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ABSTRACT
This paper is the first of a series of papers constraining cosmological parameters with weak
lensing peak statistics using ∼450 deg2 of imaging data from the Kilo Degree Survey
(KiDS-450). We measure high signal-to-noise ratio (SNR: ν) weak lensing convergence peaks
in the range of 3 < ν < 5, and employ theoretical models to derive expected values. These
models are validated using a suite of simulations. We take into account two major systematic
effects, the boost factor and the effect of baryons on the mass–concentration relation of dark
matter haloes. In addition, we investigate the impacts of other potential astrophysical systemat-
ics including the projection effects of large-scale structures, intrinsic galaxy alignments, as well
as residual measurement uncertainties in the shear and redshift calibration. Assuming a flat �

cold dark matter model, we find constraints for S8 = σ8(�m/0.3)0.5 = 0.746+0.046
−0.107 according to

the degeneracy direction of the cosmic shear analysis and �8 = σ8(�m/0.3)0.38 = 0.696+0.048
−0.050

based on the derived degeneracy direction of our high-SNR peak statistics. The difference
between the power index of S8 and in �8 indicates that combining cosmic shear with peak
statistics has the potential to break the degeneracy in σ 8 and �m. Our results are consistent
with the cosmic shear tomographic correlation analysis of the same data set and ∼2σ lower
than the Planck 2016 results.
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KiDS-450: weak lensing peak statistics – I 1117

1 IN T RO D U C T I O N

Large-scale structures (LSS) in the Universe produce coherent dis-
tortions on the image of background galaxies, an effect caused
by weak gravitational lensing (WL) and generally known as cos-
mic shear. By measuring the shapes of these galaxies, we are
able to extract information about the foreground matter distribution
(Bartelmann & Schneider 2001). This is an important cosmological
probe; however, the shear signals are very weak, typically a few per
cent. In order to be able to measure cosmological parameters, we
need very accurate shape measurements for a vast number of distant
faint and small galaxies, which is extremely challenging. Tremen-
dous efforts have been made in observational developments (e.g.
Erben et al. 2013; de Jong et al. 2015, 2017; Kuijken et al. 2015;
Hildebrandt et al. 2016; Jarvis et al. 2016; Aihara et al. 2017;
Mandelbaum et al. 2017; Zuntz et al. 2017), and methodological
advances in extracting shape information (e.g. Hoekstra et al. 2015;
Mandelbaum et al. 2015; Fenech Conti et al. 2017) and in statistical
analysis (see Kilbinger 2015, and references therein). These have
proved the feasibility of using WL effects in cosmological stud-
ies. The results from recent large surveys, including the Canada–
France–Hawaii Telescope Lensing Survey (CFHTLenS;1 Heymans
et al. 2012), the Kilo Degree Survey (KiDS;2 Hildebrandt et al.
2017) and the Dark Energy Survey (DES;3 Troxel et al. 2017),
have further strengthened their important roles. With ongoing and
next-generation surveys, such as the Subaru Hyper Suprime-Cam4

lensing survey (Aihara et al. 2017), Euclid5 (Laureijs et al. 2011),
the Large Synoptic Survey Telescope (LSST;6 Abell et al. 2009),
WL will become one of the main cosmological probes, realizing
that much tighter controls of systematics are necessary.

The recent cosmic shear two-point correlation function (2PCF)
analysis using data from 450 square degrees of the Kilo Degree
Survey (in Hildebrandt et al. 2017, KiDS-450 hereafter) found a
2.3σ tension on the value of S8 = σ 8(�m/0.3)0.5 in comparison with
that expected from the cosmic microwave background (CMB) mea-
surements of the Planck satellite (Planck Collaboration XIII 2016a).
Here �m and σ 8 are, respectively, the present matter density in units
of the critical density and the root mean square (rms) of the linear
density fluctuations smoothed on a scale of 8 h−1 Mpc. The KiDS-
450 constraints are in agreement with other cosmic shear studies
(Heymans et al. 2013; Joudaki et al. 2017a; Troxel et al. 2017),
galaxy–galaxy lensing (Leauthaud et al. 2017) and pre-Planck CMB
constraints (Calabrese et al. 2017). Understanding such a tension is
currently an important aspect of research in the field.

The typical mean redshift of source galaxies in current WL sur-
veys is z < 1, and thus the WL signal is sensitive to late-time struc-
ture formation. On the other hand, the CMB properties are primarily
affected by physical processes at early times. The tension between
the results obtained from these two probes might indicate miss-
ing ingredients in our current cosmological model. To answer this,
however, we need to first scrutinize carefully whether the tension
arises unphysically from residual systematic errors in the analy-
sis of different probes. For WL probes, different statistical quan-
tities can respond differently to systematics. Thus, it is helpful to

1 http://www.cfhtlens.org/
2 http://kids.strw.leidenuniv.nl/
3 http://www.darkenergysurvey.org/
4 http://hsc.mtk.nao.ac.jp/ssp/
5 http://sci.esa.int/euclid/
6 http://www.lsst.org/

perform cosmological studies with same WL data, but using dif-
ferent statistical analyses. In this paper, we perform a WL peak
analysis using the KiDS-450 data, derive an independent measure-
ment of S8 and compare our results with the cosmic shear results
obtained from Hildebrandt et al. (2017).

In WL cosmological studies, the cosmic shear two-point statistics
are the most commonly used statistical tools in probing the nature
of dark matter (DM) and the origin of the current accelerating
expansion of the Universe (e.g. Heymans et al. 2013; Kilbinger
et al. 2013; Jarvis et al. 2016; Jee et al. 2016; Hildebrandt et al. 2017;
Joudaki et al. 2017a; Troxel et al. 2017). It is, however, insensitive
to the non-Gaussian information encoded in non-linear structure
formation. WL peaks, on the other hand, are high-signal regions,
which are closely associated with massive structures along the line
of sight (LOS). Their statistics is a simple and effective way to
capture the non-Gaussian information in the WL field, and thus
highly complementary to the cosmic shear 2PCF (e.g. Kruse &
Schneider 1999; Dietrich & Hartlap 2010; Marian et al. 2012, 2013;
Shan et al. 2012, 2014; Hamana et al. 2015; Lin & Kilbinger 2015;
Liu et al. 2015a, Liu et al. 2015b, 2016; Martinet et al. 2015;
Kacprzak et al. 2016).

With recent wide-field WL imaging surveys, several measure-
ments of WL peak counts have been performed, and subsequent
cosmological constraints have been derived. With the shear cata-
logue (Miller et al. 2013) from CFHTLenS, Liu et al. (2015a) gen-
erated convergence maps with various Gaussian smoothing scales,
and identified peaks from the maps as local maxima. Based on
interpolations from a set of simulation templates with varying cos-
mological parameters of (�m, σ 8, w), constraints on these were
obtained. Combining WL peak counts with the convergence power
spectrum, they found that the constraints can be improved by a
factor of about 2. Considering the high-SNR (signal-to-noise ratio)
peaks in the Canada–France–Hawaii Telescope Stripe 82 survey
(CS82), Liu et al. (2015b) derived constraints on cosmological pa-
rameters (�m, σ 8) using the theoretical model of Fan, Shan &
Liu (2010). With the same method, Liu et al. (2016b) presented
constraints on the f(R) theory with the CFHTLenS data. Kacprzak
et al. (2016) measured the shear peaks using aperture mass maps
(Schneider 1996; Bartelmann & Schneider 2001) from the Dark
Energy Survey Science Verification (DES-SV) data. To derive cos-
mological constraints, they also adopted the simulation approach
to produce WL maps (Dietrich & Hartlap 2010) spanning the (�m,
σ 8) plane.

Compared to cosmological studies with clusters of galaxies
(Vikhlinin et al. 2009; Rozo et al. 2010; Planck Collaboration XXIV
2016b), WL peak statistics can provide cosmological constraints
that are free from potential selection effects (Angulo et al. 2012)
and biases associated with cluster mass estimates.

The correspondence between WL peaks and DM haloes is not
one to one. Indeed, most of the low-SNR peaks are usually not
associated with a dominant halo, and are instead generated by the
projection of LSS along the LOS. Even for high-SNR peaks where
the correspondence with massive haloes is clearly seen, many sys-
tematic effects, such as the shape noise contamination from the
intrinsic ellipticities of source galaxies, the boost factor due to the
member contamination and the blending in cluster regions, bary-
onic effects, the projection effects of LSS and intrinsic alignments
(IA), can complicate WL peak analysis (Tang & Fan 2005; Yang
et al. 2011, 2013; Hamana et al. 2012; Fu & Fan 2014; Osato,
Shirasaki & Yoshida 2015; Kacprzak et al. 2016; Liu &
Haiman 2016; Yuan et al. 2017). These can generate non-halo-
associated peaks and also alter the significance of the peaks from
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DM haloes, thus affecting WL peak statistics. Understanding and
quantifying these effects is key to connect the observed peak signal
to the underlying cosmology.

There are different approaches to predict WL peak counts:
(i) generating WL simulation templates densely sampled in cosmo-
logical parameter space (Dietrich & Hartlap 2010; Liu et al. 2015a;
Kacprzak et al. 2016); (ii) theoretical modelling taking into account
different systematic effects, using either a pure Gaussian random
field analysis (Maturi et al. 2010) or a halo model plus the Gaussian
random noise applicable to high-SNR peaks (Fan et al. 2010; Yuan
et al. 2017); (iii) modelling a stochastic process to predict WL peak
counts by producing lensing maps using a halo distribution from
a theoretical halo mass function (Lin & Kilbinger 2015). This is
physically similar to the halo model.

In this work, we perform WL peak studies using the KiDS-450
data. To confront the tension on S8 measurement, we derive an in-
dependent constraint on S8 from the abundance of high-SNR peaks
adopting the analytical model of Fan et al. (2010), in which the
dominant shape noise effects have been fully taken into account.
We further explore the potential systematics on WL peak statistics.
We compare our results with the ones derived from the tomographic
cosmic shear measurement from Hildebrandt et al. (2017), as well
as those from previous WL peak studies. We also observe a dif-
ference between the degeneracy direction of (�m, σ 8) in WL peak
statistics and in cosmic shear analysis. Therefore, instead of S8, we
use �8 = σ 8(�m/0.3)α and fit the slope α to the data.

