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 8 
Abstract: An integrated floating energy system consisting of different types of energy devices 9 

is an ideal option for reducing the levelized cost of energy by enhancing the power production 10 

capacity. This study proposes a concept of an integrated energy system by combining two tidal 11 

turbines with a floating wind turbine. In order to investigate the power performance and 12 

dynamic responses of the hybrid concept, a novel coupled aero-hydro-servo-elastic tool is 13 

developed based on a commercial hydrodynamic analysis software package. In addition, a 14 

torque-pitch controller and the AeroDyn module are integrated within the coupled tool for 15 

evaluating the power performance of the tidal turbines under dynamic inflow conditions. 16 

Experimental data and numerical results obtained by OpenFAST are used to verify the accuracy 17 

of the coupled tool in predicting dynamic responses of the integrated energy system. The 18 

dynamic responses and power production under different environmental conditions are 19 

obtained by conducting a series of simulations. The results indicate that the total power 20 

production is increased by 3.84% to 6.46%. The transient behavior of the platform is improved 21 

and the tension fluctuation in mooring lines are significantly reduced by the hydrodynamic 22 

damping provided by the tidal turbines. In addition, the tidal turbines have no negative 23 

influences on the aero-elastic responses and power performance of the wind energy system. 24 

The results have demonstrated the advantages of the integrated energy system in enhancing the 25 

power production and improving the dynamic performance. 26 

 27 

Keywords: Integrated energy system; Floating wind turbine; Tidal turbine; Coupled model; 28 

Dynamic responses; Power production. 29 

  30 
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1 Introduction 31 

Societal demand for improvements in climatic conditions requires the use of low emission 32 

energy sources to mitigate the greenhouse gases effect on the environment. Development of 33 

renewable energy resources offers the most efficient means of reducing carbon emissions 34 

resulting from the consumptions of fossil energy resources [1]. Offshore renewable energy 35 

resources are increasingly attracting attention to meet the growing demand of green energy 36 

development. Consequently, the floating energy technology has become a new theme of 37 

interest to academic research and commercial development due to the abundance of wind, wave 38 

and current resources in the deep sea areas. 39 

Wind energy is the major contributor to the offshore energy development. The past decade 40 

has witnessed the conceptualization and commercial application of a number of floating 41 

platforms for wind energy exploration. Statoil developed a spar platform, the so-called Hywind 42 

concept [2], for the world’s first full-scale large floating offshore wind turbine (FWT) with a 43 

capacity of 2.3 MW, which became operational in the North Sea, near Norway in 2009. The 44 

Hywind concept was adapted by the National Renewable Energy Laboratory (NREL) to 45 

support a 5 MW wind turbine in the Offshore Code Comparison Collaboration (OC3) project 46 

sponsored by the International Energy Agency (IEA) [3]. Due to its modelling simplicity and 47 

commercial viability, the OC3-Hywind was extensively used in a large number of studies in 48 

the development of floating wind technology. For instance, Karimirad and Moan [4] analyzed 49 

the global dynamic responses of a 5 MW wind turbine supported by a spar platform under harsh 50 

environmental and operating conditions. It was found that the dynamic and structural responses 51 

were independent of the wind turbulence. Ma et al. [5] employed a widely-used numerical 52 

analysis tool, FAST, to investigate the dynamic responses of the OC3-Hywind concept under 53 

different sea states. The spectral responses were presented to obtain a better understanding of 54 

the floating wind turbine’s behaviour. Yue et al. [6] investigated the effects of heave plates on 55 
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the dynamic responses of the spar FWT using AQWA. It was found that the platform motion 56 

was affected by the vertical position of the heave plate. Ahn and Shin [7] conducted various 57 

experimental tests for the OC3-Hywind FWT with a 1/128 scale ratio. The model test results 58 

were compared with the predictions from an in-house code and FAST. It was observed that the 59 

numerical predictions of platform pitch were slightly larger than the test results. Lin et al. [8] 60 

investigated the hydrodynamic responses of the OC3-Hywind concept influenced by the 61 

mooring system that was modelled using a quasi-static method. The contributions of mooring 62 

loads to the platform motions were studied. Lyu et al. [9] investigated the effects of wind/wave 63 

incident directions of the OC3-Hywind platform responses. It was concluded that the 64 

wind/wave loads significantly affected the longitudinal modes of surge and pitch motions. In 65 

addition, NREL further developed a semi-submersible platform as an alternative floating wind 66 

system in the DeepCwind project [10]. In order to generate sufficient and valid experimental 67 

data for validating and improving the current numerical analysis methodologies for coupled 68 

modelling of FWTs, a series of model tests were conducted for the OC3-Hywind, semi-69 

submersible and a tension leg platform (TLP) concepts [11]. Dynamic responses and fatigue 70 

damage of the blades and tower of the NREL 5 MW wind turbine supported by three different 71 

types of floating platforms were quantitatively compared [12]. 72 

Apart from the offshore wind resource, sea current is also increasingly attracting attention 73 

as an alternative sustainable resource for electricity production. Similar to the wind energy 74 

devices, the most popular design concept of current/tidal turbines is the horizontal axis form 75 

[13]. Patel et al. [14] conducted experimental tests to investigate the hydrodynamic 76 

performance of various Darrieus turbines. The solidity effect on the power performance of the 77 

hydrokinetic turbines was studied. It was found that the power coefficient of the turbines with 78 

a symmetric aerofoil achieved their peak at a solidity close to 0.38. In addition, Patel et al. [15] 79 

conducted an experimental study to enhance the hydrodynamic performance of a Darrieus 80 
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turbine using a blocking plate. The width and location of the blocking plate were tested. The 81 

power coefficient of the tidal turbine was increased from 0.125 to 0.36 using an optimal 82 

blocking plate. Blackmore et al. [16] investigated the effect of turbulence on the power 83 

performance and fatigue loads on blades of a tidal turbine through experimental tests. The 84 

experiments indicated that the thrust and torque of the tidal turbine were significantly 85 

influenced by the dynamic inflow velocity. Scarlett et al. [17] carried out a parametric study 86 

for a range of flow conditions to investigate the unsteady hydrodynamic performance of tidal 87 

turbine blades. It was found that load fluctuations from the blades increased due to a yaw 88 

misalignment. Bahaj [18] compared the numerical results obtained using a commercial code 89 

with the experimental data. The comparison indicated that the blade element momentum (BEM) 90 

theory was able to produce satisfactory representations of the experimental turbine’s 91 

performance. Zhang et al. [19] investigated the hydrodynamic performance of a tidal turbine 92 

which was attached on a floating platform. The numerical results indicated that the surge 93 

motion had a significant influence on the dynamic performance of the tidal turbine. Patel et al. 94 

[20] studied the effect of overlap ratio and aspect ratio on the performance of a Savonius-type 95 

hydrokinetic turbine through experimental tests. The best overlap and aspect ratios were 96 

specified for the purpose of obtaining a maximum energy harvesting efficiency. Patel et al. [21] 97 

developed a theory based on stagnation pressure and impulse momentum principle for 98 

estimating the hydrodynamic performance of a Savonius turbine. The numerical predictions 99 

were compared with the data from experimental tests for the validation.  100 

In deep sea areas where wind and current resources coexist, a hybrid energy system 101 

consisting of a FWT and several tidal turbines is a prospective and feasible solution to reducing 102 

the levelized cost of electricity (LCoE) by sharing the support system. A number of studies 103 

have been conducted to investigate the dynamic responses and power production of a hybrid 104 

floating energy system. Muliawan et al. [22] investigated the dynamic responses and power 105 
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performance of a combined spar FWT and coaxial floating wave energy converter (WEC) using 106 

