of the batch ordering system in either the non-breached or 

breached scenarios. Although halving the lead time in the parameter-based system appears to increase 

cost performance, the impact of an information security breach under scenarios of high disruption and 

low recurrence rate was significantly reduced. This is because reducing the lead time in a parameter-

based ordering system increases the flexibility of the ordering system in a disruption scenario where 

supply agents are able to respond more rapidly to changes in demand level. Therefore, changing the 

demand variance or the lead time only affects the magnitude of the breach impact and does not affect 

the nature of the impact, which is the focus of our findings. Conclusively, the findings of this study are 

robust under the conditions studied. In addition, the simulation models were verified using the simple 

walkthrough or traces technique described in Sargent (2010). 

4. Result and Discussion 

This section discusses the output of the simulation experiments and answers the research questions posed 

in the introduction. The results of the experiments have been intentionally presented in different formats 

for ease of exposition when discussing different questions. Using the t-test, a pair-wise comparison 

reveals that each ordering policy and each integration level are significantly different (at p≤0.05) from 

each other when there is no disruption to the supply chain. This conforms to the findings in other 

validated models and, to some extent, confirms the validity of our modeling of them in the base model.  

 

Table 4 shows the supply chain daily average cost performance for the base model and the relative 

performance of the partial and full information-sharing scenarios under the three disruption profiles. For 



ease of exposition, we have extracted relevant information from the table and displayed it in a different 

format in order to focus on specific questions. 

Table 4: Daily average supply chain cost performance. 

Disruption Profile Integration Type 
Ordering Policy 

Option1 (£) Option2 (£) 

Base Model  397.0 309.8 

No disruption 
DI 355.8 302.1 
FI 314.0 287.3 

BP1 
Base(NI) 386.5 314.8 

DI 350.3 305.6 
FI 312.8 291.1 

BP2 
Base(NI) 333.9 338.0 

DI 308.8 331.3 
FI 314.8 324.6 

BP3 
Base(NI) 402.2 485.7 

DI 395.2 480.0 
FI 385.1 471.8 

 

 

4.1 Impact of Frequency and Remediation Length of ISBs on SCM Performance  

Recall from Section 3.3 that the only difference between BP1 and BP2 is that BP2 has a much higher 

frequency of disruption; therefore, the difference in performance between the two is solely due to the 

effect of increased disruption frequency as the disruption duration in both BP1 and BP2 is low. Similarly, 

the only difference between BP1 and BP3 is that BP3 has a higher remediation length. Therefore, a 

comparison between the performances of BP1 and BP3 signifies the sole effect of increased remediation 

length as the frequency of disruption in BP1 and BP3 are the same. Figure 3 shows the impact of all 

three ISB profiles on the base model without any form of integration. The percentage values are derived 

by expressing the difference between the daily average cost under the base model and the daily average 

cost under each ISB profile as a percentage of the former. Negative values indicate an increase in cost, 

which is a negative impact, while positive values indicate a reduction in cost, which is a positive effect 

on the daily average cost. Therefore, Figure 3 clearly shows the nature (polarity of impact, whether 

negative or positive) and extent (magnitude of impact) of ISB on supply chain performance, which helps 

us answer research question ‘a’. We see that high frequency of disruption has a positive effect under 

Option I as the benefit increases from 3% in BP1 to 16% in BP2,  but under Option II, a negative impact 

was observed with the negative impact increasing from -2% in BP1 to -9% in BP2. This shows that the 

frequency of occurrence of an ISB will have either a negative or positive effect depending on the 

inventory policy being adopted, as long as the disruption duration is very low each time it occurs. 

However, as expected, a high disruption duration had a negative impact on cost performance, especially 



for the batch policy, where impact increased from -2% in BP1 to -57% in BP3. This high negative impact 

provides empirical evidence to support the argument that most small businesses experiencing a 

significant breach incidence are unable to recover from the impact and consequently cease trading or 

file for bankruptcy (Small Business Cybercriminal Target Survey Data, 2019). This is despite the fact 

that for small businesses using third-party platforms, most of the reputational, legal and remediation 

cost of ISB is borne by the platform provider that was attacked. We have shown here that such attacks 

significantly affect or lead to the closure of small businesses using such platforms exclusively for their 

daily operation without any information integration partnership with other members of the supply chain.  

 

Negative sign indicates negative impact where ISB has increased the daily average cost. 