This is the first of a series of papers on cosmological constraints
from WL peak statistics using KiDS-450. In the subsequent paper,
by comparing with simulation templates from Dietrich & Hartlap
(2010), Martinet et al. (2017) derive constraints with shear peak
statistics identified from aperture mass maps. Because the projec-
tion effects of LSS are included in the simulations, an independent
measurement of the value of S8 can be obtained with the low- and
medium-SNR peaks. The different physical origins of low- and
high-SNR peaks indicate different cosmological information em-
bedded in the peak statistics of different ranges. Furthermore, we
expect that the systematics affect these two analyses in different
ways. Therefore, the consistency between the results from the two
studies indicates their robustness.

This paper is structured as follows: in Section 2, we describe the
KiDS-450 data set. In Section 3, we present the procedures of WL
peak analysis. In Section 4, we discuss the systematic effects. In
Section 5, we derive the cosmological constraints with WL peak
counts. A summary and discussion are given in Section 6.

2 T H E K I D S - 4 5 0 DATA

The ongoing KiDS (de Jong et al. 2015; Kuijken et al. 2015),
designed for WL studies, is a 1350 deg2 optical imaging survey in
four bands (u, g, r, i) with 5σ limiting magnitudes of 24.3, 25.1, 24.9,
23.8, respectively, using the OmegaCAM CCD camera mounted at
the Cassegrain focus of the VLT Survey Telescope.

In this paper, we use the KiDS-450 shear catalogue (de Jong
et al. 2017; Hildebrandt et al. 2017), which consists of 454 tiles
covering a total area of 449.7 deg2. After excluding the masked
regions, the effective survey area is 360.3 deg2. The lensing mea-
surements are performed on the r-band images with median see-
ing 0.66 arcsec. The KiDS-450 r-band images are processed with
the THELI pipeline, which has been optimized for lensing appli-
cations (Erben et al. 2009, 2013). As the observing strategy of
the KiDS survey was motivated to cover the Galaxy And Mass
Assembly (GAMA) fields (Liske et al. 2015), the KiDS-450 data

set contains five patches (G9, G12, G15, G23, GS), covering
(45.95, 91.96, 89.60, 81.61, 51.16) deg2, respectively.

Photometric redshifts (photo-z) zB are derived using the Bayesian
point estimates from BPZ (Benitez 2000; Hildebrandt et al. 2012).
The source redshift distribution n(z) is calculated through a weighted
direct calibration technique based on the overlap with deep spectro-
scopic surveys (the so-called DIR method; Hildebrandt et al. 2017).

The ellipticities of the galaxies are derived using a ‘self-
calibrating’ version of the shape measurement method LENSFIT

(Miller et al. 2013; Fenech Conti et al. 2017). The multiplicative
shear calibration bias, m, is obtained from image simulations with
∼1 per cent error for galaxies with zB ≤ 0.9. The additive shear cal-
ibration bias c is estimated empirically from the data by averaging
galaxy ellipticities in the different patches and redshift bins.

In this paper, we first split the galaxy sample into four tomo-
graphic bins zB = ([0.1, 0.3], [0.3, 0.5], [0.5, 0.7], [0.7, 0.9]) per
patch as in Hildebrandt et al. (2017), and apply shear calibration
corrections per tomographic bin and patch. The additive correction
is done on individual galaxies, and the multiplicative correction is
performed statistically (see equation 8). Because of the low effec-
tive number density neff ∼ 7.5 galaxies arcmin−2 within 0.1 < zB

≤ 0.9 of KiDS-450, there are only ∼2 galaxies arcmin−2 in each
redshift bin. Such low number densities prevent us from performing
WL peak analysis tomographically at this stage. Therefore, after the
correction, we then combine all the galaxies with 0.1 < zB ≤ 0.9
for WL peak count analysis.

3 W EAK LENSI NG PEAK ANALYSI S

3.1 Theoretical basics

The distortion of galaxy shapes by the gravitational lensing effect
can be described by the Jacobian matrix A, which is given by (e.g.
Bartelmann & Schneider 2001)

A = (1 − κ)

(
1 − g1 −g2

−g2 1 + g1

)
, (1)

where g = γ

1−κ
is the reduced shear written in the complex form

of g1 + ig2. The quantities γ and κ are the complex lensing shear
and convergence, respectively. They can be calculated from the
second derivatives of the lensing potential, and thus γ and κ are not
independent quantities. The convergence κ is related to the projected
matter density along the LOS scaled by a geometric factor.

The observed lensing quantity is the complex ellipticity ε, which
contains both the reduced shear and shape noise from the intrin-
sic galaxy ellipticity (Seitz & Schneider 1997). In order to identify
WL peaks, we need to relate the shear to the convergence, which
involves a mass reconstruction algorithm. To reduce the noise from
finite measurements of the shear, the observed ellipticities are regu-
larized on a mesh and smoothed by a filter function. This results in an
estimate of the smoothed field of the reduced shear g. From that, the
convergence field can be reconstructed with the non-linear Kaiser–
Squires (KS) inversion (Kaiser & Squires 1993; Kaiser, Squires &
Broadhurst 1995; Seitz & Schneider 1995). We can then identify
WL peaks, defined as local maxima in the two-dimensional con-
vergence field. Their abundance contains important cosmological
information that we analyse in this paper.

In our analysis, we construct the convergence map tile by tile.
Each KiDS tile is 1 deg2. In order to keep more effective area
while excluding the problematic boundary, we extend each tile to
1.2 × 1.2 deg2 using data from neighbouring tiles. The regular mesh
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KiDS-450: weak lensing peak statistics – I 1119

in each convergence map contains 512 × 512 pixels with a pixel
size of ∼0.14 arcmin. Then, the outermost 43 pixels (∼6 arcmin)
along each side of the extended tile boundaries are excluded to
suppress the boundary effects. Moreover, for area of this size, we
expect an insignificant mass-sheet degeneracy contribution (Falco,
Gorenstein & Shapiro 1985).

As described above, we smooth the pixelated ellipticity field with
a Gaussian function,

WθG (θ ) = 1

πθ2
G

exp

(
−|θ |2

θ2
G

)
, (2)

where θG is the smoothing scale. Hamana, Takada & Yoshida (2004)
found that θG ∼ 1−2 arcmin is an optimal choice for detecting mas-
sive haloes with M � 1014 h−1 M� at intermediate redshifts. In this
paper, we take θG = 2 arcmin so that >30 galaxies can be included
in the smoothing kernel effectively. Consequently, the Gaussian
approximation for the shape noise field should be valid, accord-
ing to the central limit theorem (Van Waerbeke 2000). The mean
rms of the smoothed shape noise field is σ 0 ∼ 0.023, much larger
than the contribution from the projection effect of LSS (discussed in
Section 4.3), hence is dominant on our smoothed convergence maps.

3.2 Weak lensing peak model

In this work, we adopt a theoretical approach to derive the cosmo-
logical constraints from WL peak counts. Fan et al. (2010) presented
a model taking into account the effects of shape noise, including the
noise-induced bias and dispersion on the SNR of true peaks corre-
sponding to massive DM haloes, the spurious peaks induced by the
shape noise of background sources, along with the enhancement of
the pure noise peaks near massive DM haloes.

Specifically, this model assumes that the true high-SNR peaks are
caused mainly by the existence of individual massive DM haloes
(Hamana et al. 2004; Yang et al. 2011; Liu & Haiman 2016)
and that the residual shape noise field is approximately Gaus-
sian. Accordingly, the smoothed convergence field can be writ-
ten as κ (S)

n = κ (S) + n(S), where κ (S) represents the true lensing
convergence from individual massive haloes and n(S) is the resid-
ual Gaussian shape noise. Assuming that κ (S) is known from the
halo density profile, the field κ (S)

n is therefore a Gaussian random
field modulated by κ (S). The peak count distribution can there-
fore be derived using Gaussian statistics, in which the dependence
on κ (S) and its first and second derivatives κ

(S)
i = ∂κ (S)/∂xi and

κ
(S)
ij = ∂2κ (S)/∂xi∂xj (i = 1, 2) of κ (S) reflect the modulation effect

of DM haloes. The surface number density of convergence peaks
can then be written as

npeak(ν)dν = nh
peak(ν)dν + nf

peak(ν)dν, (3)

where ν = κ/σ 0 is the SNR of a peak, and nh
peak(ν) and nf

peak denote
the number densities of WL peaks within halo regions (the virial
radius) and those in the field regions outside, respectively.

3.2.1 Peaks in halo regions

The peak count within halo regions, containing both the true peaks
from the DM haloes and noise peaks therein, can be written as

nh
peak(ν) =

∫
dz

dV (z)

dz d�

∫
Mlim

dM n(M, z) fp(ν, M, z), (4)

where dV(z) is the cosmological volume element at redshift z, d�

is the solid angle element and n(M, z) is the halo mass function,
for which we adopt the function obtained by Watson et al. (2013).

Note that the model concerns high-SNR peaks, which are mainly
due to a single massive halo. We thus apply a lower mass limit Mlim,
and only haloes with mass M > Mlim contribute to the integration
in equation (4). From our investigation with mock data (Appendix
C), we find that (1) a mass limit Mlim = 1014 h−1 M� for peaks
with ν > 3 is a suitable choice that is also physically meaningful,
as it corresponds to clusters of galaxies; (2) the input cosmological
parameters can be well recovered, suggesting that the impact of
the uncertainties in the model ingredients, such as the halo mass
function, is insignificant concerning the current study. The term fp

denotes the number of peaks within the virial radius of a DM halo,
and is given by

fp(ν, M, z) =
∫ θvir

0
dθ (2πθ ) n̂c

peak(ν, θ, M, z), (5)

where θvir = Rvir(M, z)/DA(z) is the angular virial radius, and DA is
the angular diameter distance to the DM halo. The physical virial
radius Rvir is calculated by

Rvir(M, z) =
[

3M

4πρ(z)�vir(z)

]1/3

, (6)

where ρ(z) is the background matter density of the Universe at
redshift z and the overdensity �vir is taken from Henry (2000). In
our modelling, we limit the angular halo regions to θvir. The mass
distributions outside it are regarded as parts of LSS contributions.
Yuan et al. (2017) investigate in detail the LSS effects on peak
statistics. For KiDS450, they are subdominant comparing to the
impacts from shape noise.