SIMO/TDHMILL3D. The power take-off system between the WEC and spar platform was 107 

modelled as a simple spring-damper. The numerical simulation results of the combined concept 108 

under several operating conditions indicated that the fluctuations in the platform motions 109 

decreased. The total output power increased by 6% to 15% depending on the environmental 110 

conditions. Wan et al. [23] conducted an experimental study on the same model under survival 111 

conditions to further confirm the deployment feasibility of the combined concept. The test 112 

results conformed the accuracy of the numerical modelling in predicting the dynamic responses. 113 

A slamming model was suggested to be added into the numerical model to consider the 114 

slamming effects which were observed in the tests. Michailides et al. [24] studied the dynamic 115 

responses and functionality of a semi-submersible wind turbine combined with flap-type wave 116 

energy converters through experimental tests and numerical analysis. The results indicated that 117 

the combined concept performed well in extreme environmental conditions and no strong 118 

nonlinear phenomena were produced [25]. Michele et al. [26] developed a mathematical model 119 

to study the hydrodynamics of a hybrid wind-wave energy system. The power production 120 

capabilities of the hybrid system in regular and irregular wave conditions were investigated. 121 

Hallak et al. [27] numerically and experimentally analyzed the performance of a combined 122 

concept composed of a semi-submersible wind platform and a number of oscillating wave 123 

columns. It was found that the hybrid concept benefitted with stability enhancement and 124 

smoother energy output. Li et al. [28] investigated the dynamic response and power production 125 

of a floating energy system consisting of wind, wave and tidal energy devices. It was found 126 

that the overall power production increased compared to a single FWT. In addition, the 127 

transient behavior following an emergency shutdown was more moderate due to the presence 128 

of wave and tidal energy systems. The short-term [29] and long-term [30] extreme responses 129 

of the integrated energy system were further studied. It was found that the fatigue damage of 130 
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mooring lines increased. However, the elasticity of the flexible elements including the blades 131 

and tower of the wind turbine was ignored in modelling the hybrid energy system. Moreover, 132 

no servo-control scheme was applied to adjust the blade-pitch and rotor speed when evaluating 133 

the power production in their studies. It is apparent that the dynamic responses and power 134 

performance of such an integrated energy system have not been adequately evaluated. 135 

In order to more accurately investigate the dynamic responses and power performance of 136 

an integrated floating energy system (IFES), this study has developed a fully coupled aero-137 

hydro-servo-elastic tool based on a commercial hydrodynamic analysis software package, 138 

AQWA. The examined IFES concept is composed of a 5 MW spar-type FWT and two 550 kW 139 

tidal turbines. In addition, the AeroDyn module developed by NREL is integrated within the 140 

coupled tool to predict the hydrodynamic forces produced by the tidal turbines. The influence 141 

of platform motions on the relative current speed is considered. The accuracy of the fully 142 

coupled tool in predicting dynamic responses of the FWT and tidal turbine is validated through 143 

comparisons against OpenFAST and experimental tests, respectively. The coupled dynamic 144 

responses of the blades, platform and mooring lines of the IFES under below-rated, rated and 145 

over-rated operating conditions are obtained and compared with those of a single FWT. The 146 

power production capacity of the IFES is also evaluated to confirm the benefits produced by 147 

integrating the tidal turbines with a wind energy system. 148 

 149 

2 Description of the integrated floating energy system 150 

The IFES model proposed in this study is composed of the NREL 5 MW wind turbine [31] 151 

and two identical tidal turbines. Both the wind turbine and tidal turbines are integrated on the 152 

spar platform as shown in Fig. 1.  153 
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 154 

Fig. 1: Schematic diagram of the integrated floating energy system 155 

 156 

The extensively-used OC3-Hywind spar [3] is chosen as the main floating component of 157 

the IFES concept. The design water depth and total draft of the spar are 320 m and 120 m, 158 

respectively. The geometry of the spar near the free-surface is tapered to facilitate a better 159 

connection with the tower of the wind turbine. The diameters of the spar above and below the 160 

taper are 6.5 m and 9.4 m, respectively. A mooring system consisting of three catenary lines is 161 

used for the station-keeping of the platform. The fairleads are attached on the platform at 70 m 162 

water depth and the radius of the anchors is 853.87 m. The unstretched length and mass density 163 

of each mooring line are 902.2 m and 77.7 kg/m, respectively. The axial stiffness and 164 

equivalent weight in water of each mooring line are 384,243,000 N and 698.094 N/m, 165 

respectively. The additional yaw stiffness provided by the mooring system is 9.834×107Nm/rad.   166 

The tidal turbine was designed by the Sandia National Laboratory for the development of 167 
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marine hydrokinetic technology [32]. The diameters of the rotor and hub are 20 m and 2 m, 168 

respectively. The NACA 63-424 aerofoil was used to design the hydrodynamic shape of the 169 

rotor blades through an optimization tool named HARP_Opt tool. In this study, the rated rotor 170 

speed is increased from 11.5 rpm to 13 rpm to achieve the design power of 550 kW under the 171 

rated current speed of 2.0 m/s. Main specifications of the tidal turbine are presented in Table 1 172 

and the hydrodynamic shape of the blade is presented in Table 2. 173 

Table 1: Main specifications of the tidal turbine [32] 174 

Property Value Unit 

Rated power 550 kW 
Cut-in/cut-out current speed 0.5/3.0 m/s 
Cut-in/rated rotor speed 3.0/13.0 rpm 
Diameter of the rotor 20.0 m 
Diameter of the hub 2.0 m 
Rotor mass 1200 kg 
Nacelle mass 40,100 kg 
Cross-beam mass 20,000 kg 
Drivetrain inertia moment 4.44×106 kg·m2 
Depth to hub below MSL 46.5 m 
Distance to hub from centreline 
of the platform 18.5 m 

Table 2: Hydrodynamic shape of the tidal turbine blade [32] 175 
Local 

radius (m) 
Aerofoil 

(-) 
Twist 
(deg) 

Chord 
(m) 

Relative 
thickness (%) 

1.00 Cylinder 12.86 0.800 100.00 
1.89 Interpolated 12.86 1.243 53.30 
2.70 Interpolated 12.79 1.702 27.55 
3.55 NACA 63-424 9.50 1.577 24.00 
4.23 NACA 63-424 7.85 1.481 24.00 
5.01 NACA 63-424 6.51 1.371 24.00 
5.84 NACA 63-424 5.47 1.251 24.00 
6.62 NACA 63-424 4.71 1.138 24.00 
7.23 NACA 63-424 4.20 1.046 24.00 
7.89 NACA 63-424 3.69 0.945 24.00 
8.45 NACA 63-424 3.28 0.856 24.00 
8.92 NACA 63-424 2.92 0.781 24.00 
9.24 NACA 63-424 2.68 0.728 24.00 
9.64 NACA 63-424 2.35 0.661 24.00 
10.00 NACA 63-424 2.10 0.600 24.00 

 176 

As indicated in Fig. 1, the tidal turbines are placed at a water depth of 46.5 m. The distance 177 
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between the tidal turbine’s hub and the platform’s centerline is 18.5 m. The weight of each 178 

tidal turbine including the nacelle and the connecting beam is 6.13×104 kg. The added inertial 179 

moments of the platform due to the tidal turbines are calculated. By assuming that the ballast 180 

of the platform remains unchanged when integrated with the tidal turbines, the inertial 181 

properties of the platform are given in Table 3.  182 

Table 3: Inertial properties of the platform with the tidal turbines 183 
Property Value Unit 

