
Mohamad Zaimi, NS, Mohd Salleh, MAA, Abdullah, MMAB, Ahmad, R, 
Mostapha, M, Yoriya, S, Chaiprapa, J, Zhang, G and Harvey, DM

 Effect of kaolin geopolymer ceramic addition on the properties of Sn-3.0Ag-
0.5Cu solder joint

http://researchonline.ljmu.ac.uk/id/eprint/13432/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Mohamad Zaimi, NS, Mohd Salleh, MAA, Abdullah, MMAB, Ahmad, R, 
Mostapha, M, Yoriya, S, Chaiprapa, J, Zhang, G and Harvey, DM (2020) Effect
of kaolin geopolymer ceramic addition on the properties of Sn-3.0Ag-0.5Cu 
solder joint. Materials Today Communications, 25. ISSN 2352-4928 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Effect of kaolin geopolymer ceramic on microstructure, thermal, spreadability and 
joint strength of Sn-3.0Ag-0.5Cu 

N.S. Mohamad Zaimi1, a, M. A. A. Mohd Salleh1, b, M.M.A.B. Abdullah1,c, R. 
Ahmad2,d, S. Yoriya,3,e, J. Chaiprapa4,f, G. Zhang5,g and D.M. Harvey5,h 

1Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 
School of Materials Engineering, Universiti Malaysia Perlis (UniMAP), Taman 

Muhibbah, 02600 Jejawi, Arau, Perlis, Malaysia 
2Faculty of Engineering Technology, Uniciti Alam Campus, Universiti Malaysia 

Perlis (UniMAP), Perlis, Malaysia 
3National Metal and Materials Technology Center, National Science and 
Technology Development Agency, 114 MTEC, Thailand Science Park, 

Pahonyothin Road, Khlong Neung, Khlong Luang, Pathum Thani 12120, 
Thailand 

4Synchrotron Light Research Institute, Muang District, Nakhon Ratchasima 
3000, Thailand  

5General Engineering Research Institute, Liverpool John Moores University, 
Byrom Street, L3 3AF, United Kingdom  

 
 
 

Email: asyahirahzaimi25@gmail.com,  b arifanuar@unimap.edu.my,  
cmustafa_albakri@unimap.edu.my, dromisuhani@unimap.edu.my, 

esorachy@mtec.or.th, fjitrin@slri.or.th, gG.Zhang@ljmu.ac.uk, 
hD.M.Harvey@ljmu.ac.uk   

 

Keywords: Geopolymer ceramics, Composite solder, Intermetallics, Microstructure, 

Synchrotron Micro-XRF, Electron backscatter diffraction 

Abstract 

This paper investigates the effects of different weight percentage (0, 0.5, 1.0, 1.5 and 2.0 

wt.%) of kaolin geopolymer ceramic (KGC) on the microstructure formations, thermal, 

spreadability and joint strength in Sn-3.0Ag-0.5Cu (SAC305) lead-free solder alloys in 

order to develop a new composite solder system. The composite solder was fabricated 

usingthe microwave sintering method and soldered on copper substrates. Advanced 

characterization techniques such as Electron backscatter diffraction (EBSD) and 

Synchrotron Micro-XRF were used to study the behaviors of the pure SAC305 and KGC 

reinforced SAC305 composite solders. Experimental results shows that the addition of 

KGC refines the β-Sn area and increases the eutectic area with fine intermetallics 

formation. The EBSD analysis shows that the crystal orientation of β-Sn in the KGC 
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reinforced SAC305 composite solder is changed to single orientation. In addition, the 

thickness of IMC layer is reduced with the reduction in the undercooling value for the KGC 

reinforced SAC305 composite solder. The spreadability of the KGC reinforced SAC305 

composite solder is significantly increased in the spreadable area with a higher strength 

of solder joint. Besides that, the results obtained prove that 1.0 wt.% KGC addition gives 

better performances in terms of microstructure formations, thermal properties, 

spreadability and joint strength. Synchrotron Micro-XRF indicated that, some Al and Si, 

which are the major elements in geopolymer systems, are migrated into the solder area.  

1.0 Introduction 

The transition to lead free solder alloy has begun for more than a decade due to 

the prohibition in the consumption of lead in solder alloy by Restriction of Hazardous 

Substance (RoHS) and The Waste of Electrical and Electronic Equipment (WEEE) in the 

electronic packaging industries [1]. The elimination of lead in the solder alloy was due to 

the toxicity of lead which negatively influence the human and environments. Therefore, 

this triggered extensive researches to develop a ‘green’ solder alloy. Concurrently, the 

electronic packaging industry nowadays has grown very rapidly with development of 

advance electronics that demands for the usage of very reliable solder interconnections 

in the electronics products. A high reliable solder alloy is very crucial in electronics 

packaging since it will electrically and mechanically join the components and to ensure 

the overall functionality of the products. Thus, there exist many organizations such as 

Institute of Printed Circuits (IPC), The National Electronics Manufacturing Initiative 

(NEMI), the National Institute of Standard and Technology (NIST) and the National Center 

for Manufacturing Science (NCMS) that are actively searching for the best solder alloys 

in replacement of tin lead solder and implemented into the electronic products [2]. Among 

the various emerging lead free solder, Sn-Ag-Cu (SAC) lead free solder alloy posed the 

most outstanding choice by the industry in replacing conventional Sn-Pb solder alloy [2, 

3]. This was owing to SAC lead free solder alloy shows a good wettability, better solder 

joint strength and lower melting point than the other Sn-based solder alloys [4-6]. 

However, still the performance of SAC could not meet or better than conventional lead 

solder especially on thermal cyclic condition [7]. On top of that, other major concerns 



related with SAC are the formation of large and brittle intermetallic compounds (IMC) 

which can reduce the mechanical strength and solder reliability [6]. In typical SAC solder 

joint, the large and brittle IMC arise at higher undercooling of β-Sn (~10-40 K) which 

promotes the formation of large primary IMCs Cu6Sn5 rods and Ag3Sn plates [8]. Since 

IMCs are brittle, controlling its growth is necessary in obtaining a strong solder joint.  

