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ABSTRACT

We present post-jet-break HST, VLA and Chandra observations of the afterglow of the long γ-ray

bursts GRB 160625B (between 69 and 209 days) and GRB 160509A (between 35 and 80 days). We

calculate the post-jet-break decline rates of the light curves, and find the afterglow of GRB 160625B

inconsistent with a simple t−3/4 steepening over the break, expected from the geometric effect of the

jet edge entering our line of sight. However, the favored optical post-break decline (fν ∝ t−1.96±0.07)

is also inconsistent with the fν ∝ t−p decline (where p ≈ 2.3 from the pre-break light curve), which

is expected from exponential lateral expansion of the jet; perhaps suggesting lateral expansion that

only affects a fraction of the jet. The post-break decline of GRB 160509A is consistent with both the

t−3/4 steepening and with fν ∝ t−p. We also use boxfit to fit afterglow models to both light curves

and find both to be energetically consistent with a millisecond magnetar central engine, although the

magnetar parameters need to be extreme (i.e. E ∼ 3 × 1052 erg). Finally, the late-time radio light

curves of both afterglows are not reproduced well by boxfit and are inconsistent with predictions

from the standard jet model; instead both are well represented by a single power law decline (roughly

fν ∝ t−1) with no breaks. This requires a highly chromatic jet break (tj,radio > 10 × tj,optical) and

possibly a two-component jet for both bursts.

Keywords: gamma-ray burst: general — gamma-ray burst: individual (GRB 160625B; GRB 160509A)

— relativistic processes

1. INTRODUCTION

Corresponding author: Tuomas Kangas

tkangas@stsci.edu

Gamma-ray bursts (GRBs) are among the most lumi-

nous transient events in the universe. Through their

association with broad-lined type Ic supernovae (e.g.

Iwamoto et al. 1998; Woosley & Bloom 2006; Hjorth

& Bloom 2012), long GRBs (LGRBs; duration of the
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prompt γ-ray emission more than 2 s) have been estab-

lished as the terminal core-collapse explosions of mas-

sive stars at cosmological distances (e.g. Paczynski 1986;

Woosley 1993; MacFadyen & Woosley 1999), where an

ultra-relativistic jet is launched and breaks out of the

stellar envelope, generating the initial prompt emission

of γ rays through an as yet unclear mechanism (for a

review on GRB physics, see e.g. Piran 2004; Kumar &

Zhang 2015). The central engine responsible for launch-

ing the jet and powering the emission may be either

accretion onto a black hole formed in the core collapse

(Woosley 1993) or rotational energy released through

the spin-down of a nascent magnetar (e.g. Bucciantini

et al. 2008, 2009). The prompt emission of a GRB is fol-

lowed by an afterglow from X-ray to radio frequencies –

synchrotron emission from an external shock created by

the interaction between the circumburst medium (CBM)

and the highly collimated and relativistically beamed jet

(e.g. Paczynski & Rhoads 1993; Sari et al. 1998; Piran

2004). The flux density of the afterglow declines as a

power law of the form fν ∝ tα.

As the jet interacts with the CBM, it decelerates and

the relativistic beaming effect diminishes over time (on

the order of days or weeks after a long GRB; e.g. Racusin

et al. 2009). This results in an achromatic jet break in

the afterglow light curve when the relativistic beaming

angle (Γ−1, where Γ is the bulk Lorentz factor in the

jet) becomes comparable to the opening angle of the jet

(Rhoads 1999; Sari et al. 1999), with a steeper power-

law decline after the break. The post-break decline is

affected by a geometric ’edge effect’, in contrast to the

situation pre-break where the observer only sees a frac-

tion of the jet front and hence behaviour consistent with

an isotropic fireball model. This phenomenon is believed

to steepen the decline slope α by −3/4 over the break

assuming a constant-density CBM, or by −1/2 in the

case of a wind-like CBM (e.g. Mészáros & Rees 1999;

Panaitescu & Mészáros 1999; Kumar & Zhang 2015).

Another effect is that, around the same time as this hap-

pens, transverse sound waves become able to cross the

jet and lateral expansion starts, exponentially decelerat-

ing the shock wave. Theoretically the post-break slope

in this scenario is expected to be equal to −p (e.g. Sari

et al. 1999), where p is the index of the electron Lorentz

factor distribution (N(γ) ∝ γ−p), typically estimated

to be between 2 and 3. There is, however, evidence

from numerical simulations that the lateral expansion is

unimportant until a later stage – at least unless the jet

is very narrow, θj . 3 deg (Lyutikov 2012; Granot &

Piran 2012). At even later times, the jet is expected to

be better described as a non-relativistic fireball in the

Sedov-von Neumann-Taylor regime, resulting in a some-

what flatter decline (e.g. Frail et al. 2000; van der Horst

et al. 2008).

Simulations of relativistic shocks have resulted in val-

ues around p ≈ 2.2 (e.g. Bednarz & Ostrowski 1998;

Gallant et al. 1999; Kirk et al. 2000). In the X-rays, the

pre-break light curve tends to follow a decline around

t−1.2 (albeit with some variation; e.g. Piran 2004; Zhang

et al. 2006); thus both of these effects result in a roughly

similar post-break decline (i.e. ∼ t−2, though with high

uncertainties due to the the fast decline and the result-

ing faintness; often there are not enough data to distin-

guish between t−1.9 and t−2.2). Thus determining the

exact scenario observationally requires late-time obser-

vations of the rapidly declining afterglows to constrain

this slope.

The Large Area Telescope (LAT) on the Fermi

Gamma-ray Space Telescope has detected a number

of GRBs at relatively high energies (MeV to GeV)

since the launch of Fermi in 2008. These are often

among the most energetic GRBs, consistent with the

Amati correlation between isotropic-equivalent energy

Eiso and the peak of the energy spectrum (Amati et al.

2002), and can haveisotropic-equivalent energies on the

order of 1054 erg (Cenko et al. 2011). Some of these

most energetic bursts do not exhibit the expected jet

breaks, suggesting larger opening angles than expected

and making them even more energetic intrinsically (De

Pasquale et al. 2016; Gompertz & Fruchter 2017). With

beaming-corrected energies on the order of 1052 erg,

magnetar spin-down models struggle to produce the re-

quired power (Cenko et al. 2011). Thus examining the

late-time evolution of the LAT bursts can shed light on

the physics of the most energetic GRBs.

In this paper, we present results from our late-

time Hubble Space Telescope (HST ), Karl G. Jansky

Very Large Array (VLA) and Chandra X-ray Obser-

vatory imaging observations of the afterglows of two

LAT bursts, GRB 160625B and GRB 160509A. GRB

160625B was discovered by the Gamma-ray Burst Mon-

itor (GBM) on Fermi on 2016 June 25 at 22:40:16.28

UT (MJD 57564.9; Dirirsa et al. 2016) and detected

by the LAT as well. Xu et al. (2016) determined its

redshift to be z = 1.406. It was one of the most ener-

getic γ-ray bursts ever observed with Eiso ∼ 3×1054 erg

(Wang et al. 2017; Zhang et al. 2018), and a well-studied

object with a multi-frequency follow-up that revealed

signs of a reverse shock within the jet (Alexander et al.

2017). The jet break time was unusually long, around

20 days, as expected from unusually bright GRBs (the

median time is ∼ 1 d, with more energetic bursts hav-

ing longer break times; see Racusin et al. 2009). GRB

160509A was detected by GBM and LAT on 2016 May
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9 at 08:59:04.36 UT (MJD 57517.4; Roberts et al. 2016;

Longo et al. 2016a,b) at a redshift of z = 1.17 (Tanvir

et al. 2016). With Eiso = 8.6± 1.1× 1053 erg, this was

another luminous burst that exhibited signs of a reverse

shock as well (Laskar et al. 2016).

Our observations of GRB 160625B make its follow-

up one of the longest post-jet-break optical and X-ray

follow-ups of a GRB afterglow1, thus providing one of

the best estimates of the post-break decline in these

bands so far, while for GRB 160509A no prior estimates

of the infrared/optical post-break decline could be made

due to the very sparse light curve.

Our observations and data reduction process are de-

scribed in Section 2. Our analysis and results are pre-

sented in Section 3. In Section 4, we discuss the implica-

tions of our findings, and finally present our conclusions

in Section 5. All magnitudes are in the AB magnitude

system (Oke & Gunn 1983) and all error bars correspond

to 1σ confidence intervals. We use the cosmological pa-

rameters H0 = 69.6 km s−1 Mpc−1, Ωm = 0.286 and

ΩΛ = 0.714 (Bennett et al. 2014).