Platform mass (with tidal turbines) 7,588,930 kg 
Centre of mass (CM) below MSL 89.2141 m 
Platform roll inertia about CM 4.46032×109 kg·m2 
Platform pitch inertia about CM 4.46032×109 kg·m2 
Platform yaw inertia about CM 1.68822×108 kg·m2 

3 Aero-hydro-servo-elastic modelling of the hybrid concept 184 

In order to obtain the dynamic responses of the IFES subjected to wind, wave and current 185 

loadings as realistic as possible, an aero-hydro-servo-elastic coupled tool is developed in this 186 

study based on a commercial hydrodynamic analysis software tool, AQWA. The aero-servo-187 

elastic simulation capability is implemented within the user_force64.dll, which is invoked by 188 

the AQWA solver at each time step during a time domain analysis. The kinematics and kinetics 189 

of the wind turbine are temporarily stored in the DLL to be used for the simulation in the next 190 

time step. The loads calculated by the DLL are coupled with hydrodynamic loads and mooring 191 

restoring forces to address the dynamics of the platform and mooring system in the AQWA 192 

solver. In addition, the hydrodynamic load of each tidal turbine is calculated using AeroDyn 193 

through the DLL, while the dynamic inflow effects due to platform motions are considered. 194 

The methodologies used for the development of the aero-hydro-servo-elastic coupled model of 195 

the IFES concept are described subsequently. Fig. 2 presents a flowchart of the fully coupled 196 

aero-hydro-servo-elastic model established in AQWA. It is apparent that the platform 197 

responses obtained using the AQWA solver are influenced by the responses of the wind turbine 198 
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and tidal turbines predicted in the user_force64.dll, and vice versa. 199 
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wind field
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Wind turbine
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 200 

Fig. 2: Flowchart of the fully coupled model for an integrated floating energy system 201 

 202 

3.1 Aerodynamic modelling of the rotor 203 

The general dynamic wake (GDW) model and blade element momentum (BEM) [33] 204 

theory are adopted to predict the aerodynamic loads of the wind turbine and the hydrodynamic 205 

loads of the tidal turbine under a dynamic inflow condition. In the GDW model, the induced 206 

velocities and pressure over the rotor disk are solved based on the potential flow theory. By 207 

expressing the pressure and induced velocity as infinite series of sines and cosines, the 208 

governing equations of the GDW model in the axial and tangential directions are derived in 209 

Eq. (1) and Eq. (2), respectively [34].  210 

{ } { } { }1h h m
j j n

1
2

C C C Cα α τ

∗

−
     
          + =          
     
     

  




  

M L V       (1) 211 
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     
     

  




  

M L V       (2) 212 

where [ ]cM  and [ ]SM  are the cosine and sine terms of the apparent mass matrix [ ]M , 213 

respectively. [ ]CL  and [ ]SL  are the cosine and sine components of the matrix of inflow gain, 214 

respectively. [ ]CV  and [ ]SV  are the cosine and sine terms of the flow parameters, 215 

respectively. m
n

Cτ  and m
n

Sτ  are respectively the axial and tangential coefficients of 216 

dimensionless pressure. h
jα  and h

jβ  are respectively the axial and tangential coefficients of 217 

induced velocity. 218 

The induced velocity distribution over the rotor disk is obtained by solving the above 219 

differential equations. The Prandtl corrections are used to consider the tip and hub losses. The 220 

BEM theory is then used to calculate the loads acting on each blade element based on the lift 221 

and drag coefficients of the local sectional aerofoil, as denoted in Eq. (3) and Eq. (4) [35]. 222 

21d ( cos sin )d
2 l dT W c C C rρ φ φ= +         (3) 223 

21d ( sin cos ) d
2 l dM W c C C r rρ φ φ= −         (4) 224 

where dT and dM are, respectively, the thrust and moment of the local blade element; ρ  is 225 

the density of the inflow fluid; lC  and dC  are, respectively, the lift and drag coefficients of 226 

the sectional aerofoil; The Beddoes-Leishman dynamic stall model is used to correct the 227 

aerodynamic coefficients under unsteady conditions; c is the chord length of the blade element; 228 

r and dr are the local radius and length of the blade element, respectively; φ  is the relative 229 

inflow angle of the local section; W denotes the relative inflow speed. 230 

 231 

3.2 Structural modelling of the wind turbine 232 

The wind turbine is modelled as a multi-body system consisting of rigid and flexible 233 
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bodies. The hub and nacelle were treated as rigid bodies. The tower and blades were modelled 234 

as flexible bodies based on the linear modal approach. For each blade, two flapwise and one 235 

edgewise modes are considered. The first two modes in the fore-aft and side-side directions are 236 

examined for the tower. In addition, the nacelle-yaw and rotation of the drivetrain system are 237 

accounted in the simulation. Kane’s method [36] is used to establish the equations of motion 238 

of the wind turbine, as follows: 239 

* + 0i i =F F               (5) 240 

where *
iF  and iF  are the generalized inertia and active forces corresponding to the ith degree 241 

of freedom (DOF) of the wind turbine. 242 

The generalized inertia force of a rigid body can be represented using the same formula. 243 

For instance, the generalized inertia force of the nacelle *
NacF  is derived as: 244 

*
Nac ,Nac Nac Nac Nac

1
= ( ) ( )

N

i i
i

v m a Hω
=

− ⋅ + −∑ F         (6) 245 

where N is the number of total examined DOFs of the wind turbine; ,Naciv  is the partial velocity 246 

of the nacelle contributed by the ith DOF of the wind turbine; Nacm  and Naca  are respectively 247 

the mass and acceleration of the nacelle; iω  is the partial angular velocity of the nacelle 248 

contributed by the ith DOF of the wind turbine; NacH  is the time derivative of angular 249 

momentum of the nacelle about its mass center. 250 

The term, Nac( )i Hω −  , denotes the gyroscopic yaw moment induced by the spinning 251 

inertia and pitching motion of the rotor. The pitching motion denoted by the partial angular 252 

velocity ( iω ) is influenced by the pitching velocities of the tower and platform. An exhaustive 253 

description of the relationship between the partial angular velocity of the nacelle and 254 

kinematics of tower and platform is beyond the scope of this study. Further details can be found 255 

in reference [36] 256 

The generalized inertia force of a blade *
BldF  is denoted as: 257 
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rt hub*
Bld Bld ,Bld Bld0

1
=- ( ) ( ) ( ) d

N R R

i
i

r v r a r rρ
−

=

⋅ ⋅ ⋅∑∫F        (7) 258 

where Rrt and Rhub are the radii of the rotor and hub, respectively; Bld ( )rρ  is the mass of the 259 

blade per unit length; ,Bld ( )iv r  is the partial velocity of the local blade section contributed by 260 

the ith DOF of the wind turbine; and Bld ( )a r  is the acceleration of the local blade section.  261 

The generalized active forces are composed of aerodynamic load ,aeroiF , elastic restoring 262 

force ,elasticiF , gravitational load ,graviF  and damping force ,dampiF , as denoted in Eq. (8). 263 

,aero ,elastic ,grav ,damp+ + +i i i i iF F F F F=          (8) 264 

The generalized active aerodynamic force acting on a blade Bld,aeroF  is denoted as: 265 

rt hub

Bld,aero ,Bld aero0
1

= ( ) ( ) d
N R R

i
i

F v r F r r
−

=

⋅ ⋅∑∫         (9) 266 

where aero ( )F r  is the total force acting on the local blade section.  267 

The generalized active elastic restoring force of a blade is defined as a partial derivative 268 

of the potential energy with respect to the generalized coordinate, as follows: 269 

( ) ( )