Microelectronic technology develops rapidly with high demand in many 

applications for various fields. Currently, the microelectronic devices become more 

complicated with shrunk size, which bring the solder interconnections down to smaller 

sizes. Significant research works have been done in finding suitable and compatible 

solder alloys as to replace the conventional tin lead solder and also to fulfill the demands 

of high reliable solder alloys to be used in complex and future microelectronic devices. 

Recently, the emerging of composite solder technology attracted most of researchers 

worldwide. Introduction of reinforcing particles which are either metals or non-metals into 

the matrix of solder alloy by forming composite solder were likely to improve the 

performance and properties of existing solder alloys. Generally, reinforcing matrix of 

solder alloys with ceramic particles gain an interest among the researchers as a method 

to improve the existing solder alloy properties. This was due to the ceramic 

reinforcements were extremely stable at high temperature and no new excessive phase 

will form either during the fabrication or due to the large temperature difference between 

the reinforcing particles and solder alloys [2, 6]. Reinforcing the solder matrix with small 

amounts of ceramic particles including cerium oxide (CeO2) [9, 10], zirconia (ZrO2) [11, 

12], titanium oxide (TiO2) [2, 13-18], silicon carbide (SiC) [19, 20], silicon nitride (Si3N4) 

[21, 22], iron oxide (Fe2O3) [23], strontium titanate (SrTiO3) [24], titanium carbide (TiC) 

[25], silicon dioxide (SiO2) [26], lanthanum oxide (La2O3) [27] and aluminium oxide (Al2O3) 

[28, 29] have shown to improve microstructure formations,  mechanical and thermal 

properties of solder. Li et al. [9] hypothesized that the incorporation of ceramic particles 

in solder matrix may act as heterogenous nucleation sites for β-Sn and eutectic phase 

which could increase the nucleation rate and may result in smaller grain size. Besides 

that, Gain et al. [12] has hypothesized that the shear strength of Sn-Ag-Cu was higher 

than the unreinforced solder even though it was subjected to multiple reflow cycles due 

to the homogenous distributions of ceramic particles that lead to dispersion strengthening 



mechanism. It was also proved that ceramics particles could absorb in the molten solder 

during soldering process thereby limiting the substrate dissolution and diffusion which 

could in turns decrease the thickness of interfacial IMC layer and later beneficial to the 

strength of solder joints [30].  

Geopolymer is an inorganic polymer material that formed through 

geopolymerization process involving the dissolution of aluminosilicate sources material 

which consist of SiO2 and Al2O3 in highly alkaline activated solution producing amorphous 

to semi-crystalline structures with Si-O-Al and Si-O-Si bonds [31]. Interestingly, 

geopolymer powder can be used to produce geopolymer ceramics through sintering 

process yielding crystalline phases which required slightly low sintering temperature with 

excellent mechanical properties as compared to the typical ceramic [32-34]. This 

fabrication process was beneficial towards reducing the consumption of higher energy for 

the production of ceramics [35]. In addition, geopolymer ceramic consists of elements 

which may act as additional nucleation sites to improve the properties of solder alloys. 

Various hypothese were reported on the incorporation of ceramic particles to existing 

solder alloys. However, to the best of author knowledge, there is still no research being 

reported on the effect of using kaolin geopolymer ceramic as the reinforcement particles 

that may positively affect the existing solder alloys. Thus, this paper aims to investigate 

the effect of geopolymer ceramics as the potential reinforcement particles in Sn-Ag-Cu 

solder alloys which could improve the microstructure, thermal and mechanical properties 

of Sn-Ag-Cu solder alloys. 

2.0 Experimental Procedure 

2.1 Sample preparation 

In this study, Sn-3.0Ag-0.5Cu (SAC305) solder powders with an average particle 

size in the range between 25 to 45 µm were used as the base matrix material. Kaolin 

geopolymer ceramics with an average particle size of <38 µm were used as reinforcement 

materials. Kaolin (supplied by Associated Kaolin Industries Sdn Bhd, Malaysia) were used 

as raw materials in the production of kaolin geopolymer ceramics. Then, kaolin was mixed 

with the alkaline activator solution and cured at temperature of 80 °C for 24 hours to form 



kaolin geopolymer. The kaolin geopolymer were then crushed by using a mechanical 

crusher, compacted by using uniaxial pressing at a pressure of 4.5 tonnes and sintered 

at temperature of 1200 °C with 180 minutes of soaking time in order to form kaolin 

geopolymer ceramics. Then, the sintered kaolin geopolymer ceramics had undergo ball 

milling process in a planetary mill machine for 10 hours with a speed of 450 rpm and ball 

to powder ratio of 10:1, so as to produce kaolin geopolymer ceramic powders with the 

size of less than 38 µm. The morphology of SAC305 and kaolin geopolymer ceramics 

were shown in Figure 1, respectively. The chemical composition of kaolin geopolymer 

ceramics based on X-ray fluorescence spectroscopy (XRF) was tabulated in Table 1. The 

main chemical compositions of kaolin geopolymer ceramics were Na2O, Al2O3, SiO2, K2O 

and Fe2O3.  

The fabrication of SAC305/kaolin geopolymer ceramics composite solder were 

done by using powder metallurgy route. Various weight percentage (wt.%) of kaolin 

geopolymer ceramics (0, 0.5, 1.0, 1.5 and 2,0 wt.%) were homogeneously mixed in air 

tight container by using planetary mill at a speed of 200 rpm for an hour. The solder 

mixtures were uniaxially compacted in a 12 mm stainless steel mold by using a Specac-

15 tonnes Manual Hydraulic Press. The cylindrical pellets were compacted by using a 

pressure of 4.5 tonnes. Then, the compacted pellets were sintered by using a hybrid 

microwave sintering technique at 185 °C under ambient conditions by using 800 W, 50 

Hz Panasonic oven for 3 minutes. A microwave susceptor material of silicon carbide (SiC) 

was used in this study.    

