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Highlights 

• Light-based technologies currently are cost-effective and widely available in market 

• Photons can be used to inactivate SARS-CoV-2 in air, liquids and on surfaces 

• Phototherapy can also be used as an adjuvant to modulate the host immune system.  

• Light-based solutions can significantly contribute to mitigate the impacts of COVID-

19 pandemic 

 

Abstract 

 

The global dissemination of the novel coronavirus disease (COVID-19) has accelerated the 

need for the implementation of effective antimicrobial strategies to target the causative agent 

SARS-CoV-2. Light-based technologies have a demonstrable broad range of activity over 

standard chemotherapeutic antimicrobials and conventional disinfectants, negligible 

emergence of resistance, and the capability to modulate the host immune response. This 

perspective article identifies the benefits, challenges, and pitfalls of repurposing light-based 

strategies to combat the emergence of COVID-19 pandemic. 

 

Keywords: photoinactivation; ultraviolet; photodynamic; photobiomodulation; germicidal; 

virucidal; photobiology. 



1. Introduction 

 

The pandemic spread of the novel coronavirus disease (COVID-19), caused by the SARS-

CoV-2 virus, is a red-alert global health threat [1,2]. In December 2019, COVID-19 expanded 

from Wuhan throughout China and was then exported throughout the world [1-4]. So far, more 

than 1 million people have been diagnosed with COVID-19 infection, and many more are 

expected to be diagnosed within the coming months [5,6]. As the epidemic evolves, national 

and global organizations are facing an urgent need to coordinate and combat this unprecedented 

large-scale public health crisis [6]. 

 

The epidemiological features of COVID-19 (i.e., severity, full spectrum of disease, 

transmissibility) have not been fully dissected [7]. The consensus is that the risk for severe 

acute disease symptoms and death is higher among the elderly and the immunocompromised 

[8-10]. In severe cases, infected patients need to be transferred to intensive care units for 

tracheal intubation [11]. This phenomenon is particularly worrisome because it can overwhelm 

healthcare facilities during the epidemic peak [10-13]. 

 

The spread and persistence of SARS-CoV-2 in diverse environments, such as healthcare, 

community, and residential areas, underlines the urgency for developing effective 

decontamination approaches as the pandemic crisis evolves [14]. A successful disinfection 

strategy coupled with additional infection-prevention countermeasures may substantially 

reduce transmissibility amongst asymptomatic carriers, a feature that is considered pivotal in 

the rapid dissemination of SARS-CoV-2. New light-mediated disinfection protocols are 

currently validated in hospitals and healthcare facilities for surface, air, and water as well as 

personal protective equipment (PPE), including eyewear, N95 respirators, and masks. 

Additionally, photobiomodulation, a light-based anti-inflammatory therapy, may have direct 

palliative effects on patients suffering from the so-called ‘cytokine storm’ associated with 

severe COVID-19. This review examines the potential of light-based technologies to prevent 

COVID-19 infection and control its dissemination by direct viral inactivation and to treat 

COVID-19 by modulating the host immune system. The direct antimicrobial actions of solar 

and UV radiation, photodynamic therapy, antimicrobial blue light, and ultrafast pulsed lasers 

for disinfection or in vivo use are considered, and the application of photobiomodulation to 

stimulate the host to mount an anti-viral response is discussed.  



 

2. SARS-CoV-2 stability outside the human body  

SARS-CoV-2 is highly infectious [15] and transmission occurs through contaminated air, 

water, and surfaces, which plays a pivotal role in its unbridled dissemination. A recent study 

by van Doremalen and colleagues investigated the stability of SARS-CoV-2 in aerosols and on 

inanimate surfaces (e.g., glass, metal, plastic, or cardboard) that can act as important 

transmission vectors [16]. Their findings suggest that aerosol and fomite transmission of 

SARS-CoV-2 is likely, indicating that the virus can remain viable and infectious for hours in 

aerosols and up to days on surfaces. This is in agreement with a recent comparative analysis of 

22 studies looking at the persistence of a broader panel of human coronaviruses on inanimate 

surfaces [17] This study included prominent pathogenic coronavirus species such as Severe 

Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS) and 

endemic human coronaviruses (HCoV) and concluded that: 1) viruses can remain infectious 

from 2 hours to 9 days; 2) incubation temperature is critical, as some viruses can remain viable 

at 4°C for up to 28 days whereas at 30–40°C viral viability is reduced.  