2. OBSERVATIONS AND DATA REDUCTION

Late-time imaging observations of GRB 160625B were

performed using HST/WFC3 and the F606W filter on

2016 September 5 (71.5 d) and 2016 November 13 (140.2

d). A template image of the host galaxy was created

by combining images obtained with the same setup on

2017 November 6 (498.3 d) and 11 (503.6 d). At this

time the contribution of the afterglow itself was a factor

of ∼ 13 fainter than at 140 d, assuming a fν ∝ tα de-

cline where α = −2. Imaging of GRB 160509A in the H

band was performed using the Canarias InfraRed Cam-

era Experiment (CIRCE; Eikenberry et al. 2018) instru-

ment on Gran Telescopio Canarias (GTC) on 2016 May

15 (5.8 d) and 2016 June 3 (24.8 d). Late-time imag-

ing of GRB 160509A was done using HST/WFC3 and

the F110W and F160W filters on 2016 June 13 (35.3

d); template images of the host galaxy in these filters

were obtained on 2017 July 5 (422.1 d), when, assuming

α = −2, the afterglow was a factor of 143 fainter. Our

HST observations of both bursts were executed as part

of program GO 14353 (PI Fruchter), and these data are

available at 10.17909/t9-yvpg-xb33 (GRB 160625B) and

10.17909/t9-11cx-cv41 (GRB 160509A).

Basic reduction and flux calibration of the HST im-

ages was performed by the HST calwf3 pipeline. The

1 The post-break light curve of GRB 060729 (Grupe et al. 2010)
and GRB 170817A (Hajela et al. 2019) has been followed up
longer, while GRB 130427A was followed for ∼ 1000 days (De
Pasquale et al. 2016), but exhibited no jet break.

calibrated images were corrected for distortion, drizzled

(Fruchter & Hook 2002) and aligned to a common world

coordinate system using the astrodrizzle, tweakreg

and tweakback tasks in the drizzlepac2 package in

pyraf3. The two epochs of GRB 160625B in November

2017 were combined into one template image. Subtrac-

tion of the template images and aperture photometry

of the afterglows were done using iraf4. Basic reduc-

tion of the GTC/CIRCE data was done using standard

iraf tasks. The HST F160W template image was sub-

tracted from the CIRCE images using the isis 2.2 pack-

age (Alard & Lupton 1998; Alard 2000). Flux calibra-

tion was done using field stars in the Two-Micron All

Sky Survey (2MASS) catalog5 (Skrutskie et al. 2006),

and aperture photometry was performed using standard

iraf tasks. At 24.8 d, we were unable to detect the af-

terglow and only obtained a (3σ) limit of H ≥ 21.9 mag.

The measured magnitudes of GRB 160625B were cor-

rected for over-subtraction caused by the continued pres-

ence of a faint afterglow in the template image. Assum-

ing a post-jet-break decline of α = −2.0± 0.2 (obtained

from a single-power-law fit to uncorrected > 25 d data,

with errors rounded up to be conservative), the after-

glow flux present in the template image was estimated

to be 2.0± 1.0 per cent of the flux at 71.5 d or 7.5± 2.6

per cent of the flux at 140.2 d, and thus the images

at these epochs were over-subtracted by approximately

these amounts. The magnitudes were adjusted for this;

the errors of the corrected magnitudes include an esti-

mate of the uncertainty of the over-subtraction. The

magnitudes of GRB 160509A were not corrected, as the

contribution of the afterglow in the template image was

only estimated to be 0.7 per cent of the 35.3 d bright-

ness. The log of optical observations and measured and

corrected magnitudes of GRB 160625B are presented in

Table 1, while Table 2 contains the near-infrared obser-

vations of GRB 160509A. Figure 1 shows our F606W

band images and the resulting template subtractions of

GRB 160625B, while Figure 2 shows the F160W image

and subtraction of GRB 160509A.

Late-time X-ray imaging of both GRBs was performed

using Chandra/ACIS-S in VFAINT mode (proposal ID

17500753, PI Fruchter). GRB 160625B was observed on

2016 September 3 (69.8 d), 2016 November 15 (142.3 d)

2 http://drizzlepac.stsci.edu/
3 http://www.stsci.edu/institute/software hardware/pyraf
4 iraf is distributed by the National Optical Astronomy Ob-

servatory, which is operated by the Association of Universities
for Research in Astronomy (AURA) under cooperative agreement
with the National Science Foundation.

5 http://www.ipac.caltech.edu/2mass/

https://doi.org/10.17909/t9-yvpg-xb33
https://doi.org/10.17909/t9-11cx-cv41
http://drizzlepac.stsci.edu/
http://www.stsci.edu/institute/software_hardware/pyraf
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Figure 1. Afterglow and host galaxy of GRB 160625B in
the F606W band. Panel a: the afterglow and the host galaxy
at 71.5 d; b: 140.2 d; c: the combined template at ∼ 500
d; d : the template-subtracted image at 71.5 d; and e: the
subtraction at 140.2 d. North is up and East is to the left
in all panels. The black North-South line corresponds to
one arcsecond. The afterglow location is indicated with red
tick-marks.

and 2016 November 19 (146.2 d). The latter two epochs

were combined to obtain the flux at 144.3 ± 2.2 d, as

the flux of the afterglow was not expected to vary sig-

nificantly over a few days at this time. GRB 160509A

was observed on 2016 June 20 (42.1 d). Reprocess-

ing of the Chandra level 1 data was performed using

the chandra repro script within the ciao v. 4.9 soft-

ware (caldb v. 4.7.7; Fruscione et al. 2006), and aper-

ture photometry was done using iraf. The web-based

Portable Interactive Multi-Mission Simulator (pimms6)

was used to convert count rates in the 0.3 – 10 keV

range to unabsorbed flux densities at 5 keV. For GRB

160625B, we used a Galactic neutral hydrogen column

density NH,MW = 9.76 × 1020 cm−2 (Willingale et al.

2013), a photon index of ΓX = 1.86 and an intrinsic

absorption of NH,int = 2.1 × 1021 cm−2 as derived by
Alexander et al. (2017). These parameters are also con-

sistent with the initial analysis by Melandri et al. (2016).

For GRB 160509A, we used a Galactic neutral hydrogen

column density NH,MW = 2.12× 1021 cm−2 (Willingale

et al. 2013), a photon index of ΓX = 2.07 and an intrin-

sic absorption of NH,int = 1.52 × 1022 cm−2, following

Laskar et al. (2016). ΓX is assumed to be constant over

the light curve break. The log of X-ray observations and

derived flux densities is presented in Table 3.

GRB 160625B was observed in the radio using the

VLA in the C, K, X and/or Ku bands at five epochs be-

tween 2016 March 30 (4.5 d) and 2017 January 20 (209.0

d), and GRB 160509A in the C and X bands on 2016

6 https://heasarc.gsfc.nasa.gov/docs/software/tools/pimms.html

Figure 2. Afterglow and host galaxy of GRB 160509A in
the F160W band. Panel a: the afterglow and the host galaxy
at 35.3 d; b: the template at 422.1 d; c: the template-
subtracted image at 35.3 d. North is up and East is to the
left in all panels. The black North-South line corresponds
to one arcsecond. The afterglow location is indicated with
red tick-marks. The afterglow is very weak compared to the
host galaxy, making a template subtraction crucial for this
target.

Table 1. Log of our late-time HST/WFC3 observations of
GRB 160625B.

Phase MJD texp F606W corrected F606W

(d) (s) (mag) (mag)

71.5 57636.4 2400 25.38 ± 0.03 25.36 ± 0.04

140.2 57705.1 4800 26.76 ± 0.06 26.67 ± 0.07

498.3 58063.2 4800 ... ...

503.6 58068.5 4800 ... ...

June 2 (23.9 d), 2016 June 15 (36.9 d) and 2016 July

28 (79.9 d) (program IDs S81171 and SH0753, PI Cenko

and Fruchter respectively). The observations were done

in the B configuration, apart from the last GRB 160625B

point where configuration A was used. The log of our

observations is presented in Table 4. The data were

reduced using the Common Astronomy Software Appli-

cations package (CASA; McMullin et al. 2007)7. Cal-

ibration was carried out using the standard VLA cali-

bration pipeline provided in CASA. For GRB 160625B

we used J2049+1003 as our complex gain calibrator and

3C48 as our flux and bandpass calibrator. For GRB

160509A we used J2005+7752 as our complex gain cal-

ibrator and 3C48 as our flux and bandpass calibrator.

