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Abstract
Background: During the last decade, the analysis of ancient DNA (aDNA) sequence
has become a powerful tool for the study of past human populations. However, the
degraded nature of aDNA means that aDNA molecules are short and frequently
mutated by post-mortem chemical modifications. These features decrease read
mapping accuracy and increase reference bias, in which reads containing
non-reference alleles are less likely to be mapped than those containing reference
alleles. Alternative approaches have been developed to replace the linear reference
with a variation graph which includes known alternative variants at each genetic locus.
Here, we evaluate the use of variation graph software vg to avoid reference bias for
aDNA and compare with existing methods.

Results: We use vg to align simulated and real aDNA samples to a variation graph
containing 1000 Genome Project variants and compare with the same data aligned
with bwa to the human linear reference genome. Using vg leads to a balanced allelic
representation at polymorphic sites, effectively removing reference bias, and more
sensitive variant detection in comparison with bwa, especially for insertions and
deletions (indels). Alternative approaches that use relaxed bwa parameter settings or
filter bwa alignments can also reduce bias but can have lower sensitivity than vg,
particularly for indels.

Conclusions: Our findings demonstrate that aligning aDNA sequences to variation
graphs effectively mitigates the impact of reference bias when analyzing aDNA, while
retaining mapping sensitivity and allowing detection of variation, in particular indel
variation, that was previously missed.

Keywords: Ancient DNA, Variation graph, Sequence alignment, Reference bias

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-02160-7&domain=pdf
http://orcid.org/0000-0002-9130-1006
mailto: richard.durbin@gen.cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Martiniano et al. Genome Biology          (2020) 21:250 Page 2 of 18

Background
In suitable conditions, DNA can survive for tens or even hundreds of thousands of years
ex vivo, providing a unique window into the history of life [1]. Since the initial applica-
tion of high-throughput sequencing to ancient human remains [2], the number of aDNA
samples with available sequence data has been increasing at a fast pace, and currently,
over 2000 ancient samples have been published [3]. These studies have provided insights
into past population history and allow direct tests of hypotheses raised in archeology,
anthropology, and linguistics [4, 5].
However, aDNA sequence analysis poses several significant challenges. The amount of

DNA available is limited, and often only a small fraction is endogenous, coming from
the target individual, with the rest originating from microbial contamination [6]. Read
lengths are limited by the degradation of DNA due to taphonomic processes and sub-
sequent environmental exposure. Post-mortem damage (PMD) of the DNA occurs at a
high rate, introducing mismatches in DNAmolecules, particularly in their tails which are
frequently single-stranded or more exposed. This manifests mostly as the conversion of
cytosine to uracil, but also can lead to depurination [1]. Ancient DNA may be treated
with uracil-DNA-glycosylase (UDG) and endonuclease VIII to fully [7] or partially [8]
remove uracil residues and abasic sites, leaving undamaged portions of the DNA frag-
ments intact. However, this process results in a reduction of read length and library depth,
which is disadvantageous. Furthermore, a number of unique and irreplaceable samples
were sequenced prior to the adoption of UDG treatment. Taking all these factors into
account, ancient DNA data is generally of low coverage, short length, and high intrinsic
error rate.
The typical workflow for ancient DNA data processing starts with the alignment of

sequencing reads to a linear reference genome, which contains only the reference allele at
polymorphic sites. Reads containing the alternate allele are less likely to map than reads
containing the reference allele, creating a potentially strong bias against non-reference
variation, which can have a significant effect on population genetic inference and impli-
cations for many aDNA studies [9, 10]. For example, a standard approach to genotyping
is to generate pseudo-haploid calls by selecting a random read crossing each variable
site. However, because of reference bias, at heterozygous sites, reads containing the ref-
erence allele compose the majority of reads, resulting in a more frequent sampling of the
reference allele than the alternate one.
There have been previous attempts to mitigate the effects of reference bias and low

coverage in aDNA, such as by implementing a model of reference bias in genotyping [11],
or by working with genotype likelihoods throughout all downstream population genetic
analyses [12]. The use of different parameters with bwa aln canmodulate the number of
acceptedmismatches to increase alignment sensitivity and in particular decreasing the -n
edit distance parameter from the default value of 0.04 to 0.02 [13] or 0.01 [14] allows more
mismatches and increases sensitivity. Recently proposed approachesmodify the reference
genome [10, 15] and/or the aDNA sequencing reads [10] in order to account for alternate
alleles at polymorphic sites. The authors show that by taking into account non-reference
variation in the alignment process, reference bias can be substantially reduced. However, a
limitation of these approaches is that they have only considered biallelic single nucleotide
polymorphisms (SNPs). Therefore, non-reference alleles at insertion and deletion (indel)
loci are not accounted for, despite there being hundreds of thousands of non-reference
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indels in a typical human genome [16], and these having a greater affect on read mapping
than SNPs [17].
An alternative way to improve read mapping and avoid reference bias is to map reads

to a sequence graph that represents both reference and alternate alleles at known variable
sites [18]. However, the application of this approach to ancient DNA data has not yet been
examined. We recently introduced the variation graph (vg) software [17], and in Fig. 1
show an example of how vg can recover the alignment of short aDNA reads to alternate
alleles. Here, we apply vg and bwa aln systematically to map both simulated data and
34 previously published ancient human DNA samples, and demonstrate that mapping
with vg can effectively reduce reference bias for ancient DNA samples, particularly for
indels. Furthermore, vg increases sensitivity for detection of variation in aDNA, unlike
read modification methods.