Figure 1: Morphology of (a) Sn-3.0Ag-0.5Cu and (b) Kaolin geopolymer ceramic 

 



Table 1 : Chemical composition of kaolin geopolymer ceramic by XRF 

Compound Content (wt.%) 

Na2O 4.5 

Al2O3 31.9 

SiO2 56.6 

K2O 2.50 

TiO2 0.74 

MnO2 0.05 

Fe2O3 2.83 

ZrO2 0.05 

LOI 0.83 

 

2.2 Microstructure analysis 

 The microstructure of compacted sintered pellets was analyzed by using scanning 

electron microscope (SEM) in backscattered electron imaging mode in order to observe 

the distributions of kaolin geopolymer ceramics. The pellets were etched by using dilute 

solution of 2% hydrochloric acid (HCl), 5% nitric acid (HNO3) and 93% methanol (CH3OH) 

in order to have a clear grain boundary observation. In fabricating solder balls, compacted 

sintered pellets were rolled into thin sheets with the thickness of approximately 50 µm 

sheets. The thinned sheets were punched by using a 3.0 mm puncher in order to prepare 

a 900 µm diameter solder ball. The punch sheets were then dipped in rosin mildly 

activated flux (RMA) and melted on Pyrex plate at a temperature of 250 °C in a reflow 

oven. The solder balls with spherical shape were formed due to the action of surface 

tension during melting of solder sheets. Subsequently, the solder balls were sieved with 

the sieves of 1 mm and 0.9 mm in size in order to obtain uniform size of solder balls. In 

order to form solder joints, the fabricated solder balls were reflowed on a 900 µm ball 

pitch size of Cu substrate printed circuit board (PCB) with an organic soldering 

perspective (OSP) surface finish and a small amount of RMA flux was applied prior to 

reflow soldering process. The reflow soldering process was carried out by using a F4N 

desktop reflow oven. The reflowed samples were cross sectioned, cold-mounted in epoxy 

resin, grinded with SiC paper and polished. The microstructure of reflowed samples were 

analysed by using scanning electron microscope (SEM), electron backscattered 



diffraction (EBSD) and Synchrotron Micro-XRF (µ-XRF).The morphology and thickness 

of interfacial intermetallic compound (IMC) layer of the solder joints were observed by 

using scanning electron microscope (SEM). The thickness of IMC layer was evaluated by 

using J-Image software. The measurements of IMC thickness (t) were calculated as the 

area of IMC (A) divided with the length of IMC (L). 

Electron backscattered diffraction (EBSD) samples were firstly ion-milled by using 

Hitachi IM-4000 ion milling equipment for about 10 minutes with rotation speed of 25 rpm. 

Then, the regions of solder ball were covered by a conductive layer of carbon in order to 

eliminate the effects of charging. During the EBSD testing, the samples were tilted to 70° 

and Hitachi SU8230 scanning electron microscope equipped with Nordlys EBSD detector, 

operated at 25 kV was used. Besides that, during EBSD acquisition, a step size of 1.5 

µm was used. The Emax Evolution software were used for the analysis.  

In order to investigate the interactions of kaolin geopolymer ceramic (KGC) to Sn-

3.0Ag-0.5Cu (SAC305) lead free solder, a small bar of bulk KGC (5 x 10 x 30 mm) was 

dipped in molten SAC solder at 250 ºC for approximately 10 minutes and subsequently 

was cooled in air. Then, the samples were carefully fine polishing before it was analysed 

under synchrotron micro-XRF (µ-XRF). The schematic diagram for the experimental 

setup was shown in Figure 2. To precisely analysed the interaction between KGC to SAC 

solder, a detail elemental distributions analysis using synchrotron micro-XRF was 

performed at Synchrotron Light Research Institute (SLRI) Thailand at beamline BL6b. By 

using synchrotron radiation and 30 x 30 µm2 size of beam focused by the polycapillary 

lens, the element distributions in the solder was obtained. Samples were placed at a 90° 

level between the X-ray and the CCD camera. The Vortex EM-650 silicon drift detector 

was used to collect the emitted fluorescence X-Ray and the area of interest was 

accurately specified by using high precision motorized stages. A 0.05 mm scanning step 

with exposure time of 10 s for each point were used. The data obtained was then analysed 

by using PyMca software. The area of interest with the size of 750 µm X 700 µm of the 

sample were scanned during synchrotron micro-XRF testing. 



 

Figure 2 : Schematic diagram for the experimental setup dipping of bulk kaolin 
geopolymer ceramic in SAC305 lead free solder 

 

Wetting behavior of all the samples were investigated by measuring a spreading 

area on copper (Cu) substrate. A Cu substrate of 30 mm x 30 mm x 0.3 mm was used in 

this study. The Cu substrate was finely polished and cleaned with the acid cleaning liquid 

which consists mixture of 5 g hydrochloric acid and 95 g deionized water to remove 

surface impurities on Cu substrates. Subsequently, 0.3 g of solder sheets were placed on 

Cu substrates with 0.03 g RMA flux. The samples were then reflowed in a F4N reflow 

oven and the spreading areas were measured by using J-Image software.  

2.3Thermal properties analysis 

The melting characteristics of all the samples were characterized by using a TA 

Instruments Differential Scanning Calorimetry (DSC). The samples used for DSC testing 

were as-rolled thin solder sheets. The weight for each of the samples were kept below 5 

mg according to the requirement of DSC equipment and placed into an aluminum pan. 