After calibration, the data were manually inspected for

radio-frequency interference flagging. Imaging was car-

ried out using the clean algorithm in interactive mode

in CASA. Flux densities reported in Table 4 correspond

to peak flux densities measured in a circular region cen-

tered on the GRB position, with radius comparable to

the nominal full width half maximum of the VLA syn-

thesized beam in the appropriate configuration and fre-

quency band. The reported errors include the VLA cal-

7 https://casa.nrao.edu

https://heasarc.gsfc.nasa.gov/docs/software/tools/pimms.html
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Table 2. Log of our late-time HST/WFC3 and GTC/CIRCE observations of GRB 160509A.

Phase MJD texp,F110W F110W texp,F160W F160W texp,H H

(d) (s) (mag) (s) (mag) (s) (mag)

5.8 57523.2 ... ... ... ... 3060 20.50 ± 0.17

24.8 57542.2 ... ... ... ... 2100 ≥ 21.9

35.3 57552.7 2697 27.11 ± 0.10 2797 26.07 ± 0.07 ... ...

422.1 57939.5 2697 ... 2797 ... ... ...

Table 3. Log of our late-time Chandra/ACIS-S observations
of GRB 160625B and GRB 160509A.

Phase MJD texp fν(5 keV)

(d) (ks) (erg s−1 cm−2 keV−1)

160625B

69.8 57634.7 19.80 (1.47 ± 0.29) × 10−15

142.3 57707.3 45.84 ...

144.3 ± 2.2a 57709.3 ± 2.2 69.56 (3.21 ± 0.79) × 10−16

146.2 57711.2 23.72 ...

160509A

42.1 57559.5 24.75 (1.38 ± 0.25) × 10−15

aCombination of the 142.3 and 146.2 d epochs.

ibration uncertainty, which is assumed to be 5 per cent

below 18 GHz and 10 per cent above it8.

3. ANALYSIS

3.1. GRB 160625B

As our HST observations took place after the jet

break, we combined our data set with earlier ground-

based observations. Both Alexander et al. (2017) and

Troja et al. (2017) have published SDSS r′ band light

curves of GRB 160625B. However, there is a slight

(∼ 0.1 mag) systematic offset between these data, so

in our light curve fits we have only used the Troja et al.

(2017) data set, which has a larger number of data points

and which was directly tied to the PanSTARRS mag-

nitude system. Magnitudes of GRB 160625B in the

r′ band were converted to flux density at the central

wavelength of the F606W filter (5947 Å) assuming a

spectral slope of fν ∝ ν−0.68 between the characteristic

synchrotron frequency νm and the cooling frequency νc
(Alexander et al. 2017). As the optical spectrum with

β = −0.68 ± 0.07 is consistent with the expected in-

dex of β = −0.65 when p = 2.3 (also consistent with the

light curve; see Section 4.2.1), host extinction is assumed

to be negligible. Optical fluxes have been corrected for

Galactic reddening, E(B − V ) = 0.1107 mag (Schlafly

& Finkbeiner 2011), assuming the Cardelli et al. (1989)

8 (https://science.nrao.edu/facilities/vla/docs/manuals/oss/
performance/fdscale)

Table 4. Log of our VLA radio observations of GRB
160625B and GRB 160509A. The GRB 160625B points until
31.3 d were also reported in Troja et al. (2017), but without
the calibration uncertainty.

Phase MJD ν fν Configuration

(d) (GHz) (µJy)

160625B

4.5 57569.4 4.8 104 ± 16 B

4.5 57569.4 7.4 454 ± 27 B

4.5 57569.4 19 278 ± 35 B

4.5 57569.4 25 204 ± 36 B

13.4 57578.3 4.8 377 ± 25 B

13.4 57578.3 7.4 310 ± 21 B

13.4 57578.3 22 163 ± 20 B

31.3 57596.2 7.4 113 ± 16 B

31.3 57596.2 22 88 ± 19 B

58.3 57623.2 6.1 75 ± 11 B

58.3 57623.2 22 52 ± 13 B

209.0 57773.9 6.1 16 ± 5 A

160509A

23.9 57541.3 6.0 80 ± 8 B

23.9 57541.3 9.0 71 ± 7 B

36.9 57554.3 5.0 50 ± 7 B

36.9 57554.3 6.9 52 ± 7 B

36.9 57554.3 8.5 41 ± 6 B

36.9 57554.3 9.5 29 ± 6 B

79.9 57597.3 6.0 27 ± 6 B

79.9 57597.3 9.0 25 ± 5 B

extinction law. In the X-ray, we combined our Chan-

dra data with the GRB 160625B light curve from the

Swift/XRT lightcurve repository9 (Evans et al. 2007,

2009), converted to 5 keV flux densities using pimms

as described in Section 2.

We then fitted a smooth broken power law of the form

fν = fν,0

[( t
tj

)−ωα1

+
( t
tj

)−ωα2
]− 1

ω

(1)

to the light curve, where tj is the jet break time, α1 is

the pre-break power-law slope, α2 the post-break slope,

9 http://www.swift.ac.uk/xrt curves/

https://science.nrao.edu/facilities/vla/docs/manuals/oss/performance/fdscale
https://science.nrao.edu/facilities/vla/docs/manuals/oss/performance/fdscale
http://www.swift.ac.uk/xrt_curves/
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Figure 3. Observed optical (extinction-corrected), X-ray
and interpolated 6.1 GHz light curve of the afterglow of GRB
160625B (points) and our power law fits including the broken
power laws described by Eq. 1 (lines). The r′-band magni-
tudes from Troja et al. (2017) (solid circles) have been con-
verted into flux density. X-ray flux densities from Swift/XRT
(solid triangles) and Chandra/ACIS-S (open triangles) are
reported at 5 keV. The post-break fit is better assuming
ω = 10 (dot-dashed green line), especially regarding the opti-
cal HST point at 140.2 d. The pre-break fit does not depend
on the choice of ω.

and ω describes the sharpness of the break. We fitted

this function to both the optical and the X-ray curve

using two values, 3 and 10, for ω (a value of 3 was found

consistent with most GRB observations by Liang et al.

2007, but some events were found to require a sharper

break with ω = 10). The results of the fit parameters

are presented in Table 5. The pre-break decline α1 does

not depend on the choice of ω; we found α1,F606W =

−0.96 ± 0.01 and α1,X = −1.24 ± 0.02 in both cases.

The best fit to the post-break decline was α2,F606W =

−2.27± 0.13 and α2,X = −2.40± 0.19 assuming ω = 3,

and α2,F606W = −1.96 ± 0.07 and α2,X = −2.23 ± 0.15

when ω = 10. The optical and X-ray light curves and

our best fits in both cases are shown in Figure 3.

We also fitted the decline using a single power law

before 8.5 d and another after 26.5 d, ignoring the points

in the vicinity of the break itself. The r′ band light curve

contains at least one smooth ’bump’ feature, possibly

two depending on tj (we discuss the nature of the bump

in Section 4.1). These may disturb the optical broken

power-law fits; the reduced χ2 values of these fits are

rather high, although the small errors also contribute

to this. The result is α2,F606W = −1.94 ± 0.13, nearly

exactly coinciding with the ω = 10 case but with a ∼
2.5σ difference to ω = 3. Repeating this in the X-ray

results in α2,X = −2.20 ± 0.13, which is also almost

identical to the ω = 10 case. A simultaneous single

Table 5. Parameters of the best smooth broken power law
fits to the GRB 160625B light curves and of the single power
law (SPL) fits to the early and late decline, ignoring the
bump(s) between 8.5 and 26.5 d.

Parameter ω = 3 ω = 10 SPL

tj,F606W 24 ± 3 d 17 ± 2 d 17 ± 4 d

α1,F606W −0.96 ± 0.01 −0.96 ± 0.01 −0.97 ± 0.01

α2,F606W −2.27 ± 0.13 −1.96 ± 0.07 −1.94 ± 0.13

Reduced χ2 5.5 4.4 1.8

tj,X 27 ± 5 d 22 ± 4 d 22 ± 5 d

α1,X −1.24 ± 0.02 −1.24 ± 0.02 −1.25 ± 0.03

α2,X −2.40 ± 0.19 −2.23 ± 0.15 −2.20 ± 0.13

Reduced χ2 0.91 0.81 0.84

power law fit to both post-break light curves results in

α2 = −2.01± 0.09.