Results
Evaluating reference bias in aDNA using simulation

First, we used simulation to examine the impact of post-mortem deamination (PMD)
in vg and bwa (aln and mem) read alignment, including assessments after applying
sequencing read [10] and reference genome modification [15]. We generated all possible

Fig. 1 Sequence tube maps. Sequence tube maps [19] of a small region of the human genome with aDNA
reads from the Yamnaya individual aligned with a bwa aln to a linear reference sequence and b vg map
to a graph containing 1000 Genomes variants. The individual is heterozygous for both an indel (GTTTGAG/-)
and a SNP (A/C) in this region, with insertion and alternate allele on the same haplotype. The two underlying
haplotypes in this region are colored in gray, and red and blue lines indicate forward and reverse reads,
respectively. None of the 6 reads across the insertion and only 2 of 12 reads across the SNP were mapped by
bwa. Reads were locally realigned with vg map to the graph for the purpose of visualization
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50-bp reads spanning variant sites on chromosome 11 of the Human Origins SNP panel
[20, 21], which contains a set of SNPs designed to be highly informative about the genetic
diversity in human populations. In half of the simulated reads, the SNP position was mod-
ified to carry the alternate allele. Different levels of ancient DNA PMD estimated in 102
ancient genomes from [22] were introduced into the reads using gargammel [23].
We generated a variation graph (1000GP graph) with variants identified as part of the

phase 3 of the 1000 Genomes Project [16] above 0.1% minor allele frequency (MAF), to
be used for read mapping with vg. We then mapped simulated reads back to the 1000GP
graph or GRCh37 linear genome using vg map and bwa aln, respectively, and filtered
the resulting alignments for those above mapping quality 30 for bwa aln aligned reads
and mapping quality 50 for vg (see Additional file 1: Fig. S1 andMethods for details). The
reason for using different mapping quality thresholds is that mapping qualities are esti-
mated differently in bwa aln and vg and have different ranges: bwa aln’s maximum
values are capped at 37 and vg’s at 60.
At high levels of simulated PMD, alignment with bwa aln -n 0.02 against the lin-

ear reference prevents the observation of non-reference alleles in a large fraction of cases
(Fig. 2a). This effect is notable at deamination rates as low as 10%, and with 30% deamina-
tion, the rate of alignment to non-reference alleles is reduced by nearly 15% relative to the
total. In contrast, there is no such reduction for vg map. These observations are main-
tained across a range of different mapping quality thresholds (Additional file 1: Fig. S2).
Given that we simulated the same number of reads at each SNP site, one with the refer-
ence allele and the other with the alternate, we would expect alternate and reference reads
to be equally represented in the final alignments. However, because of reference bias, the
fraction of alternate reads is on average 0.48267 95% CI [0.48095, 0.48438] in bwa aln

-n 0.02 but essentially 0.5 in vg 0.49988 95% CI [0.49984, 0.49991], supporting that
vg alignment is not affected by reference bias in the same way as bwa aln -n 0.02

(Additional file 1: Table S1).
When relaxing the edit distance parameter in bwa aln from -n 0.02 to -n 0.01 and

increasing the maximum number of gap opens (-o 2), we observe as expected a higher
sensitivity of mapping, and with it a better representation of alternate alleles 0.49702 95%
CI [0.49657, 0.49747] in the final alignment, but the bias towards the reference is still
slightly higher than with vg (Fig. 2b, d and Additional file 1: Fig. S2). Reducing the strin-
gency in the mapping quality filter applied to the final alignments further improves the
fraction of alternate reads mapped in both bwa aln (0.49936 95% CI [0.49927, 0.49945],
-n 0.01 -o 2, mapQ ≥ 25) (Fig. 2b) and vg graph (0.50001 95% CI [0.50000, 0.50003],
mapQ ≥ 30); however, as expected, decreasing mapping quality results in an increase in
error rates (Additional file 1: Table S2).
In terms of sensitivity, using more permissive bwa aln parameters (-n 0.01 -o 2)

mapped 99.60% (at mapQ ≥ 25) and 98.54% (at mapQ ≥ 30) of these reads, while bwa

aln -n 0.02 is less sensitive, resulting in only 98.56% (at mapQ ≥ 25) and 92.19% (at
mapQ ≥ 30) mapped reads.
To discern whether these differences between vg and bwa aln are due to the use of