3. Historical Milestones of Antimicrobial Light 

 

The microbicidal effects of light have been widely known for more than a century. In 1885, 

Duclaux experimented with several microbial species and concluded that “sunlight is the best, 

cheapest, and most universally applicable microbicidal agent that we have” [18]. As early as 

1877, Downes and Blunt observed that light could effectively kill a series of microorganisms 

and reported that this effect was dependent on light parameters such as intensity, duration (i.e., 

light dose) and that the shortest wavelengths (e.g., blue to ultraviolet light) were the most 

effective [19] The first report on the virucidal effects of UV radiation dates back to 1928 when 

Rivers and Gates used UV light to inactivate viral particles in suspension and proved the 

efficacy of the method through subsequent subcutaneous inoculation of rabbits [20]. 

 

In 1903, Niels Finsen was awarded the Nobel Prize in Physiology or Medicine for his 

contribution to the treatment of infectious diseases, especially cutaneous tuberculosis, using 

visible light [21,22]. Virtually at the same time, Herman Von Tappeiner and Oscar Raab 

discovered by accident that the use of fluorescent dyes could enhance the microbial killing 

effect of visible light via photodynamic reactions [22]. By the 1930s, germicidal low-pressure 



Mercury (Hg) discharge lamps emitting quasi-monochromatic UV-C light (peak emission at 

254 nm) had been introduced into the market as highly efficient disinfection equipment [23]. 

Thus, since the pre-antibiotic era, light-based strategies have been extensively studied and used 

to treat and prevent infections [24]. However, each photoinactivation strategy has its pros and 

cons that must be carefully considered when designing a new microbial control strategy. 

 

4. Natural Ultraviolet Light  

 

Ultraviolet (UV) radiation is naturally and ubiquitously emitted by the sun, representing 10 % 

of its total light output. Only a small portion of the sunlight spectra has direct antimicrobial 

properties (UV-C). However, since most UV-C light is filtered by the atmospheric ozone layer, 

in practical terms, the antimicrobial activity associated with sunlight is mostly caused by 

photochemical reactions induced by UV-A and UV-B photons which are absorbed by 

endogenous chromophores such as amino acid residues, flavins, and porphyrin derivatives [25]. 

While UV-A alone does not seem to exert any significant virucidal effects, natural and artificial 

sunlight, as well as radiation in the UV-B spectrum, have been shown to inactivate 

bacteriophages and human viruses [26]. A model for the potential of solar UV radiation to 

inactivate viruses aerosolized in the atmosphere concluded that a full day of sun exposure 

would on average decrease the infectivity of UV-sensitive viruses by 3 log10 [27]. 

 

Besides its virucidal potential, solar UV radiation can also play a protective role against 

infectious diseases via its modulating effect on vitamin D production [28]. Vitamin D is known 

to upregulate the production of human cathelicidin, LL-37. This antimicrobial peptide has both 

antimicrobial and antiendotoxin activities, and also attenuates the production of 

proinflammatory cytokines which typically accompany respiratory tract infections. 

Accordingly, it was recently suggested that vitamin D could reduce the incidence, severity, and 

risk of death due to respiratory tract infections, notably those caused by COVID-19 [29]. 

However, conclusive evidence for an association between vitamin D supplementation and 

decreased risk of respiratory tract infections is still lacking. 