The function n̂c
peak(ν, θ, M, z) describes the surface number den-

sity of peaks at the location of θ from the centre of a halo, which
can be derived using the theory of Gaussian random fields including
the modulation effects from the DM halo contribution as follows:

n̂c
peak(ν, θ, M, z) = exp

[
− (κ (S)

1 )2 + (κ (S)
2 )2

σ 2
1

]

×
[

1

2πθ2∗

1

(2π)1/2

]
exp

[
− 1

2

(
ν − κ (S)

σ0

)2]

×
∫ ∞

0
dxN

{
1

[2π(1 − γ 2
N )]1/2

× exp

[
− [xN + (κ (S)

11 + κ
(S)
22 )/σ2 − γN (ν0 − κ (S)/σ0)]2

2(1 − γ 2
N )

]

× F (xN )

}
, (7)

with

F (xN ) = exp

[
− (κ (S)

11 − κ
(S)
22 )2

σ 2
2

]

×
∫ 1/2

0
deN 8(x2

NeN )x2
N (1 − 4e2

N ) exp(−4x2
Ne2

N )

×
∫ π

0

dθN

π
exp

[
− 4xNeN cos(2θN )

(κ (S)
11 − κ

(S)
22 )

σ2

]
, (8)
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1120 H. Shan et al.

where θ2
∗ = 2σ 2

1 /σ 2
2 , γN = σ 2

1 /(σ0σ2). The quantities σ i are the
moments of the noise field n(S) given by (e.g. Van Waerbeke 2000)

σ 2
i =

∫
dk k2i〈|ñ(S)(k)|2〉, (9)

where ñ(S)(k) is the Fourier transform of the noise field n(S).
For the density profile of DM haloes, we adopt the

Navarro–Frenk–White (NFW) distribution (Navarro, Frenk &
White 1996, 1997):

ρNFW(r) = ρs

(r/rs)(1 + r/rs)2
, (10)

where ρs and rs are the characteristic mass density and scale of a DM
halo. The corresponding convergence κ is obtained by integrating
to the infinity along the LOS. We then smooth with the Gaussian
function WθG (equation 2) to calculate the halo terms κ (S), κ

(S)
i and

κ
(S)
ij .

We note that in WL analyses, there is not a consensus about
the range of LOS integration for an NFW halo. We evaluate the
impact of different LOS truncations on the peak analyses taking the
models from Oguri & Hamana (2011). It is found that their effects
on our considered peak numbers are all well within 1σ statistical
fluctuations.

The mass–concentration relation given in Duffy et al. (2008) is
adopted in the calculation. In our fiducial analyses, the amplitude of
the mass–concentration relation is considered as a free parameter to
be fitted by the data simultaneously with cosmological parameters.

For the redshift distribution of source galaxies, we take the DIR
redshift distribution of KiDS-450 data in the fiducial analysis but
also consider other cases to test for the effect of redshift uncer-
tainties. The impact of the uncertainties in the source redshift dis-
tribution on the measured WL peak counts is estimated from 200
bootstrap resamples drawn from the full spectroscopic redshift train-
ing catalogue (Hildebrandt et al. 2017). By analysing different n(z)
distributions with the same pipeline, we find that our peak analysis
is essentially unaffected within the redshift uncertainties. A similar
conclusion is found in the cosmic shear analysis of Hildebrandt
et al. (2017).

3.2.2 Peaks in the field regions

The density of pure noise peaks in the field region away from DM
haloes is given by

nf
peak(ν) = 1

d�

{
nran(ν)

[
d� −

∫
dz

dV (z)

dz

×
∫

Mlim

dM n(M, z) (πθ2
vir)

]}
, (11)

where nran(ν) is the surface number density of pure noise peaks
without foreground DM haloes. It can be calculated with κ (S) = 0,
κ

(S)
i = 0 and κ

(S)
ij = 0.

We can see that, in the model, the cosmological information
comes from the halo mass function, the internal density profile of
DM haloes and the cosmological distances in the lensing efficiency
factor as well as the cosmic volume element. This model has been
tested extensively with simulations (Fan et al. 2010; Liu et al. 2014).
In Appendix A, we further test the model performance with the sim-
ulations from Dietrich & Hartlap (2010) with different underlying
cosmological parameters, and they have already been applied to
derive cosmological constraints with observed WL peaks of CS82
and CFHTLenS data.

3.3 Map making

In this section, we present the map making procedure from the
KiDS-450 shear catalogue. In order to build a reliable WL peak
catalogue, three kinds of maps need to be generated for each tile.

(1) Convergence map. Using the observed shear catalogue of
KiDS-450, the smoothed shear field at positions θ can be calculated
by taking into account the multiplicative and additive calibration
corrections,

〈εi〉(θ) =
∑

j WθG (θ j − θ )w(θ j )εc
i (θ j )∑

j WθG (θ j − θ )w(θ j )(1 + mj )
, (12)

where WθG is the Gaussian smoothing function in equation (2) with
the smoothing scale θG = 2 arcmin, εc

i = εi − ci , where εi and εc
i

are the uncorrected and corrected ellipticity components, m and
(c1, c2) are the multiplicative and the additive bias corrections,
respectively, and w is the LENSFIT weight of source galaxy shape
measurements. The summation is over galaxies j at positions θ j .

For the KiDS-450 lensing data with redshift 0.1 < zB ≤ 0.9, the
average multiplicative and additive biases (m, c) are quite small
with (∼1.4 × 10−2, ∼3.9 × 10−4), respectively. Given that the
residual uncertainty in the bias estimation is only 1 per cent, it can
only influence the theoretical predictions for peak counts with ν > 3
by ∼1−2 per cent. This is well within the statistical uncertainties of
our measurement.

The additive bias, c, is obtained empirically from the data by
averaging the measured ellipticities in different KiDS patches and
redshift bins. Their uncertainties are at the level of ∼6 × 10−5. As
discussed in Kacprzak et al. (2016), the additive bias systematics
can vanish within the smoothing scale except for the galaxies at
the edges of survey masks. With the filling factor cut in our peak
analysis (see below), we expect a negligible impact of the additive
bias on our results.

With the smoothed shear fields, the convergence map can be re-
constructed iteratively for each individual tile using the non-linear
KS inversion (Seitz & Schneider 1995; Liu et al. 2014). Assuming
κ (0) = 0 in a tile, we have γ (0) = 〈ε〉. At the nth step, we can ob-
tain κ (n) from γ (n − 1). We then update γ to γ (n) = (1 − κ (n))〈ε〉 for
the next iteration. The reconstruction process is stopped when the
converging accuracy of 10−6, defined to be the maximum differ-
ence of the reconstructed convergence between the two sequential
iterations, is reached.

(2) Noise map. To estimate the shape noise properties in each
tile, the m-corrected ellipticity of each source galaxy is rotated by a
random angle to destroy the lensing signal. Then following the same
reconstruction procedures described above in (1), we can obtain the
convergence noise field for each tile in KiDS-450.

(3) Filling factor map. Because mask effects can influence the
WL peak counts significantly (Liu et al. 2014), the regions around
masks should be excluded in the WL peak analysis. For that, we
need to construct filling factor maps from the positions and weights
of source galaxies. The filling factor is defined as the ratio of the
true source galaxy density to that of the randomly populated galaxy
distribution as follows:

f (θ) =
∑

j WθG (θ j − θ )w(θ j )

〈∑n WθG (θn − θ )w̃(θn)〉 . (13)

Here the numerator is calculated from the observed galaxy positions
θ j and weights w(θ j ). The denominator is calculated by randomly
populating galaxies over the full area of an extended tile. Specifi-
cally, we first find for each tile the average number density of galax-
ies in the area excluding the masked regions. We then randomly
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KiDS-450: weak lensing peak statistics – I 1121

populate galaxies over the full field of the extended tile including
the masked regions. Each galaxy is then assigned a weight w̃ ran-
domly according to the weight distribution of the source galaxies.
From this random galaxy distribution, we obtain the denominator
where the summation is over all galaxies.

With the filling factor maps, we can then identify and exclude
regions around masks in the reconstructed convergence maps for
peak counting. To control the systematic effects from the masks,
we remove the regions with filling factor values f < 0.6 in the peak
counting (Liu et al. 2014).

3.4 Peak identification

In a reconstructed convergence map, a peak is identified if its pixel
value is higher than that of the 8 neighbouring pixels.

We exclude a tile entirely if its effective galaxy number density
neff < 5.5 arcmin2 to ensure the validity of the Gaussian noise and
the approximate uniformity of the noise field (Appendix B). After
further rejecting the tiles that fail the filling factor requirement, the
total area for the peak analysis is ∼304.2 deg2.

We then divide peaks into different bins based on their SNR
ν = κ/σ 0, where σ 0 is the mean rms of the noise estimated from
the noise maps considering only the regions that passed all require-
ments. With θG = 2 arcmin, we have σ 0 ∼ 0.023. Due to limitations
in the model, we only consider peaks with ν > 3, corresponding to
a smoothed κ � 0.07. For higher SNR, we include those bins that
contain at least 10 peaks to avoid the bias resulting from the large
Poisson fluctuations. We thus concentrate on the peaks in the range
of 3 < ν < 5.

3.5 Fitting method

We use the model described in Section 3.2 to derive cosmological
constraints from the observed WL peaks identified from the con-
vergence maps. We divide the measurements into four equally wide
SNR bins ([3.0, 3.5], [3.5, 4.0], [4.0, 4.5], [4.5, 5.0]), where the
number of peaks in the last bin being ∼10 and significantly larger
in the other bins. We define the following χ2 to be minimized for
cosmological parameter constraints,

χ2
p =

4∑
i,j=1

�N
(p)
i (Ĉ−1

ij )�N
(p)
j , (14)

where �N
(p)
i = N

(p)
peak(νi) − N

(d)
peak(νi) is the difference between the

theoretical prediction with cosmological model p and the observed
peak counts. The covariance matrix Cij is estimated from bootstrap
analysis by resampling the 454 tiles from the KiDS-450 data, and
is given by

Cij = 1

R − 1

R∑
r=1

[Nr
peak(νi)−N

(d)
peak(νi)][N

r
peak(νj )−N

(d)
peak(νj )]. (15)

Here, r denotes different bootstrap samples with the total number
R = 10 000, and Nr

peak(νi) is the peak count in the bin centred on ν i

from sample r. The unbiased inverse of the covariance matrix can
then be estimated as (Hartlap, Simon & Schneider 2007)

Ĉ−1 = R − Nbin − 2

R − 1
(C−1), Nbin < R − 2, (16)

where Nbin is the number of bins used for peak counting. In our
analysis, we adopt the bootstrap covariance estimated from the
KiDS-450 data. Liu et al. (2015b) found that the differences between
the results from simulation sets and from bootstrap resampling are

generally less than 10 per cent for the diagonal elements of the
inverse.