a variation graph or the vgmapper, we also aligned simulated reads with the vgmapper
to the human linear reference genome GRCh37 (“vg linear”) and compared the results
obtained with vg alignments to the 1000GP graph (Additional file 1: Fig. S3). In the vg
alignment to the linear reference, the fraction of reads containing the reference allele that
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Fig. 2 Comparing vg graph, bwa aln, and bwa mem using simulated ancient DNA. Comparing bwa
aln and vg map performance when aligning reads simulated from chromosome 11 of the Human Origins
panel. Lines represent ordinary least squares (OLS) regression results for the allele/aligner conditions
corresponding to their colors. a Comparison between vg graph and bwa aln -n 0.02. b
Comparison between vg graph and bwa aln -n 0.01 -o 2. c Comparison of the mean
percentage (and 95% CI) of mapped reads in simulated data by vg graph, bwa aln, and bwa mem
using different alignment parameters and minimummapping quality filtering thresholds. dMean alternate
allele fraction (and 95% CI) of simulated reads after alignment with the different methods and minimum
mapping quality filtering thresholds. We also show results obtained after processing simulated data with two
previously published workflows for addressing reference bias: modified reads (“modreads”) [10] and modified
reference genome (“altref genome”) [15]
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are aligned remains constant at increasing rates of deamination, while, similarly to bwa

aln and bwa mem, the percentage of aligned reads with the alternate allele drops as
deamination increases.
We also applied the read modification protocol of Günther and Nettelblad [10] to our

bwa aln -n 0.02mapping data, in which reads overlapping a biallelic SNP are dupli-
cated with the copy carrying the other allele. If both reads map to the same region of the
genome, then the mapping of the original, unmodified read is kept. In this case, the bias
is removed (alternate allele fraction = 0.50074 95% CI [0.50071, 0.50077]), but at the cost
of a substantial decrease in sensitivity for reads containing the reference (91.87%) as well
as alternate alleles (92.14%) (Fig. 2c, d and Additional file 1: Fig. S4).
Applying the same workflow to less stringent bwa aln parameters (-n 0.01 -o 2, mapQ

≥ 25) greatly improves sensitivity (99.58% and 99.60%, for the reference and alternate
allele, respectively) while effectively eliminating reference bias (alternate allele fraction =
0.50015 95% CI [0.50014, 0.50017]) (Additional file 1: Table S1).
We then processed our simulated data with a different workflow for removing reference

bias as suggested by Peyrégne et al. [15]: reads are mapped to two versions of the human
reference genomewith bwa aln, one for each allelic version of theHumanOrigins SNPs.
The resulting alignments are subsequently merged, keeping one random copy of the read
if it maps to same genomic coordinates in both alignments and keeping also reads which
map to one version of the reference genome, but not the other. This workflow was the
most sensitive, mapping 99.90% (bwa aln -n0.01 -o2; mapQ ≥ 25; alternate allele fraction
= 0.50011 95% CI [0.50011, 0.50011]) and 99.77% (at mapQ ≥ 30; alternate allele fraction
= 0.50009 95% CI [0.50009, 0.50009]) of all alternate allele reads vs. 99.69% (at q ≥ 30) and
99.15% (at mapQ ≥ 50) with vg graph (Fig. 2c, d and Additional file 1: Fig. S5). However,
despite its superior sensitivity, the Peyrégne et al. strategy comes at a cost of reduced
accuracy in themapping of reads containing the reference allele, as we demonstrate below.
We next examined the error rates of the various alignment strategies. We considered

a given read to be correctly mapped if there was an exact match between the genomic
coordinates from which it had been simulated and the ones for a major part of the align-
ment, taking into account any offsets introduced by insertions, deletions, and soft clips
(soft clipping is the masking of a number of bases at the end of the read where they appear
to be diverging significantly from the reference; this is done by read aligners to avoid
misalignments around insertions and deletions, or problems with chimeric sequences).
In vg graph alignments, 1.2 per million reference allele reads and 2.5 per million alter-

nate allele reads were incorrectly mapped. In bwa aln alignments, we observed that 0.2
and 2.4 per million reads containing the reference and the alternate allele, respectively,
were incorrectly mapped. With more relaxed parameters (-n 0.01 -o 2), error fractions
are slightly lower: 0.1 per million for reads carrying the reference allele and 2.0 per mil-
lion for the ones with the alternate. With vg alignment to the linear reference sequence,
reads containing the reference allele were mapped with similar accuracy to that observed
in vg graph (1.3 per million), but the error in the alignment of reads with the alternate
allele was one order of magnitude higher (11 per million) (Additional file 1: Table S2 and
Fig. S6). The bwa aln read modification approach only removes excess reference allele
reads, so it does not change the false positive rates for reads containing alternate alleles.
The Peyrégne et al. [15] approach, however, requires the alignment of reads to an “alter-
nate reference genome,” which causes an increase in error rates, especially in the mapping
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of reads containing the reference allele (11 per million at mapQ ≥ 25 and 5.3 per million
at mapQ ≥ 30).
Error rates in all three of vg graph, vg linear, and bwa aln were positively cor-