 

UV-C is directly absorbed by pyrimidine bases causing their dimerization, which leads to viral 

inactivation via DNA or RNA damage [30]. Thymine is the main chromophore in DNA while 

uracil is its counterpart in RNA. Upon UV-C exposure, thymine and uracil form cyclobutane-

dimers and pyrimidine-protein cross-links [30]. The viral protein coat has been shown to 



protect nucleic acids from UV-C radiation, by shielding the RNA, quenching the excited states 

of RNA, and/or by surrounding the bases with a hydrophobic environment and limiting the 

mobility of the individual bases. This results in a reduction of the overall rate of photoreactions, 

which allows the formation of non-cyclobutane-type dipyrimidines and uridine hydrates. Viral 

coating proteins themselves may suffer UV photodamage and become cross-linked to RNA. 

 

The International Ultraviolet Association (IUVA) recently released a fact sheet detailing the 

efficacy of UV on SARS-CoV-2 [31] in which they reviewed all the appropriate requirements 

for the safety of UV-C disinfection devices and discussed the corresponding performance 

standards and validation protocols. Coronaviruses display a wide range of UV-C LD90 (UV-C 

dose necessary to inactivate 90% of a microbial population) values, from 7 to 241 J/m2 so one 

might assume that the UV-C susceptibility of the novel SARS-CoV-2 (COVID-19) virus 

probably lies within this range [32]. Therefore, based on previous studies with SARS-CoV-1 

and other RNA-based coronaviruses, UV-C light can be used to effectively inactivate such 

pathogens present in the air, PPE, and on several types of surfaces [33,34]. 

 

5. Ultraviolet Germicidal Irradiation (UVGI)  

 

UV-C lamps have long been used in hospital and industrial settings for decontamination 

purposes. In the context of a mitigation approach to infection spreading, UV-C can be 

particularly helpful in the inactivation of virus-containing aerosols and surfaces.  

 

Air disinfection via upper-room germicidal UV-C light fixtures may be able to reduce viral 

transmission via the airborne route. Accordingly, an observational study during the 1957 

influenza pandemic reported that patients housed in hospital wards with upper-room UV-C had 

an infection rate of 1.9 %, compared to an infection rate of 18.9 % among patients housed in 

wards without UV-C [35]. However, it is important to note that the germicidal effect of UV-C 

seems to be strongly dependent on the relative humidity of the air, with UV-C effectiveness 

against influenza virus decreasing with increasing relative humidity [36]. 

 

The potential of viral spreading via contaminated surfaces depends on the ability of the virus 

to maintain infectivity in the environment, which in turn is influenced by several biological, 

physical, and chemical factors, including the type of virus, temperature, relative humidity, and 

type of surface [37]. A study that assessed the influence of genetic content and relative 



humidity on the virucidal effect of UV-C using viruses of different genetic composition 

concluded that single-stranded nucleic acid (ssRNA and ssDNA) viruses were more susceptible 

to UV inactivation than viruses with double-stranded nucleic acid (dsRNA and dsDNA) and 

that the UV dose necessary to achieve the same level of virus inactivation at 85 % relative 

humidity (RH) was higher than that at 55 % RH [37]. 

 

In an effort to safely expand the lifespan of the supply of medical equipment during the ongoing 

COVID-19 pandemic, it was estimated that 15-20 min exposure to 100 μW/cm2 of UV-C from 

a standard biosafety cabinet could efficiently disinfect N95 masks. The authors noted that this 

was an empirical estimation, with the proposed dose corresponding to 30 times the one 

necessary to inactivate 90 % of respiratory viruses. The widespread implementation of such a 

procedure could potentially reduce the current PPE burden by 75 % [38]. Even though UV 

does not seem to affect the filtrating capacity of N95 respirators, it is important to note that 

high UV-C doses can lead to reduced tensile strength of its materials [39]. 

 

Ultraviolet blood irradiation (UBI) is an alternative therapeutic application of UV-C [40]. This 

technique involves the extraction of a small proportion of the body’s total blood volume 

(typically 1-2 %), its irradiation with UV-C (254 nm) in a quartz tube followed by reinfusing 

it into the body. Rather than direct inactivation of pathogens, this procedure is thought to 

stimulate the host immune defense and has been used to treat both bacterial and viral infections, 

notably hepatitis [41]. 

 

The combination of multiple light wavelengths has been explored for cosmetic, environmental 

(water disinfection) and clinical (microbial catheter disinfection) applications. However, the 

precise photobiological mechanism of action and the experimental workflow to develop a 

marketable application is still missing [42,43]. 