With Nbin = 4, in this paper, we consider constraints on the
most lensing-sensitive parameters (�m, σ 8) under the flat � cold
dark matter (�CDM) assumption. In our fiducial analysis, the other
parameters including the Hubble constant h, the power index of the
initial density perturbation spectrum ns and the present baryonic
matter density �b are fixed to h = 0.7, ns = 0.96 and �b = 0.046. We
also consider the cases with different Hubble constant to see if this
uncertainty can affect the results significantly. Our Markov chain
Monte Carlo (MCMC) fitting uses COSMOMC (Lewis & Bridle 2002)
modified to include the likelihood of WL peak counts. We adopt
flat priors in the range of [0.05, 0.95] and [0.2, 1.6] for �m and σ 8,
respectively.

In Appendix A, we further test the model performance by com-
paring with simulations from Dietrich & Hartlap (2010) of different
(�m, σ 8). In Appendix C, we analyse KiDS-450-like mock data
based on our own simulations using the full peak analysis pipeline.
It is shown that the derived constraints from the mock data can
recover the input cosmological parameters very well.

4 SYSTEMATI CS

As discussed in previous sections, the measurement systematics,
including the shear measurement bias and photo-z errors, are neg-
ligible for our KiDS-450 WL peak analysis. However, we need to
further understand the impact of astrophysical systematic effects,
such as the boost factor due to cluster member contamination and
the blending in cluster regions, baryonic effects, the projection ef-
fects of LSS and IA of galaxies.

4.1 Boost factor

The true high-SNR peaks that we detect are mainly due to in-
dividual massive clusters. Cluster member contamination to the
source galaxy catalogue can however dilute the lensing signals (e.g.
Mandelbaum et al. 2006; Miyatake et al. 2015; Dvornik et al. 2017).
In addition, the galaxies in cluster regions can be blended be-
cause of galaxy concentration, resulting in lower shear measure-
ment weights. Both these effects need to be accounted as a ‘boost
factor’ (Kacprzak et al. 2016).

With DES-SV data, Kacprzak et al. (2016) find that the boost
factor correction is <5 per cent for their shear peak studies: the
dilution of the signal by cluster member galaxies is minimal
(<2 per cent), and the effect of background galaxies lost because
of blending is ∼5 per cent in the SNR of the highest SNR peaks
with 3.66 ≤ ν ≤ 4.0 with aperture radius θmax = 20 arcmin. We
note that our peak analysis is different from that of Kacprzak et al.
(2016 , convergence versus shear peaks, and Gaussian filter versus
NFW-like filter). The modelling of the cosmological dependence is
also different (theoretical versus simulation templates). Thus, the
estimate of the boost factor of Kacprzak et al. (2016) may not be
directly applicable here. In this section, we estimate the boost ef-
fect based on our analysis, drawing out the different conclusions to
Kacprzak et al. (2016).

The boost factor effect on peak statistics results from the ex-
cess galaxy number density (filling factor) of source galaxies near
massive clusters, compared to the average number density. To es-
timate these differences, it is better to analyse the source galaxies
near known clusters in the field rather than around peaks because a
considerable fraction of peaks are non-halo-associated.
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In the galaxy–galaxy lensing measurement with KiDS and
GAMA data, Dvornik et al. (2017) find that the member contamina-
tion for GAMA groups can reach up to ∼30 per cent at 75 kpc h−1

and decreases on larger scales. In our analysis, we use a Gaus-
sian smoothing with θG = 2 arcmin. This corresponds to a scale
of ∼300 kpc h−1 at redshift ∼0.2–0.3. Then a member contamina-
tion of ∼10 per cent is expected. On the other hand, GAMA groups
have a typical mass of 1013 M� h−1 (Dvornik et al. 2017), smaller
compared to those responsible for the high-SNR peaks.

We therefore use the cluster candidates from Radovich et al.
(2017) found in 114 deg2 of KiDS regions. The mass of the clus-
ter candidates is estimated using the richness as a proxy (Ander-
son 2015). To assess the boost factor effect due to the member
contamination and the blending effect in cluster regions, simi-
lar to Kacprzak et al. (2016), we analyse the filling factor of
source galaxies near these cluster candidates. Specifically, in ac-
cord with the high-SNR peak studies, we consider clusters with
mass M > 1014 h−1 M�. In Appendix D, we quantify the im-
pact of the boost factor effects on both the signal and the noise
level for WL peak counts from KiDS-450 data. They can affect the
peak abundance by ∼(−2.0 per cent, −6.0 per cent, −14.0 per cent,
−27.0 per cent) on the four SNR bins ([3.0, 3.5], [3.5, 4.0], [4.0, 4.5],
[4.5, 5.0]) for the best-fitting cosmology. We include the boost fac-
tor effect in our fiducial analysis to derive cosmological parameter
constraints (see Section 5).

4.2 Baryonic effects

Although baryonic matter is subdominant compared to DM, it is
subject to complicated physical processes such as heating, cooling
and feedback from stars and AGNs, all of which can have signif-
icant influence on structure formation. For the WL peak analysis,
the baryonic effect can be estimated by how it changes the DM
distribution in haloes.

Using a simplified model for the cooling and condensation of
baryons at the centres of DM haloes, Yang et al. (2013) claim that
there is a large increase in the number of high-SNR peaks, but the
effects on low-SNR peaks are quite small.

On the other hand, including the feedback of supernovae, stars
and AGNs, Osato et al. (2015) find that the feedback effects can
effectively reduce the mass of small DM haloes, eventually reducing
the number of low-SNR WL peaks. Because of the smaller impact of
feedback on the massive DM haloes (Velliscig et al. 2014), the high-
SNR peak number is not significantly changed. Osato et al. (2015)
also show that the high-SNR peaks are almost unaffected once all
the contributions from radiative cooling and the various feedbacks
are included, because these effects can partially compensate each
other. In fact, the baryonic effects are only expected to generate
1−2 per cent biases on the (�m, σ 8) constraints from high-SNR
peak analysis (Osato et al. 2015).

Studies of the baryonic effects on WL peak statistics have not yet
reached an agreement. This is mainly due to the different physical
processes considered in the different analyses. Because the details
of the baryonic physics are complicated and remain to be fully
understood, it would be highly valuable if we could obtain some
constraints on them from observations simultaneously with cosmo-
logical parameters. In addition, a self-calibrated method can also
reduce biases on cosmological parameter constraints arising from
improper assumptions about the baryonic sector. In our theoretical
modelling, the dependence of WL peak counts on baryonic effects is
explicit. It is therefore possible for us to carry out studies including
self-calibration.

For high-SNR WL peak counts, it is a reasonable assumption that
baryonic effects show up through modifying the density distribu-
tion of DM haloes (Duffy et al. 2010; Mead et al. 2015). We there-
fore include some freedom in the halo mass–concentration relation.
Specifically, we take the power-law form of the mass–concentration
relation for NFW haloes,

cvir = A

(1 + z)0.7

(
Mvir

1014 h−1 M�

)β

, (17)

where A = 5.72 and β = −0.081 are given in Duffy et al. (2008).
The redshift dependence (1 + z)0.7 is taken to be consistent with
simulation results (Duffy et al. 2008; Bhattacharya et al. 2013). In
order to quantify the possible baryonic effects on the density profiles
and also the impact of the uncertainties of the mass–concentration
relation, we allow the amplitude A to be a free parameter in our
fiducial analysis. With a wide flat prior of [0, 20], we then perform
the simultaneous constraints on the cosmological and structural
parameters (�m, σ 8, A, see Section 5). Comparing with the predic-
tion of DM-only simulations, the derived A tends to be somewhat
higher. But the current peak counts can hardly put any meaningful
constraints on A.

4.3 The projection effects of LSS

Previous studies have shown that WL peaks of different SNR origi-
nate from different sources (Yang et al. 2011; Liu & Haiman 2016).
While high-SNR peaks originate primarily from individual massive
DM haloes (see Section 33), low-SNR peaks often result from the
cumulative contributions of the LSS along the LOS.

However, the projection effects of LSS affect the measurements
of peaks for all SNR (Hoekstra 2001; Hoekstra et al. 2011). With
the model of Fan et al. (2010), Yuan et al. (2017) investigate in
detail the projection effects of LSS on high-SNR peaks, which
shows that the ratio σ 2

0,LSS/σ
2
0 can give a rough estimate of the

importance of LSS in comparison with that of the shape noise,
where σ0,LSS is the rms of the smoothed convergence field from
LSS excluding the massive halo contributions and σ 0 is the rms
of the residual shape noise. The higher the redshift and the larger
the density of source galaxies, the more important the effect of
LSS. For KiDS-450, the number density is relatively low and thus
the shape noise is large. The median redshift is also relatively
low with ∼0.65. In this case, σ 2

0,LSS/σ
2
0 ∼ (0.006/0.023)2 ∼ 0.07,

and thus the LSS effect is much lower than that of the shape
noise. Furthermore, the effective area used in our peak analysis
is ∼300 deg2, and the statistical errors of peak counts are relatively
large. We therefore expect minor impacts of LSS in our current
analysis.

In fact, the projection effects of LSS are naturally included in
the mock simulation data. The unbiased results of the cosmological
constraints from the mocks (Appendix C) suggest that the LSS
projection effects are indeed negligible and the model that does not
account for LSS projections still provides a good fit to the mock
data. We note that for KiDS, with the increase of the survey area,
the statistical errors of peak counts will decrease and the tolerable
levels of systematic errors will also decrease. Thus, the LSS effect
may need to be included in the peak modelling in future analysis
(Yuan et al. 2017).

Moreover, by comparing with simulation templates, the low-SNR
shear peaks from the projection effects of LSS are used to probe the
cosmological information in Paper II.
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4.4 Intrinsic alignments

The IA signal of galaxies contains important information on the
formation and evolution of galaxies in their DM environment. For
the cosmic shear 2PCF measurements, the IA effects can be divided
into two components: the intrinsic ellipticity correlations and shear-
ellipticity correlations. They can contaminate the cosmic shear anal-
ysis.