related with the amount of deamination (Additional file 1: Fig. S7). There appears to be
a qualitative difference between the types of errors made by vg and bwa aln, in that it
makes more scattered errors, whereas vg tends to make clusters of errors at nearby loca-
tions (Additional file 1: Fig. S8). Unsurprisingly, the majority of errors (≈ 70%) made by
both methods occur in regions of reduced mappability (Additional file 1: Fig. S8).
To further investigate the false alignment rate of different read mappers, we aligned

simulated microbial short reads (30–100 bp) with vg to the 1000GP graph and with bwa

aln and bwa mem to the human reference genome (Additional file 1: Table S3 and Fig.
S9). We observe distinct error patterns between the 3 aligners: in terms of short reads,
bwa aln -n 0.02 maps slightly more (0.897%, mapQ ≥ 30) microbial reads to the
human genome than vg does to the graph (0.644%, mapQ ≥ 50), with the lowest per-
centage shown by bwa mem (0.001%, mapQ ≥ 50). Relaxing bwa aln parameters to
“-n 0.01 -o 2” causes an increase (2.372%, mapQ ≥ 25) in the percentage of incorrectly
mapped microbial reads compared to “-n 0.02” (Additional file 1: Table S3 and Fig. S9).
When mapping longer fragments, both vg graph and bwa mem still present spurious
alignments (0.111% and 0.234%, respectively, at read length of 70 bp), while with bwa

aln with either value of -n virtually no microbial reads longer than 70 bp are aligned to
the reference genome. As expected, the percentage of mapped microbial reads decreases
when applying more stringent mapping quality filters to alignments generated by all three
programs. Introducing different levels of deamination to microbial reads does not show
a strong effect in their erroneous alignment to the human reference genome (Additional
file 1: Fig. S10).
Together, the results of our analysis of simulated data demonstrate that the high

degree of reference bias in ancient DNA read alignment when using bwa with stan-
dard parameters is mitigated at known sites by aligning against a variation graph with
vg, or alternatively by relaxing the alignment parameters for bwa aln. Although read
modification in bwa aln also removes bias, it does this at the cost of decreasing sen-
sitivity for reads containing the reference allele, whereas vg increases the sensitivity
for reads containing the alternate allele. This increase in vg’s sensitivity in mapping
reads containing the alternate allele is achieved at comparable error rates to those
observed with bwa aln, although there is a slight decrease in accuracy in mapping the
reference allele.

Aligning ancient samples to the 1000GP variation graph

To evaluate whether the results seen in the previous section carry over to real ancient
DNA data, we selected 34 previously published ancient DNA samples (Table 1 and Addi-
tional file 1: Table S4), including Iron Age, Roman, and Anglo-Saxon period samples
shotgun sequenced to low-medium coverage [24, 25], high-coverage Yamnaya and Botai
culture individuals [26], and target captured samples from South America [27]. These are
representative of the different types of data produced in the field of aDNA, as they are
of variable genomic coverage, they were generated as part of SNP array target capture or
whole-genome shotgun sequencing experiments and were subject to different enzymatic
treatments.
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Table 1 Datasets analyzed in the present study

Dataset Number of
individuals

Genomic
coverage

Treatment Type Region

Damgaard et al.
2018

2 11.24-18.95x Untreated Whole-genome
shotgun
sequencing

Kazakhstan

Martiniano et al.
2016

9 0.54-1.63x Untreated Whole-genome
shotgun
sequencing

UK

Schiffels et al.
2016

10 0.47-7.86x Partial UDG/USER Whole-genome
shotgun
sequencing

UK

Posth et al. 2018 13 0.02-0.40x Partial UDG Target capture South America

First, we evaluated the effect of using vg on standard quality control metrics used in
aDNA analysis, using mapping quality threshold 50 for vg and 30 for bwa aln as above,
except where stated otherwise. When using ANGSD to estimate sample contamination
from the X chromosome of male samples, vg gave similar but marginally increased values
(mean 0.95%, range 0.30–3.36%) compared to bwa aln -n 0.02 (0.87%, range 0.26–
3.32%) (Additional file 1: Fig. S11). In terms of total endogenous DNA percentage, vg
gave slightly lower percentages (Additional file 1: Table S5 and Additional file 1: Table
S6), though as we will see below, more reads are mapped to alternate alleles. Finally, reads
mapped with vg continue to show terminal deamination damage, which is used as a stan-
dard diagnostic for the presence of true ancient DNA, as seen in mapDamage [28] plots,
although levels are slightly reduced (Additional file 1: Fig. S12). We attribute this reduc-
tion to differences in softclipping by the vg algorithm, which follows bwa mem not bwa
aln (Additional file 1: Fig. S13).
To investigate the effect of using vg and a variation graph on genetic variant calling

and genotyping, we focused on the Yamnaya sample from reference [26], which provides
approximately 20-fold coverage of the genome, thus allowing us to compare results to
confident genotype calls and to downsample to explore behavior at different sequencing
depths. We called variants on the full depth sample using bcftools [29] for both vg and
bwa aln alignments and used these callsets as ground truth. Looking at high-quality
heterozygous transversion sites, vg has an alternate allele mapped read fraction of 0.4925
95% CI [0.4914,0.4937] compared to 0.4742 95% CI [0.4731, 0.4754] of bwa aln -n

