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ABSTRACT
We develop a statistical estimator to infer the redshift probability distribution of a photometric
sample of galaxies from its angular cross-correlation in redshift bins with an overlapping
spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of
the data: a quadratic estimator. This extends and modifies the methodology presented by
McQuinn & White. The derived source redshift distribution is degenerate with the source
galaxy bias, which must be constrained via additional assumptions. We apply this estimator to
constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-
correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a
binned step-wise distribution in the range z < 0.8, and then building a continuous distribution
using a Gaussian process model. We demonstrate the robustness of our methodology using
mock catalogues constructed from N-body simulations, and comparisons with other techniques
for inferring the redshift distribution.

Key words: surveys – cosmology: observation – large-scale structure of Universe.

1 IN T RO D U C T I O N

Current and forthcoming photometric surveys aim to image a sig-
nificant fraction of the sky.1 In doing so, they will obtain the angular
positions of millions of galaxies. Realizing the scientific potential of
these surveys requires an estimate of the redshift distribution of the

�E-mail: cblake@swin.edu.au
1 For example, deep optical imaging surveys currently being completed
for the science goal of weak gravitational lensing include the KiDS (de
Jong et al. 2015), the Dark Energy Survey (Abbott et al. 2016) and the
HyperSuprimeCam imaging survey. Future such surveys will include those
performed by the Large Synoptic Sky Telescope (LSST) and Euclid.

galaxies, which is important for connecting measurements – such as
tomographic weak lensing (Hu 1999; Huterer 2002), the Integrated
Sachs–Wolfe effect and angular power spectra – to the underlying
cosmological model. In this work, we investigate a method to mea-
sure galaxy redshift distributions using angular cross-correlations
(CCs) with an overlapping spectroscopic sample.

We outline the approach as follows. Consider two galaxy data
sets: a spectroscopic sample with a known redshift distribution,
and a photometric sample with an unknown redshift distribution.
The samples overlap on the sky and in redshift. Since they are
sampled from the same underlying density field, we expect that they
will share a positive CC function regardless of galaxy attributes
such as colour and luminosity. The amplitude of the angular CC
will increase with the degree of overlap of the two samples (e.g.

C© 2016 The Authors
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Ho et al. 2008; Newman 2008; Erben et al. 2009). Therefore, the
redshift distribution of the photometric sample can be mapped out
by dividing the spectroscopic sample into adjacent redshift bins,
and for each bin measuring the angular CC with the photometric
sample.2 In this work, we use this technique to constrain the redshift
distribution of galaxies in tomographic bins within the Kilo-Degree
Survey (KiDS) (de Jong et al. 2015; Kuijken et al. 2015) using
the spectroscopic 2-degree Field Lensing Survey (2dFLenS, Blake
et al. 2016) to trace the surrounding large-scale structure.

Knowledge of the redshift distribution of the source galaxies is a
critical component of a weak lensing analysis because it is required
to calculate the expected weak lensing signal for a given cosmo-
logical model (e.g. Huterer et al. 2006; Ma, Hu & Huterer 2006;
Kitching, Taylor & Heavens 2008). Uncertainty and bias in the
source redshift distribution directly propagates to derived cosmo-
logical constraints as one of the most important astrophysical sys-
tematics. The required level of systematic error control increases in
severity for future surveys: for ‘Stage IV’ dark energy experiments
(Weinberg et al. 2013) such as the LSST and Euclid, in order to avoid
a degradation of dark energy constraints by more than 50 per cent,
the mean and standard deviation of the photometric redshift distri-
bution need to be measured to an accuracy ∼0.002(1 + z) (Huterer
et al. 2006; Newman et al. 2015).

Many approaches have been proposed for determining source
redshift distributions. We define direct calibration methods as those
that calibrate a mapping from the flux in photometric bands to a
galaxy’s redshift. Template-based approaches and machine learning
algorithms both lie in this category,3 but there are various factors
that make the above level of accuracy difficult to obtain, includ-
ing catastrophic photometric errors, completeness requirements for
spectroscopic training samples and sample variance (Bernstein &
Huterer 2010; Cunha et al. 2012, 2014; Newman et al. 2015). We
will discuss these factors in the subsequent section. An alternative
‘indirect calibration’ approach, which we pursue in this study, is
provided by CC methods. In particular, we focus on the extension
and application of the optimal quadratic estimation method pro-
posed by McQuinn & White (2013) (hereafter, MW13), testing this
method using both simulations and data.

The outline of this paper is as follows. Section 2 introduces the
strengths and weaknesses of calibration via CCs, and highlights
the previous work in the field. In Section 3, we introduce the data
sets we employ in this study: the KiDS, the 2dFLenS and mock
catalogues built from N-body simulations. Section 4 introduces the
background theory and Section 5 describes the quadratic estimator
we employ to measure the redshift distribution of galaxies. We
validate our methodology using mock catalogues in Section 6, and
present the results of applying our methodology to data in Section 7.
We conclude in Section 8.

2 ST R AT E G I E S FO R P H OTO - z C A L I B R AT I O N

2.1 Motivations

The key point of distinction between direct and indirect calibration
approaches is that the former requires spectroscopic redshifts for a

2 As we will discuss below, there are additional effects that can correlate the
two samples.
3 Examples of machine learning algorithms include SkyNet (Graff
et al. 2014), TPZ (Carrasco Kind & Brunner 2013), ANNz2 (Sadeh, Ab-
dalla & Lahav 2016) and MLPQNA (Cavuoti et al. 2015). Examples of
template-based methods include bpz (Benı́tez 2000) and eazy (Brammer,
van Dokkum & Coppi 2008).

subsample of the full photometric sample, and this subsample needs
to be representative of the full sample in both colour and magni-
tude space (Sánchez et al. 2014; Sadeh et al. 2016). This requires
that the targeted spectroscopic sample should be highly complete,
i.e. a secure redshift needs to be measured for >90 per cent of the
subsample (Newman et al. 2015). To achieve this level of complete-
ness, spectroscopic redshifts are required for faint and high-redshift
galaxies that are abundant in deep imaging surveys. In contrast, for a
CC analysis one is free to target any tracer of overlapping large-scale
structure (most usefully, the brightest galaxies), circumventing this
difficulty.

Achieving a high level of spectroscopic-redshift completeness for
direct calibration methods presents a significant observational chal-
lenge, as the chance of obtaining a successful redshift is dependent
on an object’s magnitude. Therefore, spectra are typically obtained
for a non-random subsample of the target catalogue. A useful exam-
ple is the DEEP2 survey conducted on the DEIMOS spectrograph at
Keck Observatory: for the highest redshift quality class, secure red-
shifts were only obtained for 60 per cent of the galaxies (Newman
et al. 2013). Considering future surveys, the severity of this prob-
lem is demonstrated by the requirement for spectroscopic follow-up
suggested by Newman et al. (2015): obtaining >90 per cent redshift
completeness at i = 25.3 (LSST depth) would require more than
100 nights on Keck.

We note that the requirements for spectroscopic follow-up can
be reduced by assigning weights to galaxies during the training
phase of photometric-redshift calibration (Lima et al. 2008; Cunha
et al. 2012; Sadeh et al. 2016). These weights are assigned based
on the colour–magnitude phase-space distribution of both the par-
ent photo-z sample and the follow-up spectroscopic sample. The
result is that the weighted spec-z sample more closely matches the
photo-z sample in colour–magnitude space. The extent to which
this approach allows one to reduce the required completeness is
currently a subject of study.