( )
PE

Bld,elastic
Bld Bld

1
2

=

n n

ij i j
i j

k q t q t
VF
q q t

 
∂ ⋅ ⋅ 

∂  =
∂ ∂   

∑∑
      (10) 270 

where VPE is the potential energy of the blade; ( )iq t  is the generalized coordinate associated 271 

with the ith mode pertaining to the blade at the time of t; n is the number of the examined modes 272 

of the blade; ijk  is the generalized stiffness of the blade and its value is zero when i j≠ . 273 

Considering rotational effects of the rotor, the generalized stiffness of a blade is given in 274 

Eq. (11). 275 

( ) ( ) ( )rt hub
22

Bld tm, lm,2 20

dd
= d

d d
R R ji

ij ij ij

rr
k EI r r k k

r r
ϕϕ−

+ +∫      (11) 276 

where ( )BldEI r  is the distributed stiffness of the blade. ( )i rϕ  is the ith normalized modal 277 

shape of the blade; tm,ijk  and lm,ijk  are the generalized stiffness due to the tip mass and local 278 

mass of the blade, as derived in Eq. (12) and Eq. (13), respectively. 279 
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( ) ( )rt hub2
tm, tip rt 0

dd
d

d d
R R ji

ij

rr
k m R r

r r
ϕϕ−

= Ω ∫        (12) 280 

( )( ) ( ) ( )rt hub2
lm, Bld rt0 0

dd
= d d

d d
R R r ji

ij

rr
k r R r r r

r r
ϕϕ

ρ
− ′′ 

′Ω +  ′ ′ 
∫ ∫    (13) 281 

 282 
where Ω  and tipm  are the rotational speed of the rotor and the tip mass of the blade, 283 

respectively. 284 

Substituting Eqs. (6)~(13) into Eq. (5), the coupled equation of motion of the wind turbine 285 

is established. It is noted that the effects of platform motions on the kinematics of the upper 286 

structures including the rotor, nacelle and tower are considered based on the theory described 287 

in [37] when solving Eq. (5) in the DLL. The kinetic results obtained from the solutions are 288 

passed into AQWA solver through the DLL for the calculation of platform motions at each 289 

time step in the analysis. The platform’s kinematics obtained from the AQWA solver are then 290 

fed back into the DLL for solving Eq. (5) at the next time step.  291 

 292 

3.3 Integration of the coupled model of the IFES 293 

The aero-servo-elastic model is integrated within a commercial hydrodynamic analysis 294 

tool, AQWA, through its built-in DLL (user_force64.dll) to form a fully coupled model of 295 

IFES. In a time-domain analysis performed in AQWA, the DLL is invoked by the AQWA 296 

solver to obtain the external force and added-mass. The aero-servo-elastic simulation capability 297 

is implemented within the DLL by fully modifying its source code. The aero-servo-elastic 298 

responses of the upper structures are represented by the external force and added-mass during 299 

each invocation, and then passed into AQWA solver to be combined with the hydrodynamic 300 

loads and mooring restoring forces for obtaining the dynamic responses of the platform. The 301 

equation of motion of the platform is derived as follows: 302 

wv wt h t e0
( ) ( ) ( ) ( ) ( ) ( )d = ( ) ( ) ( )

t
t t t t t t tτ τ τ+ + + + + − + +∫  m A A X CX KX h X F F F  (14) 303 
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where m  is the inertial mass matrix of the platform, wvA  is the added-mass matrix due to 304 

the wave, wtA  is the mass matrix of the upper structures referred to the platform’s mass 305 

center; K and C are, respectively, the total stiffness and damping matrices; ( )tX , ( )tX  and 306 

( )tX  are, respectively, the displacement, velocity and acceleration vectors of the platform; 307 

h(t) is the acceleration impulse function matrix used to examine the radiation memory effects; 308 

h ( )tF  and t ( )tF  are, respectively, the total hydrodynamic and mooring load vectors acting 309 

on the platform; e ( )tF  is the external force vector obtained through the DLL, including the 310 

loads from the upper structures and the force acting on the tidal turbine. 311 

The hydrodynamic loads acting on the platform are calculated based on the frequency-312 

dependent hydrodynamic coefficients including the added mass, radiation damping and 313 

restoring forces, which are obtained from a frequency domain analysis in AQWA. The panel 314 

model of the IFES is presented in Fig. 3. Since the blades of the tidal turbines are small 315 

components but with a complicated geometry, they have been represented by an equivalent 316 

diameter cylinder for simplicity in performing the frequency domain analysis. 317 
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 318 

Fig. 3: Panel model of the integrated floating energy system in AQWA 319 

 320 

The hydrodynamic force acting on the tidal turbine’s rotating rotor due to the inflow 321 

current is calculated using AeroDyn. The interaction between the tidal turbines and the 322 

platform is examined by considering the relative inflow effects due to the platform motions. In 323 

other words, the longitudinal velocity of the tidal turbine is affected by the platform surge, 324 

pitch and yaw motion as shown in Fig. 4.  325 

A

A

B

B C

C
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 326 

Fig. 4: Velocities of the tidal turbine and platform 327 

 328 

Based on the assumption of small rotations of the platform, the actual relative inflow 329 

current speed curr,relU  is corrected as follows: 330 

curr,rel curr ptfm,surge tidal ptfm ptfm,pitch tidal ptfm ptfm,yaw( ) ( )U U U Z Z U Y Y U= − − − + −    (15) 331 

where currU  is the defined inflow current speed at the tidal hub depth. ptfm,surgeU , ptfm,pitchU  332 

and ptfm,yawU  are the surge, pitch and yaw velocities of the platform, respectively. tidalZ  and 333 

ptfmZ  are the vertical coordinates of the CMs of the tidal turbine and platform, respectively. 334 

tidalY  and ptfmY  are the lateral coordinates of the CMs of the tidal turbine and platform, 335 

respectively. 336 

The current speed along water depth follows a power law distribution with an exponent 337 

of 1/7. At each time step, currU  is calculated according to the hub depth of the tidal turbine 338 

and the given current speed at the MSL. A variable-speed and variable-pitch controller is 339 

implemented based on the control algorithm proposed by Jonkman [31] for the NREL 5MW 340 

wind turbine. The power and torque performance of the tidal turbine subjected to different 341 

steady inflow current speeds are evaluated in order to obtain the proportional and integral gains. 342 

Appendix A presents a brief description of the implementation method of the controller for the 343 
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tidal turbine. 344 

It is noted that the results directly produced by the AQWA solver and the DLL are referred 345 

to different coordinate systems. The tower-base loads referred to the platform’s local 346 

coordinate system need to be converted to the external force referred to the inertial coordinate 347 

frame. In addition, the external forces are applied at the platform’s CM. Similarly, the platform 348 

motions used to correct the kinematics of the blades and tower need to be converted from the 349 

inertia coordinate system to its local coordinate frame. The matrix, matT , given in Eq. (16) is 350 

used to achieve accurate transformations on the platform kinematics and external forces. 351 

2 2 2
1 2 3 3 1 2 2 1 3

2 2 2
3 1 2 2 1 3 1 2 3

mat

2 2 2
2 1 3 1 2 3 3 1 2

1 ( 1 1) ( 1 1)
1 1 1
( 1 1) 1 ( 1 1)

1 1 1
( 1 1) ( 1 1) 1
1 1 1

s s s s s
s s s s s s

s s s s s
s s s s s s

s s s s s
s s s s s s

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

 + + + + + − − + + −
 

+ + + 
 − + + − + + + + + −
 =

+ + + 
 + + − − + + − + + + 
 + + + 

T   (16) 352 

where 1θ , 2θ  and 3θ  are, respectively, the roll, pitch and yaw angles of the platform. s is 353 

equal to 2 2 2
1 2 3θ θ θ+ + . 354 

By setting the platform reference point as the origin of the inertial coordinate system in 355 

establishing its local coordinate frame, the platform position vector is corrected as follows: 356 