0.02 and to 0.4773 95%CI [0.4761, 0.4784] of bwa aln -n 0.01 -o 2. As expected,
this difference was entirely due tomapping to previously identified 1000 Genomes Project
sites present in the graph: new sites not in the graph showed no difference between the
methods (Additional file 1: Fig. S14 and Fig. S15). The restriction to transversions for
this analysis is a standard approach in aDNA analysis to control for noise created by
deamination damage, which generates apparent transitions.
We next measured our ability to recover the heterozygous variants in the full cover-

age set at lower coverage levels. As seen in Fig. 3a, when calling using bcftools, bwa
aln recovers fewer heterozygous SNPs than vg map alignment to the 1000GP graph
at all coverage levels, regardless of the parameters used (“-n 0.02” or “-n 0.01 -o 2”).
For example, at 4x coverage, vg map recovers ≈ 13% more heterozygotes as a fraction
of the total. Filtering bwa aln alignments using read modification reduces sensitivity
still further. Additionally, relaxing the mapping quality filter from 30 to 25 gave only a
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Fig. 3 Downsampling a high-coverage aDNA sample. The comparative effect of downsampling on
heterozygous variant calling following bwa aln and vg map alignment of reads from the ancient
Yamnaya sample [26] with different parameters and mapping quality filtering thresholds, and including
post-processing of bwa aln with the modified read filter [10]. a SNPs. b Indels (the modified read filter does
not apply in this case)

marginally higher sensitivity to bwa aln.We note that if pseudo-haploid calls weremade
by selecting a random spanning read as is often done in aDNA analysis [30], then the
allele imbalance described in the previous paragraph will directly lead to undercalling of
alternate alleles.
The effect of reference bias in indel detection is even more striking. In Fig. 3b, vg

graph recovers many more indels than bwa aln, approximately twice as many at high
coverage and an even greater factor at lower coverage. If reference bias for indels were
unrelated to allele length, then the average coverage of an alternate allele would be approx-
imately constant across allele lengths. This is what we see with vg graph but not with
bwa aln, which was unable to detect variants with allele length above 7 bp (Fig. 4a and
Additional file 1: Fig. S16). This means that because of reference bias, we are missing
important variation with bwa aln which is recoverable with vg map.
To illustrate this point, we looked at a clinically important variant associated withHIV-1

resistance (CCR5 delta 32), whose origins and history have been debated in the literature
[31, 32]. This deletion was not detected in any of the ancient samples using “-n 0.02” or “-
n 0.01 -o 2” bwa aln parameters, but was clearly present in the 4900-year-old Yamnaya
sample and three more recent ancient British samples (Fig. 4b). The Yamnaya observation
predates the previous oldest direct measurement in ancient skeletons 2900 years old [33],
consistent with older dates of origin of the allele suggested by population genetic analy-
sis [32]. The ability to detect the variant without bias enables investigation of the allele
frequency trajectory in ancient samples.

Population genetics analyses

In order to evaluate the consequences of reference bias, we applied the ABBA-BABA
test of phylogenetic tree topology based on the D-statistic of population relationship
[20, 34]. When estimating D-statistics of the form D(vg graph, bwa -n 0.02; GRCh37,
Chimp), a deviation from zero indicates an excess of shared alleles between bwa- or vg-
aligned samples and the GRCh37 reference genome. Our results based on pseudo-haploid
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Fig. 4 Comparison between vg and bwa aln for indel detection. a Alternate allele observations at indels. b
Comparison between vg graph and bwa aln in the detection of the CCR5 delta 32 deletion associated
with HIV-1 resistance. Reads containing the deletion were mapped with vg in four ancient samples, but not
with bwa

random-allele calls, summarized in Additional file 1: Fig. S17, show negative D-statistics
for all but a handful of samples when we use the -n 0.02 settings, consistent with bwa

calls being closer to the reference than vg calls (also observed with D(vg graph, bwa -
n 0.02; GRCh37, Alternate Allele) (Additional file 1: Fig. S18)), but this bias is removed
when the bwa aln -n 0.01 -o 2 settings are used (Additional file 1: Fig. S17). We
observe the same process in D-statistics with simulated data (Additional file 1: Fig. S19).
When we applied the read modification approach to the bwa-mapped data, we also saw
no consistent deviation from zero in D(vg, bwa-modreads; GRCh37, Chimp), as expected
from our earlier results (Additional file 1: Fig. S20).
We also investigated the effect of vg or bwa aln alignment on Principal Component