The above challenges are also relevant for machine learning al-
gorithms, as they require separate training, testing and validation
samples. Similar requirements exist for template-based approaches,
where – even though templates can be derived synthetically in prin-
ciple – assessing the resulting accuracy of the photo-z estimate
requires a representative spec-z sample, which can also aid in the
construction of accurate spectral templates. Moreover, deriving a
Bayesian prior used in the fitting process (e.g. bpz Benı́tez 2000)
requires a spec-z sample; this prior can strongly influence the final
results (Sánchez et al. 2014).

Catastrophic errors, photo-z estimates zp with |zp − ztrue| ∼ O(1),
present an additional issue for direct calibration methods. Such
errors occur because, with only broad-band flux information, there
exist degeneracies in galaxy colours such as the confusion between
the Lyman and Balmer breaks. General studies of the consequences
of catastrophic errors are presented by Bernstein & Huterer (2010)
and Hearin et al. (2010). These outliers cannot be mitigated by
re-weighting the sample.

2.2 Challenges

Although photo-z calibration by CC avoids some of the issues listed
above, there remain significant challenges for this approach, some
of which we outline below.

(i) Degeneracy with galaxy bias: CCs measure the combina-
tion b(z) × P(z), where b(z) is the source galaxy bias factor
and P(z) is the source redshift probability distribution. There-
fore, galaxy bias is degenerate with the redshift distribution

MNRAS 465, 4118–4132 (2017)
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(Newman 2008). Calibrating the redshift-dependent galaxy bias
requires extra probes (e.g. galaxy–galaxy lensing) or assumptions
(e.g. the bias varies smoothly with redshift). This likely represents
the dominant issue when constraining the source redshift distribu-
tion using CCs.

(ii) Cosmological dependence: the model CC function depends
on both our guess of P(z) and the cosmological model. This intro-
duces a worrying circularity, as our aim is to test the cosmological
model with measurements derived using P(z).

(iii) Extra source of correlations: cosmic magnification intro-
duces additional correlations and hence can bias measurements of
the redshift distribution. In addition to changing the shape of galax-
ies, lensing changes their size and brightness, promoting fainter
galaxies into a magnitude-limited survey and correlating foreground
and background objects (Bernstein & Huterer 2010; McQuinn &
White 2013; Duncan et al. 2014).

(iv) Spec-z coverage: the redshift range over which the source
distribution can be reconstructed is limited by the redshift and areal
coverage of the spectroscopic CC samples.

2.3 Developments

In this section, we summarize recent work on photometric calibra-
tion with angular CCs.

(i) Estimators: a number of estimators have been proposed for
inferring the redshift distribution of a photometric sample us-
ing an overlapping spec-z sample (Newman 2008; Matthews &
Newman 2010; Schulz 2010; McQuinn & White 2013; Ménard
et al. 2013; Schmidt et al. 2013). For example McQuinn & White
(2013) develop a quadratic estimator, while Schulz (2010), Ménard
et al. (2013) and Schmidt et al. (2013) use maximum-likelihood
approaches to infer the source distribution.

(ii) Self-calibration: dividing a photometric sample into redshift
bins allows one to cross-correlate between bins. This correlation
allows one to determine the contamination fraction for the sam-
ple, and potentially constrain other systematic errors (Padmanabhan
et al. 2007; Erben et al. 2009; Benjamin et al. 2013; Choi et al. 2016).

(iii) Applications: the methodology presented by Ménard et al.
(2013) and Schmidt et al. (2013) has been applied to esti-
mate the redshift distributions of galaxies in the Sloan Digital
Sky Survey (SDSS) (Rahman et al. 2015; Rahman, Ménard &
Scranton 2016), the Cosmic Infrared Background (Schmidt
et al. 2015), the Canada–France–Hawaii Telescope Legacy Survey
(CFHTLS) (Scottez et al. 2016), infrared sources from Wide-field
Infrared Survey Explorer (WISE) and the Two-Micron All-Sky Sur-
vey (2MASS), and radio sources from the Faint Images of the Radio
Sky at Twenty cm (FIRST) survey (Ménard et al. 2013). Addition-
ally, Hildebrandt et al. (2016) present the first application of this
methodology to a cosmic shear analysis.

3 DATASETS

3.1 The Kilo-Degree Survey

The KiDS is a multiband imaging survey designed for weak gravi-
tational lensing analyses (de Jong et al. 2015). The survey is being
performed at the 2.6-m VLT Survey Telescope where, using the
300-mega-pixel wide-field camera OmegaCAM, images are taken

in four filters ugri. KiDS aims to image ∼1500 deg2 of the sky down
to a limiting r-band magnitude of ∼25.4

The first and second data releases of KiDS are presented by
de Jong et al. (2015) and Kuijken et al. (2015). Based on these
catalogues, gravitational lensing science analyses of the 100 deg2

overlap area with the Galaxy And Mass Assembly survey (Driver
et al. 2011) were undertaken by Viola et al. (2015), Sifón et al.
(2015), van Uitert et al. (2016) and Brouwer et al. (2016), using
matched-aperture ugri colours in conjunction with bpz to derive
redshift probability distributions and hence the lensing efficiencies.

We performed our analyses using the third data release of KiDS,
separately using the r-band ‘KiDS-450’ (Hildebrandt et al. 2016)
and i-band ‘KiDS-800’ (Amon et al. in preparation) imaging data
sets. Hildebrandt et al. (2016) carried out a careful analysis of
different methods for calibrating the source redshift distribution and
settled on a direct photo-z calibration scheme, verified by estimates
based on clustering in a few square degrees of overlapping deep
spectroscopic fields. Morrison et al. (2016) have recently presented
a determination of the KiDS redshift distribution using small-scale
CCs.

3.2 The 2-degree Field Lensing Survey

We map the large-scale structure in which our photometric sample is
embedded using the spectroscopic 2dFLenS. We outline the basic
properties of the survey here; full details are presented by Blake
et al. (2016).

The principal aim of 2dFLenS is to expand the area of over-
lap between spectroscopic galaxy surveys and gravitational lensing
imaging surveys. This facilitates two key science goals. First, it
allows a joint analysis of lensing and galaxy redshift samples in-
cluding all CC statistics (e.g. Cai & Bernstein 2012; Gaztañaga
et al. 2012), with different applications presented by Amon et al.
(in preparation) and Joudaki et al. (in preparation). Secondly, it al-
lows the calibration of photometric-redshift distributions using CC
techniques – which we present in this paper – and direct calibration
techniques (Wolf et al. 2016).

2dFLenS was conducted on the Anglo-Australian Telescope over
53 nights in the 14B, 15A and 15B semesters. The two main target
classes, selected from the VST-ATLAS Survey (Shanks et al. 2015),
comprised ∼40 000 Luminous Red Galaxies (LRGs) across a range
of redshifts z < 0.9 selected by SDSS-inspired cuts (Dawson
et al. 2013), and a magnitude-limited complete sample of ∼30 000
objects in the range 17 < r < 19.5 to assist with direct photomet-
ric calibration of the SkyMapper Survey (Wolf et al. 2016). In our
study, we analyse the LRG sample, whose normalized redshift dis-
tribution (after merging the multiple target classes) is illustrated in
Fig. 1.