 

It must be remarked that UV-C light at 254 nm can be harmful to the eyes and skin and, 

therefore, it is recommended to use it in setups that avoid direct human exposure. The use of 

far-UV-C (207-222 nm) has been proposed to minimize potential harm with human exposure 

[44]. This spectral range is strongly absorbed by amino acid residues and, therefore, is blocked 

by the acellular stratum corneum of the skin and the cornea of the eye, while still effective in 

the inactivation of viral particles and microbial cells present on surfaces and aerosols. However, 

this technology is still not broadly available in the market and the cost is far higher than 



common Hg lamps. UV-C LED technology is still limited to very compact applications. The 

shortest wavelengths available are around 250 nm, with the price per Watt being up to 1,000 

times higher than that Hg lamps, while displaying an energy efficiency (< 5 %) far lower than 

that of Hg lamps (25-40 %).  

 

6. Photoantimicrobials and Photodynamic Therapy  

 

Visible light can exert antiviral effects via photodynamic mechanisms that are initiated upon 

absorption of light by exogenous photosensitizer compounds, such as phenothiazinium salts, 

porphyrins, nanoparticles, and others [45-48]. The inactivation of microorganisms and viruses 

by visible light is based on the generation of lethal oxidant species via photosensitized 

oxidation reactions, which require three components: the chromophore, termed the 

photosensitizer (PS), light, and oxygen. After light absorption, excited oxygen states are 

quickly formed, initially in the singlet, and subsequently in the triplet states (i.e., considering 

the photocycle of organic molecules). These species can release the excitation energy in the 

form of light (e.g., fluorescence and phosphorescence) or heat (non-radiative decay) emission. 

Since excited states are intrinsically more reactive than ground states, energy and electron 

transfer reactions can occur. There are two main mechanisms of photosensitized oxidation: 

Type I reactions depend on the encounter of the excited species with biological substrates. 

These reactions usually occur through electron or hydrogen abstraction, leading to radical chain 

reactions; Type II reactions rely on energy transfer reaction from the PS triplet state to 

molecular oxygen, generating singlet oxygen (1O2) (Figure 1) [49]. 

  

[Figure 1] 

 

Light energy is thus converted into oxidation potential that can damage biomolecules. 

Antimicrobial photodynamic therapy (aPDT) is based on this process and it has been used to 

treat localized microbial infections caused by viruses, bacteria, fungi, and parasites [50]. 

Among the many pathogens that can be targeted by aPDT, viruses are perhaps the most 

vulnerable, as they depend on entering a host cell for survival and replication and can be 

inactivated by damaging the capsid or envelope molecules (lipids, carbohydrates, proteins) or 

internal molecules (nucleic acids) (Figure 1). Thus, many viruses can be treated via aPDT, 

including papillomavirus (HPV), hepatitis A virus (HAV), and herpes simplex virus (HSV) 

[51-53]. Additionally, the disinfection of biological fluids (plasma and blood products) by 



photoantimicrobials has been performed for decades and is a well-regarded technological 

application of these compounds. For instance, extracorporeal photoinactivation of 

coronaviruses and other clinically relevant pathogens using methylene blue (MB)-mediated 

aPDT has been reported [54-59].  

 

It is possible that photosensitized oxidation can neutralize SARS-CoV-2 and, consequently, 

play a role in mitigating the ongoing pandemic; however, there is no data available on the 

photodynamic inactivation of this virus. Thus, here we sought to find and discuss scientific 

literature that could help predict whether COVID-19 is more or less susceptible to oxidant 

species generated during aPDT.  

 

While all types of viruses can be neutralized by aPDT, the inactivation efficiency depends on 

both the PS and the virus [60,61]. As a rule of the thumb, RNA-type phages are more easily 

photoinactivated than their DNA-type counterparts, suggesting that SARS-CoV-2, which is an 

enveloped RNA-type virus, can be easily neutralized by aPDT [61,62]. Guanine bases are the 

major targets for oxidation by photosensitizing agents in both RNA and DNA [63]. The 

formation of RNA-protein crosslinks may also be an important lesion involved in virus 

inactivation via aPDT [64].  