Analysis (PCA), another widely used analysis technique in the field of aDNA. Restricting
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this analysis to samples from Europe and West/Central Asia, we projected the ancient
samples and the reference genome onto a PCA plot derived from modern samples. We
observe modest differences between the positions of vg and bwa aligned samples in the
first two principal components, but these are not conclusive in terms of the direction of
the bias (Additional file 1: Fig. S21 and Fig. S22). For example, the bwa processed Botai
sample appears to be slightly closer to the reference than its vg aligned equivalent, while
the opposite pattern is observed for the Yamnaya sample. Given the variability in our
PCA results, it is not possible to make strong conclusions about the effects of removing
reference bias on PCA projection.
Given the strong differences in terms of indel detection observed between vg and bwa

aln processed data, we also investigated the impact of reference bias on PCAs estimated
with indels of different lengths.When restricting our analysis to chromosome 21 alternate
alleles called in the vg processed Yamnaya individual, clear genetic clusters correspond-
ing to the 1000 Genomes super populations are maintained across all allelic lengths up
to 18 bp (Additional file 1: Fig. S23). The same is not true for bwa aln, which did not
recover any indels longer than 7 bp. This confirms that because of reference bias, when
using standard methods for ancient DNA sequence alignment, population genetic anal-
ysis cannot reliably make use of indel data, although there is information present which
can be accessed without bias when mapping with vg.

Discussion
The analysis of highly fragmented and damaged ancient DNA sequence data is challeng-
ing and subject to reference bias, leading to a relative under-representation of alternate
alleles at polymorphic sites. The consequences of this in downstream analysis can be real
but quite subtle, as has been noted before [10], and we have seen in our results. Here, we
have shown that vg can be used to effectively remove this reference bias, especially in
the presence of post-mortem damage. In particular, it makes available unbiased calling of
indel polymorphisms, which are frequently ignored in ancient DNA studies due to very
strong reference bias.
Although other methods have recently been introduced to address reference bias in

SNPs, all of these make some compromises. The approach to modify reads [10] reduces
sensitivity, while the alternative to modify the reference [15] increases error rates. Our
results suggest that the best approach to using bwa aln for ancient DNA alignment is
probably to use very relaxed parameters, as proposed by Kircher et al. [14] (-n 0.01

-o 2) in combination with disabling seeding as recommended by [13] (-l 1024) and
mapQ 25 filtering. This had a beneficial impact in terms of sensitivity (99.60% vs 97.34%
for the mapping of reads containing the alternate allele) and a more balanced alternate
allele representation (0.49936) but also increases error rates, for example increasing the
rate of false mapping short microbial reads (Additional file 1: Fig. S9).
We have shown that vg effectively removes reference bias at known variants in its graph

(both SNPs and indels), and its spurious alignment of microbial contaminants at short
lengths can be controlled more effectively than for bwa aln with relaxed parameters
by increasing the mapping quality threshold. Erroneous mapping of short contaminant
sequences is a known issue in ancient DNA, and strategies are continuously being devel-
oped to address it [35]. The vg approach also uses alignment information efficiently for
variant calling, which can be important at low read coverage (Fig. 3).
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One complication of our analysis is that mapping qualities are not directly compa-
rable between vg and bwa aln. Because of this, we presented comparisons between
vg and bwa aln at different mapping quality filter thresholds. For vg in particular,
we recommend imposing a minimum mapping quality filter of 50 for obtaining error
rates comparable to those of bwa aln (albeit slightly higher), while maintaining high
sensitivity and minimizing the spurious alignment of microbial reads.
More generally, we note that different mapping programs and parameters, and different

procedures for data pre-processing such as adapter trimming, or the imposition of a min-
imum read length threshold prior alignment, will all affect how ancient samples compare
to each other. For any given analysis, it is important to standardize these settings and to
remap all ancient samples in the same way to reduce spurious findings.
An additional drawback of vg is the slightly lower sensitivity when compared to bwa

aln in the mapping of reads in repetitive regions, as shown in [17]. When aligned to
the linear reference, they map to a unique place in the linear reference, but in variation
graphs they may map to more than one place. This becomes worse as more variants are
introduced into the graph, which is why we included only variants with 0.1% minor allele
frequency or more in our graph, as recommended by Garrison et al. [17].
Furthermore, read alignment with vg takes approximately 5× longer than with bwa

aln -n 0.01 -o 2 and 29× than bwa mem (Additional file 1: Table S7), and the
memory requirements for both indexing the graph and read mapping can be much more
substantial than for indexing a linear reference genome, depending on the number of
variants included.
One possible concern with the use of vg as proposed is that it depends on a reference