2dFLenS observations cover an area of 731 deg2. The overlap area
with the imaging is currently limited by the progress of KiDS, which
is still collecting data at the time of writing. Currently, the overlap
area between 2dFLenS and the i-band (r-band) KiDS imaging is
431 deg2 (152 deg2), as shown in Fig. 2.

We map out the photo-z redshift distribution through CCs by
dividing our spectroscopic sample into independent redshift bins. In
choosing the width of these bins we balanced considerations of noise

4 The r-band images are used for galaxy shape measurements because these
are the deepest observations obtained in the best seeing conditions. The ugri
bands have 5σ limiting magnitudes ∼24.3, 25.1, 24.9, 23.8, respectively, in
a 2 arcsec aperture (Hildebrandt et al. 2016).
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Figure 1. The redshift probability distribution of 2dFLenS galaxies, displayed as both a histogram and Gaussian kernel density estimate. The multiple peaks
arise because separate 2dFLenS LRG samples with different colour and magnitude selection criteria have been merged.

Figure 2. The overlap area between 2dFLenS and KiDS. 2dFLenS pointings are displayed as black dots (which are centres of circular fields of radius 1 deg)
and the KiDS-800 i-band (KiDS-450 r-band) coverage is shown as blue (red) coloured tiles. The total area of overlap between 2dFLenS and the i-band (r-band)
imaging is 431 deg2 (152 deg2). Each KiDS pointing has dimension 1 deg × 1 deg.

in the measurements with the desire for high-redshift resolution,
defining 18 redshift bins of width �z = 0.05 in the redshift range
0 < z < 0.9.

3.3 Simulations

We tested the robustness of our methodology by constructing
synthetic galaxy catalogues composed of overlapping photomet-
ric and spectroscopic samples, which allowed us to compare the
redshift distributions reconstructed by our algorithm to the known
input distributions. We generated these mock catalogues using the
Scinet LIght Cone Simulations (SLICS) series of N-body simula-
tions (Harnois-Déraps & van Waerbeke 2015) that have been pro-
duced using the CUBEP3M code (Harnois-Déraps et al. 2013) using
a WMAP9+BAO+SN cosmological parameter set: matter density
�m = 0.2905, baryon density �b = 0.0473, Hubble parameter h =
0.6898, spectral index ns = 0.969 and normalization σ 8 = 0.826.
The box-size of the simulations is L = 505 h−1 Mpc. The simu-
lations follow the non-linear evolution of 15363 particles inside a
30723 grid cube. For each simulation, the density field is output at
18 redshift snapshots in the range 0 < z < 3, which are used to
construct a survey cone spanning 60 deg2. A spherical overdensity
halo finder was executed on the particle data during the simula-
tion run, and the resulting halo catalogues were post-processed to
self-consistently sample the light-cone geometry. We sampled our
mocks from these halo catalogues, as described further in Section 6.

4 PA R A M E T E R I Z AT I O N A N D M O D E L L I N G

In this section, we describe the redshift distribution parametrization
and clustering model we adopt for our analysis. Throughout, we
will assume the fiducial cosmological parameters of the SLICS
simulations, stated above. For readability, we will begin with a
heuristic description and then move on to a more rigorous treatment.

The intent of this work is to present a novel technique for mea-
suring the redshift probability distribution of a given photometric
sample of galaxies, P(p)(z). First, we need a method to parametrize
this probability distribution. We do this by dividing the redshift
range of the sample into step-wise bins and constraining the num-
ber of galaxies N

(p)
i within each bin i, assuming that their probability

distribution within the bin is constant. So if Wi(z) is a normalized
top hat filter (

∫
Wi(z) dz = 1) and N

(p)
T = ∑

i N
(p)
i is the total num-

ber of photometric galaxies, then the probability distribution within
each bin is P

(p)
i (z) = Wi(z) and the total distribution is

P (p)(z) =
∑

i

(N (p)
i /N

(p)
T ) Wi(z) , (1)

which is normalized such that
∫

P(p)(z) dz = 1.
The quantity of interest for constraining P(p)(z) is the cross-power

spectrum between two samples of galaxies: specifically, between
the full photometric sample (p) and a given redshift bin of the
spectroscopic sample (si). We label this angular galaxy cross-power
spectrum C(g)

psi
(�), as a function of multipole �. One can estimate this

quantity by decomposing the projected density field for each sample

MNRAS 465, 4118–4132 (2017)
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into spherical harmonic coefficients {p(�), si(�)} for the photometric
and spectroscopic sample, respectively. The statistical estimate is
then Ĉpsi (�) = 〈p(�) si(�)〉. In the remainder of this section, we will
describe how we can model this quantity using our parametrization
for P(p)(z), and convert this model from a power spectrum to the
measured correlation function.

Using the small-angle (or ‘Limber’) approximation (Limber
1954), the matter cross-power spectrum between two redshift bins
i and j, with redshift distributions Pi(z), is

C
(m)
ij (�) =

∫ ∞

0
dz Pi(z) Pj (z)

P(k, z)

r2(z)rH(z)
, (2)

where P(k, z) is the matter power spectrum at wavenumber k, r(z)
is the comoving distance to redshift z, rH(z) ≡ dr/dz and k =
(� + 1/2)/r.

To extend equation (2) to model the galaxy–galaxy power spec-
trum we need to model the galaxy biases for both samples – which
we label b(p)(z), b(s)(z) – and to include a shot noise component.
We will assume a linear relationship between the galaxy and matter
density field, i.e. δg = b δm

5, and model the galaxy bias in step-wise
bins as

b(A)(z) = b
(A)
i for |z − zi | < �i/2. (3)

(A) can be either (p) or (s), indicating the photometric or spectro-
scopic sample, respectively, and �i is the width of the ith redshift
bin. The galaxy cross-power spectrum can then be written as

C(g)
psi

(�) =
∫ ∞

0
dz P (p)(z) b(p)(z) P

(s)
i (z) b

(s)
i (z)

P(k, z)

r2(z)rH(z)
+ ωpsi ,

(4)

where P
(s)
i (z) is the probability distribution of the spectroscopic

sample in the ith bin and ωpsi models the shot noise component.
We now wish to expand this expression in terms of N

(p)
i . Applying

our parametrizations for P(p)(z), P
(s)
i (z), b(p)(z) and b

(s)
i (z) from

equations (1)–(3), equation (4) reduces to

C(g)
psi

(�) = (N (p)
i /N

(p)
T ) b

(p)
i b

(s)
i C

(m)
ii (�) + ωpsi . (5)

Following a similar derivation, we compute the autocorrelations
between the full photometric sample (C(g)

pp (�)) and between the bins
of the spectroscopic sample (C(g)

si si
(�)) as

C(g)
pp (�) =

∑
i

(
N

(p)
i b

(p)
i

N
(p)
T

)2

C
(m)
ii (�) + ωpp , (6)

C(g)
si si

(�) =
(
b

(s)
i

)2
C

(m)
ii (�) + ωsi si . (7)

Assuming the Limber approximation, which ignores long-
wavelength modes, the covariance between non-overlapping bins
is zero: thus, C(g)

si sj
(�) = 0 when i �= j. For further details see MW13.