Assuming an achromatic break, we determined tj by

taking the weighted average of tj,F606W and tj,X. In the

ω = 10 case, the result is tj = 19 ± 2 d. Assuming an

instantaneous break (corresponding to ω =∞) between

the single power law fits, the resulting jet break times

are consistent, tj,F606W = 17± 4 d and tj,X = 22± 5 d,

and the weighted average tj = 19 ± 3 d. In the ω = 3

case, we obtained tj = 25± 3 d.

For the radio light-curve of GRB 160625B, we com-

bined flux measurements from Alexander et al. (2017)

and Troja et al. (2017) with our own data. At 58.3 d and

209.0 d we have observations at 6.1 GHz; we therefore

obtained flux densities at 6.1 GHz by power-law interpo-

lation between 5 and 7.1 GHz literature values at 22.5

and 48.4 d. We also scaled the 7.4 GHz flux at 31.34

d assuming the same power law as at 22.5 d. Points

earlier than 22.5 d were ignored in the analysis of the

late afterglow due to the influence of the reverse shock

(Alexander et al. 2017). The resulting best fit for the

late-time light curve is α6.1GHz = −1.08±0.11 as shown

in Figure 3.

Additionally, we used the boxfit v.2 afterglow fit-

ting code (van Eerten et al. 2012), based on the Af-

terglow Library10, to fit the light curve. The library

of models itself was constructed using the relativistic

hydrodynamics code ram (Zhang & MacFadyen 2006).

boxfit then uses a downhill simplex method with sim-

ulated annealing to find the best fit, interpolating be-

tween these models. We omitted the pre-break radio

points due to the influence of the reverse shock in the

early light curve, and all the radio points below 5 GHz

due to possible strong Milky Way scintillation (Alexan-

10 http://cosmo.nyu.edu/afterglowlibrary/index.html
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Table 6. Best-fit physical parameters of the best boxfit fits
to GRB 160625B at three different values of the participation
fraction ξ.

Parameter ξ = 1 ξ = 0.1 ξ = 0.01

p 2.30 2.05 2.05

EK,iso (erg) 1.8 × 1054 1.4 × 1054 1.3 × 1055

εe 0.13 0.25 0.024

εB 0.030 3.0 × 10−4 5.8 × 10−5

n (cm−3) 1.1 × 10−5 0.18 0.96

θj (rad) 0.059 0.14 0.13

θj (deg) 3.4 7.8 7.2

θobs (rad) 0.012 1.1 × 10−3 1.1 × 10−3

θobs (deg) 0.69 0.07 0.06

Etot (erg) 8.3 × 1051 4.1 × 1052 1.3 × 1053

η 0.62 0.68 0.19

χ2/d.o.f 8.6 4.6 4.5

der et al. 2017). We also included the ultraviolet to

near-infrared frequency data from Troja et al. (2017).

We assumed an ISM-like CBM (the light curve rules out

a wind-type CBM; see Section 4.2.1) and performed the

fit with three different values of the participation frac-

tion ξ, i.e. the fraction of electrons accelerated by the

shock into a non-thermal power-law distribution. Simu-

lations indicate this value can be as low as 0.01 (Sironi &

Spitkovsky 2011; Sironi et al. 2013; Warren et al. 2018);

we used fixed values of 1 (commonly assumed in the lit-

erature), 0.1 and 0.01. All other model parameters were

allowed to vary within the full range allowed by box-

fit. The resulting best-fit parameters are summarized

in Table 6. Taking the isotropic-equivalent γ-ray energy

Eiso = 3.0 × 1054 erg (with the fluence from Svinkin

et al. 2016), we also calculate the geometry-corrected

total energy and the efficiency η = Eiso/(EK,iso + Eiso)

for the conversion of kinetic energy to γ-rays. These fits,

however, fail to reproduce the measured power law slope

of α6.1GHz = −1.08± 0.11, instead predicting a break in

the radio light curve around ∼ 100 d (associated with

the passage of νm through this band). See Figure 4 for

our best boxfit light curve fits. For clarity, we plot the

U , F606W and H bands, covering the optical/infrared

behavior from early to late times, but omit the other

optical/infrared bands, which exhibit very similar be-

havior (see Troja et al. 2017). While the late-time 6.1

GHz light curve can be reproduced slightly better at low

ξ values, the fit at higher frequencies or earlier times is

still somewhat worse; we show 22 GHz as an example.

As some optical and X-ray observations are nearly

contemporaneous, we can construct the spectral energy

distribution (SED) of GRB 160625B. Figure 5 shows

the SED at four epochs around or after the break, along
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Figure 4. Observed X-ray, optical (U , F606W and H bands
shown here) and interpolated 6.1 and 22 GHz light curves of
the afterglow of GRB 160625B (points), and the best fits
given by boxfit (lines) at indicated participation fraction ξ.
The shape of the radio light curve is not well reproduced by
any of the fits. Data denoted by grey points are ignored in
the fitting (see text).
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Figure 5. Observed spectral energy distribution of GRB
160625B (points) at late times, interpolated as necessary to
the indicated dates, and the best fits given by boxfit (lines)
at indicated participation fraction ξ, using an constant CBM
density profile. Data denoted by grey points are ignored in
the fitting (see text).

with spectra produced by boxfit at these epochs. The

power-law slope of the SED, β, between the optical (r)

and X-ray (5 keV) bands, steepens slightly over time,

from −0.79 ± 0.02 between 3 and 10 d to −0.86 ± 0.04
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Figure 6. Observed F160W (extinction-corrected), X-ray
and interpolated 6 and 9 GHz light curves of the afterglow
of GRB 160509A (points) and our power law fits including
the broken power laws described by Eq. 1 (lines). The red
triangle is the upper limit of the F160W flux at 24.8 d. X-ray
flux densities from Swift/XRT (solid triangles) and Chan-
dra/ACIS-S (open triangles) are reported at 5 keV. Both
choices of ω fit the late light curve equally well. The early
light curve exhibits a shallower decay and another break, and
thus points before 4 × 104 s (grey) are ignored.

at 141 d. This is steeper than −0.65, expected from

p ≈ 2.3 implied by the early optical and X-ray light

curves (see Section 4.2.1) for ν < νc, but shallower than

−1.15, which is expected for ν > νc. Alexander et al.

(2017) obtain an early X-ray spectral slope similar to

this, βX = −0.86+0.09
−0.10, and explain this as νc being lo-

cated just below the X-ray band. However, according

to the UKSSDC Swift Burst Analyser11 the X-ray pho-

ton index ΓX (and thus the spectral slope in X-ray)

does not significantly evolve over the first 30 d but stays

around ∼ 1.8, after which the spectrum seems to flatten

to ΓX ∼ 1.1. This feature may not be real, though, as

the Burst Analyzer light curve deviates much more from

a clean power law when this is used in flux calculation

– thus we assume a constant ΓX
12. If νc was initially

just below X-ray and changed as νc ∝ t−1/2, one would

expect the spectrum to instead steepen over time to its

ν � νc value. We discuss this evolution further in Sec-

tion 4.2.1.

3.2. GRB 160509A

It was noted in Laskar et al. (2016) that the host

galaxy of GRB 160509A contributes substantially to the

11 http://www.swift.ac.uk/burst analyser/00020667/
12 The post-break X-ray slope would not change by changing

ΓX at the latest Swift points, as Chandra points would be affected
equally – but tj,X could be delayed.
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optical and infrared photometry, and that the event oc-

curred behind a significant amount of extinction in the

host galaxy. In order to estimate the host galaxy extinc-

tion along the line of sight to the GRB, we removed the

foreground Galactic reddening of E(B − V ) = 0.2519

mag (Schlafly & Finkbeiner 2011) using the Cardelli

et al. (1989) law, and assumed a fν ∝ νβ SED, where

β = −0.6 (consistent with ν < νc and p ≈ 2.2, deter-

mined based on the X-ray spectrum and light curve by

Laskar et al. 2016). For the host, we assume the Pei

(1992) extinction law for the Small Magellanic Cloud

(SMC), as both Kann et al. (2006) and Schady et al.

(2012) found the extinction curve in the SMC consis-

tent with their samples. We fitted the observed optical-

infrared SED simultaneously at two epochs, corrected

using this extinction curve, to find the required extinc-

tion correction to match β = −0.6. The GRB flux in

the g′ band at 1 d was estimated by subtracting the

observed flux at 28 d (g′ = 25.39 ± 0.12; Laskar et al.