Figure 3: Impact of ISB profile on supply chain inventory performance 
 

As for the positive effect of frequency of occurrence on the base stock policy, it is important to know 

that there is some inherent flexibility in the base stock policy owing to it being a parameter-based 

ordering policy, whereby the quantity ordered depends on the difference between the inventory position 

and the re-order point. This flexibility allows operators to place smaller order quantities at frequent 

intervals, unlike the batch ordering type (Option II), where larger order quantities are placed at 

infrequent intervals. The comparatively higher order quantity of a batch ordering policy makes it more 

cost-effective than the parameter-based policy with a lesser order quantity. However, our study shows 

that the inherent flexibility of the base stock policy is increased under higher frequencies of disruption, 

resulting in a better performance than in a non-disruptive scenario. This is because BP2 has a low 

remediation length (1 day) and when this is combined with a high frequency of occurrence, it creates a 

condition where the usually low order quantities associated with base stock policy become larger, giving 

rise to an overall better cost performance than in the non-disruptive scenario. However, this does not 
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hold true in a scenario with a disruption with larger remediation length even when this occurs less 

frequently (as in BP3).  

Therefore, supply chain operators should undertake an impact assessment of this kind to know how their 

inventory policy would fare during a breach incident. This, in turn, will determine the necessary 

cybersecurity KPI to include in their contract with platform providers in order to further protect 

themselves. 

 

4.2 Effect of Frequency and Remediation Length of ISBs on the Purported Benefits of Partial and 

Full Integration 

The singular effect of the disruption profile on integration is computed as the distance between the 

relative performance in a non-disruptive scenario (expressed as a percentage of the base model) and the 

relative performance in each disruption scenario (also expressed as a percentage of the base model). 

This distance is shown for both partial (DI) and full integration (FI) under all three disruption scenarios 

(or profiles) in Figure 4, which helps us to answer research question ‘b’. From Figure 4, we see that the 

magnitude of the impact generally increases as one goes from BP1 to BP2 and BP3. This means that 

remediation length (BP3) has a higher impact on the purported benefits of integration than frequency of 

occurrence (BP2). 

 
Figure 4 Effect of Disruption Profile on Integration Benefit under two distinct inventory policies. 

 

The same peculiarity of impact observed with the frequency of occurrence in the non-integration 

scenario in Section 4.1 above is observed with the integration benefits here. In addition, we observe 

another peculiarity involving the differences in performance between DI and FI modes. Both 

peculiarities, however, only pertain to one aspect of the breach profile: the frequency of occurrence. 
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In terms of differences in performance between full and partial integration, we find that remediation 

length has a higher impact on full integration than on partial integration under both base stock and batch 

policies, but this is not the case with frequency of occurrence under the base stock policy. To explain 

this effect, we must examine this at the supply agents’ level (see Table 5).  

 

Table 5 Disruption Profile Impact on Supply Chain Agents 

      No disruption BP1 BP2 BP3 
    Base (£) DI FI DI FI DI FI DI FI 

Option 
I 

Retailer 194.9 12% 20% 14% 22% 29% 31% 9% 13% 
Wholesaler 112.7 18% 30% 19% 29% 19% 22% -2% 4% 

Manufacturer 89.4 -3% 11% -2% 10% 12% -3% -15% -19% 

Option 
II 

Retailer 120.0 5% 5% 3% 3% -10% -11% -103% -103% 
Wholesaler 86.8 4% 6% 3% 5% -8% 0% -32% -25% 

Manufacturer 103.0 -2% 11% -2% 11% -2% -2% -19% -15% 
A negative percentage indicates an increased cost, which signifies a worse performance compared to the base model. 

 

From Table 5, the cost for the manufacturer in the DI mode improves from -3% in the non-disruptive 

scenario to 12% in BP2 scenario while the benefit of FI reduces from 11% in the non-disruptive scenario 

to -3% in BP2 scenario. For the wholesaler, the benefit of the DI mode remains the same under BP2 (at 

⁓19%), but the benefits of the FI mode diminish from 30% in the non-disruptive scenario to 22% in the 

BP2 scenario. The effect of BP2 on the retailer’s cost was an improvement in performance from 12% to 

29% in the DI mode, which is greater in scale than the increase from 20% to 31% in the FI mode. The 

synergy of the impact on all three supply agents shows a resultant greater positive effect for the SME 

supply chain in the DI mode as compared with the FI counterpart. This shows that the frequency of 

disruption has a greater positive impact on SME supply chains with the partial integration mode than on 

the full integration mode under the flexible base stock policy. This effect is explained further in the next 

section under the externality effect of partial integration. 

 

4.3 Externality Effect  

To examine the externality effect on non-participants, we only look at integration scenarios where a 

particular member of the supply chain is not included, such as the manufacturer in the DI scenario. The 

externality effect is construed as the difference in the performance of the manufacturer in the base model 

when compared to the performance in the DI scenario. Therefore, subsequent analysis is based only on 

the DI mode. First, we examine this effect under normal settings and then under disruptive settings. 

Again, we see a counterintuitive phenomenon between the parameter-based policy (Option I) and the 

non-parameter-based policy (Option II).  