All the samples were heated up to 250 °C and immediately cooled down to room 

temperature with a heating rate of 10 °C/min under a nitrogen gas (N2) atmosphere. The 

thermal reactions for all the samples were determined based on the endothermic 

(heating) and exothermic (cooling) temperature curves.  

 

 



2.4 Mechanical properties test 

A single-lap shear solder joint test was performed in order to evaluate the strength 

of the solder joints which were bonded to the Cu substrate (PCB FR4-type). The single-

lap shear test was conducted by using an Instron machine with the specifications of Cu 

substrate used as according to ASTM D1002 standard. According to the ASTM standard, 

the measurements of Cu substrate which is 101.6 mm x 25.4 mm x 1.5 mm (Figure 3) 

was used. Consistently about 1 g of solder sheets were sandwiched between Cu 

substrates. Reflow soldering process was performed in order to form a bonding between 

the Cu substrates with the aid of RMA flux, following the reflow profile proposed by 

Qualitek for lead free solder. Subsequently, the fracture analysis after the shear test was 

analyzed by using the scanning electron microscope at an accelerating voltage of 20 kV.  

 

 

Figure 3 : a) Specifications of Cu-substrate (PCB FR4-Type), b) Schematic diagram of 
the single-lap shear test 



3.0 Results and Discussions 

3.1 Microstructure and phase analysis 

Microstructure formations in the developed Sn-3.0Ag-0.5Cu (SAC305) composite 

solders were analyzed based on the post sintered and post reflowed samples. The 

sintered samples were etched and observed by using the Scanning electron microscope 

(SEM). Figure 4 depicts the micrograph of SEM for the post sintered pure SAC305 and 

KGC reinforced SAC305 composite solders with different weight percentage (wt.%) of 

kaolin geopolymer ceramic (KGC). It was observed the KGC particles as indicated as 

black particles are well distributed along the grain boundaries in the samples with addition 

of KGC in Figure 4 (b-e). The presence of distributed black particles indicates as KGC as 

proved by EDX analysis in Figure 5. The existence of Na, Al, Si, K, Ti and Fe by EDX 

corresponds to the elements in KGC systems. In addition, the reinforcement 

concentrations along the grain boundaries tend to hold the grains, hence prevent from 

grains dislocations and retard the growth of grains in the SAC305 solder matrix. Thus, the 

addition of KGC to the SAC305 solder matrix can  improve the mechanical properties of 

solder.  

  In order to analyze the effect of KGC to the microstructures of SAC305 solder 

after reflow soldering process, cross-sectional image of pure SAC305 and KGC 

reinforced SAC305 composite solder were observed by using the scanning electron 

microscope, synchrotron micro-XRF and electron backscattered diffraction. Figure 6 

shows the backscattered SEM image of post reflowed samples. Based on Figure 6, it 

confirmed there existed  two different phases in each of the cross-sectioned samples. 

The two phases were primary β-Sn phase and eutectic phase. In the eutectic phase, 

primary intermetallic compound (IMC) of Cu6Sn5 and Ag3Sn are dispersed in the eutectic 

area. The addition of KGC particles to the SAC305 lead-free solder greatly refined the β-

Sn phase and reduced the size of primary Cu6Sn5 and Ag3Sn as well. This therefore 

indicated that the addition of KGC particles into SAC305 lead-free solder contributes to 

the refinement effect in the microstructures of solder. Moreover, to precisely observe the 

microstructural changes in each of the samples, the area fraction of β-Sn phases and 



eutectic phases were quantitively analyzed with the threshold image by using the J-image 

software as depicted in Figure 7. According to Figure 7,  

 

 

Figure 4: SEM micrograph of sintered SAC305/kaolin geopolymer ceramic samples 
showing distribution of KGC at a) 0 wt.% KGC, b) 0.5 wt.% KGC, c) 1.0 wt.% KGC, d) 

1.5 wt.% KGC and e) 2.0 wt.% KGC 

 

 



 

Figure 5 : a) SEM image of KGC reinforced SAC305 composite solder; b) Edx point 

analysis at point 001; c) Edx point analysis result of KGC reinforced SAC305 composite 

solder 

 

additions of KGC particles influenced the area fraction of β-Sn and eutectic phases, in 

which the area fraction of β-Sn phases was slightly decreased with increased in the area 

fraction of eutectic phases (with smaller size of Cu6Sn5 and Ag3Sn that dispersed in 

eutectic area) as the addition of KGC was up to 1.0 wt.%. However, as the amount of 

KGC added beyond 1.0 wt.% (in case of 1.5 wt.% and 2.0 wt.%), the area fraction of β-

Sn phase increased with the decreased in the area fraction of eutectic phase. It was 



noteworthy that, the addition of 1.0 wt.% KGC results in best refinement of 

microstructures in the SAC305 lead free solder.  

The enhancement in the microstructure of SAC305 lead free solder is 

likelyattributed to the heterogeneous nucleation [9, 21, 36, 37]. During the reflow 

soldering, KGC particles  finely dispersed throughout the molten solder matrix.  According 

to the theory of heterogenous nucleation, the presence of KGC particles in an alloy of 

SAC305 solder matrix acted as heterogeneous nucleation sites for β-Sn and eutectic 

phases. The β-Sn and eutectic phases nucleate on the surface of KGC particles in the 

means to reduce the thermodynamic barrier of nucleation as suggested by Li et.al [14]. 

Hence, the nucleation rate was increased, reducing the size of the grains. Moreover, the 

higher nucleation rate of grains prevent from the grains ripening which consequently 

resulted with refined microstructures in SAC305 solder with addition of KGC particles. 