2016) from the flux at 1.0 d (g′ = 25.03 ± 0.15; Cenko

et al. 2016). The host is assumed to dominate at 28 d

due to the flatness of the light curve even after the X-

ray break. In the J band, we subtracted the flux of the

host galaxy measured in the HST F110W filter (using

a 1 arcsec aperture) from the flux at 1.2 d (J ≈ 19.7;

Tanvir et al. 2016). The r′ band was not included in the

SED, as the late and early fluxes are consistent within

1σ (Cenko et al. 2016; Laskar et al. 2016). Our F110W

and F160W observations at 35.3 d made up the other

epoch to be fitted simultaneously. The resulting host

extinction is AV = 2.8± 0.1 mag in the rest-frame (this

is somewhat lower than the result obtained by Laskar

et al. 2016, using an afterglow model fit where the host

flux was a free parameter). Using the Pei (1992) law,

the extinction correction in F160W (approximately i-

band in the rest frame) is thus 1.5 mag. In the Milky

Way, the adopted NH,int = 1.52× 1022 cm−2 would cor-

respond to AV ≈ 6.9 mag (Güver & Özel 2009), sug-

gesting a low AV /NH ratio for Milky Way standards

but higher than that of most GRB hosts. This ratio is

consistent with the AV vs. NH/AV relation in Krühler

et al. (2011). As in the case of GRB 160625B, we com-

bined our Chandra data of GRB 160509A with the data

from the Swift/XRT light curve repository converted to

5 keV flux densities.

The CIRCE H-band fluxes were converted to the nar-

rower F160W filter assuming β = −0.6. The F160W

and X-ray data and our power-law fits are presented

in Figure 6, and the parameters of the fits are listed

in Table 7. For our power law fits we ignore the data

points before ∼ 0.5 d (4×104 s), as the early X-ray light

curve may contain a plateau and/or a flare; see Figure

Table 7. Parameters of the best smooth broken power law
fits to the GRB 160509A X-ray light curve.

Parameter ω = 3 ω = 10

tj,X 3.2 ± 0.9 d 3.7 ± 0.8 d

α1,X −1.06 ± 0.10 −1.20 ± 0.06

α2,X −1.98 ± 0.10 −1.96 ± 0.09

Reduced χ2 0.84 0.85

6. In this case the smooth- and sharp-break scenarios

give similar results: the best fit for the post-break de-

cline for ω = 3 is α2,X = −1.98 ± 0.10 and for ω = 10,

α2,X = −1.96 ± 0.09. The jet-break times, 3.2 ± 0.9 d

and 3.7 ± 0.8 d, respectively, are consistent with each

other as well.

In the radio, we obtained the fluxes at 6 and 9 GHz at

the epochs earlier than 79.9 d by power-law interpolation

between observed fluxes – our measurements at 36.9 d

and those published in Laskar et al. (2016) at earlier

times. We then fitted a single power law to the points

where the reverse shock should no longer dominate the

radio flux (i.e. ≥ 10 days; Laskar et al. 2016). The

resulting decline slopes are α6GHz = −0.91 ± 0.11 and

α9GHz = −0.92± 0.13. Since the reverse shock may still

be contributing a non-negligible fraction of the flux at

10 d, we also performed the fit without this epoch. The

results are consistent but less constraining: α6GHz =

−1.07 ± 0.18 and α9GHz = −0.92 ± 0.21. The slopes

at other frequencies between 5 and 16 GHz, fitted from

10 to 20 d, are all consistent with these, ranging from

−0.80 ± 0.10 (7.4 GHz) to −1.02 ± 0.04 (8.5 GHz). In

F160W and/or H, we only have two points and an upper

limit; therefore we simply measure the decline assuming

a single power law. As the first point at 5.8 d is after

the jet break time we obtained from the X-ray fit, there

should be no significant deviation from a single power

law. The measured decline is α2,F160W = −2.09± 0.10,

consistent within 1σ with the X-ray decline.

Using boxfit, we again fitted the light curve at three

different values of ξ: 1, 0.1 and 0.01. As with the power-

law fits, the X-ray points before 0.6 d were ignored, since

boxfit cannot accommodate continuous energy injec-

tion. Radio points with a significant reverse shock con-

tribution were also ignored (i.e. < 10 d; at frequencies

< 5 GHz also 10.03 d; see Laskar et al. 2016). We ran

boxfit with the boosted-frame wind-like CBM model

(with both strong and medium boost) and a lab-frame

model with ISM-like CBM, as the lack of optical data

makes it difficult to distinguish between different CBM

profiles (although the ISM scenario is tentatively favored

by Laskar et al. 2016). However, as shown in Figure 7,

our fits in a wind CBM do not reproduce the jet break
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Figure 7. Observed X-ray and optical/infrared light curves
and the interpolated 6 and 9 GHz light curves of the after-
glow of GRB 160509A (points), and the best fit given by
boxfit (lines) using a wind-type CBM density profile and
ξ = 0.1. The observed X-ray break is not reproduced (and
indeed no break is seen even much later), and therefore a
wind-type CBM is not considered further. Fits using ξ = 1
and ξ = 0.01 produce a similar light curve. Data denoted by
grey points are ignored in the fitting (see text).

clearly detected in the X-ray light curve. Even with the

parameters in Laskar et al. (2016), the break only ap-

pears at ∼ 100 d and the X-ray fit is much worse than

with an ISM-type CBM. Thus the analytical model and

boxfit seem to disagree on how the jet behaves in a

wind-type CBM, and we concentrate on the ISM sce-

nario. The best ISM fits are shown in Figure 8; Figure

9 shows the SED at three post-break epochs along with

specra produced by boxfit at these epochs. Our re-

sulting best-fit parameters are summarized in Table 8.

These fits (including the wind fits) again fail to match

the observed shape of the radio light curve, although the

amplitude of the flux can be reproduced at some epochs.

4. DISCUSSION

4.1. The shape of the break

In the X-ray, we find little difference in the reduced χ2

values of the fits between a sharp and a smooth break

for GRB160625B. In the optical, however, fixing ω = 3

results in a visible and significant residual of 4.2σ at

140.2 d, while fixing ω = 10 results in a residual of

1.5σ. The reduced χ2 of the latter fit is also slightly

smaller. In the optical light curve, one can see either

one slight bump or two, depending on the break time.

These deviations from a perfect power law may disturb

the fit and cause the high χ2 values, which suggests that

one should also try only using the post-break points.

Simply fitting a single power law to the points after 26.5

d results in consistency with the ω = 10 case. We thus
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Figure 8. Observed X-ray and optical/infrared light curves
and the interpolated 6 and 9 GHz light curves of the after-
glow of GRB 160509A (points), and the best fits given by
boxfit (lines) at indicated participation fraction ξ, using an
ISM-type CBM density profile. The radio light curve shape
is again not well reproduced by the fits. Data denoted by
grey points are ignored in the fitting (see text).
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Figure 9. Observed spectral energy distribution of GRB
160509A (points) at late times, interpolated as necessary
to the indicated dates, and the best fits given by boxfit
(lines) at indicated participation fraction ξ, using an ISM-
type CBM density profile.

conclude that while both values of ω remain plausible,

a sharp break with ω = 10 is more likely. A sharp

break also implies a small viewing angle θobs (Ryan et al.

2015), which is compatible with the boxfit results for

this burst.

Table 8. Best-fit physical parameters of the best boxfit fits
to GRB 160509A at three different values of the participation
fraction ξ.

Parameter ξ = 1 ξ = 0.1 ξ = 0.01

p 2.29 2.13 2.05

EK,iso (erg) 8.5 × 1053 3.8 × 1053 3.8 × 1055

εe 0.19 0.45 5.7 × 10−3

εB 0.015 1.7 × 10−5 5.8 × 10−4

n (cm−3) 2.1 × 10−5 18.1 6.1 × 10−3

θj (rad) 0.046 0.20 0.045

θj (deg) 2.6 11.5 2.6

θobs (rad) 0.026 0.12 0.027

θobs (deg) 1.5 7.0 1.5

Etot (erg) 1.7 × 1051 2.5 × 1052 3.9 × 1052

η 0.50 0.69 0.02

χ2/d.o.f 1.8 1.9 1.8

The post-jet-break decline of GRB 160625B has been

previously estimated to be fν ∝ tα2 , where generally

α2 ∼ −2.3 and its error roughly 0.5 (Alexander et al.

2017; Fraija et al. 2017; Lü et al. 2017). These esti-

mates are largely consistent with both sharp and smooth

breaks (and with our results listed in Table 5). How-

ever, all of these results are based on observations no

later than ∼ 50 d from the burst (∼ 2.5 × tj , com-

pared to our latest observations at ∼ 7 × tj), and their

post-break fluxes mostly include relatively large uncer-

tainties. In addition, Troja et al. (2017) obtained a

more precise post-break slope of α2 = −2.57± 0.04 and

Strausbaugh et al. (2018) obtained α2,optical ≈ 1.6 and

α2,X = −2.06± 0.22, but their optical slope is inconsis-

tent with our later-time optical data in both cases.