5 This assumption requires explanation. First, the scales of relevance for the
quadratic estimator are ∼10 arcmin. This angular scale corresponds to a
set of physical scales where we might expect linear galaxy bias to break
down and introduce a systematic error. However, as emphasized by MW13,
the smoothness of the weighting function implies that the Fourier modes
being traced are on more linear scales than expected from this simplistic
conversion. The mock catalogues provide a way for us to quantify the sig-
nificance of this error. For future work, this investigation could be extended
by up-weighting linear scales (reducing the overall constraining power)
or introducing a non-linear galaxy bias component (at the cost of further
complicating the methodology).

To model the shot noise components for equations (5)–(7),
we assume Poisson statistics, neglecting non-Poisson contribu-
tions (Baldauf et al. 2013). Following this assumption, the shot
noise components are ωAiAi

= N
(A)
i /area [steradian] and ωpsi =

fover N
(s)
i /area [steradian], where fover is the overlap fraction be-

tween the photo-z and spec-z sample.
For observational considerations we will switch to configuration

space when applying our methodology to data. Thus, we need to
transform equations (5)–(7) into configuration space. To simplify
the final expressions we first transform the constant number count
case of equation (2):

w
(m)
ii (θ ) ≡

∑
�

2� + 1

4π
P�(cos θ ) C

(m)
ii (�) . (8)

Now the angular galaxy auto- and CC functions can be written as

wpsi (θ ) = (N (p)
i /N

(p)
T ) b

(p)
i b

(s)
i w

(m)
ii (θ ) , (9)

wsisi (θ ) = (b(s)
i )2w

(m)
ii (θ ) , (10)

wpp(θ ) =
∑

i

(
N

(p)
i b

(p)
i

N
(p)
T

)2

w
(m)
ii (θ ) . (11)

To compute the various correlation statistics we use the public
software chomp6 introduced by Morrison & Schneider (2013).7

This calculation requires as input the matter power spectrum for
each redshift bin, which we model using the halofit code (Smith
et al. 2003): the halofit parameters adopted are those fit by
Takahashi et al. (2012). chomp computes the redshift evolution
in each bin from linear theory using P(k, z) = D(z)2P(k), where
D(z) is the growth function. This approximation is valid because
the redshift bins we adopt are narrow.

We note a number of systematic modelling issues which could
be improved in future analysis:

(i) Non-linear effects. We measure the angular correlation func-
tion to scales ∼1 arcmin. On such scales non-linear effects become
significant and the halofit model we adopt may become inaccu-
rate. We also assume linear galaxy bias.

(ii) Bias evolution. The CC observable is the combination
b(p)(z)P(p)(z), such that our inference of P(p)(z) must depend on
the redshift evolution of galaxy bias.

(iii) Flat N(z) approximation. To derive the above equations
we have approximated the redshift distributions using a step-wise
parametrization, such that the redshift distribution is constant within
each bin. This approximation will break down if there are steep gra-
dients in the redshift distribution.

5 T H E QUA D R AT I C E S T I M ATO R

In this section, we outline the construction and properties of the
‘quadratic estimator’ we employ to measure the redshift distribution
using CCs. This work extends that presented by MW13.

6 https://github.com/morriscb/chomp
7 We checked the accuracy of this code by comparing its output with our own
calculations. For both the angular power spectrum and correlation function,
the calculations agree. We adopt chomp because of its useful class-based
structure.
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5.1 Introduction

By quadratic estimator we are referring to a statistical estimator of
a quantity, say N, based on a quadratic combination of the available
data, x. For example, N̂ = xT x. The symbol (.̂ . .) indicates a statis-
tically estimated quantity: a value derived directly from data rather
than the true value. Quadratic estimation is particularly relevant for
Gaussian random fields as all the information content is contained
within quadratic combinations of the data (second-order statistics).

To construct a quadratic estimator we need to (i) define the data,
(ii) specify the quantity we wish to estimate and (iii) construct a
method to combine the data that gives an estimate of the desired
quantity – preferably this estimator will take advantage of all of
the information content within the data, thus minimizing the final
variance of the inferred parameter (such an estimator is said to
satisfy the Cramer–Rao inequality and be optimal). Considering
each of these points in turn:

(i) The data: we start by considering the spherical harmonic co-
efficients of the projected density fields, which we write as p̂(�, m)
and ŝ(�, m) for the photo-z and spec-z samples, respectively, where
s ≡ si represents the coefficients for the ith spec-z bin. These coef-
ficients are computed as follows. First, we define n(�) as the pro-
jected galaxy density field, where � indicates the angular position.
The spherical harmonic coefficients are computed by projecting the
density field on to a basis of spherical harmonics (Ym

� ):

p̂(�, m) = 1

n̄

∫
d� n(�) Ym

� (�) . (12)

We combine these coefficients into a single data vector x =(
p̂(�, m), ŝ(�, m)

)
.

(ii) The estimated quantity: the quantity we wish to determine
is the number count distribution of the photometric sample in
step-wise bins, labelled N̂

(p)
i (following the parametrization defined

above).
(iii) The estimator: we begin by writing the estimator in the

most general form possible: N̂i = xT Ei x − ci , where Ei is a sym-
metric matrix and ci is a constant (Tegmark 1997; Bond, Jaffe &
Knox 1998; Dodelson 2003). These free parameters will be fixed by
imposing various conditions on the estimator. Rather than making
a single estimate, we can iterate until we are satisfied with the con-
vergence. Setting [N̂i]last as our initial guess, the updated estimator
is

N̂i = [N̂i]last + xT Ei x − ci . (13)

Requiring that the estimator is unbiased and optimal one can solve
for both free parameters. Being unbiased implies that an ensem-
ble average of the estimates converges to the input or true value,
〈N̂i〉 = N true

i . Being optimal implies that the estimator minimizes
the variance, viz., 〈N̂2

i 〉 − 〈N̂i〉2 is minimized. The final form of the
estimator is (Tegmark 1997)

N̂i = [N̂i]last + 1

2

∑
j

[F−1]ij
[
xT Qj x − Tr( Qj A)

]
, (14)

where

Qj = A−1 A,j A−1 , (15)

A ≡ 〈xxT 〉 is the covariance matrix of the data, and its derivative
is A,α = ∂A/∂Nα . We note that implicitly A is a function of both �

and m, i.e. A = A(�, m). Assuming many modes are included one
can approximate F as the Fisher matrix8

Fij = 1

2

∑
�,m

Tr
[
A−1 A,i A

−1A,j

]
. (16)

When this assumption is violated the Fisher matrix will be biased
by sample variance. We do not expect this assumption to have a
significant effect on our results.

Note, from the previous section (equations 5–7), A is known. It is
the full covariance matrix between the spec-z and photo-z samples,
including autocorrelations. In particular,

A = 〈xxT 〉 =
〈(

p̂(�, m) ŝ(�, m)
) ( p̂(�, m)

quad ŝ(�, m)

)〉

=
⎛⎝C(g)

pp (�) C(g)
ps (�)

C(g)
sp (�) C(g)

ss (�)

⎞⎠ . (17)

Moreover, from equation (5), the derivative of the off-diagonal terms
is ∂A0i/∂Ni = b

(p)
i b

(s)
i N

(s)
i Csi si (�).

A more intuitive derivation of equation (14) can be found by
applying the Newton–Raphson method to the Gaussian likelihood
function of x, L(x). The basic idea is to solve, iteratively, for roots
of ∂ lnL/∂Ni : the roots indicate a maximum of the likelihood func-
tion. For this alternative derivation we refer the reader to Bond et al.
(1998).