graph constructed from present-day human variation. For modern human samples from
the last 50,000 years, this is not a major issue, since almost all common variation is shared
with extant populations on that time frame. For example, 96.99% of high-quality vari-
ants called de novo in Ust’Ishim chromosome 1 accessible regions are found in the 1000
Genomes Project variant set [36]. However, this approach would not be appropriate for
samples from archaic populations such as Neanderthals and Denisovans, for which we
do not yet have substantial collections of genetic variation. Introgressed material from
archaic humans within modern humans can provide a partial source of information on
genetic variation in those parts of the genome where it persists, but for graph alignment
approaches to work effectively across the whole genome in archaic samples, we will have
to wait until sufficient archaic genomes have been sequenced to high depth to enable
construction of a representative archaic variation graph. A related advantage of working
with graph genomes is that, as multiple independently assembled human genomes (mod-
ern or ancient) are added into the reference variation graph, we will be able to assign
ancient DNA sequence to human sequences not in the current reference graph, which are
currently hidden from standard analyses of ancient DNA.
Beyond studies of human genetic history, ancient DNA is also increasingly used to

study the history and evolution of other species, from bacterial pathogens to domesti-
cated crops and extinct megafauna [3]. In many of these cases, natural diversity is higher
than in humans, and “pangenomic” approaches that are equivalent to sequence variation
graphs are becomingmore widely used, often includingmore complex structural variation
[37, 38]. Ancient DNA analyses in such species and systems are expected to benefit from a
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variation graph mapping approach proportionately to the increased diversity represented
in the pangenome variation graph.
Finally, as shown in our analyses, indel variants have the potential to be ancestry infor-

mative, but have been almost totally ignored in the aDNA field because of difficulties in
aligning reads containing these variants, particularly when above a few base pairs length.
Variation graph approaches offer a way of accessing this variation and open new avenues
for aDNA research both at the level of population history but also by enabling probing of
clinically relevant indel mutations in ancient individuals across the archeological record,
as demonstrated for the CCR5 deletion allele.

Methods
Datasets and sequence data processing

In order to compare read mapping between vg and bwa aln, we compiled a dataset of
sequencing reads from previously published ancient individuals (Table 1). Adapter trim-
ming was done with AdapterRemoval [39] for paired reads (merging overlapping reads)
and cutadapt [40] for single ended reads. Unaligned FASTQ data from the other two
datasets [25, 27] were already provided with trimmed adapters. We aligned trimmed
reads to the human linear reference genome (hs37d5) using bwa aln [29] with param-
eters -l1024 (for disabling seeding) and -n 0.02 [13] or -n 0.01 -o 2, with minimum base
quality -q 15. We constructed the index file for vg [17] with hs37d5 and variants from
the 1000 Genomes Project phase 3 dataset [16] above 0.1% MAF. In total, the graph
contained 27,485,419 SNPs, 2,662,263 indels, and 4,753 other small complex variants.
Trimmed reads were aligned to the variation graph using vg (v1.16.0-137-ge544284) map
with parameters “–surject-to bam -k 15 -w 1024.” Duplicate reads were removed with
sambambamarkdup [41] using the “–remove-duplicates” parameter. BAM files were sub-
sequently filtered with samtools view [29], selecting reads with differentmapping qualities
thresholds (bwa aln and vg: mapQ > 0; ≥ 25, ≥ 30; vg only: ≥ 50; ≥ 60). The reason
for using different mapping quality thresholds is that bwa uses a different mapping quality
estimation process with maximum around 37 than vg with maximum 60. Coverage was
estimated with qualimap [42] bamqc utility. We present read number, endogenous DNA
content, and coverage for samples aligned with vg and bwa aln in Additional file 1:
Table S5 and Table S6.

Simulations

We simulated all possible reads overlapping chromosome 11 SNPs in the Human Origins
dataset [20, 21]. In half of the simulated reads, the alternate allele was introduced. We
then added different levels of deamination into simulated reads using gargammel [23],
based on empirically estimated post-mortem damage in a dataset of 102 ancient genomes
[22]. We aligned these simulated reads to the 1000GP graph with the vgmapper or to the
linear human reference genome (GRCh37) with bwa aln, with parameters -n 0.02 or -
n 0.01 -o 2 [14], bwa mem and vg (here referred to as “vg linear”). Read mapping with
vg to the 1000GP graph took approximately four (2.12–7.57) times longer than with bwa

aln -n 0.02. The resulting alignments were sorted with sambamba sort, converted to
bamwith samtools view, and filtered with different mapping qualities thresholds.We esti-
mated read alignment accuracy by comparing the genome coordinate from where each
read originates and the coordinate obtained aftermapping, accounting for offsets between
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these caused by softclips, deletions, and insertions. Read mapping errors were visualized
using the R [43] package circlize [44]. To investigate the impact of different read lengths
and deamination in the false alignment rates of the three readmappers (vg, bwa aln and
bwa mem), we simulated 100,000 reads of different sizes (35–100 bp) from a set of micro-
bial reference genomes identified in the Clovis sequence data [45] using gargammel [23].
Additionally, we introduced post-mortem changes in a subset of this data (30, 50, 70, and
90 bp) based on [22]. We processed all simulated microbial read data as described above.