DLL AQWA mat− ⋅D = D T CoG          (17) 357 

where CoG  is the position vector from the reference point to the platform’s CM. AQWAD  358 

and DLLD  are the platform displacement vectors obtained in AQWA and the one passed into 359 

the DLL, respectively. 360 

The translational velocity vector of the platform is corrected as follows: 361 

DLL AQWA mat− ⋅ ×U = U T CoG ω         (18) 362 

where AQWAU  and DLLU  are the platform velocity vectors obtained in AQWA and the one 363 
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used in the DLL, respectively; ω  is the rotational velocity vector of the platform obtained in 364 

AQWA. 365 

Since the fourth-order Adams-Beshforth-Mounton predictor-corrector method is used to 366 

solve the equation of motion given in Eq. (5), the accelerations of the involved structures are 367 

needed. However, the platform acceleration is not permitted to be shared with the DLL. 368 

Therefore, the platform acceleration vector is estimated numerically in the DLL based on the 369 

velocity vectors at the last and current time steps as follows: 370 

'
DLL DLL DLL t∆a = (U - U )           (19) 371 

where DLLa  is the platform acceleration and '
DLLU  is the platform velocity at the last time 372 

step, t∆  is the time step of the simulation. 373 

Similarly, the tower-base loads obtained directly in the DLL are transformed as follows: 374 

1
AQWA mat DLL

− ⋅F = T F            (20) 375 

1
AQWA mat DLL DLL( )−= ⋅ − ×M T M CoG F        (21) 376 

where AQWAF  and DLLF  are the translational force vectors in the AQWA program and DLL, 377 

respectively. 1
mat
−T  is the inverse matrix of matT . AQWAM  used in AQWA is the moment 378 

vector acting at the platform’s mass center with respect to the inertial coordinate system. DLLM  379 

obtained in the DLL is the moment vector acting at the tower-base with respect to the platform’s 380 

local coordinate system. 381 

 382 

4 Validation of the fully coupled model 383 

Since there is no credible model test or numerical data available for the full IFES model 384 

adopted in this study, the validation of the aero-hydro-servo-elastic coupled model is conducted 385 

in two parts: (i) to validate the accuracy of the fully coupled model in predicting dynamic 386 
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responses of a FWT by comparing it with OpenFAST; (ii) to confirm that hydrodynamic 387 

performance of a tidal turbine can be evaluated credibly; the results from the model tests by 388 

Bahaj et al. [38] and Doman et al. [39] are used in the comparisons. In addition, the results of 389 

the tidal turbine under steady inflow conditions are compared with its design parameters to 390 

verify the controller. 391 

4.1 Accuracy in predicting fully coupled responses of the wind turbine 392 

FAST was developed by NREL for aero-hydro-servo-elastic coupled analysis of 393 

horizontal axis wind turbines. FAST has been verified and approved as credible numerical tool 394 

for the analysis of wind-wave coupled loads on wind turbines by Germanischer Lloyd. In 395 

addition, FAST was used as the main numerical tool in numerous international projects 396 

including the OC3 project, a collaborative research with focus on validation and improvement 397 

of numerical tools for wind turbine analysis. The numerical predictions from FAST agreed well 398 

with the experimental data for the OC3-Hywind [40] and DeepCwind semi-submersible [41] 399 

concepts. Since FAST has been well validated by experimental data in numerous studies, it is 400 

agreed that the tool is capable of producing accurate and reliable numerical results for 401 

simulations of FWTs under wind-wave coupled conditions. OpenFAST, the latest version of 402 

FAST, is therefore used to validate the coupled model developed in this study. 403 

Since the process of generating an irregular wave in AQWA and OpenFAST is different, 404 

the examined met-ocean condition is composed of a regular wave and a turbulent wind. The 405 

turbulent wind has an average speed of 11.4 m/s at the hub height and a shear exponent of 0.12. 406 

The wave height and period are, respectively, 1.94 m and 5.01 s. The coupled responses of the 407 

platform are compared in Fig. 5. Although a notable difference is observed, the platform surge 408 

motion predicted by the coupled model in AQWA follows the same trend as the results obtained 409 

using OpenFAST. The average surge motions of AQWA and OpenFAST are 20.7 m and 20.9 410 

m, respectively. The discrepancy between the heave motions is relatively smaller than the 411 
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difference in the surge motion. The heave motion predicted by the coupled model developed 412 

in AQWA is almost identical with the result obtained using OpenFAST. The agreement 413 

between AQWA and OpenFAST is reasonably good in predicting the platform pitch motion. 414 

The results predicted by these two tools follow the same trend over the simulation, although 415 

minor differences are observed. The average platform pitch motions from AQWA and 416 

OpenFAST are 4.24 degrees and 4.33 degrees, respectively. The relative difference is around 417 

1.92%. The differences between the results are mainly attributed to the mooring system and 418 

hydrodynamic loads. Each mooring line is modelled as a quasi-static catenary in OpenFAST, 419 

while the mooring lines are modelled using a dynamic approach in AQWA to examine the 420 

dynamic effects of the platform motions. In addition, some differences between these two tools 421 

in predicting hydrodynamic loads exist. For example, the duration of the convolutional integral 422 

used to calculate the radiation force due to memory effect is 120 s in AQWA, while the memory 423 

duration in OpenFAST is 60 s by default. Nonetheless, the differences between the platform 424 

motions obtained using AQWA and OpenFAST are negligible. 425 
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Fig. 5: Comparison between platform responses obtained using OpenFAST and the present 427 
coupled model developed in AQWA. 428 

 429 

Fig. 6 presents the fairlead tension of each mooring line obtained using OpenFAST and 430 

the present coupled model developed in AQWA. The agreement between the fairlead tensions 431 

predicted by these two tools is good for each of the mooring lines. The small discrepancy is 432 

attributed to the difference in modelling the mooring lines in AQWA and OpenFAST. Each 433 

mooring line is modelled as a quasi-static catenary in OpenFAST, while the mooring lines are 434 

modelled as dynamic catenaries in AQWA. The dynamic effects due to platform motions are 435 

examined in AQWA. Consequently, the tension in each mooring line predicted by AQWA 436 

fluctuates in a relatively larger range compared to the results obtained using OpenFAST. 437 

Nonetheless, the differences between the mooring tensions obtained using AQWA and 438 

OpenFAST are acceptable. The comparisons against OpenFAST indicate that the aero-hydro-439 

servo-elastic model that has been well implemented within AQWA is capable of accurately 440 

predicting coupled responses of the FWT. The DLL is capable of performing a fully coupled 441 

analysis in AQWA and it has been released to the public on an open source platform, GitHub, 442 

as shown in Appendix B.  443 
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 444 

Fig. 6: Fairlead tension of each mooring line predicted by OpenFAST and the present 445 
coupled model developed in AQWA. 446 

 447 

4.2 Credibility in evaluating hydrodynamic performance of the tidal turbine 448 

The model tests conducted by Bahaj et al. [38] and Doman et al. [39] are used to validate 449 

the numerical tool integrated within AQWA. Fig. 7 presents the comparisons between the test 450 

data and numerical results for two different tidal turbines. It is observed that the power and 451 

thrust coefficients predicted in the present numerical simulations follow the same variation 452 

trends as the data from model test 1, although the numerical simulation slightly overestimates 453 

the power coefficient at a high tip speed ratio (TSR). In the model test 2, the numerical results 454 

are slightly higher than the test data for low TSRs. In the common operational range of TSR 455 

between 4 and 6, the power and thrust coefficients predicted by the numerical model agree well 456 

with the test results in both magnitude and variation trend. The overall agreements between the 457 

results of the numerical simulations and model tests are reasonably good. The comparisons 458 

have confirmed the accuracy of the numerical model in predicting responses of tidal turbines. 459 
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   460 