5.2 Revised form of the estimator

In this section and the subsequent one, we present important yet
rather tedious mathematics; therefore, in the aid of readability we
offer a quick summary.

The primary purpose of these sections is to present the analytic
form of equation (14). We derive this expression by computing the
tensor Q and the Fisher matrix F using equation (17) combined
with the results from Section 4. We re-visit this derivation, which
was initially presented in MW13, because we find a number of
corrections to the final form of the quadratic estimator: we show
that the most general expression for N̂ presented in MW13 is biased,
such that, 〈N̂i〉 �= N true

i . However, we note that in the limit where
shot noise dominates (labelled the ‘Schur limit’ by MW13) their
expression for the estimator becomes unbiased. We present the
updated result for the harmonic-space estimator in equation (20)
and its extension to configuration space in equation (27). We note
that none of the numerical calculations in MW13 are affected, since
these require the Fisher matrix and not the form of the estimator.

Our revisions can be understood as follows. First, our general
form of the quadratic estimator (i.e. equation 14) differs from that
presented in MW13:

N̂i = [N̂i]last + 1

2

∑
j

[F−1]ij
[
xT Qj x − Tr(A−1 A,j )

]
.

︸ ︷︷ ︸
Eq. (16) from MW13

(18)

Importantly, equation (18) is a simplified version of equation (14).
The two expressions agree because of the relation Tr( Qj A) =
Tr(A−1 A,j ). In order to simplify the derivation, MW13 neglect
all derivatives of A00 – note, we also make this approximation. And

8 The Fisher matrix is an approximation of the curvature matrix, equal to its
ensemble average. For details see Bond et al. (1998).
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4124 A. Johnson et al.

such terms (A00, i) occur in the expression for Q. Thus, by drop-
ping these terms, one is making an approximation of Q, Qapprox.
This approximation breaks the relation that equates equation (18)
to equation (14). So, Tr( Qapprox

j A) �= Tr(A−1 A,j ). Therefore, when
neglecting the derivatives of A00, equation (14) needs to be the start-
ing point of the derivation. A number of non-trivial corrections to
the estimator proposed by MW13 result from this starting point.

5.3 Harmonic-space estimator

To simplify the expressions that follow, using the notation of MW13
we define the ‘Schur’ parameter S as

S ≡ A00

(
A00 −

∑
i

A2
0i

Aii

)−1

=
(

1 −
∑

i

r2
i

)−1

, (19)

where the coefficients of A are defined in equation (17). Addi-
tionally, we define ri(�) as the CC coefficient between the photo-
z sample and the ith redshift bin of the spec-z sample: ri(�) ≡
A0i/(A00 Aii)1/2. Adopting these definitions, the full estimator can
be written as

N̂
(p)
i = [N̂ (p)

i ]last +
∑

j

(F−1)ij
∑
�,m

(
S

A00 Ajj

)
∂A0j

∂pj[∑
k

(
δK
jk + 2Srj rk

√
Ajj

Akk

)
(p̂ ŝk − A0k)

−
∑

k

A0k

Akk

(
δK
jk + Srj rk

√
Ajj

Akk

)
(̂sk ŝk − Akk)

− SA0j

A00
(p̂ p̂ − A00)

]
, (20)

where δK
ij is the Kronecker delta. In this expression the (�, m) de-

pendence of the multipole coefficients is implicit, so, ŝk = ŝk(�, m)
and p̂ = p̂(�, m).

One can check this expression converges to the input theory
as follows. First, we write the correction term as δNi ≡ N̂

(p)
i −

[N̂ (p)
i ]last. Now, assuming the input theory is correct, 〈p̂ ŝi〉 = A0i ,

〈p̂ p̂〉 = A00 and 〈̂si ŝj 〉 = Aij . Then, following some algebra, one
can show equation (20) implies 〈δNi〉 = 0, thus, proving that the
estimator will converge. For the equivalent equation from MW13,
one can show 〈δNi〉 �= 0.

The Fisher matrix (equation 16) remains unchanged from MW13,
where

Fij =
∑
�,m

S

A00

⎛⎝ δK
ij

Aii

+ 2 S

√
r2
i r2

j

Aii Ajj

⎞⎠ [A0i],i [A0j ],j . (21)

In the limit where shot noise dominates [i.e. where ri(�) ≈ 0 and
S ≈ 1)]and neglecting autocorrelations, our result (equation 20)
agrees with equation (36) from MW13.

5.4 Configuration-space estimator

When analysing observational data we will work exclusively in
configuration space, which allows us to avoid difficulties with com-
plex survey geometries (in the future this may not be necessary, see
Alsing et al. 2016; Köhlinger et al. 2016). Thus, in order to match
our theory with observations, we need to convert our estimator in

equation (20) from harmonic to configuration space. This conver-
sion is simplified by the following relation (MW13):∑
l,m

vi(l)
[
p̂(l, m)̂si(l, m) − N

(p)
i

]

= 8π2
∫

dx vi(x) ŵpsi (x)

≈ 8π2
∑

α

�θαθα vi(θα) ŵpsi (θα) , (22)

where ŵpsi (θ ) is the observed angular CC function, θ is the angular
separation scale and x = n̂ · n̂′ ≡ cos θ . Here, we have explicitly
subtracted the shot noise component.9 Equation (22) is valid for an
arbitrary function D(l), which is related to D(θ ) by

Di(θ ) =
∑

�

(
2� + 1

4π

)
Di(�) P�(cos θ ) , (23)

where P� are the Legendre polynomials.
Our measurements of the angular correlation functions are made

in bins of width �θα , with central values θα . These values set the
properties of the summation in equation (22). Note, because the
kernel (= θα vi(θα) ŵpsi (θα)) is not a slowly varying function, a
narrow θ spacing (�θα) is needed to accurately approximate this
integral.

Now, to convert equation (20) into configuration space we first
re-write the estimator in terms of four weighting functions defined
as

Di(l) ≡
(

S

A00 Aii

)
∂A0i

∂pi

, (24)

Eij (l) ≡ Di(l) × 2Srirj

√
Aii

Ajj

(25)

and

Hi(l) ≡ Di(l) × A0i

Aii

, Gi(l) ≡ Di(l) × S
A0i

A00
. (26)

Finally, using equation (22) one finds that our estimator in config-
uration space takes the form

N̂
(p)
i = [N̂ (p)

i ]last + 8π2
∑

j

(F−1)ij∑
α

�θα θα

[
Dj (θα)

{
ŵpsj (θα) − wpsj (θα)

}
+Hj (θα) ŵsj sj (θα) − Gj (θα) ŵpp(θα)

+
∑

k

Ejk(θα)

{
ŵpsk (θα) − wpsk (θα) + 1

2
ŵsksk (θα)

}]
, (27)

where {D, E, G, H} have been transformed to configuration space
using equation (23). Ignoring both the bin-to-bin correlations, such
that the Fisher Matrix is diagonal, and the autocorrelation terms,
the second term in equation (27) becomes (MW13)

8π2(F−1)ii
∑

α

�θα θα

[
Di(θα)

{
ŵpsi (θα) − wpsi (θα)

}]
.