 



From Figure 5, under the no-disruption scenario, we observe that there is an externality effect on the 

manufacturer’s cost performance if SME supply chains engage in DI integration. In this scenario, the 

retailer and wholesaler enjoyed reduced costs at the expense of the manufacturer, and this was true for 

both inventory policies studied, making the observation more generalizable. 

 
Figure 5 Effect of DI mode on supply chain agents’ performance 

 

The manufacturer incurred a 3% increase in cost, solely from the externality effect of DI partnership 

under a non-disruptive scenario. Further analysis revealed that while the retailer and wholesaler enjoyed 

a significant reduction in backlog cost, the manufacturer incurred an increase in backlog, which could 

not offset the decrease in holding cost observed at the manufacturer. Therefore, manufacturers in such 

scenarios may need to think about ways to mitigate or offset such disadvantages, either through price 

adjustment or any other means. 

 

Furthermore, to estimate the effect of disruption on this externality effect, we take the percentage impact 

of disruption on the DI mode and deduct the percentage impact of disruption on a non-integrated mode 

(also called the base disruption impact). The resulting difference is the singular effect DI partnership 

has on the base disruption impact. This can be referred to as the impact of disruption on the DI effect. 

All impact percentages are expressed as a percentage of the base model to allow for direct comparison, 

and the result is shown in Table 6.  

Table 6 Disruption impact on DI-externality effect on the manufacturer 

Inventory Policy Externality Effect in the No-
disruption Scenario 

Effect of DI Mode on the Base 
Disruption Impact 

BP1 BP2 BP3 

Option I -3% -2% 12% 8% 

Option II -2% -2% -2% -14% 

Note: Positive values mean the effect is desirable as there is reduction of the impact of disruption on cost 
performance, negative means a disadvantageous effect. 
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From Table 6, it is clear that disruption of type BP1 has no impact on the externality effect for the 

manufacturer under the base stock replenishment policy as the value remains virtually the same (at -

2%). This observation is also more generalizable as it is true for both inventory policies studied. 

However, under more disruptive scenarios, disruption impact on externality effect is seen to differ based 

on the type of inventory policy. For the base stock policy (Option I), BP2 (high frequency, low 

remediation length) and BP3 (low frequency, high remediation length) are seen to be advantageous to 

the externality effect for the manufacturer. The manufacturer’s cost goes from -3% in the no-disruption 

scenario to 12% and 8% in the BP2 and BP3 scenarios, respectively, thus revealing an improvement to 

the manufacturer’s performance under highly disruptive modes. In fact, it appears that this is more 

favorable to the manufacturer in the DI supply chain than in the FI counterpart. These findings again 

appear counterintuitive, albeit not impossible. For instance, under the base stock policy, the DI mode is 

of greater benefit to the manufacturer’s holding cost than the FI mode, whereas the backlog cost of the 

manufacturer is significantly increased under DI but decreased under the FI mode. This tips the scale in 

favor of the FI mode for the manufacturer under non-disruptive settings. This corroborates results from 

various other studies, which show that including the manufacturer in information sharing is more 

beneficial for the supply chain than if the manufacturer is not included (Xu, Dong, & Evers, 2001; Yao 

& Dresner, 2008). However, this finding does not hold true under certain conditions, as our study 

reveals. In the BP2 scenario, the backlog cost disadvantage of the DI in the non-disruptive scenario is 

significantly reduced, to the extent that it now outweighs FI superiority for the manufacturer. Again, 

this is because the flexibility of the parameter-based policy is enhanced by the increased frequency of 

disruption, and the non-participating manufacturer who ideally should be disadvantaged in the DI mode 

is able to improve its ability to satisfy demand, thereby reducing the backlog and only slightly increasing 

the holding cost. The benefits derived under this condition—higher frequency of disruption—outweighs 

the benefit provided by FI under normal circumstances. Having said that, we do not infer that disruption 

is desirable but instead aim to show that some counterintuitive implications exist, which operators 

should be aware of and plan for accordingly. 

 

For the batch replenishment policy (Option II), BP2 has no effect on the DI externality for the 

manufacturer owing to the lack of flexibility in the batch replenishment policy. Therefore, regardless of 

the high frequency of disruption, there is no advantage or disadvantage regarding DI externality for the 

manufacturer owing to the low remediation length associated with BP2. However, BP3 (low frequency, 

high remediation length) has higher disruptive tendencies and therefore results in a higher negative 

impact on the externality effect under this replenishment policy. The manufacturer’s performance is 

11% worse as it goes from -2% in the no-breach scenario to -14% in BP3 scenario as a result of operating 

in the DI type supply chain. Therefore, a higher remediation length is more of a concern to the 

manufacturer under this partial information-sharing partnership than higher frequency of disruption. 