(a) Model test 1         (b) Model test 2 461 

Fig. 7: Comparison between tidal turbine responses obtained from the present numerical 462 

simulations and model tests; (a) model test 1 conducted by Bahaj et al. [38] for a 0.8 m 463 

diameter rotor, (b) model test 2 conducted by Doman et al. [39] for a 0.762 m diameter rotor.  464 

 465 

For each inflow current speed within the operational range, a simulation with a duration 466 

of 800 s is conducted. The first 200 s transient results are removed and the results of the last 467 

600 s are used to obtain the average power and rotor speed. Fig. 8 presents the comparisons 468 

between the power and rotor speed predicted by the numerical model and the design parameters 469 

versus inflow current speed. It is observed that the numerical results are identical to the design 470 

parameters for each inflow current speed. The comparison indicates that the controller 471 

implemented in this study is efficient in adjusting rotor speed and blade pitch to achieve a target 472 

power. 473 
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 474 

Fig. 8: Comparisons of power and rotor speed under steady conditions 475 

 476 

5 Results and Discussions 477 

In this section, the performance of the IFES is evaluated and compared against a single 478 

FWT for below-rated, rated and over-rated conditions with regards to the responses of the 479 

blades, platform and mooring system. In addition, the power production of these two floating 480 

energy systems are compared to highlight the advantage of the IFES concept.  481 

5.1 Load case definition 482 

Based on the met-ocean data of a specific site over the west coast of USA [42], three 483 

typical load cases (LCs) are defined. The average wind speeds at the height of 90 m above the 484 

MSL are 8 m/s, 11.4 m/s and 16 m/s, respectively, for the three LCs. The corresponding wave 485 

properties and current speed at the MSL are presented in Table 4. It is noted that the rated 486 

current speed of the tidal turbine is 2 m/s which is much larger than the current speed examined 487 

in this study. It is anticipated that the additional power production of the tidal turbines will be 488 

less than their rated power. The full-field turbulent winds are generated using TurbSim [43] 489 

based on the Kaimal spectrum. A power-law profile with an exponent of 0.12 is adopted to 490 

examine the wind shear effect. Fig. 9 presents the generated wind field with an average speed 491 

of 11.4 m/s at the hub height. The kinematics of the irregular waves are generated based on the 492 
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P-M spectrum in AQWA. The current speed distribution along the water depth follows a 493 

power-law profile with an exponent of 1/7 as suggested [32]. The dynamic responses of the 494 

IFES and FWT are examined for each load case. The simulation length is 4600 s and the time 495 

step is 0.005 s. 496 

Table 4: Environmental conditions of the load cases 497 

Load case Wind speed at 
hub height (m/s) 

Significant 
height (m) 

Spectral peak 
period (s) 

Current speed at 
the MSL (m/s) 

LC1 8.0 1.316 8.006 1.0 
LC2 11.4 1.836 7.441 1.1 
LC3 16.0 2.598 7.643 1.2 

 498 
Fig. 9: Wind field with an average speed of 11.4 m/s at the hub height 499 

 500 

5.2 Blade responses 501 

The out-of-plane (OoP) blade-tip deflection and rotor thrust of the present IFES concept 502 

and a single FWT under LC2 are presented in Fig. 10. The time domain variations of the rotor 503 

thrust of the IFES follows the same trend as the result of the FWT. The difference in magnitude 504 

is negligible. Similar phenomenon is observed for the blade-tip deflection. The results indicate 505 

that the tidal turbines attached to the spar platform have insignificant effects on the 506 

aerodynamic performance of the wind turbine. 507 
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 508 

Fig. 10: Blade-tip deflection and rotor thrust under LC2 509 

Table 5 presents the statistics of the blade-tip deflection and rotor thrust of the single FWT 510 

and IFES under the three LCs. The maximum blade-tip deflection of the IFES under LC1 is 511 

1.1% smaller than that of the FWT, the corresponding standard deviation is 1.28% larger. 512 

Similar phenomenon is observed for the rotor thrust. It is noted that the errors between the 513 

statistical responses of the IFES and FWT are smaller than 2% for all the LCs, which include 514 

the below-rated and over-rated conditions. The aero-elastic responses and aerodynamic 515 

performance of the IFES are similar to those of the FWT. The statistical results imply that the 516 

influence of the tidal turbines on the dynamic responses of the rotor is weak. It is anticipated 517 

that the installation of additional tidal turbines on the spar platform has negligibly negative 518 

effects on the dynamics and performance of the blades. 519 

 520 

Table 5: Statistics of the OoP blade-tip deflection and rotor thrust (during 400 s ~ 4600s) 521 

  Blade-tip deflection (OoP)/m  Rotor thrust/kN 
  IFES FWT Error  IFES FWT Error 

LC1 
Max 4.58 4.63 -1.10%  733.8 747.7 -1.86% 
Mean 3.27 3.28 -0.20%  554.5 554.5 -0.01% 
Std.dev 0.39 0.38 1.28%  57.7 58.6 -1.44% 

LC2 Max 7.00 7.05 -0.62%  1036.0 1052.0 -1.52% 
Mean 4.47 4.45 0.51%  769.1 765.0 0.53% 
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Std.dev 0.97 0.99 -1.42%  114.7 117.0 -1.99% 

LC3 
Max 6.27 6.12 2.42%  1029.0 1016.0 1.28% 
Mean 2.49 2.47 0.82%  558.5 553.5 0.90% 
Std.dev 1.01 1.00 0.92%  95.9 94.7 1.32% 

 522 

5.3 Platform responses 523 

The platform responses of the IFES and the single FWT under LC2 are presented in Fig. 524 

11. Significant differences between the platform motions of the IFES and FWT are observed. 525 

The average value of the surge motion of the IFES is significantly larger, while the fluctuation 526 

is much smaller compared to the surge motion of the single FWT. This is because the tidal 527 

turbines provide a considerable thrust when the wind turbine moves towards the inflow wind. 528 

The hydrodynamic thrusts produced by the tidal turbines act as a damping against the wind 529 

turbine when moving towards the upwind direction. The presence of the tidal turbines improves 530 

the transient behavior of the platform which is caused by the rapid decrease of aerodynamic 531 

damping when the controller increases the blade pitch angle under an over-rated condition. 532 

The platform heave of the IFES is smaller than the heave of the FWT. This means that the 533 

equilibrium position of the IFES is lower since the buoyancy provided by the tidal turbines is 534 

smaller than their weights. Relatively small discrepancy in the pitch motions of the IFES and 535 

FWT is observed. The contribution by the tidal turbines to the platform pitch motion is 536 

negligible since the pitch motion is mainly influenced by the wind loading. As indicated by the 537 

results presented in Fig. 10, the tidal turbines have insignificant effects on the aerodynamic 538 

loads of the wind turbine, although they have notable effects on the platform surge that is 539 

coupled with aerodynamic loads. However, the velocity variation of the turbulent wind in LC2 540 

is still the main contribution to the fluctuation of relative inflow speed of the wind turbine. 541 

Therefore, the pitch motion dominated by the wind loading is weakly affected by the tidal 542 

turbines. 543 
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 544 

Fig. 11: Platform motions of the IFES and FWT under LC2. 545 

 546 

By applying a Fast Fourier Transformation (FFT) on the time series of the platform 547 

responses under LC2, the spectral responses of the platform are obtained as presented in Fig. 548 