The result is now much more intuitive. The N(z) is reconstructed
from a weighted minimization of {ŵpsi (θα) − wpsi (θα)}, where the

9 We note that incorrectly modelling the shot noise component will introduce
a bias into the final measurements.
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Redshift distributions from cross-correlations 4125

Figure 3. The weights Di(θ ) defined in Section 5.4 (left-hand panel) and the combination Di (θ ) × wpsi (θ ) (right-hand panel) for the mock catalogue tests.
The weights and correlation functions are derived for the z = 0.225 (blue) and z = 0.525 (red) redshift bins, for illustration. The combination Di (θ ) × wpsi (θ )
represents the angular scales used by the estimator to measure the redshift probability distribution, in accordance with equation (27).

weights are given by Di(θ ). Note that the scales that contribute most
to the estimator are represented by the combination Di(θ )wpsi (θ ).

To illustrate the angular sensitivity of the estimator, in Fig. 3 we
plot these weights for the mocks introduced in the next section. We
find that the weights peak at θ ∼ 2 arcmin. However, as emphasized
by MW13, the breadth and smoothness of the weighting function
implies that the Fourier modes being traced are on quasi-linear
scales: sharp cuts in angle have a greater sensitivity to non-linearity
than a smoother filter.

6 A P P L I C ATI O N TO SI M U L ATI O N S

In this section, we test our methodology using 20 sets of mock
halo catalogues10 created from the N-body simulations described in
Section 3.3. For each 60 deg2 simulation we generated a uniform
redshift distribution of mock spectroscopic sources within the range
0.1 < z < 0.9, adopting an angular density of 1000 sources deg−2. In
addition, we sampled mock photometric galaxies using a Gaussian
redshift distribution with mean 0.5 and standard deviation 0.1 with
a density of 1 source arcmin−2 (which roughly mimicks a typical
tomographic bin in KiDS). For the purposes of this test we gener-
ated each sample by randomly sampling from the halo catalogue
at each redshift, such that the bias factors of the photometric and
spectroscopic samples are expected to be the same (this would not
necessarily be true for a real data sample). We then performed a CC
analysis dividing the spectroscopic sources into 16 redshift bins of
width �z = 0.05. For further details on the mock catalogues we
refer the reader to Blake et al. (2016), section 6.1.

We note that each individual mock provides constraints compa-
rable in precision to the observational data sets used in our analysis
(each mock realization contains ∼60 000 spec-z galaxies, compared
to ∼40 000 spec-z galaxies in 2dFLenS).

6.1 Auto- and cross-correlation measurements

We measured the angular autocorrelation and CC functions in our
analysis using the Landy–Szalay estimator (Landy & Szalay 1993),

10 We find 20 mock catalogues is sufficient for the level of error we wish to
investigate.

generating random catalogues 10 times larger than the data distri-
bution. For example, the CC between samples i and j is

wi,j (θ ) = (DiDj )θ
(RiRj )θ

NR,iNR,j

ND,iND,j

− (DiRj )θ
(RiRj )θ

NR,i

ND,i

− (DjRi)θ
(RiRj )θ

NR,j

ND,j

+ 1 , (28)

where (DiDj)θ , (DiRj)θ and (RiRj)θ are the respective pair counts
between the two data samples, the data and random samples, and the
two random samples, as a function of the angular separation θ . The
number counts of the data sample i and the random sample j are ND, i

and NR, j, respectively. The correlation functions are all measured
using 30 equally logarithmically spaced angular bins between 0.01
and 1 deg. We estimate the errors in the measurements using jack-
knife re-sampling, although these errors are not used in the quadratic
estimation process.

For each mock catalogue we measured the following statistics:
the autocorrelation of the photometric galaxies, wpp(θ ); the 16 spec-
troscopic autocorrelations in each redshift bin, wsisi (θ ) and the 16
photometric-spectroscopic CCs, wpsi (θ ), where the index i runs
across the 16 redshift bins of the spectroscopic sample.

6.2 Applying the estimator to the mocks

In this section, we apply the quadratic estimator to the mock cat-
alogues and infer results for the redshift probability distribution
P(p)(z) across the spectroscopic bins. For the purposes of this test
we only use the angular CC functions as inputs to the quadratic es-
timator. Thus, we apply equation (27) and drop the autocorrelation
terms. We note that in this limit the estimator remains unbiased,
as the autocorrelation terms cancel. As discussed in the next sec-
tion, we use the autocorrelations of the spec-z sample separately, to
measure the redshift evolution of the galaxy bias.

Every iteration of the quadratic estimator returns a correction term
to the probability distribution δPi computed from the previous best-
guess estimate of the redshift distribution. We define the estimator
to be converged once the condition

∑
iδPi < 5 × 10−3 is met. At

this level of accuracy, the estimated correction is on average an
order of magnitude smaller than the error for a given redshift bin,
i.e. δPi/σ (Pi) ≈ 0.1.
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4126 A. Johnson et al.

Figure 4. Examination of the convergence of the estimator. The blue points show the measured angular CC functions for a single mock catalogue for all the
spectroscopic redshift bins. Each panel corresponds to a separate redshift bin and ω(p,si) indicates a CC between the photo-z sample and the ith bin in the spec-z
sample. The red lines show the predictions of the CC functions using the true underlying P(z) – a Gaussian with mean 0.5 and standard deviation 0.1. The blue
lines show our predictions using the inferred P̂ (z) from the quadratic estimator, which are seen to closely track the measurements. We note the different y-axis
ranges in the panels.

After each iteration of the quadratic estimator, we also enforce
the normalization condition

∑
iPi = 1. This produces an overall

amplitude shift that is minimal in most cases, although we do expect
a small bias to be introduced when imposing this constraint because
the normalization condition holds only for the underlying Pi, not
the estimated P̂ .

6.3 Convergence of the estimator

We can assess the convergence of the estimator and the accuracy of
the modelling by comparing the observed, reconstructed and model
angular CC functions obtained from a single (representative) mock
catalogue, as shown in Fig. 4. Each panel within this figure illustrates
the CC function wpsi (θ ) for one of the spectroscopic redshift bins,
starting from the lowest redshift in the top left corner. We overplot
the model prediction for the angular CCs as the red lines, derived
using equation (10) and using the bias of the samples determined
as discussed in Section 6.5 below. The blue lines in Fig. 4 show the
reconstructed angular CC functions, which we obtain by using the

recovered photo-z redshift distribution, P̂ (p)
i , to compute the angular

CC via

ŵpsi (θ ) = b
(s)
i b

(p)
i P

(s)
i P̂

(p)
i wsi si (θ ) . (29)

We can now assess the convergence of the estimator by comparing
the reconstructed predictions (blue lines) to the mock measurements
(blue points). Thus, from Fig. 4, we observe that the combination
{ŵpsi (θα) − wpsi (θα)} is being successfully minimized. One should
keep in mind the effective θ -dependent weights being applied to
this minimization, as shown by Fig. 3. Comparing CC functions is
a useful validation of the estimator, as this test is less sensitive to
inaccuracies in modelling the correlation functions and galaxy bias
than comparing the inferred P

(p)
i distribution to the input11.

11 For example, in a situation where the model overpredicts the amplitude of
the mock correlation function, the estimator will respond by reducing P

(p)
i

relative to the true value. However, in this case ŵpsi should still agree with
the simulation prediction.
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Redshift distributions from cross-correlations 4127

Figure 5. Test of the accuracy of our CC model. The blue points show the mean angular CC function measured from 20 mock catalogues for all the
spectroscopic redshift bins, with the error taken from a single mock. The red lines show our model predictions, using the cosmological parameters of the
simulation and the mean bias factors. Each panel corresponds to a separate redshift bin and ω(p,si) indicates a CC between the photo-z sample and the ith bin
in the spec-z sample. The bar, ω̄, is simply a reminder that we are averaging over mocks when determining these results.