Authenticity and contamination estimates

Post-mortem deamination plots were generated with mapDamage v2 [28], sampling
one million reads per sample. We estimated X-chromosome contamination in all male
samples with ANGSD [46], with the parameters “-r X:5000000-154900000 -doCounts 1
-iCounts 1 -minQ 20” and using polymorphic sites identified in the HapMap Project.

Variant calling and population genetics analyses

For population genetics analyses, we used the Human Origins dataset distributed with
Lazaridis et al. [47]. In order to estimate D-statistics and Principal Component Analyses,
we generated pileups for each individual [48] at 1233553 SNPs from the Human Origins
dataset using samtools mpileup, disabling base quality score recalibration and imposing
a minimum base quality filter of q20. We note that pileups were generated from bam
files filtered with a minimummapping quality threshold of 30 for bwa aln or 50 for vg.
We generated pseudo-haploid genotypes by randomly sampling one allele at each SNP
site and converted resulting pseudo-haploid genotypes to PLINK format using PLINK
1.9 [49]. These were subsequently merged with the Chimp and Href (the human ref-
erence genome) samples from the Human Origins dataset and converted to eigenstrat
format using convertf. We estimated D-statistics with qpDstat [20], passing the parameter
“printsd: YES” to obtain standard deviation estimates.
For the Principal Component Analysis estimated with SNP sites, we first filtered the

Human Origins dataset, removing variants with minor allele frequency below 0.02 and
genotyping missingness of 0.05, and selecting West Eurasian individuals. We merged
this dataset with the pseudo-haploid genotypes belonging to the ancient samples as
described above and ran smartpca [50, 51], restricting the analysis to transversion SNPs,
using the parameters “lsqproject: YES” to project ancient samples into the PCA coor-
dinates estimated with present-day populations, “killr2: YES” to exclude SNPs in high
linkage disequilibrium (r2thresh: 0.2) and performing two iterations for outlier removal
(numoutlieriter: 2).
We used PLINK to estimate PCAs with indels. We prepared our datasets by first calling

indels in the Yamnaya sample processed with vg and bwa, as described below, keeping
variants with quality equal or greater than 30 and keeping biallelic indels only. We used vt
[52] for variant normalization, taking the human reference genome as input, and duplicate
removal. Then, we generated two datasets, based on the 1000 Genomes chromosome 21
indels, restricting by variants with alternate alleles identified in the vg- or in the bwa-
aligned Yamnaya sample.
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Downsampling experiment

We downsampled bwa aln and vg alignments belonging to the high-coverage Yamnaya
individual from 1 to 10x using samtools. We then called 1,054,447 biallelic SNPs present
in the 1000 Genomes chr21 VCF from all alignments using bcftools v. 1.8, requiring a
base quality of at least 20. From the resulting variant calls, we kept only biallelic SNPs and
selected heterozygous genotypes. We removed potential deamination SNPs and excluded
variant calls with quality score below 30. Finally, we estimated the proportion of vari-
ants correctly recovered by comparing the genotypes obtained from the downsampled
alignments with those obtained at full coverage. Comparison with the read modification
method was done by modifying the downsampled and full coverage bwa-aligned reads
with the 1000 Genomes SNP alleles and calling variants as described above.

Alternate allele support and allele balance

In order to compare alternate allele support between vg and bwa aln alignments, we
called chromosome 1 SNPs from the Yamnaya alignments with bcftools. We then fil-
tered these by variant quality greater or equal than 30, with depth of coverage above
8, and selected heterozygous variants. From these genotype calls, we obtained reference
and alternate allelic depth and compared alternate allele support between the vg and
bwa aligned sample. To investigate reference bias at the level of indels, we called variants
with FreeBayes [53] from the Yamnaya sample processed with both vg and bwa aln

with default parameters, which we subsequently filtered for the sites present in the 1000
Genomes variation graph used for alignment.

Comparison with additional methods for reducing reference bias

We compared vg with the workflow proposed by [10] to reduce reference bias. The
following method was applied to both real and simulated data. First, for each bwa-
aligned sample, we selected reads overlapping with the Human Origins SNPs or with
the 1000 Genomes dataset. We then modified the allele in these reads using the “mod-
ify_read_alternative.py” script, distributed with [10], and remapped them with bwa aln

to GRCh37 as described above. We then kept the original reads which mapped to the
same location of the modified reads with “filter_sam_startpos_dict.py.” We estimated
D-statistics from the resulting filtered alignments as described above.
We also compared vg with a second workflow for removing reference bias [15].

Simulated sequence reads were aligned with bwa aln to two versions of the refer-
ence genome, one containing reference alleles and the other alternate alleles. We used
“bam-mergeRef” (https://github.com/StephanePeyregne/bam-mergeRef) to merge the
resulting alignments, keeping one version of a read if it maps to the same region
in both alignments, and also keeping reads mapped in one alignment but not in
the other.
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