The similar phenomenon was also reported by Wang et. al [26], where addition of SiO2 

effectively serve as the grain refinement in solder alloys which may advantageously 

improve shear properties of composite solder alloys. As the best microstructure 

refinement was achieved with 1.0 wt.% KGC, the addition of KGC beyond this value 

slightly increases the area fraction β-Sn and decreases the area fraction of eutectic 

phase. This event might occur in the case of possible agglomeration of fine reinforcement 

particles in Sn solder matrix which may decrease the surface energy and consequently 

reduce the refining effect in the solder [9].  

 

 

 



 

Figure 6: Microstructure of SAC305 with additions of a) 0 wt.%, b) 0.5 wt.%, c) 1.0 wt.%, 
d) 1.5 wt.% and e) 2.0 wt.% of KGC after reflowed on Cu substrate. 

 

  

 

 

 



 

Figure 7 : Area fraction of β-Sn and eutectic phase of SAC305 lead free solder with 
different weight percentage (wt.%) addition of KGC ; a) 0 wt.% KGC, b) 0.5 wt.% KGC, 

c) 1.0 wt.% KGC, d) 1.5 wt.% KGC and e) 2.0 wt.% KGC, f)… 

 



Intermetallic compound (IMC) layer forms from the reaction between molten solder 

and copper (Cu) substrate during soldering process [38]. The formation of IMC layer was 

vital in the solder joint since it indicates the existence of metallurgical bonding between 

the solder and substrate. Even so, the excessive formation of IMC layer is adverse to the 

solder joint reliability. In this research, IMC layer formed in the pure SAC305 solder and 

KGC reinforced SAC305 composite solder joints were analyzed based on the morphology 

and thickness of IMC layer. It was observed from Figure 8(a), the morphology of interfacial 

Cu6Sn5 layer consists of pointed and small scallop Cu6Sn5. However, as various weight 

percentage of KGC were added, the morphology of interfacial layer changed to the 

combination of shallow and small scallop. It is worth to observe that, there was no 

formation of pointed scallop in the KGC reinforced SAC305 composite solder. Since, the 

formation of the pointed scallop was undesired due to the pointed scallop will induce brittle 

fractures to the solder joint and contribute to crack initiation sites, as a result it  adversely 

affects the performance of solder joints [9, 10]. The growth of pointed scallop at the 

interfacial layer caused by an increase in the concentration of copper atoms from 

substrate which diffused to the solder matrix and reacted with tin, resulting in growth of 

pointed scallop Cu6Sn5 as suggested by Li et. al [10].  

 

 

 

 



 

Figure 8 : Interfacial Cu6Sn5 IMC layer at different weight percentage of KGC ; a) 0 wt.% 
KGC, b) 0.5 wt.% KGC, c) 1.0 wt.% KGC, d) 1.5 wt.% KGC and e) 2.0 wt.% KGC 

 

 The average thickness of IMC layer for pure SAC305 solder and KGC reinforced 

SAC305 composite solder was measured and shown in Figure 9. Results proved that the 

thickness of IMC layer substantially decreased with the addition of KGC. The lowest 

average thickness of IMC layer was achieved with the addition of 1.0 wt.% KGC to the 

SAC305 solder. The reduction of 30% in average of IMC layer thickness was observed 

with the addition of 1.0 wt.% KGC in comparison to the pure SAC305 solder. However, 

the average thickness of IMC layer in the KGC reinforced SAC305 composite solder 



slightly increased as the KGC added was beyond 1.0 wt.%. It is a worthwhile note that 

the reduction of the  IMC layer thickness in the KGC reinforced SAC305 composite solder 

was ascribed to the effect of KGC added. The existence of KGC particles was proved by 

using the EDX line analysis along the interfacial layer as shown in Figure 10. The 

presence of Si and Fe elements by EDX analysis was owing to the KGC particles. 

Therefore, it can indicate that the presence of KGC along the interfacial IMC layer is able 

to suppress the growth of interfacial IMC during the soldering process. 

The interfacial Cu6Sn5 IMC grains nucleated when the molten solder contacts with 

Cu substrate during the reflow soldering process and resulted in continuous IMC layer 

coverage at the Cu substrate/solder interface. As the concentration of Cu in SAC305 

solder is less than 0.9 wt.%, the growth of scallop Cu6Sn5 IMC grains at the interface 

between substrate/solder required Cu atoms from the substrate to be dissolved 

simultaneously to the solder matrix [10]. In this case, the channels between the scallop 

Cu6Sn5 grains facilitates the growth of interfacial IMC in which it acts as the diffusion and 

dissolution paths for Cu atoms from the substrate to the solder matrix. Thus, the existence 

of KGC particles along the interfacial IMC layer as shown in Figure 10 acts as a barrier 

which reduces the diffusion of Cu from the substrate to the solder matrix and thus 

stabilizes the growth of interfacial IMC. As a result, thinner thickness of interfacial IMC is 

obtained in the KGC reinforced SAC305 composite solder than the pure SAC305 solder. 

Besides that, the suppression of the interfacial IMC was partly owing to the KGC 

reinforced SAC305 composite solder solidifies at lower undercooling than in pure SAC305 

solder as demonstrated by DSC results in Table 2. 

 



 

Figure 9: The influence of different weight percentage (wt.%) of KGC addition to the 
average IMC thickness of SAC solder joints. 



 

Figure 10 : a) Cross-sectional view of EDX line at interfacial IMC layer; b) EDX 
spectrum along the interfacial IMC layer 

 

In order to determine the elemental distribution of Sn, Ag, Cu and other elements  

in KGC systems for as-reflowed samples, a higher precision elemental mapping analysis 

was carried out by using the synchrotron radiation source. Figure 11 shows the results 

obtained using the synchrotron micro-XRF from the pure SAC305 solder and KGC 

reinforced SAC305 composite solder. The higher intensity indicates the higher 

distributions for a specific element.  FromFigure 11 (b) the elements of Al, Si, K, and Fe 

are clearly observed, which come from the KGC systems as proved by the X-ray 

fluorescence spectroscopy (XRF) in Table 1. These elements were dominantly distributed 

at the region of solder bulk area and only a little along the interfacial IMC of solder joint.  