 

Enveloped viruses are more prone to aPDT neutralization than those without an envelope, due 

to the role of PS in damaging envelope components [65,66]. Initial studies on viral inactivation 

by aPDT demonstrated the importance of the PS reaching specific reaction sites, so-called 

“marked targets”, for efficient viral inactivation [67]. Other reports have confirmed the 

importance of PS binding on efficient virus inactivation via aPDT, and the PS membrane 

partition coefficients can be used as a predictor of its virus inactivation efficacy [68,69]. 

Transmission electron microscopy data has revealed that low PS concentrations degrade 

envelope surface glycoproteins blocking virus internalization, while higher PS concentrations 

can destroy lipid membranes [70]. These results can be interpreted in terms of the current 

mechanistic understanding of photosensitized oxidation, specifically the important role of 

direct-contact reactions. Irreversible membrane damage occurs with the abstraction of a 

hydrogen atom from an unsaturated fatty acid by direct reaction with the triplet excited state of 

the PS. Subsequent formation of peroxyl and alkoxyl radicals leads to the build-up of truncated 

lipid aldehydes, which are ultimately responsible for opening membrane pores [71]. The fact 



that irreversible damage occurs due to contact-dependent reactions, indicates that the damage 

can be confined within the nanometer location site of the PS [72].  

 

In terms of the application of aPDT to treat COVID-19 patients, it is encouraging to note that 

this technique is already used to treat several respiratory diseases [73]. PDT has been used for 

decades to treat lung cancers and its successful application in the treatment of laryngeal 

papillomas has also been reported [74]. Geralde et al. recently demonstrated that acute 

pneumonia caused by Streptococcus pneumoniae could be treated via inhalation of indocyanine 

green combined with extracorporeal administration of infrared light [75]. A prophylactic 

approach proposed by Soares et al. showed that aPDT can also be used to eliminate bacterial 

biofilms frequently associated with endotracheal tubes and that can lead to more severe stages 

of acute respiratory syndromes [76].  

 

Considering that: 1) SARS-CoV-2 is an enveloped RNA virus, 2) aPDT is efficient at 

neutralizing such viruses, and 3) light is already used to treat lung and airway-related infections, 

we propose that aPDT is a good candidate for treating COVID-19 or as an adjunct to disinfect 

biological fluids. Alternatively, photosensitizers could also be used to decontaminate liquids 

and surfaces or be incorporated into polymeric matrices such as plastics, fabrics, paper, and 

paints to produce photoantimicrobial materials [50,55,77]. Allotropes of carbon such as 

fullerenes, carbon nanotubes, and graphene can also show light-activated antimicrobial effects, 

including the inactivation of viruses [66,78,79]. 

 

7. Antimicrobial Blue Light  

 

Visible blue light exhibits microbicidal effects in the wavelength range of 405–470 nm [25,80-

84]. Accordingly, antimicrobial blue light (aBL) has been explored in the treatment of 

infectious diseases and as a disinfection adjuvant in healthcare settings. Clinical trials have 

revealed the efficiency of aBL in the treatment of acne, Helicobacter pylori gastrointestinal 

infections, and dental infections [83,85-87]. aBL was recently shown to rescue mice from 

methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa wound 

infections [88,89]. Oral anaerobic periodontopathogenic bacteria (Porphyromonas gingivalis, 

Prevotella intermedia, and P. nigrescens) were also inhibited or completely eradicated under 

blue light irradiation [90,91].  

 



The exact mechanisms underlying the antimicrobial effects of blue light are not yet completely 

understood but appear to involve the formation of short-lived reactive oxygen species (ROS) 

[92]. The most widely accepted view of the process posits that the photochemical mechanisms 

of aBL are based on light energy excitation of endogenous microbial intracellular light 

receptors (chromophores), such as porphyrins and flavins. Once excited, these receptors 

undergo energy transfer processes that lead to the generation of cytotoxic ROS which react 

with intracellular components resulting in photodamage and cell death by oxidative stress [93]. 