Troja et al. (2017) placed their estimate of the jet

break at 14 d, during the ’bump’ in the light curve be-

tween ∼ 8 d and ∼ 16 d. Using the same data, Straus-

baugh et al. (2018) suggested a break at 12.6 d at the

peak of the bump, which they took as brightening of

the jet toward its edges. However, our later-time data

require a later break and a steeper α2, leading us to

suggest the bump may still be due to angular bright-

ness differences or perhaps the result of density fluc-

tuations in the CBM, but not necessarily a sign of a

bright edge – and seemingly not simultaneous with a

true jet break. The bump is not seen in the X-rays,

which is also consistent with a density fluctuation, as

the flux above νc is insensitive to ambient density (Ku-

mar 2000). Strausbaugh et al. (2018) also suggest that

a slowly changing spectral slope in the optical bands in-

dicates a gradual cooling transition instead of a νc break

in the spectrum, and that the optical spectrum eventu-

ally becomes consistent with β ∼ −1.1, i.e. the slope
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above νc, which would disfavor a CBM density fluctua-

tion because of this insensitivity. We, however, measure

β = −0.86 ± 0.04 between F606W and 5 keV at 141 d,

suggesting that νc is still above optical frequencies but

below X-ray at this time. Thus we cannot rule out either

scenario for the bump, but we can place the jet break

at an epoch after the bump.

In the case of GRB 160509A, the χ2 values of the fits

with different ω are close to equal and the post-break

slopes are in agreement. A higher θobs results in a softer

break (Ryan et al. 2015), so in this case, considering

that θobs ∼ 0.6θj (from boxfit), one would expect the

break to be softer than for GRB 160625B where θobs
is much smaller or close to zero. One can attempt to

resolve this by finding inconsistencies in estimates of p

based on the pre-break light curve and spectrum. The

X-ray spectrum, with a slope of β = −1.07 ± 0.04, is

consistent with p ≈ 2.2 and with νc being below the X-

ray band (Laskar et al. 2016). As a result, we can use

α = (2 − 3p)/4 independent of the CBM distribution

(Granot & Sari 2002); in the case of ω = 3 we obtain

p = 2.08± 0.14 and for ω = 10, p = 2.27± 0.08. While

the former is closer to the measured post-break decline,

both values are consistent with 2.2.

4.2. Physical implications

4.2.1. GRB 160625B

Based on the well-constrained pre-break light curve

of the afterglow of GRB 160625B, one can estimate the

electron energy distribution index p: below the cooling

frequency νc, in the case of a wind-like CBM, αwind =

(1 − 3p)/4, while for a constant-density CBM similar

to the interstellar medium (ISM), αISM = 3(1 − p)/4

(Granot & Sari 2002). Thus, in the optical, one obtains

p = 1.63 ± 0.02 in the wind case and p = 2.29 ± 0.02

in the ISM case. Above νc, in both cases α = (2 −
3p)/4. Comparing the optical and X-ray spectra and

fluxes Alexander et al. (2017) argue that νc lies below

the X-ray frequencies after ∼ 1.2 × 104 s, and thus the

early X-ray light curve gives us p = 2.29 ± 0.06. This

is also consistent with the spectrum below the X-ray

frequencies (Alexander et al. 2017), and thus, as the p

values in the wind scenario are mutually inconsistent, an

ISM-like density profile is favored. Fraija et al. (2017)

infer a transition from wind-like to ISM-like CBM at

∼ 8000 s.

When only taking into account the relativistic visible-

edge effect (Mészáros & Rees 1999), the slope of the de-

cline is expected to steepen in the jet break by a factor

of t−3/4 in a constant-density CBM. In the ω = 10 case,

the difference between the pre- and post-break power

laws is ∆αF606W = −1.00 ± 0.08 in the optical and

∆αX = −0.99 ± 0.16 in the X-ray. Thus a t−3/4 factor

can be ruled out in the optical at a > 3σ level (although

in the X-ray, only at a ∼ 1.5σ level). The difference

is larger in the ω = 3 case (> 4σ and > 2σ respec-

tively), and therefore a simple edge effect is inconsistent

with our observations regardless of whether the break is

sharp or smooth (the t−1/2 factor from a wind-like CBM

is, of course, even less plausible).

If one assumes a smooth break (ω = 3), both the

optical and X-ray post-break decline rates are consis-

tent with the form fν ∝ t−p, for p ≈ 2.3, as expected

from exponential lateral expansion (Rhoads 1999; Sari

et al. 1999). At first glance, the favored sharp-break

scenario seems to make GRB 160625B inconsistent with

a fν ∝ t−p decline in the optical band (the X-ray slope

is still consistent with it) and would seem to require an-

other physical mechanism. One explanation could be

that the true jet break is due to a combination of the

visible-edge effect and more limited lateral expansion.

The steepening in both bands is a factor of t−1, steeper

than the t−3/4 expected from the edge effect (Mészáros

& Rees 1999; Panaitescu & Mészáros 1999), and the re-

sulting α2 values are only consistent within 2σ, while

the full exponential lateral expansion scenario described

by Rhoads (1999) should result in identical slopes. In

some numerical simulations, lateral expansion has been

found to initially involve only the outer layer of the jet

carrying a fraction of its energy, and the bulk of the ma-

terial remains unaffected for some time (van Eerten &

MacFadyen 2012), while the results of Rhoads (1999) re-

quire the assumption that the entire jet expands at the

speed of sound. On the other hand, completely ignoring

the lateral expansion was found to result in insufficient

steepening across the jet break. This scenario seems

consistent with our results.

A complication was noted by Gompertz et al. (2018),
who find that using different synchrotron relations to

estimate p (such as using the spectral index or the pre-

or post-break decline) typically results in different es-

timates, with an intrinsic scatter on the value of p of

0.25± 0.04 (we will denote this as σp). They argue this

is probably caused by emission from GRB afterglows

not behaving exactly as the rather simplified analytical

models predict13. Taking this scatter into account, both

α2,F606W and α2,X in the ω = 10 case (or simply using

only the > 26.5 d points and a single power law) are in

fact consistent within ≈ 1σp with fν ∝ t−p. Thus lat-

eral expansion at the speed of sound can still account for

13 We note that the inconsistency between p values derived from
the optical and X-ray pre-break slopes assuming a wind-type CBM
is > 2σp, so an ISM-like density profile is still favored.
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the observed late-time decline. Using closure relations

for both the light curve and the spectrum, Gompertz

et al. (2018) found a best fit of p = 2.06± 0.13 for GRB

160625B, which is consistent with our results in both

bands within σp. In any case, for this burst some form

of lateral expansion is required, and the edge effect alone

is insufficient.

We can also attempt to use the results from boxfit

to determine if the magnetar spin-down power source

is consistent with the GRB. The rotational energy that

can be extracted from a millisecond magnetar is (Lü &

Zhang 2014; Kumar & Zhang 2015)

Erot ≈ 2× 1052 erg
M

1.4 M�

( R

10 km

)2( P0

1 ms

)−2

, (2)

where M is the mass, R the radius and P0 the initial

spin period of the newborn magnetar. Metzger et al.

(2015) placed a limit of ∼ 1 × 1053 erg on the maxi-

mum energy of a newborn magnetar in extreme circum-

stances (in terms of mass and spin period). Therefore

the energy requirements of all the fits from boxfit may

technically be achievable with the magnetar model, but

with the (more realistic) low ξ values the required en-

ergy approaches or exceeds even this maximum limit.

The exceptionally high Eiso can be due to a relatively

narrow jet and a lower explosion energy instead, but this

requires a high ξ that is inconsistent with simulations by

Sironi & Spitkovsky (2011) and Warren et al. (2018) –

the best fit at ξ = 1 also results in an extremely low den-

sity more typical to intergalactic environments. We do

point out a caveat that the parameters of the best fits

show a non-monotonic dependence on ξ, with notable

degeneracy between parameters.