12. As observed from Fig. 12(a), the surge amplitude corresponding to the natural frequency 549 

of the surge mode of the IFES is much smaller than that of the FWT. It means that the response 550 

from the surge mode is significantly mitigated by the tidal turbines. The contribution of the 551 

surge mode to the heave motion is also reduced as indicated by Fig. 12(b). It is noted that the 552 

discrepancy in the amplitudes at other frequencies of the IFES and FWT is insignificant. Since 553 

the platform pitch is mainly influenced by the wind loading, the spectral responses of the 554 

platform pitch of the IFES and FWT are similar.  555 
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     556 

 557 

Fig. 12: Spectral responses of the platform under LC2. (a) surge, (b) heave and (c) pitch. 558 

 559 

The statistical results of the platform motions are given in Table 6. Similar to the results 560 

under LC2, the maximum surge motion of the IFES is larger than that of the FWT under both 561 

LC1 and LC3 due to the additionally considerable thrusts produced by the tidal turbines. For 562 

the same reason, the standard deviations are smaller. Under LC1, the surge standard deviations 563 

of the IFES and FWT are 1.55 m and 2.49 m, respectively. It means that the tidal turbines 564 

mitigate the surge fluctuation by 37.5%. Reductions of 57.2% and 42.1% on the surge standard 565 

deviation are achieved under LC2 and LC3, respectively. It is anticipated that the fluctuation 566 

of the tension in a mooring line will decrease due to the tidal turbines under all the LCs. 567 

 568 

Table 6: Statistical platform responses of the IFES and FWT (during 400 s ~ 4600s) 569 
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  IFES FWT  IFES FWT  IFES FWT 

LC1 
Max 24.67 19.93  0.136 1.395  4.162 4.137 
Mean 20.49 13.72  -0.114 1.129  2.877 2.802 
Std.dev 1.55 2.49  0.101 0.095  0.419 0.448 

LC2 
Max 33.54 32.58  0.436 1.803  7.709 7.705 
Mean 28.13 20.02  -0.425 0.926  4.171 4.101 
Std.dev 2.29 5.36  0.217 0.212  1.151 1.207 

LC3 
Max 30.30 23.66  0.446 1.850  6.510 6.331 
Mean 23.57 13.67  -0.200 1.117  3.026 2.842 
Std.dev 1.90 3.27  0.226 0.212  1.182 1.112 

 570 

5.4 Tension in mooring lines 571 

Fig. 13 presents the fairlead tension of each mooring line of the IFES and FWT under 572 

LC2. As expected, the fluctuation of tension in the mooring lines of the IFES is smaller than 573 

that of the FWT due to the smaller variation range of the surge motion. As the IFES suffers an 574 

additionally considerable thrust generated by the tidal turbines, its equilibrium position is 575 

relatively farther than that of the FWT. Consequently, compared with the single FWT, the 576 

mooring line #1 placed in the downwind direction is in a looser state, while the stretched 577 

lengths of the upwind mooring lines (#2 and #3) are larger. As a result, the mean tension in 578 

mooring line #1 of the IFES is smaller compared to the results of the FWT, while the mooring 579 

lines #2 and #3 have a larger average tension. 580 
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 581 

Fig. 13: Fairlead tension in the mooring lines of the IFES and FWT under LC2 582 

 583 

The mean values and standard deviations of the fairlead tension in the mooring lines of 584 

the IFES and FWT under all the three LCs are presented in Table 7. Similar to the results under 585 

LC2, the average tension in mooring line #1 of the IFES is smaller than that of the FWT under 586 

both LC1 and LC3. In addition, the standard deviation of the tension in mooring line is 587 

significantly decreased by the tidal turbines. For the upwind mooring lines, the mean tension 588 

increases and the standard deviation of the tension decreases due to the presence of the tidal 589 

turbines. More specifically, the mean tensions in mooring line #2 of the IFES and FWT under 590 

LC 1 are 1196.0 kN and 1083.2 kN, respectively. The corresponding standard deviations of the 591 

tensions are 28.1 kN and 40.3 kN, respectively. The mean tension increases by 10.4% while 592 

the standard deviation decreases by 30.4%. Similar phenomena are observed for LC2 and LC3. 593 

The enhancements on the mean tension in mooring line #2 under LC2 and LC3 are 162.9 kN 594 
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and 177.7 kN, respectively, equivalent to increase of 13.8% and 16.3%. Meanwhile, the 595 

standard deviations of the tension in mooring line #2 under LC2 and LC3 decrease by 53.3% 596 

and 39.3%, respectively. The statistical results indicate that the load in a downwind mooring 597 

line is mitigated, while the loads in the upwind mooring lines are enhanced by the tidal turbines. 598 

It is anticipated that the service lifetime of the downwind mooring line will be extended due to 599 

the smaller mean load and fluctuation. However, the influence on the fatigue damage of the 600 

upwind mooring lines requires a further investigation, since the mean value of the tension 601 

increases but the standard deviation significantly decreases. 602 

 603 

Table 7: Mean value and standard deviation of the fairlead tension of the mooring lines 604 

  Mooring line #1/kN  Mooring line #2/kN  Mooring line #3/kN 
  IFES FWT  IFES FWT  IFES FWT 

LC1 Mean 593.1 700.9  1196.0 1083.2  1196.4 1082.9 
Std.dev 16.4 38.8  28.1 40.3  28.1 41.3 

LC2 Mean 522.9 632.2  1340.7 1177.8  1346.0 1180.6 
Std.dev 17.3 72.3  49.2 105.4  49.7 103.5 

LC3 Mean 557.7 703.7  1265.3 1087.6  1256.0 1077.1 
Std.dev 13.5 50.1  33.2 54.7  33.6 54.7 

 605 

5.5 Power production 606 

The generator power of the IFES and FWT under LC2 is presented in Fig. 14. As indicated 607 

in the previously presented results, the tidal turbines have a slight influence on the aerodynamic 608 

performance of the wind turbine. Therefore, the generator power of the IFES contributed by 609 

the wind turbine is similar to that of the single FWT. The average generator powers of the IFES 610 

and FWT are 4773.7 kW and 4777.2 kW, respectively. The inflow current speed at the MSL is 611 

1.1 m/s in LC2. It means that the constant inflow current speed at the depth of 46.5 m is 1.08 612 

m. The corresponding design power of the tidal turbine is 88.4 kW. The dynamic inflow due 613 

to the platform motions affects the actual generator power of the tidal turbines. The average 614 

power of the two tidal turbines is 183.2 kW that is slightly higher than the target design power. 615 
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Compared to a single FWT, the average output power is increased by 3.84% due to the presence 616 

of the tidal turbines under LC2. 617 

 618 

Fig. 14: Generator power of the IFES and FWT under LC2 619 

 620 

The presence of the tidal turbines has a slight influence on the power production of the 621 

wind turbine for the examined LCs, as indicated by Table 8. The results indicate that the total 622 

power production is increased by 3.84% to 6.46% due to additional tidal turbines. Although 623 

the wind power of the IFES is decreased by 10.1 kW compared to the single FWT, the tidal 624 

turbines provides an additional power production of 135.1 kW. As a result, the total power of 625 

the IFES is increased by 6.46%. It is also found that the total power production increases by 626 

237 kW under LC3, equivalent to an enhancement of 4.74%.  627 

Table 8: Average power of the wind and tidal turbines under the examined LCs 628 

 IFES/kW  FWT/kW  Error 
 Wind Tidal Total  Total   

LC1 1923.1 135.1 2058.2  1933.2  6.46% 
LC2 4773.7 183.3 4957.0  4777.2  3.84% 

LC3 4998.9 237.0 5235.9  4998.7  4.74% 
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 629 