The existence of these elements in the KGC reinforced SAC305 composite solder further 



proved that, KGC particles  can alter the microstructure formation, enhancing the 

properties of KGC reinforced SAC305 composite solder. 



 

Figure 11 : The micro-XRF mapping area (a) Pure Sn-3.0Ag-0.5Cu (SAC305) (b)KGC 
reinforced SAC305 composite solder 



 Besides that, further details of microstructure were analyzed using EBSD. The 

orientation of crystal structure in the pure SAC305 and KGC reinforced SAC305 

composite solder was investigated. The structure of beta-tin (β-Sn) is a body-centered 

tetragonal with lattice parameters of a = 5.632 nm, c = 0.3182 nm and c/a = 0.546 which 

possess anisotropic, thermal, mechanical and diffusion properties [39, 40]. Since Sn 

grains are the main matrix in the lead free solders, the orientation of the crystal structure 

may dictate the reliability of the solder joint. In this study, β-Sn grain structures and grain 

orientations are the subject of interest due to the structure of β-Sn may influence the 

mechanical response of solder joint under service conditions [41]. Figure 12 shows EBSD 

maps and inverse pole figures of the pure  SAC305 and KGC reinforced SAC305 

composite solder. The EBSD maps in Figure 12(b) and (d) shows that there are only 

single β-Sn crystal and no evidence of solidification twinning. By analyzing the inverse 

pole figure (IPF-y) in Figure 12(e) and (f), the crystal orientations for the β-Sn crystal are 

[110] and [010]. However, small addition of KGC particles to SAC305 slightly changes the 

orientation of β-Sn crystal to single orientation of [001] as depicted in Figure 12(f). Besides 

that, Figure 12(d) also shows the existence of KGC crystalline phases, and the major 

phase is nepheline. According to Yun Ming et.al [34], crystalline nepheline is the major 

phase existed in KGC for the heat-treated sodium based geopolymers.  



Figure 12 : OM and EBSD image of a) OM image of pure SAC305), b) EBSD maps of 

pure SAC305, c) OM image of KGC reinforced SAC305 composite solder, d) EBSD 

maps of KGC reinforced SAC305 composite solder, e) Inverse pole figure (IPF-y) of 

pure SAC305 and f) Inverse pole figure (IPF-y) of KGC reinforced SAC305 composite 

solder 

 



Meanwhile, Figure 13 shows the strain contouring maps of pure SAC305 and 

SAC305 with the addition of KGC particles. In order to quantitively measure the strain 

contouring area in both samples, the area fraction of strain contours was measured as 

presented in Figure 13(c). By comparing the distribution of localized strain in both 

samples, pure SAC305 lead free solder has lower distribution of localized strain than the 

sample with the addition of KGC particles. The area fraction of localized strain measured 

in the pure SAC305 and KGC reinforced SAC305 composite solder are 36318 µm2 and 

72188 µm2, respectively. In addition, it can also be seen the distribution of localized strain 

in the SAC305 with KGC additions is more homogenous than in the pure SAC305 lead 

free solder. In the pure SAC305, the localized strain may be due to the inhomogenous of 

Ag3Sn and Cu6Sn5 intermetallics while in the KGC reinforced SAC305 composite solder 

is mainly well distributed by the KGC reinforcement. 

 

Figure 13 : Strain contour for (a) pure SAC305 and (b) KGC reinforced SAC305 
composite solder (c) Area fraction of internal strain 



 

In order to investigate the interactions between the bulk KGC and SAC305 lead 

free solder, synchrotron micro-XRF analysis was conducted. Figure 14 shows the results 

of micro-XRF elemental mapping conducted on samples of SAC/KGC. The samples for 

micro-XRF mapping consists of two parts: SAC305 lead free solder and KGC area as 

presents in Figure 14(a). The red colour regions indicate the highest concentration of the 

elements while blue colour regions indicate the lowest concentration of the elements in 

that particular area. According to the elemental mapping in Figure 14, it clearly shows 

that the elements, especially Al, Si and K from KGC systems migrated to the solder area 

part. In addition, point analysis was carried out at point 1 to confirm the presence of 

particular elements in the solder area part. Based on the spectrum at point 1, it was 

confirmed Al, Si and K elements from KGC systems existed in the solder area part. 

However, in this study the main concern was the migration of Al and Si elements since 

these elements were major elements in the geopolymer systems which formed the 

backbone of geopolymer chain, Si-O-Al and Si-O-Si bonds. The migration of some Al and 

Si elements to the solder area is believed due to the interactions of lead free solder 

elements and KGC elements as a bulk KGC was dipped in molten solder at 250 ºC. The 

heating process involved  destabilized the KGC chains and thus promoted elements 

migration towards the solder area. Nevertheless, Na elements in KGC could act as alkali 

modifiers which may break the Si-O-Si and Si-O-Al bonding and thus lead to the migration 

of some elements to the solder area[42]. However, the data obtained for this experiment 

was not enough to justify and prove the migration mechanism and further detailed 

investigations need to be carried out.  



 

 
Figure 14 : Synchrotron Micro-XRF results: a) Image of synchrotron micro-XRF 

mapping area , b) Sn c) Ag d) Cu e) Al, f) Si g) K and  h) Fe element mappings and i) 
point analysis spectrum at point 1 



3.2 Spreadability 

Solderability of solder can be evaluated through wettability and spreadability of 

solder on copper substrates subjected to reflow soldering. In general, solder alloys with 

higher spreading areas and lower contact angle are favored for reliable solder 

interconnections. In this study, wettability and spreadability of the pure SAC305 and 

composite SAC305 lead free solders were investigated by measuring the contact angle 

and spreading areas formed prior to reflow soldering process. In our previous study[ add 

a reference here], we reported on the wettability of the pure SAC305 and composite 

SAC305 with the addition of kaolin geopolymer ceramic (KGC). The contact angle 

between the molten solder alloy and Cu substrates is related with the spreading areas, 

thus the evaluation on the spreadability of solder took placed. Figure 15 presents the 

spreadability of SAC305 with different addition of KGC on Cu substrates prior to reflow 

soldering process. 