We have attempted to use boxfit to estimate errors

for the best-fit parameters as well. However, as a re-

sult of what seems to be a bug in the error estimation

routine of boxfit (G. Ryan and H. van Eerten, private

communication), some of the errors are clearly incorrect

and, therefore, we have not included errors in our Table

6. This mostly manifests as error limits that either do

not include the best fit or where the best-fit value of a

parameter is always the lower limit as well14. We also

note that, as the shape of the radio light curve is not

well reproduced in any of our fits, error limits could be

misleading in any case. As a consistency check for the

14 In other cases, such as the ξ = 0.1 case of GRB 160625B,
the errors are seemingly reasonable (p = 2.05 ± 0.01, EK,iso =

1.4+1.2
−1.3 × 1054 erg, εe = 0.25+0.10

−0.13, εB = 3.0+106.3
−2.0 × 10−4,

n = 0.18+0.58
−0.15 cm−3, θj = 0.14 ± 0.03 rad and θobs = 1.1+5.9

−1.1 ×
10−3 rad) and the relative ranges of each parameter comparable
to those found by Alexander et al. (2017). These values thus give
an indication of how well each parameter is constrained.

rest of the code, we have run boxfit using the Alexan-

der et al. (2017) forward shock parameters, which are

similar to our ξ = 1 results. The output light curves

and spectra are similar to the analytical ones and repro-

duce the early behavior of the afterglow well, although

post-break fluxes are somewhat under-predicted.

We also note that the 6.1 GHz light curve of GRB

160625B is not successfully reproduced by boxfit, and

the jet model struggles to explain the late slope of

α6.1GHz = −1.08 ± 0.11 and the lack of an observed

jet break. At low ξ values, the boxfit fit is somewhat

better, but only if one ignores the 22.5 d point, where a

low-frequency scattering event by an intervening screen,

suggested by Alexander et al. (2017), may contribute to

the flux. The radio SED shows a peak centered at 3

GHz between 12 and 22 d, which then disappears. Even

so, the fit at 22 GHz is worse at all ξ values. At 48

d, the radio SED is consistent with being entirely flat,

which is only plausible in the standard model around a

very smooth νm break. While the low ξ fits do place the

νm passage at roughly this time, the peak in the boxfit

spectrum is too sharp, and in earlier spectra the lowest

frequencies must then be brightened by a factor of ten or

so by the proposed scattering. The shape may instead

be altered by another emission source contributing to

the spectrum (see below).

Theoretically expected post-break values in the slow-

cooling scenario (νm < νc) are −p or −1/3, depending

on which side of νm the band is located (Rhoads 1999).

As the jet break is a geometric effect, we should see it

in every band, but this is not the case: we can set a

limit of tj,6.1GHz & 10× tj,F606W. The possibilities given

by the standard jet model that are consistent with the

slope are:

• Post-break, νc < νm, i.e. fast-cooling: α6.1GHz is

consistent with the expected decline of α2 = −1.

However, the measured α1,F606W = −0.96 ± 0.01

does not match the pre-break decline expected at

any frequency in this scenario.

• Pre-break, νm < 6.1 GHz < νc: α6.1GHz is con-

sistent with p = 2.4 and α = 3(1 − p)/4 = −1.05

(Granot & Sari 2002). However, the spectral in-

dex between radio and optical is −0.35 ± 0.03 at

22 d and −0.49±0.01 at 140 d, which is intermedi-

ate between the indices expected above and below

νm (respectively, (1− p)/2 ≈ −0.65 and 1/3) and

thus implies that νm > 6.1 GHz at 140 d, or that

p ≈ 2.0.

• A transition to a non-relativistic flow, νm <

6.1 GHz < νc: the expected slope is (21− 15p)/10

(van der Horst 2007), resulting in p = 2.12± 0.08,
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which is consistent with our estimate within σp.

However, such a transition is not seen in the opti-

cal or X-ray bands.

The LGRB population has been observed to be com-

prised of a radio-quiet and a radio-loud population,

where the radio-quiet GRBs are incompatible with a

simple sensitivity effect and indicate an actual deficit

in radio flux compared to theory (Hancock et al. 2013).

Lloyd-Ronning et al. (2019) further argued that the two

populations originate in different progenitor scenarios.

This deficit in radio flux implies some mechanism that

suppresses the expected synchrotron emission at radio

frequencies. Since our findings indicate that the radio

light curve of GRB 160625B (and GRB 160509A; see

below) is incompatible with the higher frequencies, the

source of the radio emission that we do see may not be

the same as that of the optical and X-ray synchrotron

emission. This seems to suggest that even in (at least)

some radio-loud GRBs, the same mechanism may be in

effect. Furthermore, if the radio emission is generated

by another source, this source is not active in the radio-

quiet GRBs for some reason. We have run the boxfit

fitting code with ξ = 1 and all radio fluxes divided by

ten to investigate if the standard model allows suppres-

sion of the radio flux simply through adjusting the pa-

rameters. The resulting best fit over-predicts all radio

fluxes by at least a factor of a few at all times. This

implies a caveat that, at least in some cases, including

another, dominant radio source without an additional

suppression mechanism may over-predict the radio flux.

Another caveat with this is that, unless the second com-

ponent is coupled to the ’main’ source, getting a total

radio flux compatible with one component may require

fine-tuning. If such a mechanism is widespread, one

would expect some GRBs to have radio fluxes unam-

biguously too high for the standard model, which, to

our knowledge, has not been seen.

One explanation for the ’extra’ radio source, with its

lack of a jet break and the requirement of 6.1 GHz > νm,

could be a two-component jet, where a narrow jet core

is surrounded by a cocoon with a lower Lorentz factor

(Berger et al. 2003; Peng et al. 2005), resulting in a

different source with different physical parameters dom-

inating the radio emission, and thus a different break

time and νm. This does not result in a deficit in ra-

dio synchrotron flux, only an inconsistency between the

light curve shape and the standard model. For an on-

axis or slightly off-axis burst (θobs < θj,narrow), the wider

component would not contribute significantly to the op-

tical light curve if its kinetic energy is lower than that

of the narrow component (Peng et al. 2005). This may

also affect the required energy, but without robust mod-

eling it is difficult to say whether the consistency with

a magnetar energy source would change.

Strausbaugh et al. (2018) suggested a scenario where

a very smooth cooling transition (i.e. not a normal spec-

tral break) is moving through the optical and infrared

frequencies, starting at early times, and the optical spec-

trum becomes consistent with ν > νc by ∼ 50 d. This

would indicate a unique cooling behavior inconsistent

with the standard expectations. The observed lack of

evolution of the Swift spectra until 30 d implies that

the X-ray spectral slope βX is not the result of a νc
break right below the X-ray frequencies, as this would

require the spectrum to soften over time to its slope

at ν � νc. Furthermore the optical-to-X-ray index is

observed to gradually steepen and eventually become

similar to βX . This is qualitatively consistent with the

reddening of the optical spectrum noted by Strausbaugh

et al. (2018). In addition, βX indicates a different p than

the X-ray light curve; this agrees with the implication

of Gompertz et al. (2018) that some physics is missing

or simplified in the relevant closure relations. Another

possible explanation is that a Klein-Nishina correction

(Nakar et al. 2009) is needed above νc; this can result in

β = 3(1−p)/4, which would imply p ≈ 2.1. This harder

spectrum is expected to dominate when the εe/εB ratio

is high, which would fit the low-ξ boxfit results.

4.2.2. GRB 160509A

In the case of GRB 160509A, the change in X-ray de-

cay slope across the break, ∆αX = −0.75 ± 0.11 for a

sharp break and ∆αX = −0.92±0.15 for a smooth break.

Thus we cannot exclude the t−3/4 factor expected from

the edge effect alone in an ISM-like medium. The t−1/2

factor expected in the case of a wind medium is incon-

sistent with the observations at a 2.3σ or 3σ level, de-

pending on ω. However, when considering the intrinsic p

scatter of σp = 0.25 (Gompertz et al. 2018), α2,X is also

consistent with a fν ∝ t−p decline. Thus we cannot say

conclusively whether lateral expansion is important in

the jet of GRB 160509A, but it does not seem necessary.

In the IR, the measured slope of α2,F160W = 2.09±0.10 is

marginally consistent (1.1σ) with p ≈ 2.2, but a lack of

pre-break data prevents us from determining ∆αF160W.

The decline of the afterglow in the radio after 10 d

is about f ∝ t−0.9 at both 6 and 9 GHz (and consis-

tent with this at other frequencies where fewer points

are available). This is again inconsistent with the ex-

pected post-jet-break slope of −p or −1/3 in the slow-

cooling case, respectively above and below the charac-

teristic synchrotron frequency νm (Rhoads 1999). As

with GRB 160625B, we list the possibilities consistent

with this decline, allowed by standard jet theory:
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• Post-break, νc < νm, i.e. fast-cooling: α = −1

is expected and consistent with αradio, but this

scenario is incompatible with the measured IR-to-

X-ray spectral index −0.74 ± 0.09 at 35 d, as the

expected index is −p/2 ≈ −1.1 (a photon index

consistent with this is indeed seen in the X-ray

at earlier times according to the UKSSDC Swift

Burst Analyser15 – < βX >= 1.06± 0.04 between

1 and 10 d – indicating that νc is still between X-

ray and optical frequencies and νc > νm at 35 d).