Fan (2007) studied the influence of IA on the convergence peak
counts, by modelling it as additional terms to the moments of the
shape noise. The full noise variance in a convergence map can then
be written as σ 2

0 = σ 2
0,ran + σ 2

0,corr, where σ 0, ran is the noise con-
tributed from the randomly oriented intrinsic ellipticities of source
galaxies and σ 0, corr denotes the additional contribution from IA
(see equation 23 in Fan 2007). For the KiDS-450 data, we have
σ 2

0,ran = 0.0232 = 5.3 × 10−4 with a 2 arcmin Gaussian smooth-
ing. We can estimate σ 2

0,corr < 3.07 × 10−6 with the IA amplitude
AIA = 1.10 ± 0.64 from the cosmic shear constraints (Hildebrandt
et al. 2017), which is much smaller than σ 2

0,ran.
Apart from contributing to the noise variance, IA can also affect

the peak signal estimates. If there is a contamination of cluster
members to the source catalogue and these members are intrinsically
aligned to the centre, the estimated lensing signal would be biased.
Using a simple model of radial alignment of satellite galaxies with
a certain misalignment angle consistent with simulations, Kacprzak
et al. (2016) estimated the IA influence on the SNR of shear peaks
with the aperture mass statistics. They find that the IA effects can be
important for high-SNR shear peaks. For peaks with SNR ν > 4.5,
the number of shear peaks can change by about 30 per cent.

On the other hand, observationally, Chisari et al. (2014) find
that the IA signals in stacked clusters of the Sloan Digital Sky
Survey ‘Stripe 82’ in the redshift range 0.1 < z < 0.4 are consistent
with zero. Using a large number of spectroscopic members of 91
massive galaxy clusters with a median redshift zmed ∼ 0.145, Sifón
et al. (2015) also find that the IA signal of cluster members is
consistent with zero for all scale, colour, luminosity and cluster mass
investigated. Because high-SNR peaks are mainly due to individual
massive DM haloes hosting clusters of galaxies, these observational
results may indicate negligible IA effects for high-SNR peak signal
estimates.

We further note that for our analysis here, the number of peaks
with SNR > 4.5 is about 10, for which the Poisson statistical uncer-
tainty reaches ∼33 per cent. For such large statistical fluctuations,
we do not expect the IA contamination to matter.

To summarize, the measurement systematics (shear measurement
bias and photo-z errors) and some astrophysical systematic effects
(the projection effects of LSS and IA) are insignificant for our
cosmological studies using WL peaks from KiDS-450, and will be
neglected. On the other hand, in our fiducial studies, we include
the boost effect, which we find to be significant. We also allow
the amplitude of the halo mass–concentration relation to vary to
account for possible baryonic effects.

5 C O S M O L O G I C A L C O N S T R A I N T S FRO M
K I D S - 4 5 0 P E A K A NA LY S I S

In this section, we present cosmological constraints derived from
the KiDS-450 WL peak analysis, incorporating both the boost factor
and baryonic effects as discussed in Section 4.

First, we show the peak counts from KiDS-450 in the upper
panel of Fig. 1. The data are shown as points, their error bars have
been calculated using a bootstrap sampling of individual KiDS-450

Figure 1. Upper panel: the fiducial peak count distribution of the
KiDS-450 data. The corresponding solid line is the theoretical prediction
with the best-fitting cosmological parameters obtained from MCMC fitting.
The error bars are the square root of the diagonal terms of the covariance
matrix. Lower panel: the difference between the peak counts of the data and
the best-fitting theoretical predictions.

Table 1. The peak counts from the KiDS-450 data
and of the theoretical predictions from the best-fitting
cosmological model in our fiducial analyses.

Ndata
peak Nfid

peak

3.0 ≤ ν < 3.5 462 ± 23 475.04
3.5 ≤ ν < 4.0 136 ± 13 132.11
4.0 ≤ ν < 4.5 32 ± 6 32.96
4.5 ≤ ν < 5.0 10 ± 3 9.12

observation tiles, and the solid line is our best-fitting theoretical
model. The lower panel shows the residual between the data and
this prediction. The corresponding peak numbers are also shown in
Table 1. Secondly, Fig. 2 shows our fiducial constraints on �m and
σ 8 in comparison with the results from the KiDS-450 cosmic shear
tomographic 2PCF analysis (Hildebrandt et al. 2017). In addition,
we show the pre-Planck CMB constraints (WMAP9+ACT+SPT;
Calabrese et al. 2017) and the Planck CMB constraints ‘TT+lowP’
(Planck Collaboration XIII 2016a).

From Figs 1 and 2, we can see that the results from our WL peak
analysis are an accurate representation of the KiDS-450 data, and
that they are consistent with the cosmological constraints reported
using a 2PCF analysis of the same data set. Both methods return
constraints that agree well with pre-Planck CMB measurements.
Furthermore, it can be seen that the degeneracy relation has a some-
what flatter slope than that from tomographic 2PCF measurements.
This difference means that our analysis has great potential to be
used in a manner that is complementary to cosmic shear correla-
tion analysis, as a joint analysis may provide tighter cosmological
constraints than is possible with either analysis alone.

Finally, comparison with Planck CMB measurements reveals a
tension similar to that reported in previous KiDS studies. This ten-
sion is quantified in the following section.

5.1 Comparison of S8 values

Due to the strong degeneracy between �m and σ 8 from WL analy-
ses, cosmological constraints are often characterized via the single
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1124 H. Shan et al.

Figure 2. The comparison for the constraints on (�m, σ 8) between the fiducial WL peak analysis (blue) and the results from the cosmic shear tomography
from KiDS-450 (green). The constraints from pre-Planck CMB measurement (yellow) and Planck 2016 (red) are also overplotted. The contours are 1σ and
2σ confidence levels, respectively.

quantity �8 = σ 8(�m/0.3)α , where the index α is indicative of the
slope of the degeneracy direction. When performing cosmic shear
2PCF analyses, this degeneracy is typically found to have a slope of
α ∼ 0.5. As such, �8 is frequently re-defined as S8 = σ 8(�m/0.3)0.5.
In either case, with a freely varying or fixed value α, this character-
ization parameter can be constrained better than �m and σ 8 sepa-
rately. Given the frequent use of S8 rather than �8 in the literature,
we first calculate S8 and subsequently calculate �8, fitting for the
free parameter α.

Using our fiducial WL peak analysis, we find S8 = 0.746+0.046
−0.107.

This value is in agreement with that from cosmic shear tomo-
graphic 2PCF analysis, which gives S8 = 0.745+0.039

−0.039 (Hildebrandt
et al. 2017). To show the robustness of the results, we explore the
impact (on our estimated S8) of the various systematic effects that
were accounted for in our model, and of some systematic effects
external to our model. After these tests, we then also compare our
S8 estimates to additional constraints from the literature.

5.1.1 Testing systematic effects

We first ignore all the measurement and astrophysical systematics,
and estimate S8 in the absence of our boost factor and baryonic ef-
fect corrections. This allows us to obtain a no-systematics estimate
of S8 = 0.748+0.038

−0.146. This value is included in Fig. 3, and is indica-
tive of how our estimate of S8 changes under consideration of these
two systematic effects. Interestingly, we can see that our fiducial
measurement of S8 is largely unchanged here. This is because of the
compensation of the boost effect and the baryonic effect to be shown
in the following. We also note that, for both of these estimates (and
in fact for all our estimates of S8), the error bars are strongly asym-
metric. This is due primarily to the different degeneracy direction
compared with the assumed slope of α = 0.5. Indeed, fitting with a
free α results in a much more symmetric uncertainty estimate (see
Section 5.2). Moreover, the seemingly larger error bars in the case

of no systematics are mainly due to the different degeneracy direc-
tion from α = 0.5. With the fitting α, the probability distribution
of �8 is much more symmetric and the errors are indeed smaller in
the no-systematics case than that of our fiducial analyses.

Considering only the boost effect, with the modified model de-
scribed at length in Appendix D, we find S8 = 0.782+0.043

−0.124. This
shows that the boost factor pushes S8 to higher values, and leads to
a marginal reduction in uncertainty.

Testing the influence of baryonic effects by freeing the A param-
eter without including the boost effect, we find S8 = 0.720+0.042

−0.133.
This is made by marginalizing over A, and is also shown in Fig. 3.
This estimate is ∼3.8 per cent lower than the no-systematics value,
and is marginally higher than might be expected from previous sim-
ulation studies (see e.g. Osato et al. 2015). None the less, the effect
is minor. However, it is relevant to note that in the future this will
not be the case. Future large WL surveys will provide sufficient
area that WL peak counts will increase by order of magnitude.
We expect that our self-calibration method will be particularly
useful, allowing both a significant reduction in cosmological pa-
rameter constraint biases and valuable information about baryonic
physics.

The above analyses show that the two systematics move the S8

estimate in opposite directions. As a result, when both are consid-
ered in our fiducial analyses, their effects are largely cancelled out
and the S8 value is nearly unchanged comparing to the case of no
systematics.

We also assess the impact of redshift uncertainties. To do this, we
carry out the peak analysis using the posterior redshift distribution
P(z) returned by BPZ. Here we do not include the boost factor and
baryonic effects, and our results are compared to our no-systematics
estimate. This test returns a value S8 = 0.773+0.044

−0.139, and is shown in
Fig. 3 as KiDS-450 peak (BPZ). This S8 estimate is marginally higher
than our no-systematics analysis, primarily because the mean of BPZ

redshift distribution is lower than that of DIR. This is in agreement
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Figure 3. Constraints on S8 from our WL peak analysis, including various systematic tests, compared to various estimates from the literature measurements.

with the analysis of Hildebrandt et al. (2017), who observe a similar
effect in cosmic shear constraints of S8.

We also test how sensitive our estimate of S8 is to the vari-
ation of the mean redshift of the bootstrapped DIR sample. We
select the two bootstrap realizations with the most different mean
estimates comparing to the one used in our main studies. Specif-
ically, the difference in the mean redshift is �〈z〉 = +0.036 and
�〈z〉 = −0.037, respectively. Correspondingly, the obtained val-
ues of S8 are S8 = 0.744+0.039

−0.147 and 0.750+0.039
−0.136, respectively. The

results are consistent with our no-systematics estimate within the
statistical errors, indicating a negligible bias from the DIR photo-z
uncertainties.