It was found that, the spreading areas increased firstly and then decreased with 

the increasing weight percentage (wt.%) of KGC particles. The spreading areas achieved 

maximum value of 91.45 mm2 with the addition of 1.0 wt.% KGC, which is 19.1 % bigger 

than the pure SAC305 lead free solder. However, the spreading areas is degraded in 

SAC305 with the addition of KGC up to 2.0 wt.%, which is 80.40 mm2. Therefore, from 

the results it is inferred that smaller wt.% addition of KGC  contributes to the improvement 

in ability of solder having bigger spreading on Cu substrates. One reason for this could 

be due to the added KGC particles lower the interfacial surface energy and reduce surface 

tension as KGC particles accumulated at the interface between the flux and molten solder 

during the process of reflow soldering. In addition, as suggested by Chen at.al [25] and 

Sharma et.al [27], excess addition of the reinforcement in solders were able to increase 

the viscosity of solder and thus, obstructs the molten solder from further spreading. To 

conclude, unappropriated amount of reinforcements would deteriorate the solderability of 

solder alloys.   



 

Figure 15 : Spreadability of SAC305 lead free solder with different weight percentage of 
KGC on copper substrate 

 

3.3Thermal properties 

 

Table 2 depicts the results obtained from DSC testing for the value of pasty range 

and melting temperature for the pure SAC305 and KGC reinforced SAC305 composite 

solders. These results show that, the addition of various amount of KGC could give little 

effect on the melting point of SAC305 lead free solder alloys. Hence the new composite 

solder system can be applied and integrated with the existing reflow profile during the 

soldering process without any adjustments needed. A slight increase in the melting point 



of SAC305 lead free solder with addition of KGC was possibly due to the reinforcing 

particles may change the surface instability and variation in the physical properties of 

grain boundary/interfacial characteristics. Besides that, KGC particles reinforced in 

SAC305 lead free solder retard the solidification process where it  acts as retardation 

sites for the solidification process of IMCs, as suggested by Fawzy et. al  [43].  The results 

are in good agreement with the previous study reported by [43, 44].  

Pasty range is an important thermal parameter in developing new composite solder 

alloys which can be measured by the difference between Tendset and Tonset during the 

heating process as presented in Table 2. In this study, the pasty range of pure SAC305 

lead free solder was 8.92 °C. While, KGC reinforced SAC305 composite solder with 

different wt. % of KGC showed smaller pasty range temperature between 8.48 to 8.91 °C 

as compared to the pure SAC305 solder. Smaller pasty range can be inferred that, for the 

KGC reinforced SAC305 composite solder alloy there exists a partially liquid phase for a 

short time during the solidification process, in other words reducing the time of contact 

between the liquid phase and Cu substrates. Therefore, with smaller pasty range, the 

interfacial IMC in the reinforced KGC reinforced SAC305 composite solder alloy is thinner 

compared to the SAC305 lead free solder. On the other hand, large pasty range would 

give rise to fabrication issues such as porosity, hot tearing contraction during solidification 

and fillet lifting phenomena [45].  

Thermodynamically, larger undercooling will result in a larger driving force for the 

IMCs to grow. Undercooling is defined as the difference between Tonset during heating 

and Tonset during cooling which is also related to the temperature range of solid phase 

nucleation in a liquid state until solidification [19]. The undercooling of the pure SAC305 

and KGC reinforced SAC305 composite solders with different wt.% KGC is shown in 

Figure 16.Based on the result, the undercooling of the pure SAC305 lead free solder is 

19.64 °C. While for KGC reinforced SAC305 composite solder, the undercooling is in the 

range between 14.89 to 16.81 °C. The lowest undercooling was achieved with the 

addition of 1.0 wt.% KGC. A significant decreased undercooling in the SAC305 with KGC 

addition was favorable. Moreover, the undercooling in solder alloy will influence the 

microstructure formation. The decrement in the undercooling of KGC reinforced SAC305 



composite solder affects the microstructure formation as discussed at section 2.1 where 

the fraction of β-Sn phase decreased with smaller size of IMCs dispersed in eutectic area. 

The significant changes in the undercooling attributed to the effect of reinforcing particles. 

As suggested by El-Daly et.al [19], the decrement in the undercooling of SAC105 with 

addition of SiC is due to the decreased in the undercooling of β-Sn which  inhibits the 

formation of IMCs. By inducing higher nucleation, the solidification of β-Sn will be faster 

which reduces the time for IMCs to grow, resulting in finer microstructures.  

 

Table 2 : Pasty range and melting temperature from DSC testing of SAC305 and KGC 
reinforced SAC305 composite solder with different weight percentage of kaolin 

geopolymer ceramic 

Solder Pasty range 

(°C) 

Melting 

temperature (°C) 

SAC305 8.92 220.86 

SAC305 + 0.5 wt.% KGC 8.52 220.55 

SAC305 + 1.0 wt.% KGC 8.50 220.56 

SAC305 + 1.5 wt.% KGC 8.48 221.01 

SAC305 + 2.0 wt.% KGC 8.91 221.11 

 

 



 

Figure 16 : The undercooling of pure SAC305 and KGG reinforced SAC305 composite 
solder with different weight percentage of KGC addition 

 

3.4 Mechanical properties 

Mechanical properties of the SAC305/x-KGC composite solder and monolithic 

SAC305 solder joints were determined based on the shear strength and failure behaviors. 