The average power output of the FWT and IFES including the contributions of the tidal 630 

turbines under the three LCs are presented in Fig. 15. The average power generation of the 631 

IFES is higher than the one of the FWT for each LC. It means that the tidal turbine is beneficial 632 

in enhancing the total power production of the floating wind energy system. 633 

 634 

Fig. 15: Average power outputs of the IFES and FWT under the three LCs 635 

 636 

6 Conclusions 637 

This study proposed an integrated floating energy system by combining two 550 kW tidal 638 

turbines with a 5 MW wind turbine supported by a spar platform. A novel fully coupled 639 

numerical tool is developed by implementing the aero-servo-elastic simulation capabilities 640 

within the commercial hydrodynamic analysis software package, AQWA. In addition, the 641 

AeroDyn program is integrated with the coupled tool to evaluate performance of the tidal 642 

turbines. A torque-pitch controller is implemented within the coupled tool for the tidal turbines 643 

operating under dynamic inflow conditions due to the platform motions. Numerical results 644 
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from OpenFAST and experimental data from model tests are used to verify the accuracy of the 645 

fully coupled model in predicting dynamic responses of a FWT and tidal turbines. The 646 

aerodynamic performance of the rotor, and dynamic responses of the blade, platform and 647 

mooring system of the IFES under different LCs are obtained using the coupled tool. The main 648 

conclusions of this study are listed as follows: 649 

(1) A novel fully coupled aero-hydro-servo-elastic tool based on AQWA and AeroDyn 650 

program is developed for dynamic analysis of the IFES concept. The comparisons against 651 

OpenFAST and model tests have validated the accuracy of the coupled tool in predicting 652 

dynamic responses of a hybrid floating energy concept subjected to wind and wave loadings. 653 

The DLL is capable of examining aero-servo-elastic coupled effects of FWTs and it has been 654 

released to the public. Details of the open source code can be found in Appendix B.  655 

(2) The tidal turbines have insignificant influences on the blade-tip deflection and rotor 656 

thrust of the wind turbine. The transient behavior of the platform is improved due to the 657 

presence of the tidal turbines which provide a considerable damping against the wind turbine 658 

moving towards the upwind direction. The IFES has similar dynamic responses of blades and 659 

aerodynamic performance to those of a single FWT, while the hydrodynamic performance is 660 

better.  661 

(3) The downwind mooring line of the IFES has a smaller mean fairlead tension compared 662 

to the FWT, while the fluctuation range is much smaller. The fatigue damage is anticipated to 663 

be reduced by the presence of the tidal turbines. Although the mean tensions in the upwind 664 

mooring lines of the IFES are larger than those of a FWT, the standard deviations are much 665 

smaller. The standard deviation of the tension in an upwind mooring line decreases by 30.4% 666 

to 53.3% depending on the environmental conditions. 667 

(4) The average power generation of the IFES is higher than the one of the FWT for each 668 

of the examined load cases. An enhancement of up to 6.46% is achieved on the overall power 669 
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production due to the tidal turbines. The results confirm that the IFES concept is beneficial in 670 

enhancing total power production without weakening the dynamic performance of a FWT. 671 

 672 

Appendix A: Implementation of the controller for the tidal turbine 673 

This study employs the control algorithm developed by Jonkman for the NREL 5 MW 674 

wind turbine in implementing the torque-pitch controller for the tidal turbine. The torque-pitch 675 

controller consists of a simple partial-load controller and a proportional-integral (PI) controller. 676 

The partial-load controller defines the torque-speed curve when the output power is smaller 677 

than the rated power as shown in Fig. 16. The gearbox ratio is assumed to be 1 for simplicity.  678 

 679 

Fig. 16: Torque versus rotor speed of the controller 680 

In region 1, the generator torque is 0. The cut-in rotor speed for outputting power is chosen 681 

as 3 rpm. In region 2, the torque is equal to the square of the generator speed. The tidal turbine 682 

operates in its best TSR of 6.98. The quadratic coefficient is 2333.4 Nm/(rpm)2. The starting 683 

and ending limits of region 2 are chosen as 4 rpm and 12.5 rpm. The starting generator speed 684 

of region 3 is selected as 99% of the rated speed. Once the generator speed exceeds the limit, 685 

the PI controller takes over in region 3 where the target output power remains constantly being 686 

the rated power. 687 
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In region 3, a PI controller is activated to adjust blade pitch angle as follows: 688 

0

d
t

P IK K tθ∆ = ∆Ω+ ∆Ω∫           (22) 689 

where θ∆  and ∆Ω  are the perturbations of the blade pitch angle and generator speed; PK  690 

and IK  are the proportional and integral gains, respectively. 691 

Based on the power performance of the tidal turbine, PK  and IK  corresponding to 0 692 

degree blade pitch are obtained with values of 39.42 rad·s/rad and 16.89 rad/rad, respectively. 693 

The linear adjustment coefficient η  of the PI gains for a specific blade pitch angle θ  is given 694 

as: 695 

( )=1 1η θ ψ+            (23) 696 

where ψ  is 0.00345 rad.  697 

The main parameters of the controller are given in Table 9. Fig. 17 presents the generator 698 

power, rotor speed and blade pitch of the tidal turbine under an unsteady inflow condition. The 699 

inflow current speed increases gradually from 0.5 m/s to 3.0 m/s over the simulation. The 700 

results shown in Fig. 17 indicate that the controller implemented in this study is effective to 701 

adjust rotor speed and blade-pitch of the tidal turbines under dynamic inflow current conditions. 702 

Table 9: Main parameters of the controller 703 

Value Variable Description 
1.570796 CornerFreq Corner frequency (-3dB point) in the low-pass filter, rad/s. 

0.0001 PC_DT Communication interval for pitch controller, s. 
16.89436 PC_KI Integral gain for pitch controller at rated pitch (zero), (-). 
0.003452 PC_KK Gains adjustment coefficient. 
39.42017 PC_KP Proportional gain for Pitch controller at rated Pitch (zero), s. 
1.570796 PC_MaxPit Maximum pitch setting in pitch controller, rad. 
0.139626 PC_MaxRat Maximum pitch  rate (in absolute value) in pitch  controller, rad/s. 

0.0 PC_MinPit Minimum pitch setting in pitch controller, rad. 
1.361357 PC_RefSpd Desired (reference) HSS speed for pitch controller, rad/s. 
0.314159 VS_CtInSp Transitional generator speed (HSS side) between regions 1 and 1 1/2, rad/s. 

0.0001 VS_DT Communication interval for torque controller, s. 
80000 VS_MaxRat Maximum torque rate (in absolute value) in torque controller, N-m/s. 

484810.4 VS_MaxTq Maximum generator torque in Region 3 (HSS side), N-m. 
212779.5 VS_Rgn2K Generator torque constant in Region 2 (HSS side), N-m/(rad/s)2. 
0.418879 VS_Rgn2Sp Transitional generator speed (HSS side) between regions 1 1/2 and 2, rad/s. 
0.017453 VS_Rgn3MP Minimum pitch angle in region 3 regardless of the generator speed, rad. 
1.347743 VS_RtGnSp Rated generator speed (HSS side), rad/s. 
550000 VS_RtPwr Rated generator power in Region 3, Watts. 

10 VS_SlPc Rated generator slip percentage in Region 2 1/2, %. 
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 704 

 705 

Fig. 17: Controller performance under an unsteady inflow condition 706 

Appendix B: Public release of the fully coupled model 707 

The DLL used in this study, which is capable of performing a fully coupled analysis of 708 

FWTs using AQWA, is released to the public on GitHub and can be accessed via the link: 709 

https://github.com/yang7857854/F2A. The source code and a user manual of F2A have been 710 

uploaded in the repository. 711 
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