Finally, in our analysis we have assumed a reduced Hubble con-
stant h = 0.7. However, recent results from Planck CMB temper-
ature and polarization analyses suggest that h may be smaller than
our assumed value. To estimate the effect of a change in h on our
results, we perform two additional measurements of S8 assuming
h = 0.68 and 0.72. For the no-systematic cases, the derived param-
eters are S8 = 0.747+0.041

−0.148 and 0.745+0.040
−0.145, for h = 0.68 and 0.72,

respectively. Again, these results are consistent with our fiducial es-
timate and indicate that our results are robust to modest variations
in h.

5.1.2 External constraints

When comparing our S8 constraints with those from previous CMB
temperature and polarization measurements, we find very good

agreement with pre-Planck CMB-based constraints from Calabrese
et al. (2017). However, similar to the tomographic 2PCF analy-
ses, our result is lower than the CMB measurement from Planck
(S8 = 0.851 ± 0.024; Planck Collaboration XIII 2016a) at the level
of ∼2.0σ . Fig. 3 shows these results and those from other KiDS-450
measurements, the Dark Energy Survey Year One (DES-Y1) cosmic
shear measurement, and previous WL peak analyses, in compari-
son to our fiducial estimate and our various systematic tests from
Section 5.1.1.

Our estimate of S8 is consistent with all previous KiDS analy-
ses, within 1σ uncertainties. To demonstrate this, we highlight the
following results in particular. Köhlinger et al. (2017) use power
spectrum analysis to estimate S8, finding S8 = 0.651 ± 0.058. Com-
bining cosmic shear measurements from KiDS-450 with galaxy–
galaxy lensing and angular clustering from GAMA, van Uitert
et al. (2017) obtained S8 = 0.801 ± 0.032. In a parallel anal-
ysis, Joudaki et al. (2017b) found S8 = 0.742 ± 0.035 using
KiDS-450 cosmic shear measurements with galaxy–galaxy lensing
and redshift space distortion from the 2-degree Field Lensing Survey
(Blake et al. 2016) and the Baryon Oscillation Spectroscopic Survey
(Dawson et al. 2013).

Moreover, our estimate of S8 is also consistent with the recent re-
sults from DES-Y1. Troxel et al. (2017) report a cosmic shear-based
estimate of S8 = 0.789+0.024

−0.026, which is again in good agreement with
the value presented here.

We also compare our results to previous WL peak analyses in
the literature, finding good agreement. Liu et al. (2015b) use CS82
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Figure 4. Upper panel: the marginalized probability distribution of S8 for KiDS-450 WL peak statistics (blue) and the cosmic shear tomographic 2PCF
analysis (red). Lower panel: the marginalized distribution of �8 for KiDS-450 WL peak statistics.

data and find S8 = 0.788+0.035
−0.088. They also fit for a free α, finding

a lower value than α = 0.5 assumed by S8. Liu et al. (2016) use
CFHTLenS to constrain f(R) theory using WL peak statistics. While
they do not report S8 directly, we are able to utilize their WL peak
catalogue to estimate S8 for their sample, finding S8 = 0.774+0.039

−0.090.
Finally, Kacprzak et al. (2016) use DES-SV to study the abundance
of shear peaks with 0 < ν < 4, identified in aperture mass maps.
They constrain cosmological parameters using a suite of simulation
templates with 158 models with varying (�m, σ 8) (Dietrich & Hart-
lap 2010). They find S8 = 0.76 ± 0.074, with uncertainty derived
by marginalizing over the shear multiplicative bias and the error on
the mean redshift of the galaxy sample. The constraints from these
studies are marginally higher than our results, while being none the
less consistent with our fiducial result within uncertainties.

We conclude that our results are consistent with the pre-Planck
CMB measurement of Calabrese et al. (2017), other KiDS-450
measurements, DES-Y1 cosmic shear and other WL peak analyses.
The ∼2.0σ tension with Planck CMB measurements is again seen
here.

5.2 Parameter degeneracy

As shown in Fig. 2, our (�m, σ 8) degeneracy direction is somewhat
flatter than that present in 2PCF analyses. This difference, we argue,
results in significantly asymmetric uncertainties on our estimate of
S8. We demonstrate this clearly in the upper panel of Fig. 4, where
we show the marginalized probability distribution of S8 for our
fiducial WL peak analysis (blue) and cosmic shear tomographic

2PCF analysis (red). Our distribution is clearly heavily skewed,
with a long tail towards the lower values of S8.

As this tail is clearly an artefact caused by the use of a fixed
α = 0.5, we now explore how our estimates change when we fit
with a freely varying α; that is, we fit for �8 rather than S8. We
derive the best-fitting α ≈ 0.38 using the values of (�m, σ 8) that
are within 1σ confidence level of the constraints (the dark blue
region in Fig. 2). The smaller α reflects the flatter contours from
our peak analyses than that from 2PCFs, consistent with the visual
inspections. With the fitted α, we then calculate the distribution
of �8 from the obtained constraints on (�m, σ 8). The result is
shown in the lower panel of Fig. 4. It is seen that the distribution is
significantly more symmetric than the distribution of S8. With the
best-fitting α, our final estimate is �8 = 0.696+0.048

−0.050.
We note that our constraint on α is similar to that recovered

from cluster count analyses (Vikhlinin et al. 2009; Rozo et al. 2010;
Planck Collaboration XXIV 2016b). These all find smaller α al-
though they vary somewhat: Vikhlinin et al. (2009) find α ≈ 0.47
from analyses of X-ray clusters; Rozo et al. (2010) find α ≈ 0.41
using MaxBCG analysis; and studies of Sunyaev-Zel’dovich (SZ)
clusters find α ≈ 0.3 (Planck Collaboration XXIV 2016b). The vari-
ations could be due to systematically different masses and redshifts
probed by these different studies. It is interesting to note that the
non-tomography high-SNR shear peak analyses of Dietrich & Hart-
lap (2010) with simulation templates also obtain a flatter degeneracy
direction. Each of these studies is broadly consistent with our best-
fitting α ∼ 0.38, which is expected due to the significant correlation
between high-SNR WL peaks and massive clusters of galaxies.
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6 C O N C L U S I O N S

We derive cosmological constraints from a WL peak count analysis
using 450 deg2 of KiDS data. As shape noise is the dominant source
of uncertainties in our analysis, we adopt the theoretical model of
Fan et al. (2010), which takes into account the various effects of
shape noise in modelling peak counts.

We begin by testing the applicability of this model. Comparing
its predictions with WL peak counts from simulations of different
cosmologies (Appendix A), we find good agreement between the
model and our simulations. We also test the Gaussian approxima-
tion for the residual shape noise used in the model (Appendix B),
again finding consistent results. Finally, we perform a mock KiDS
analysis using a suite of simulations to validate our full analysis
pipeline (Appendix C), finding that our pipeline recovers the input
cosmology consistently.

After verifying both the model and our pipeline, we estimate
our ‘fiducial’ cosmological constraints using the DIR calibrated
redshift distribution (Hildebrandt et al. 2017) and high-SNR peaks
(3 <ν < 5), accounting for the influence of boost factor and baryonic
effects. We explore other systematics, including projection effects of
LSS, shear measurement bias and photo-z errors, and conclude that
these are insignificant for the WL peak analysis performed here. We
explore the effect of IA, finding it to have negligible impact on shape
noise variance and therefore on our results. However, considering
the cluster member contamination, we find that the peak signal
measurements may be affected if member galaxies have IA within
clusters. The existence of such alignments is, however, still debated
within the literature; we opt not to include it in our analysis. Further
study of the effects of IA is none the less of interest, and we leave
this for future work.

We summarize our primary conclusions as follows.

(1) For a flat �CDM cosmology, our fiducial cosmological
constraint on (�m, σ 8) from WL peaks is S8 = σ8(�m/0.3)0.5 =
0.746+0.046

−0.107. This is consistent with previous estimates, within KiDS,
from cosmic shear tomographic 2PCF analysis and shear peak
counts. Our estimate is also consistent with previous WL peak
studies from CFHTLenS, CS82 and DES-SV. Finally, our result is
consistent with pre-Planck CMB results, although we find a tension
of ∼2.0σ with the Planck CMB.

(2) We perform a quantitative analysis of a range of systematic
effects, including photo-z errors and uncertainty in the Hubble con-
stant h, finding that these are insignificant compared to the statistical
uncertainties on our value of S8.

(3) We fit for the degeneracy slope of (�m, σ 8) from our high-
SNR peak studies, characterized by the index α, finding a slope
somewhat flatter than that found using cosmic shear 2PCF anal-
ysis. This raises the potential for WL peak analysis to be used
alongside a 2PCF analysis, thereby breaking part of the (�m, σ 8)
degeneracy. Fitting for our cosmological constraint with α as a free
parameter, we find �8 = σ8(�m/0.3)α = 0.696+0.048

−0.050, with the best-
fitting α = 0.38.

Previous estimates of α using low- and medium-SNR shear peaks
(Kacprzak et al. 2016) find a degeneracy direction similar to that of
cosmic shear 2PCF measurements. We argue that the primary com-
plementarity with 2PCF studies, therefore, lies in studying high-
SNR peaks. However, as the number of high-SNR peaks is still
relatively low, even in our 450 deg2 sample, the statistical uncer-
tainties remain considerably larger than those of low-SNR peaks.
Future WL surveys, such as Euclid (Laureijs et al. 2011), LSST

(Abell et al. 2009) and the Wide Field Infrared Survey Telescope7,
will provide considerably larger samples of high-SNR peaks, and
thus allow us to extract much more cosmological information from
studies of this nature. However, achieving higher accuracy will
come at a cost: much tighter control on systematic effects will be
paramount.