6.4 Accuracy of the cross-correlation model

Systematic errors in the modelling of the CC statistics – for example,
due to the breakdown of an assumption such as linear galaxy bias
– could propagate into a bias in the inferred photometric redshift
distribution. We assessed this potential source of systematic error
by comparing the average of the mock CC function measurements
to our model predictions, the results of which are shown in Fig. 5.
The models are generated using the galaxy bias determined for the
spectroscopic sample in Section 6.5 below, and in this figure we
plot the average error for individual mocks. We conclude that our
modelling of the angular CC function is sufficient at the level of
statistical errors present in a single mock catalogue.

However, if we instead use the error in the mock mean (dividing
by

√
20) we observe some tension between the simulation predic-

tions and the analytic modelling of the correlation functions. These
tests reveal that there are non-linear effects in the mocks not cap-
tured by our model (e.g. non-linear galaxy bias), and also that the
jack-knife errors do not fully capture the scatter in the measure-
ments. These issues could be mitigated by restricting our analyses

to larger scales, and by deducing the statistical errors using a disper-
sion in the mocks, rather than by jack-knife techniques. However,
we leave such investigations to future work.

6.5 Measuring the galaxy bias factors

In order to test whether our quadratic estimation pipeline recovers
the input source redshift distribution of the mocks, we also require
the redshift evolution of the galaxy bias factors, which we have
arranged (by sampling haloes in the same mass range) to be the
same for the spectroscopic and photometric samples. We deter-
mined the redshift evolution of this bias using the autocorrelation
function measurements of each spec-z sample, using chi-squared
minimization to fit for b

(s)
i .

We note that the effects of noise will cause fluctuations between
b

(s)
i and b

(p)
i . In particular, given the significantly lower number

density of spec-z galaxies relative to the photo-z sample, the bias
measurements of the spec-z sample will be less accurate. We over-
come this by averaging the b

(s)
i values over the 20 mocks.
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4128 A. Johnson et al.

Figure 6. The inferred redshift probability distribution for nine independent mock catalogues. The green points show the reconstructed galaxy redshift
distributions estimated by quadratic estimation (P̂ ), with error bars derived from the relevant Fisher matrix. The green bands show the 95 per cent confidence
intervals for a Gaussian process model trained using the green points. The black line shows the input redshift probability distribution, which is recovered with
reasonable accuracy.

We propagate the noise in the measurement of b
(s)
i into the in-

ferred redshift probability distributions by empirically determining
that the scatter in the bias measurements across mocks, σ (b) ∼ 0.1,
produces a scatter in the probability distribution σ (P) ∼ 0.002.

6.6 Reconstructed mock redshift distributions

We now consider the results for the recovered redshift distributions
of the mock source catalogues, measured in 16 step-wise redshift
bins of width �z = 0.05. We present a random subset of these results
for nine mocks in Fig. 6. The green data points display the best-
fitting P

(s)
i values and the 1σ errors are derived from the Fisher

matrix. The black line shows the Gaussian redshift distribution
assumed in the simulations. We can see that the reconstruction has
proved generally successful.

For applications to weak gravitational lensing, a flexible func-
tional form for the redshift distribution is more convenient than a
step-wise binning. We adopt Gaussian processes (GPs) as a method
to infer such functional forms for redshift distributions. Briefly, GPs
provide non-parametric Bayesian modelling for supervised learn-
ing problems. For details, we refer the reader to Seikel & Clarkson
(2013). GPs also readily allow for the inclusion of a prior on the

smoothness of the reconstructed function, naturally expected from
a survey selection function.12

We build GP models using the python module SCIKIT-learn
(Pedregosa et al. 2011). As input one needs to define the functional
form for the adopted (redshift) correlation function C(z, z′) and set
the characteristic scale L, which intuitively determines the typical
distance between peaks (i.e. the smoothness scale) of the function.
We set the redshift correlation as a Gaussian function

C(z, z′) = σ 2
f exp

[
− (z − z′)2

2L2

]
, (30)

where σ 2
f defines the variance of the function, and we set L = 1. The

optimal choice of L and C will depend on the survey in question.
In Fig. 6, we display the 2σ confidence intervals for the GP

models as the green band. We observe that the reconstructed GP
distributions encompass the input mock redshift distribution for the
vast majority of mocks and redshift bins. More quantitatively, using
all 20 mock catalogues we measure an average χ2 of 19.95 for 18

12 We are not implying here that the final P(z) will necessarily be a very
smooth function of redshift, as photo-z cuts can cause sharp variations.
Rather, we are implying that the amplitude between redshift bins will be
highly correlated. Thus, this setup still allows sharp fluctuations, although
they are less probable.
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Figure 7. The average of the reconstructed redshift probability distributions over 20 mock catalogues. The blue points show the estimated redshift distribution
P̂ when we set the bias of the photo-z sample to the mean value of the spec-z bias values. The green points show the estimated P̂ when we set b(p)(z) =
1.0 + α(z − z0), where α = 2.2 and z0 = 0.45. The black line shows the input redshift probability distribution, which is recovered more accurately by the
second method.

degrees of freedom (ignoring bin-to-bin correlations) demonstrating
that, at the level of statistical error of individual mock catalogues
(and hence of the observational data sets used in our study), our
measurements are statistically consistent with the input distribution.

We now consider a more accurate test of our methodology, using
the average P(p)(z) values over all 20 mock catalogues. For this test,
we consider two methods to estimate the bias of the photo-z sample,
the results of which are shown in Fig. 7. For method 1, we adopt
our default model, i.e. b

(p)
i = 〈b(s)

i 〉, where we average the spec-z
bias factors over 20 mocks (blue points and band). For method 2,
we use a bias evolution model with two free parameters defined as
b(p)(z) = 1.0 + α(z − z0), where we have fitted α = 2.2 and z0 =
0.45 from the mocks (green points and band). The input Gaussian
redshift distribution is displayed as the black line.

Inspecting Fig. 7, we find a significant discrepancy between our
predictions based on method 1 and the input distribution. Quali-
tatively, we observe that for z < 0.5 the distribution tends to be
underestimated, while for z > 0.5 the distribution tends to be over-
estimated. We interpret these discrepancies as a limitation of our
modelling of the CC function and the influence of non-linear galaxy
bias. We find that the predictions using the second bias model are
more representative.

7 A P P L I C ATI O N TO K iD S A N D 2 dF L eN S

In this section, we apply the quadratic estimation methodology to
infer the product b(p)(z) P(p)(z) for sources detected in the separate
r-band and i-band catalogues of the KiDS imaging survey, using
their CC with the 2dFLenS spec-z catalogue. Because (unlike for
the mock catalogues) we have no information on b(p)(z), we can-
not break the degeneracy b(p)(z) P(p)(z) without further assumptions.
We cross-correlate the photometric samples with the 2dFLenS cat-
alogue in 18 redshift bins in the range 0 < z < 0.9. The r-band and
i-band samples have a different degree of overlap with 2dFLenS,
and we use a total of 13 740 and 25 443 spec-z galaxies for the
respective CCs. Following the cosmic shear analysis of Hildebrandt
et al. (2016), we divided the KiDS-450 r-band imaging data set into
four tomographic bins based on the bpz redshift zB: 0.1 < zB ≤
0.3, 0.3 < zB ≤ 0.5, 0.5 < zB ≤ 0.7 and 0.7 < zB ≤ 0.9. Photo-z in-
formation is not available for the KiDS-800 i-band data set, and we
do not sub-divide it. In the correlation function measurement, we
now weight each source by its optimal weight in the estimation of

shear statistics, such that we are constraining the weighted redshift
probability distribution of the sources (Miller et al. 2013).