Since endogenous photoreceptors appear to be absent in viruses, the mechanisms by which 

aBL affects these pathogens remains unclear. However, it is currently known that: 1) the use 

of exogenous photosensitizers improves the efficiency of inactivation by blue light, and 2) the 

inactivation is more pronounced when the virus is present in body fluids, e.g., saliva, feces, 

and blood plasma [94,95].  

 

High-intensity narrow-spectrum light at 405 nm has been used for continuous decontamination 

of inpatient and outpatient burn units and patient-occupied intensive care isolation rooms, as 

well as the treatment of surgical site infections in an orthopedic operating room [96-98]. 

Compared to UV-C light, aBL displays decreased deleterious effects on eukaryotic cells, 

reducing the possibility of human tissue injury. While one should avoid direct eye exposure to 

light in this spectral region because the eye lens absorbs visible radiation, aBL can be used in 

human-occupied environments. Additionally, aBL exposure of an elastomeric material did not 

degrade the material’s properties and prevented bacterial adhesion to the material [99].  

 

In a recent bioinformatics study, SARS-CoV-2 was reported to be dependent on porphyrins, 

which it captures from human hemoglobin, resulting in altered heme metabolism [100]. 

However, the in silico methods used to obtain such results have been questioned by a 

commentary publication, putting into doubt wheter SARS-CoV-2 actually interacts with heme 

metabolism and accumulates porphyrins [101]. If this thesis is experimentally proven to be 

correct, aBL might be able to kill SARS-CoV-2 by photoexcitation of its acquired porphyrins. 

Thus, potential applications of aBL to prevent and control COVID-19 may include the 

disinfection aerosols, surfaces and health care PPE.  

 

8. Photobiomodulation Therapy 

 



Photobiomodulation (PBM) employs low levels of red or near-infrared (NIR) light to treat and 

heal wounds and injuries, reduce pain and inflammation, regenerate damaged tissue, and 

protect tissue at risk of dying [102]. Instead of directly targeting viruses, PBM mainly acts on 

the mitochondria, the cell’s powerhouses, which absorb light in the red and near-infrared 

spectral region [103]. The photons are absorbed by chromophores present in the mitochondria. 

Cytochrome c oxidase (i.e., unit IV in the respiratory chain) appears to play the main role in 

this process. Other molecular chromophores include light and heat-sensitive ion channels 

(transient receptor potential) that, upon light activation, lead to changes in calcium 

concentrations. Nanostructured water (interfacial water) is also likely to act as a chromophore. 

Upon irradiation, the mitochondrial membrane potential is raised and oxygen consumption and 

ATP generation are increased. Subsequent activation of signaling pathways and transcription 

factors leads to fairly long-lasting effects even after relatively brief exposure of the tissue to 

light.  

 

In the early 1900s, Finsen reported that patients exposed to red light exhibited significantly 

better recovery from smallpox infections than unexposed counterparts [21]. Since then, PBM 

has been used in the treatment of acute lung injury, pulmonary inflammation, and models of 

acute respiratory distress syndrome (ARDS), due to its ability to substantially reduce systemic 

inflammation while preserving lung function. [104-106]. There are currently 90 published 

papers on PBM concerning “acute lung injury” [106] OR “pulmonary inflammation” [107] OR 

“lung inflammation” [105] OR “ARDS” [108] OR “pneumonia” [109] OR “lung oxidative 

stress” [110] OR “asthma” [111] many involving small animal models where it can be argued 

that light penetrates more easily than in humans. However, there is a significant systemic effect 

of PBM, where absorption of light by circulating blood leads to major biological effects in 

distant parts of the body [112]. Because COVID-19 involves a “cytokine storm”, PBM 

delivered to the torso (chest and back) might not only allow some light to reach the lungs but 

might also reduce the systemic inflammation responsible for COVID-19 sepsis-like syndrome 

[113] and disseminated intravascular coagulation [114] that can be deadly [115]. Moreover, 

PBM is more effective on hypoxic cells [116], suggesting it could be effective for COVID-19 

infection, which seems to be characterized by severe hypoxia [117]. 