AC K N OW L E D G E M E N T S

We are thankful for the referee’s encouraging comments and sug-
gestions. The analyses are based on data products from observations
made with ESO Telescopes at the La Silla Paranal Observatory un-
der programme IDs 177.A-3016, 177.A-3017 and 177.A-3018, and
on data products produced by Target/OmegaCEN, INAF-OACN,
INAF-OAPD and the KiDS production team, on behalf of the KiDS
consortium. OmegaCEN and the KiDS production team acknowl-
edge support by NOVA and NWO-M grants. Members of INAF-
OAPD and INAF-OACN also acknowledge the support from the
Department of Physics & Astronomy of the University of Padova
and of the Department of Physics of Univ. Federico II (Naples).
We thank Antony Lewis for the COSMOMC packages. HYS acknowl-
edges support from TR33 project ‘The Dark Universe’ funded by
the DFG. HHi is supported by an Emmy Noether grant (No. Hi
1495/2-1) of the DFG. XKL, CZP and ZHF are supported in part
by the NSFC of China under grants 11333001 and 11173001 and
by Strategic Priority Research Program ‘The Emergence of Cos-
mological Structures’ of the Chinese Academy of Sciences, grant
No. XDB09000000. XKL also acknowledges the support from
General Financial Grant from China Postdoctoral Science Foun-
dation with Grant No. 2016M591006. HHo acknowledges support
from Vici grant 639.043.512, financed by the Netherlands Organi-
sation for Scientific Research (NWO). JHD acknowledges support
from the European Commission under a Marie-Sklodwoska-Curie
European Fellowship (EU project 656869). CH acknowledges sup-
port from the European Research Council under grant number
647112. KK acknowledges support by the Alexander von Humboldt
Foundation. JM has received funding from the European Union’s
FP7 and Horizon 2020 research and innovation programmes un-
der Marie Sklodowska-Curie grant agreement numbers 627288 and
664931. QW acknowledges the support from NSFC with Grant No.
11403035. Part of the N-body simulations are performed on the
Shuguang cluster at Shanghai Normal University, Shanghai, China.

R E F E R E N C E S

Abell P. A. et al., 2009, preprint (arXiv:0912.0201)
Aihara H. et al., 2017, PASJ, preprint (arXiv:1702.08449)
Anderson S., 2015, A&A, 582, A100
Angulo R. E., Springel V., White S. D. M., Jenkins A., Baugh C. M., Frenk

C. S., 2012, MNRAS, 426, 2046
Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291
Benitez N., 2000, ApJ, 536, 571
Bhattacharya S., Habib S., Heitmann K., Vikhlinin A., 2013, ApJ, 766, 32
Blake C. et al., 2016, MNRAS, 462, 4240
Calabrese E. et al., 2017, Phys. Rev. D, 95, 063525
Chisari N. E., Mandelbaum R., Strauss M. A., Huff E. M., Bahcall N. A.,

2014, MNRAS, 445, 726
Dawson K. et al., 2013, AJ, 145, 10
de Jong J. et al., 2015, A&A, 582, 62
de Jong J. et al., 2017, A&A, 604, A134

7 http://wfirst.gsfc.nasa.gov/

MNRAS 474, 1116–1134 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/474/1/1116/4584476 by Liverpool John M
oores U

niversity user on 22 July 2020

http://arxiv.org/abs/0912.0201
http://arxiv.org/abs/1702.08449
http://wfirst.gsfc.nasa.gov/


1128 H. Shan et al.

Dietrich J. P., Hartlap J., 2010, MNRAS, 402, 1049
Duffy A. R., Schaye J., Kay S. T., Dalla Vecchia C., 2008, MNRAS, 390,

L64
Duffy A. R., Schaye J., Kay S. T., Dalla Vecchia C., Battye R. A., Booth C.

M., 2010, MNRAS, 405, 2161
Dvornik A. et al., 2017, MNRAS, 468, 3251
Erben T. et al., 2009, A&A, 493, 1197
Erben T. et al., 2013, MNRAS, 433, 2545
Falco E. E., Gorenstein M. V., Shapiro I. I., 1985, ApJ, 289, L1
Fan Z. H., 2007, ApJ, 669, 10
Fan Z. H., Shan H. Y., Liu J. Y., 2010, ApJ, 719, 1408
Fenech Conti I., Herbonnet R., Hoekstra H., Merten J., Miller L., Viola M.,

2017, MNRAS, 467, 1627
Fu L., Fan Z. H., 2014, Res. Astron. Astrophys., 14, 1061
Hamana T., Takada M., Yoshida N., 2004, MNRAS, 350, 893
Hamana T., Oguri M., Shirasaki M., Sato M., 2012, MNRAS, 425, 2287
Hamana T., Sakurai J., Koike M., Miller L., 2015, PASJ, 67, 34
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A P P E N D I X A : C O S M O L O G I C A L
D E P E N D E N C E O F W L P E A K M O D E L

Here we present tests of the Fan et al. (2010) peak model against
simulations. From a suite of simulations with 158 different cosmo-
logical models from Dietrich & Hartlap (2010), each with a dif-
ferent (�m, σ 8), we choose nine cosmological models (Fig. A1) to

Figure A1. The spatial distribution of 158 different cosmologies in the
�m–σ 8 plane. The red diamond marks the fiducial cosmology at (�m,
σ 8) = (0.27, 0.78). The red arrows denote the cosmologies used for WL
peak model tests.
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Figure A2. The peak count distribution of the selected simulations. The corresponding solid lines are the theoretical prediction with the input cosmological
parameters.

perform our tests. We also include the ‘fiducial’ (�m, σ 8) = (0.27,
0.78) cosmological model from Dietrich & Hartlap (2010), because
of its increased sampling.

Each of these simulations is stored in the form of single galaxy
catalogue (containing position, redshift and shear) where galaxies
have been sampled uniformly over a 6 × 6 deg2 patch with num-
ber density ng ∼ 25 arcmin−2. From each catalogue, we generate
a mock sample by randomly sampling galaxies to reproduce the
galaxy number density and redshift distribution of our data set.

For each non-fiducial cosmology, Dietrich & Hartlap (2010) pro-
duce a single simulation box with five different (random) LOS,
with a total area of ∼180 deg2. We then sample our galaxies three
times for each LOS, thus generating three sets of mocks for each
model. After excluding boundaries, the final on-sky area for each
of our eight non-fiducial cosmologies is ∼150 deg2, each sample
three times. For the fiducial cosmology, however, there are 35
individual simulation boxes, each with five different random LOS.
For this cosmology, we sample our galaxy only once per LOS, thus
generating 35 individual mock catalogues with a final on-sky area
of ∼1050 deg2. We therefore end up with 295 individual mock cat-
alogues to analyse, generated from 215 individual LOS across 43
individual simulation boxes with nine different cosmologies.

For each mock catalogue, we perform a mass reconstruction
and peak identification, and then fit the peak distribution with the
theoretical predictions of Fan et al. (2010). Fig. A2 shows the results
of these fits for each of our nine cosmologies. In the figure, the
symbols show the peak counts averaged:

(i) over 35 mocks for the fiducial mode, and
(ii) over three mocks for the others.

The uncertainties on the data points are the expected analytic
uncertainties in peak counts given a survey area of 150 deg2. We
also present the value of χ2/nbins for each model fit in the upper
right of each panel.

In all cases, we see that the model predications agree well with
the simulation results. Note, however, that the simulation mocks
here are somewhat idealized; for instance, there is no masking in
these mocks. None the less, they are sophisticated enough for the
purpose of testing the peak model performance. In Appendix C,
we show analyses of mock images that replicate KiDS more
accurately.

APPENDI X B: R ESI DUA L N OI SE PROPERTIES

One assumption within the peak model of Fan et al. (2010) is that the
residual shape noise field is well described by a Gaussian random
field. Van Waerbeke (2000) demonstrates that, when the effective
number of source galaxies within the smoothing kernel is larger than
∼10, the residual shape noise is approximately Gaussian to a good
degree. For the KiDS-450 data set used here, neff ∼ 7.5 arcmin−2.
Therefore, for a smoothing scale θG = 2 arcmin, we expect that
the Gaussian approximation for the noise field should be valid.
However, the source galaxy distribution varies from tile to tile,
and within a tile the galaxy distribution is also truly random; there
are far fewer source galaxies in regions that are heavily masked.
We therefore need to set appropriate selection criteria to ensure the
validity of the Gaussian noise approximation that we have assumed.

From the noise maps described in Section 3.3, we analyse the
one-point probability distribution function of the noise, and corre-
sponding noise peak distribution, with different ng and filling factor
selection criteria. In Fig. B1, the solid black line shows the shape
of the assumed Gaussian peak noise distribution. Blue symbols are
the results from noise maps without applying any selection criteria,
and clearly show some non-Gaussianity at high SNR. The other
symbols and lines represent the results with different selection cri-
teria as shown in the legend. Uncertainties on the data are estimated
using a bootstrap analysis. From the figure, we can see that, while

MNRAS 474, 1116–1134 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/474/1/1116/4584476 by Liverpool John M
oores U

niversity user on 22 July 2020



1130 H. Shan et al.

Figure B1. Noise properties for different ng and filling factors. The solid black line is the corresponding Gaussian prediction for the peak distribution. Blue
symbols are the results from noise maps without any selection. The other symbols and lines represent the results with different selection criteria. The error bars
are evaluated from a bootstrap analysis.

the Gaussian approximation cannot describe the noise peaks well
in the raw-counts case, by applying some modest selection criteria
the approximation holds quite well. With a requirement of the fill-
ing factor f > 0.6, which is designed to exclude the mask effects,
the peak distribution is much closer to the Gaussian case. With
neff > 5.5 arcmin−2, the results can be improved further. Applying
even more stringent cuts, we are able to make the noise distribu-
tion converge on the Gaussian case almost perfectly; however, this
also causes a significant reduction in the number statistics. Finally,
we note that, if the galaxy distribution is a purely random selec-
tion of galaxies on sky, the noise peak distribution becomes almost
a perfect Gaussian when applying the simple neff > 5.5 arcmin−2

selection. In the realistic case where the galaxy distribution is un-
likely to be a perfectly random sampling on sky, the agreement
with the assumed Gaussian distribution is acceptable (within un-
certainties) when applying our modest selection criteria. Thus, in
our analysis, to ensure the validity of the Gaussian approximation
while maintaining appropriate number statistics, we invoke two se-
lection criteria on filling factor f > 0.6 and effective number density
neff > 5.5 arcmin−2.

APPENDIX C : MOCK A NA LY SIS

Here we present our validation of the full analysis pipeline us-
ing mock KiDS-450 data constructed from our simulations. These
mocks are generated from the ray-tracing simulations described in
Liu et al. (2015b). Briefly, we run a large suite of N-body simulations
and pad them together to redshift z = 3 for ray-tracing calculations.
Cosmological parameters in this simulation are chosen to be (�m,
��, �b, h, σ 8, ns) = (0.28, 0.72, 0.046, 0.7, 0.82, 0.96). Each box
is only used once, and so no repetitive structures occur; shifts and
rotations of boxes are therefore not needed. From the simulations,
we generate 96 lensing maps each with an area of 3.5 × 3.5 deg2,
for a total area of 1176 deg2. This allows us to create three inde-

pendent 449.7 deg2 KiDS-like mocks.8 For each mock, we generate
catalogues using three different random rotations of galaxy intrin-
sic ellipticities, to produce three sets of shape noise, thus producing
nine sets of mock catalogues to be used in this validation test.