Since we are only utilizing spectroscopic data in the range z <

0.9, we cannot derive the full KiDS source redshift distributions for
most of the samples. Rather, our motivation is to demonstrate an
application of our methodology on a realistic data set.

We fit for the spec-z bias values in each redshift bin as outlined
in the previous section, and show the results in Fig. 8. We perform
a rough scaling of the expected error in the bias compared to the
mocks, and propagate this error into the determination of b(p) P(p)

by adding a term σ (P) = 0.02 to the standard Fisher matrix errors.
It is possible for measurements of the angular CC function to

be negative due to either noise, or effects such as incompleteness
in the imaging catalogue around bright spectroscopic sources or
other systematics. These points are unphysical in our model, which
predicts the CC functions by scaling the autocorrelations, which are
positive definite. To address this problem we add a positive definite
prior which effectively shifts negative b(p) P(p) values to zero.

In Fig. 9, we show the reconstructed b(p)(z) × P(p)(z) measure-
ments for each tomographic bin of the KiDS-450 r-band data,
in comparison with other determinations of this distribution pre-
sented by Hildebrandt et al. (2016). The green data points show the
quadratic estimation with 1σ error bars and the shaded green band
gives the 68 per cent confidence interval for the GP model. Only 14
redshift bins are shown per tomographic bin; it was not possible
to recover an estimate for the first two and last two redshift bins
because of the low number of spec-z galaxies in these bins, which
caused instabilities in the estimator, hence poor convergence. The
red and blue bands display the distributions and 68 per cent confi-
dence ranges obtained by applying two other methods:

(i) Calibration with small-scale CCs, shown by the red bands
and implemented by applying the recipes of Newman (2008) and
Matthews & Newman (2010) to the cross-clustering of KiDS
sources and deep spectroscopic samples from DEEP2 and COS-
MOS.

(ii) Weighted direct calibration (DIR), shown by the blue bands
and based on direct determination of the source redshift distribu-
tion by cross-matching with a number of overlapping spectroscopic
samples, with appropriate re-weighting for incompleteness.

We refer the reader to Hildebrandt et al. (2016) for more details
about these methods. We converted the DIR estimation from P(p)(z)
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Figure 8. The bias evolution of the spectroscopic 2dFLenS sample for the overlaps with the KiDS r-band and i-band samples, measured from the galaxy
autocorrelations. The errors are determined by scaling the results from mock catalogues.

Figure 9. Reconstruction of the combination b(p)P(p)(z) by applying quadratic estimation to CCs between the KiDS-450 r-band catalogue and 2dFLenS, for
four tomographic bins of the photometric catalogue (0.1 < zB ≤ 0.3, 0.3 < zB ≤ 0.5, 0.5 < zB ≤ 0.7 and 0.7 < zB ≤ 0.9). The green data points display the
results of quadratic estimation and the green bands show the 68 per cent confidence intervals for a Gaussian process model trained using these measurements.
These results are compared with determinations by methods using small-scale CC (red bands) and weighted direct calibration (blue bands) (see Hildebrandt
et al. 2016 for more details about these methods). For the purposes of comparison, all the distributions have been normalized such that

∫ 0.8
0.1 dz b(p) P (p) = 1.

to b(p)(z) × P(p)(z) using the function b(p)(z) implicitly assumed in
the CC method, as outlined by Matthews & Newman (2010). For
the purposes of this comparison, all the distributions have been
normalized such that

∫ 0.8
0.1 dz b(p) P (p) = 1. These different meth-

ods produce redshift distributions that agree in a qualitative sense,
although comparisons illustrate systematic errors affecting each
technique.

The equivalent quadratic estimation for the KiDS-800 i-band
imaging data, analysed in a single tomographic bin, is shown in

Fig. 10. In this figure, the blue points display the reconstructed
redshift distribution with 1σ errors and the shaded blue region shows
the 95 per cent confidence interval for the GP model. We observe
that the amplitude of the CC signal increases with redshift, driven
by a combination of the underlying redshift distribution P(p)(z) and
the source galaxy bias b(p)(z). Assuming that the latter is a slowly
varying function, this analysis suggests that the redshift distribution
of the i-band sources is broad and peaked at z � 0.7. These findings
are qualitatively consistent with the DIR estimate presented by
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Figure 10. Reconstruction of the combination b(p)P(p)(z) by applying quadratic estimation to CCs between the KiDS-800 i-band catalogue and 2dFLenS. The
blue points display the results of quadratic estimation and the blue band shows the 95 per cent confidence intervals for a Gaussian process model trained using
these measurements.

Amon et al. (in preparation), although further comparison is beyond
the scope of the current study.

These results demonstrate that, although the 2dFLenS data set
does not have sufficient redshift coverage to derive the full source
distributions by CC, we can successfully apply our methodology to
the KiDS data set and obtain results in qualitative agreement with
previous determinations.

8 C O N C L U S I O N

With the issue of source redshift calibration becoming increasingly
pronounced for weak gravitational lensing surveys, new and versa-
tile approaches to this problem are needed. Calibration via CC with
overlapping spectroscopic surveys represents one such approach.
In this work, we have presented our efforts to extend the accuracy
and applicability of such methods to both simulations and data. We
summarize our main findings as follows:

(i) We have developed a new, minimum-variance and unbiased
quadratic estimator that infers the redshift probability distributions
of photometric samples of galaxies P(p)(z), in a degenerate combi-
nation with their galaxy bias b(p)(z), based on their angular CC with
an overlapping spectroscopic sample. This derivation expands on
work presented by McQuinn & White (2013).

(ii) We have tested our methodology on a series of mock galaxy
catalogues. We found that at the level of statistical errors of cur-
rent surveys the estimator is unbiased. However, if we stack mocks
together to perform a more accurate test, we discover small but sig-
nificant discrepancies – we attribute these effects to the breakdown
of our clustering model due, for example, to non-linear galaxy bias.

(iii) We derive non-parametric, continuous functional forms of
b(p)P(p)(z) by building GP models from the step-wise constraints
inferred from the quadratic estimator. Such continuous functions are
useful for modelling the lensing signal, and allow the computation
of continuous confidence intervals.

(iv) We have applied our methodology to infer b(p)P(p)(z) func-
tions for KiDS r-band and i-band imaging catalogues in the range
0.1 < z < 0.8, through CC with the 2dFLenS spectroscopic red-
shift survey. Our distributions are in qualitative agreement with the
results of other methods.

Our analysis could be extended in a number of ways: by im-
proving the modelling of non-linear effects, enhancing our mock

catalogues to match our data sets more closely and re-formulating
the estimator to measure the spectroscopic galaxy bias and redshift
distribution simultaneously. However, the calibration of the bias of
the photometric sample remains the most critical component. Pos-
sible approaches to this problem include the use of redshift-space
distortions, lensing magnification and galaxy–galaxy lensing. We
hope that our work motivates more research on these topics.
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