 

Hospitalized patients receiving mechanical ventilation or under high-oxygen continuous 

positive airway pressure (CPAP) treatment could be placed on an LED pad. These do not 

generate unacceptable levels of heat, so the high fever experienced by these patients should not 



be a problem. LED-based PBM devices similar to these have been approved by the FDA for 

general health and wellness applications, and there are no reported adverse effects [118]. 

 

9. Ultrafast Laser Irradiation 

 

Ultrashort pulse lasers (USPLs) emitting visible to near-infrared light have been used to 

inactivate a broad spectrum of viruses (human immunodeficiency virus, human papillomavirus, 

encephalomyocarditis virus, M13 bacteriophage, tobacco mosaic virus, and murine 

cytomegalovirus) with no damage to human or murine cells [119-124]. Regardless of 

wavelength, ultrafast laser irradiation does not promote ionization effects that could impair 

host cells. This irradiation does not appear to destroy either bovine serum albumin or single-

stranded DNA, nor cause adverse effects like those produced by toxic or carcinogenic 

chemicals. Previous works suggest that the antimicrobial effect of USPLs is exerted via 

impulsive stimulated Raman scattering, whereby high-frequency resonance vibrations provoke 

vibrations of sufficient strength to destroy the capsid [122,123].  

 

However, laser pulsing may not be necessary for its antimicrobial action. Recently, Kingsley 

et al. applied a tunable mode-locked Ti-Sapphire laser emitting femtosecond pulses at 

wavelengths of 400, 408, 425, 450, 465, and 510 nm to verify inactivation of murine norovirus 

(MNV) [92]. Continuous-wave (CW) lasers were also used. More than 99.9 % of virus 

inactivation was reported after irradiation with an average power of 150 mW at wavelengths 

of 408, 425, or 450 nm femtosecond-pulsed light for 3 hours, indicating that the inactivation 

mechanism is not wavelength-specific. Further, irradiation using a CW laser of similar power 

at 408 nm resulted in a considerable reduction in MNV numbers, suggesting that inactivation 

does not require pulsing.  

 

Other applications for USPLs include their use for pathogen reduction in blood and whole 

inactivated virus vaccines [124,125]. Laser treatment resulted in 1-log, 2-log, and 3-log 

reductions in hepatitis A, human immunodeficiency, and murine cytomegalovirus, respectively, 

in human plasma with no changes in the structure of fibrinogen. [125]. Further, in mice USPL-

induced inactivation of H1N1 influenza virus was more effective than formalin and did not 

cause damage to surface proteins or resulted in the production of carbonyl groups in proteins 

[126].  

 



10. Concluding remarks  

 

In summary, we have described how light-based strategies can be used to reduce SARS-CoV-

2 transmission through air, water, and surfaces as well as potential therapeutic applications that 

can reduce its morbidity and mortality. From our perspective, light provides several practical 

answers to the new logistical and therapeutic challenges brought by COVID-19. Therefore, we 

suggest that the death toll and quarantine extent can be significantly mitigated if at least part 

of these strategies are encouraged and implemented by health systems. Given the urgent 

demand raised by the current uncontrolled pandemic we must be ready to use all the available 

armamentarium to fight COVID-19. 
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Figure legends 

 

Figure 1. Mechanisms of photosensitized oxidation reactions. The photosensitizer (PS) is a 

molecule capable of absorbing light depending on its specific absorption spectra. Once excited, 

the PS is converted from the ground state 1PS to its singlet excited 1PS* and triplet excited 3PS* 

states. Via Type I (contact-dependent) reactions both 1PS* and 3PS* can react directly with O2 

or biomolecules, like carbohydrates, lipids, proteins, or nucleic acids, resulting in the formation 

of radicals capable of initiating redox chain reactions. Otherwise, 3PS* can react with molecular 

oxygen (3O2), via the Type II (energy transfer) reaction, generating the reactive state of singlet 

oxygen (1O2).  
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