Figure 17 illustrates the average shear strength results of SAC305/x-KGC composite 

solder and SAC305 solder joints. It can be seen that, the addition of various wt.% of KGC 

positively influenced the shear strength of solder joints. The average shear strength of 

KGC reinforced SAC305 composite solder increased with the addition of various wt.% 



KGC. Highest average shear strength was observed with the additions of 1 wt.% KGC 

with average 13.01 MPa compared to the non-added reinforcement solder with average 

9.95 MPa. The increment of 31 % in the average shear strength was shown with additions 

of 1 wt.% KGC as compared to SAC305 solder joints. However, with the addition of KGC 

beyond 1 wt.% (1.5 wt.% and 2.0 wt.%), the average shear strength of solder joints slightly 

decreased from 13.01 MPa to 12.06 MPa and 10.32 MPa for 1.5 wt.% and 2.0 wt.% of 

KGC additions, respectively. Even so, the average shear strength of KGC reinforced 

SAC305 composite solders with KGC additions (1.5 wt.% and 2.0 wt.%) were still higher 

than SAC solder joints without the reinforcement. 

In this study, the enhancement in the shear strength of KGC reinforced SAC305 

composite solders is attributable to the theory of dispersion strengthening. Based on the 

theory, the existence of fine Ag3Sn and Cu6Sn5 intermetallic particles which were well 

dispersed into the β-Sn matrix strengthens the composite solders. In addition, KGC 

particles that were uniformly distributed along the grain boundaries of the solder  hinder 

the dislocation movement and impede the grain boundaries sliding. The phenomenon 

mentioned is known as pinning effects which explains the improvement in the shear 

strength of composite solders. Besides that, the improvement in the shear strength of 

composite solders can also be attributed to the controllable in the thickness of  IMC layer 

formation at the interface between the composite solders and the Cu substrate as 

suggested by Wu et al. [46]. Thicker IMC layer is prone to brittle failure that will degrade 

the strength of the solder joint. In this study, the thickness of IMC layer in KGC reinforced 

SAC305 composite solders were proved to decrease with the additions of KGC 

reinforcement which partially improved the shear strength of the solder joints as 

compared to the pure SAC305 solder. 



 

Figure 17: Average shear strength of different weight percentage of KGC addition to 
SAC305 lead free solder 

 

 In order to further understand the failure behaviors in KGC reinforced SAC305 

composite solder and pure SAC305 solder, the post shear samples were observed. 

Figure 18 shows the fracture surface for the pure SAC305 and KGC reinforced SAC305 

composite solders. Figure 18 (a) depicts the fracture behaviors of pure SAC305 solder. It 

was observed that the pure SAC305 solder exhibits brittle fractured mode with a smooth 

surface (little dimples). On the other hand, the fracture behaviors of KGC reinforced 

SAC305 composite solders showed a transformation in the mode of fracture, from brittle 

to ductile fracture mode with rough surface (indicated by circle shape). In addition, more 

dimples were observed in the samples containing KGC particles. The existence of more 

dimples correlates with the better plastic property for ductile materials. It is known that 

ductile materials normally experience large quantity of plastic deformations before failures 

along the loading directions. However, as the addition of KGC beyond 1.0 wt.%, large 



dimples were observed at the fracture surface which explains the decrement in the shear 

strength of the samples. The formation of large dimples at the fracture surface is likely 

associated with the large brittle IMC as suggested by Z.H. Li et al. [9] and M.A.A Mohd 

Salleh et al. [21]. 

 

Figure 18: SEM micrograph of fracture surface of pure SAC305 and KGC reinforced 
SAC305 composite solder at different weight percentage of KGC; a) 0 wt. % KGC, b) 

0.5 wt.% KGC, c) 1.0 wt.% KGC, d) 1.5 wt.% KGC and e) 2.0 wt.% KGC 

 

 

 



4.0 Conclusions 

The effects of kaolin geopolymer ceramic with various weight percentage to the 

Sn-3.0Ag-0.5Cu solder was elucidated in this paper. It can be concluded that; 

(a) The addition of KGC alters the microstructure formation by decreasing the formation 

of β-Sn area and increasing the eutectic area with fine intermetallics of Cu6Sn5 and 

Ag3Sn. KGC addition reduces the thickness of interfacial IMC with formation of small 

rounded scallop. The optimum thickness was found with an addition of 1.0 wt.% KGC. 

This was owing to the existence of KGC particles along the interfacial IMC acting as 

barrier that reduces the Cu diffusion from substrate to the SAC305 solder matrix and 

stabilizes the growth of interfacial IMC. 

 (b) The synchrotron micro- XRF confirmed that the distribution of KGC elements in the 

as-reflowed samples were majorly located at the solder bulk area. While EBSD testing 

shows that, the addition of KGC changes the orientation of β-Sn into single crystal 

orientation with high area of localized strain contouring. The interaction of SAC305 solder 

alloy with bulk KGC leads to the migration of elements Al and Si to the solder area part 

as Na elements in geopolymer system play a role as a bond breaker between Si-O-Si 

and Si-O-Al bonds. 

 (c) Improvement in the spreading area were achievd by the KGC addition, and the 

highest spreading area was achieved with the 1.0 wt.% KGC addition. The undercooling 

value was reduced significantly, and the lowest value of 14.89 °C was achieved with the 

1.0 wt.% KGC addition. The reduction occurs due to that the KGC reinforcement plays a 

role in inducing higher nucleation and promoting faster solidification which results in finer 

microstructures.  

(d) The average shear strength of the SAC305 lead free solder with 1.0 wt.% KGC has 

the highest strength of 13.01 MPa. The increment of 31% in average shear strength as 

compared to the pure SAC305 lead free solder proved the ability of KGC reinforcement 

in enhancing the mechanical properties of the composite SAC305 solder. In addition, the 



small dimples with ductile failure mode were observed in the samples with 1.0 wt.% KGC 

addition. 
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