 



5. Conclusion  
We have studied the impact of information security breaches on SME supply chains under two distinct 

replenishment policies (parameter-based and non-parameter-based policies), to establish whether there 

are any significant differences in outcome. Using the most common ISB profiles reported, we studied 

the impact of ISB on the purported benefits of different modes of information integration, namely partial 

(DI) and full (FI) modes. In addition, we examined the impact of these ISB profiles on non-participants 

in information integration; this effect was termed the externality effect of information integration. 

Therefore, we have made three significant contributions to the literature on impact assessment in supply 

chain management. 

First, we contributed to the IT-related disruption literature by showing that ISBs have a significant cost 

impact on the inventory management performance of SME supply chains linked to e-

commerce/technology platforms, which is seldom reported. We empirically demonstrated that the 

inventory management cost, which represents a huge percentage of revenue for small businesses (Kim, 

2020), is impacted significantly (up to 57% in some cases), eradicating any opportunity for profit, 

leading to business death. This answers the ‘extent of ISB impact’ question which previous supply chain 

studies have not focused on. Our study also found that different policies may lead to different outcomes, 

answering the ‘nature of impact’ question. This has two obvious theoretical implications. The first 

implication is that our study lends credence to our initial argument that using more than one distinct 

replenishment policy in supply chain impact studies is needed to gain a more comprehensive 

understanding, enabling relevant players to make better-informed decisions. The second implication is 

that, although an optimized non-parameter-based ordering policy performs better than a parameter-

based type, the latter yields a better outcome than the former when an ISB with low remediation length 

(disruption duration) occurs relatively frequently. Therefore, small businesses need to undertake similar 

impact assessments to test the performance of their inventory policy in the incidence of a breach, in 

order to determine strategies that can be used to ameliorate the impact. 

Second, we examined the impact of ISBs on the purported benefits of two main types of information 

integration partnerships proposed in the literature: partial (DI mode) and full integration (FI mode). We 

found that the specific ISB profile plays a significant role in determining the direction and magnitude of 

impact. It was established that the magnitude of the impact generally increases as one goes from BP1 to 

BP2 and BP3, meaning that ISB remediation length has a higher impact on the benefits of integration 

than ISB frequency of occurrence. We also found that, under the parameter-based policy, the DI mode 

outperforms the FI mode under ISB with increased frequency and low remediation length. Nevertheless, 

frequency of disruption occurrence has other impacts such as customer churn (Janakiraman, Lim, & 

Rishika, 2018), which have not been considered in this study but should not be taken lightly. Therefore, 

technology providers should invest more in effective remediation strategies, as these are crucial to the 

inventory performance of SME supply chains that depend on them for such services. Small business 



supply partners should include this as a KPI in any cybersecurity contract agreement with platform 

providers to further protect themselves against ISB impact.  

Third, we looked at the effect of this impact on small businesses that are not directly involved in 

information-sharing partnerships in the supply chain. We found that non-participants are disadvantaged 

by such partnerships and are even worse off in the event of information disruption at the downstream 

end when the disruption is of the high remediation length type. This, of course, depends on the inherent 

flexibility of the inventory management policy being used by such non-participants. Therefore, for those 

not involved in information sharing in the supply chain, flexibility should be a priority, and flexible 

inventory policies such as the base stock policy should be employed, as our study has shown. Also, since 

the impact on non-participants is significant, contract agreements requiring integrated partners to share 

ISB incidences as soon as they occur are imperative. Sharing ISB occurrence promptly will afford non-

participants adequate time to prepare for the reverberating effect of the impact. 

Our research findings are highly valuable to firms seeking to understand what their ISB mitigation 

priorities should be. In general, this study has shed important light on the inventory performance of 

SMEs using different information integration strategies under disruptive conditions. Since the ISB 

profile is of the utmost relevance, those SMEs seeking an e-commerce/technology platform should be 

cautious of providers with a reputation for high ISB remediation length rather than those known to have 

a high frequency of ISB occurrence and low remediation length. It also highlights the precarious position 

of non-participants in information integration in SME supply chains. Non-participants need to be 

cautious when downstream players enter into information-sharing partnerships, as this will have an 

effect on inventory management costs, especially in the event of a highly disruptive ISB.  

While the simulation model assumptions may affect the generalizability of the findings, the findings in 

this study have been validated by using simulation assumptions that have been used in past literature. A 

sensitivity analysis, which was discussed earlier in this study, has been included. Our simulation model 

utilized deterministic data on the breach profile as the focus was on what happened when the breach 

occurs. However, future research can utilize probabilistic models to incorporate ‘when’ and ‘if’ a breach 

occurs. The results of this study are based on a serial supply chain structure, but since many supply 

chains are more complex structurally, future studies should aim to understand the roles different supply 

chain structures play in these impact-benefit interactions. This study also focused on the operational 

implication of the impact of disruption caused by ISBs on the small players in the supply chain; the next 

line of inquiry should focus on the strategic implication by adopting a triple bottom line perspective, 

such as the one reported in Rodger and George (2017). 
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