• Pre-break, νm < 6 GHz < νc, ISM-like CBM:

αradio is consistent with the expected decline (α =

3(1 − p)/4 = −0.9 assuming p = 2.2; Granot

& Sari 2002), but the observed spectral index of

−0.40 ± 0.01 between F160W and 9 GHz at 35 d

implies νm > 9 GHz.

• A transition to a non-relativistic flow, νm <

6 GHz < 9 GHz < νc: the expected slope is

(21− 15p)/10, resulting in p = 2.01± 0.08 – again

consistent with our estimate within σp. However,

such a transition is not seen in the X-ray light

curve, which continues to evolve consistently with

a relativistic flow.

The best boxfit fit at ξ = 1 places a smooth, and

thus off-axis, jet-break at a later time, around 35 d in all

bands, in which case the radio light curve would include

contamination from the reverse shock at early times,

changing the decline slope (see Figure 8). This is be-

cause boxfit attempts to fit a model with a late break

to fν ∝ t−p in order to match the radio light curve,

which has no observed break. It is incompatible with

the broken power-law fit with tj ∼ 3.5 d, though, and

at lower, more realistic values of ξ the break is placed

at an earlier time. This scenario is therefore not sup-

ported. Instead, for GRB 160509A we can place a lower

limit of tj,radio & 20 × tj,X based on the broken power-

law fit. The situation in the radio frequencies is thus

qualitatively very similar to that of GRB 160625B, and

the same mechanisms may well be in effect.

We note that Kangas & Fruchter (2019) are, in fact,

able to get a plausible fit to the GRB 160509A radio

light curve using an analytical fit based on the stan-

dard model, but only if the light curve smoothly turns

over to a t−p decline immediately after the last ra-

dio epoch, which is suspicious as their sample contains

several GRBs with no unambiguously observed radio

breaks, and many cases where the standard model does

not fit the radio light curve. We also note that as Laskar

15 http://www.swift.ac.uk/burst analyser/00020607/

et al. (2016) showed, the radio SED seems to remain

roughly flat after the reverse shock influence on the light

curve fades (∼ 20 d), which might again be caused by

another emission component. As boxfit also disagrees

with this analytical model, one or the other is in doubt.

The issue will be addressed in more detail in the upcom-

ing revised version of that paper.

A boxfit simulation using the FS parameters of the

Laskar et al. (2016) analytical model agrees fairly well

with the X-ray data and reproduces the rough magni-

tude of the radio light curve but not its shape (assuming

some RS contribution not accounted for by boxfit), but

over-predicts the IR flux by a factor of about 10. Their

IR light curve does not include host subtraction, and

they fit for extinction as another free parameter in their

model. Our host subtraction allows us to estimate the

extinction and true IR fluxes independently, and in light

of this the Laskar et al. (2016) model becomes incompat-

ible with the IR data. Thus our boxfit results provide

a better reproduction of the light curve in the IR. How-

ever, again, the fit parameters show a non-monotonic

dependence on ξ. As with GRB 160625B above, box-

fit was clearly unable to produce meaningful error bars

for the parameters in some cases, and these are not in-

cluded in Table 816 – and, as the radio light curve is

again problematic for the fit, would be misleading in

any case.

Keeping in mind the caveats associated with our

best boxfit fits, we can use them to estimate the en-

ergy requirements. The geometry-corrected jet energy

1.8 × 1051 erg at ξ = 1 is well below the maximum ro-

tational energy of a millisecond magnetar (see Section

4.2.1) Once again, we deem the lower ξ values more re-

alistic based on simulations (Sironi & Spitkovsky 2011;

Warren et al. 2018) and the fact that ξ = 1 results in

an extremely low density. Low ξ values require energies

around ∼ 3×1052 erg, which again strains the magnetar

spin-down model but does not rule it out. Thus GRB

160509A also seems compatible with a magnetar power

source.

For both GRBs considered here (Tables 6 and 8),

but especially for GRB 160509A, the efficiency η of the

prompt γ-ray emission depends on the value of ξ used

in the fitting, but not monotonically: with ξ = 0.01 one

obtains a much lower value for η than otherwise. In both

cases, the difference in χ2 between the ξ = 0.1 and ξ =

16 Again, the ranges of each parameter at ξ = 0.1, which are
large but not obviously incorrect, may provide some indication of
how well each parameter is constrained: (p = 2.13+0.02

−0.01, EK,iso =

3.8+24.8
−3.4 × 1053 erg, εe = 0.45+0.31

−0.20, εB = 1.7+2.7
−0.7 × 10−5, n =

18+1530
−18 cm−3, θj = 0.20+0.18

−0.16 rad and θobs = 0.12+0.21
−0.12 rad).
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0.01 fits is minimal, and in the case of GRB 160509A,

so is the difference between ξ = 1 and ξ = 0.01; thus,

we cannot reliably distinguish between these scenarios.

In the literature, it is commonly assumed that ξ = 1,

and high values of η are obtained: for example, Lloyd-

Ronning & Zhang (2004) find values as high as η ∼ 1

depending on Eiso, and mostly η & 0.3. Such a high

efficiency is used as a criterion for successful models of

prompt emission: e.g. the internal shock mechanism

tends to result in η . 0.1 (Kumar & Zhang 2015, and

references therein). Our results may indicate that, if

very low values of ξ are more realistic (Warren et al.

2018), one should not dismiss models based on low effi-

ciency.

5. CONCLUSIONS

We have presented our late-time optical, radio and

X-ray observations of the afterglows of GRB 160625B

and GRB 160509A. We have fitted broken power law

functions to the data, combined with light curves from

the literature, to constrain the jet break time and the

post-jet-break decline, and used the numerical afterglow

fitting software boxfit (van Eerten et al. 2012) to con-

strain the physical parameters and energetics of the two

bursts. Our conclusions are as follows:

Regardless of the sharpness of the GRB 160625B jet

break, we find that the effect of the jet edges becom-

ing visible as the jet decelerates is alone insufficient to

explain the post-jet-break light curves. A full lateral

expansion break onto a t−p decline is also inconsistent

with the favored sharp break. The light curve behav-

ior seems qualitatively consistent with the edge effect

combined with only a fraction of the jet expanding at

the speed of sound (van Eerten & MacFadyen 2012). It

is also possible that an intrinsic scatter in the electron

Lorentz factor distribution index p exists, the result of

simplified synchrotron theory and closure relations that

do not necessarily reflect the true complexity of the emis-

sion region (Gompertz et al. 2018). This scenario com-

bined with lateral expansion is also consistent with our

results. For GRB160509A we are unable to exclude any

of the considered scenarios due to the scarcity of the

available data.

Based on the best fits from boxfit, the geometry-

corrected energy requirements of both GRBs are consis-

tent with a magnetar spin-down energy source – albeit

only in extreme cases when the ’participation fraction’

(fraction of electrons accelerated into a non-thermal dis-

tribution) is fixed at ξ = 0.1 or ξ = 0.01, requiring

energies of ∼ 3 × 1052 or even ∼ 1053 erg. As simula-

tions have shown these lower fractions to be more real-

istic (e.g. Warren et al. 2018), it seems that magnetar

spin-down alone struggles to produce the required ener-

gies unless the nascent magnetar has extreme properties

(Metzger et al. 2015).

However, neither boxfit nor analytical relations from

standard jet theory (e.g. Rhoads 1999; Granot & Sari

2002) can provide a good fit to the radio data of ei-

ther GRB, which are consistent with a single power

law that requires the jet break to occur much later in

radio than in the other bands. Both GRBs also show

an almost flat radio SED at relatively late times (tens

of days; see Laskar et al. 2016; Alexander et al. 2017).

The higher frequencies do conform to expectations from

the jet model, though. This might be the result of a

multi-component jet, but that would require the wide

component of the jet to dominate the light curve, and

simultaneously suppressed flux from the narrow compo-

nent. A similar behavior (a radio decline described by

a single power law with α = −1.19± 0.06 until ∼ 60 d)

was recently reported for GRB 171010A by Bright et al.

(2019). We explore this problem further in a companion

paper (Kangas & Fruchter 2019), and find that these

GRBs are not exceptional in this regard.
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