The mock catalogue contains the position, observed ellipticity,
weight and redshift of each source therein. Each of these parameters
is defined such that the mock is an appropriate representation of
KiDS.

(i) The position and the shear measurement weight of each galaxy
are taken to be the same as that of the KiDS-450 data, and so we are
able to appropriately reproduce the KiDS masking in our mocks.

(ii) Galaxy redshifts within the mock are generated by assigning
a random value from the DIR redshift distribution of KiDS-450.

(iii) The observed ellipticity of each galaxy is constructed by
combining the reduced shear and the intrinsic ellipticity.

(iv) The galaxy reduced shear g is calculated by interpolating
the lensing signals from the grids of the simulated lensing maps to
the galaxy position (the interpolation is also done in the redshift
dimension).

(v) The intrinsic ellipticity is generated by keeping the amplitude
of the observed ellipticity of the galaxy, but with its orientation being
randomized.

We then parse these mock catalogues through the same pipeline
as we do the observed KiDS data to construct convergence maps, tile
by tile, and produce the mock WL peak catalogue. These individual
catalogues are then used to derive cosmological constraints, as per
KiDS.

In Fig. C1, the left-hand panel shows the peak number distribu-
tions from the mock data. The symbols in the figure are coloured
according to from which of the three independent simulated maps

8 These mocks are different from the SLICS mocks used in previous KiDS
publications (Harnois-Déraps & Van Waerbeke 2015).
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KiDS-450: weak lensing peak statistics – I 1131

Figure C1. The results of the mock analysis. Left-hand panel: the peak count distribution of the KiDS-450 mock data. The black ‘*’ denotes the average value
of the three independent mocks. The error bars are the square root of the diagonal terms of the covariance matrix. The nine sets of symbols with different colours
correspond to the three independent mocks with three different noise realizations. The solid blue line is the theoretical prediction with the input cosmological
parameters. The dashed red line is the peak count of the smoothed convergence field including a uniform random noise field with the mean noise level of nine
mocks. Right-hand panel: cosmological constraints on (�m, σ 8) derived from the KiDS-450 mock peak count. The red ‘+’ denotes the input (�m, σ 8).

they originated. The three symbol types within each colour are the
results from different noise realizations. The black ‘*’ denotes the
average value per bin from the nine mocks. We estimate the covari-
ance matrix by generating 104 bootstrap samples by resampling the
9 × 454 tiles from the mocks. The error bars associated with each
black ‘*’ are derived using the rms of the diagonal elements of the
covariance matrix. The solid blue line is the theoretical prediction
from Fan et al. (2010), with the input cosmological parameters. The
dashed red line is the peak count of the smoothed convergence field
from simulation including a uniform random noise field with the
noise level of nine mocks, which is in good agreement with the
theoretical prediction within 1σ .

The right-hand panel of Fig. C1 shows the derived constraints
on (�m, σ 8) using the average peak counts from the mocks. The
contours are 1σ and 2σ confidence levels, respectively. The red ‘+’
denotes the input cosmological parameters, which are recovered
excellently by the pipeline. We therefore conclude that the pipeline
is performing well even when confronted with the complexity of
real data.

A P P E N D I X D : BO O S T FAC TO R

The cluster member contamination of WL source galaxies depends
on the mass and redshift of the cluster. In order to quantify the
boost effect that this has on WL peak counts, we therefore should
first analyse the mass and redshift distribution of clusters that are
responsible for the high-SNR peaks in KiDS-450.

In the noiseless case, a cluster with a given mass and redshift pro-
duces a WL peak with a height that can be well predicted given the
source redshift distribution (see e.g. Hamana et al. 2004). Fig. D1
shows the fractional contributions of clusters, with different masses
and redshifts, to WL peaks of different heights in KiDS. It is seen
that, without considering the shape noise, the high-SNR peaks cor-
respond to clusters with masses larger than 3 × 1014 M� and in the
redshift range up to z ∼ 0.4.

Taking into account the shape noise, the peak height from a cluster
with a given mass and redshift becomes a probability function,
whose width is dependent on the noise level. Furthermore, noise
peaks can occur in halo regions, further polluting the sample. The
effect of the addition of noise to this sample is shown in Fig. D2,

whereby the WL peaks become significantly broader in both mass
and redshift than that of noiseless case. In the figure, we can see that
the contributions to the high-SNR peaks in our analysis are mainly
from the massive DM haloes with M ∼ 1–5 × 1014 h−1 M� and
z ∼ 0.1–0.6.

While, ideally, we would like to have the precise mass and redshift
dependence of cluster member contaminations, this is impractical
given the limited number of cluster candidates. Instead, we opt
to divide the KiDS cluster candidates (see Radovich et al. 2017)
into six bins (see Table D1). We then use these bins to extract the
corresponding boost factors, by estimating the excess filling factor
(galaxy number overdensity) distribution around cluster candidates.
Fig. D3 shows the excess galaxy number density (filling factor)
distributions around cluster candidates for each bin.

To analyse how the boost factor affects the WL convergence
peaks in halo regions, we build an appropriate set of mocks. For
each of the six bins, we pick out a typical halo with the mass and the
redshift as indicated in Fig. D4. We model the halo with the NFW
profile, and put it in the centre of a 1.2 × 1.2 deg2 field. We then
distribute source galaxies in the field in two ways:

(1) no boost: we sample galaxies using our standard KiDS ng

and DIR redshift distributions, with random intrinsic ellipticity and
reduced shear from the central DM halo;

(2) boost: based on the no boost case, we further resample mem-
ber galaxies following the excess galaxy number density profile in
Fig. D3. Only random intrinsic ellipticities are given to the member
galaxies because lensing signals from their own halo should be zero
(e.g. Sifón et al. 2015).

Using the same method, we also generate source catalogues with
intrinsic ellipticities set to be zero to produce the noiseless cases.
Using these galaxy mocks, we then follow the same procedures as
done for our KiDS analysis to reconstruct the convergence field.
Furthermore, we exclude the outermost ∼0.1 deg regions along
each side of the field to suppress the boundary effects. For each
halo, we do 1000 realizations according to the positions and intrinsic
ellipticity distribution of source galaxies. Finally, as the boost effects
can influence both the WL signal and the noise level in halo regions,
we consider them separately with the mocks.
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1132 H. Shan et al.

Figure D1. The fractional contributions of clusters with different masses and redshifts to WL peaks of different heights using the KiDS-450 source redshift
distribution without the shape noise.

Figure D2. The fractional contributions of clusters with different masses and redshifts to WL peaks of different heights using the KiDS-450 source redshift
distribution with KiDS-450-like shape noise.
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Table D1. The cluster samples in six mass and redshift bins used in the
boost factor measurement.

Bin Mass range zB range Dilution factor

bin11 1 ≤ M/1014 M� h−1 < 2 zB < 0.35 1/1.067
bin12 1 ≤ M/1014 M� h−1 < 2 zB ≥ 0.35 1/1.108
bin21 2 ≤ M/1014 M� h−1 < 3 zB < 0.35 1/1.135
bin22 2 ≤ M/1014 M� h−1 < 3 zB ≥ 0.35 1/1.164
bin31 3 ≤ M/1014 M� h−1 < 4 zB < 0.35 1/1.259
bin32 3 ≤ M/1014 M� h−1 < 4 zB ≥ 0.35 1/1.254

To estimate the WL peak signal, we estimate the ratio of the
convergence value of the central peak between the two cases with
and without the boost effects from the 1000 noiseless realizations
for each halo. We find the average dilution factors for the six bins
(see Table D1). We further test whether a constant boost factor,
corresponding to the dilution effects in Table D1, can mimic the real
boost effect with radial profiles. We do this by resampling member
galaxies according to a constant boost factor, such as 1.067 for the
case of bin11. We find that such a constant boost does indeed model
the true boost effect on the WL convergence peaks well. Thus, in

Figure D3. Excess galaxy number density (filling factor) distribution around cluster candidates for each bin. The error bars on the mean are estimated from a
bootstrap analysis.

Figure D4. The peak distribution with and without the boost factor effects for different bins. The circles with error bars are the measurement from the mock
analysis. The lines with different colours are the corresponding analytical predictions.
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the model calculations, we adopt the constant dilution factors in
Table D1 in the corresponding six bins.

For the shape noise levels, we consider the halo and field regions
individually. We first calculate a global average source number
density ng from the data, which includes the excess number density
from galaxies in clusters. Compared to this global average, the
number density in halo regions nhalo

g is higher depending on the
boost factor shown in Fig. D3, and thus the noise level σ halo

0 in the
halo regions is lower. Correspondingly, the number density in field
regions nfield

g is lower than ng, and σ field
0 is higher than σ 0. The three

number densities are related by

ngSeff =
∑

nhalo
g Shalo

eff + nfield
g Sfield

eff , (D1)

where Seff, Shalo
eff and Sfield

eff are the total effective area, the area oc-
cupied by haloes and the left-over field area with Sfield

eff = Seff −∑
Shalo

eff , respectively. From nfield
g , we can calculate the noise level

σ field
0 . It is noted that

∑
Shalo

eff , and thus also Sfield
eff , are cosmological

model dependent.
Using the above equations, we are able to modify our model

calculations to include the boost effect as follows.

(i) Using equation (4) to calculate peaks in halo regions, we
divide the halo mass and redshift into the six bins described above.

In each bin, we include the corresponding constant dilution factor,
which acts to modify the convergence field from the halo. We also
modify the noise level according to the average number density of
source galaxies in the halo regions.

(ii) Using equation (7) to calculate peaks in field regions, we
modify the noise level according to equation (D1).

These modifications are adopted in our fiducial analysis presented
in Section 5 including the boost effects.

To test the model performance, Fig. D4 shows the peak counts
from our 1000 mock realizations in each of the six bins. The blue
and black symbols are the peak counts for the cases with and without
the boost effects, respectively. The corresponding solid lines are our
model predictions, which demonstrate a good agreement with the
data in both cases.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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