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Abstract: 7 

Assessment of the potential of compounds to cause harm to the aquatic environment is an integral part 8 

of the REACH legislation. To reduce the number of vertebrate and invertebrate animals required for 9 

this analysis alternative approaches have been promoted. Category formation and read-across have 10 

been applied widely to predict toxicity. A key approach to grouping for environmental toxicity is the 11 

Verhaar scheme which uses rules to classify compounds into one of four mechanistic categories. 12 

These categories provide a mechanistic basis for grouping and any further predictive modelling. A 13 

computational implementation of the Verhaar scheme is available in Toxtree v2.6. The work 14 

presented herein demonstrates how modifications to the implementation of Verhaar between version 15 

1.5 and 2.6 of Toxtree have improved performance by reducing the number of incorrectly classified 16 

compounds. However, for the datasets used in this analysis, version 2.6 classifies more compounds as 17 

outside of the domain of the model. Further amendments to the classification rules have been 18 

implemented here using a post-processing filter encoded as a KNIME workflow. This results in fewer 19 

compounds being classified as outside of the model domain, further improving the predictivity of the 20 

scheme. The utility of the modification described herein is demonstrated through building quality, 21 

mechanism-specific Quantitative Structure Activity Relationship (QSAR) models for the compounds 22 

within specific mechanistic categories. 23 

Keywords: Verhaar; Toxtree; Aquatic Toxicity; QSAR; Category formation 24 

Highlights: 25 

 The Verhaar scheme as implemented in Toxtree v2.6 has improved performance; results here 26 

show 35% fewer compounds misclassified 27 

 The modified Verhaar scheme (Toxtree v2.6) correctly classifies 42% of compounds in test 28 

datasets  29 

 A KNIME post-processing filter improves the scheme further resulting in 63% of compounds 30 

correctly classified  31 

 QSAR models have been built from compounds in the resultant categories  32 
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1. Introduction 33 

Aquatic toxicity studies have traditionally been performed using a variety of vertebrate and 34 

invertebrate animals (Walker et al., 1991; Traas and van Leeuwen, 2007). The European REACH 35 

legislation (EC, 2006) has required companies to assess fully and report the environmental risks of 36 

compounds manufactured or imported in significant quantities (i.e. greater than or equal to one tonne 37 

per annum), and hence potentially requiring many tests (Schaafsma et al., 2009). However, alternative 38 

approaches have been promoted throughout the implementation of REACH and much research has 39 

been published in this area (e.g. (Jaworska et al., 2010; de Haas et al., 2011; Pery et al., 2013; Scholz 40 

et al., 2013; Gissi et al., 2014; Patlewicz et al., 2014). 41 

One key aspect of alternative methods is that they should be mechanistically interpretable (McKim et 42 

al., 1987). This enables methods to be transparent, credible and supports validation and regulatory 43 

acceptance. With regard to applying a mechanistic framework to environmental toxicants, Verhaar 44 

and co-workers devised a scheme to assist with the allocation of potential environmental pollutants 45 

into mechanisms of action (Verhaar et al., 1992). The scheme utilises 2D chemical structure to 46 

classify potential environmental pollutants into one of four categories representing one, or more, 47 

mechanisms of action: Class 1 (narcosis or baseline toxicity), Class 2 (less inert compounds), Class 3 48 

(unspecific reactivity) and Class 4 (compounds and groups of compounds acting by a specific 49 

mechanism). Grouping potentially allows for predictions of acute toxicity to be made from QSARs 50 

(Cronin, 2006), or to establish whether further information may be required for read-across purposes 51 

(Koleva et al., 2008). For example, the toxicity of Class 1 and 2 compounds can be predicted using 52 

hydrophobicity alone and further testing may not be required. Conversely for classes 3 and 4, the 53 

classification scheme is a simple and efficient method to quickly highlight compounds of concern 54 

where testing, further research and read-across approaches, possibly within an Integrated Approach to 55 

Testing and Assessment (IATA) strategy, may be more appropriate.  56 

Compounds acting as baseline narcotics (Class 1) include saturated aliphatic alcohols and ketones 57 

(Ellison et al., 2008). Their mechanism of action has been hypothesised to be related to their ability to 58 

accumulate within biological membranes (Roth, 1980). It is possible to predict acute toxic potency 59 

values of these compounds using a relevant hydrophobicity (logarithm of the octanol:water partition 60 

coefficient (log P)) dependent QSAR model (Könemann, 1981; Veith et al., 1983; Schultz and Tichy, 61 

1993) and there are also indications this relationship may hold for chronic toxicity (Austin and 62 

Eadsforth, 2014). This mechanism is termed the ‘baseline’ as all compounds have the potential to act 63 

as narcotics, but compounds can show excess toxicity (i.e. a level of toxicity higher than that 64 

predicted using hydrophobicity alone) because they contain chemical substructures which facilitate 65 

specific mechanism(s).   66 



Compounds acting as polar narcotics (Class 2) exhibit toxicity above the baseline, but can still be 67 

modelled using hydrophobicity alone. It has been argued that there is no mechanistic difference 68 

between baseline and polar narcotics (Vaes et al., 1998; Escher et al., 2002) but further analysis has 69 

subsequently shown that there is a physiological difference between the two mechanisms (Roberts and 70 

Costello, 2003) as well as historical evidence from the definition and experimental determination of 71 

Fish Acute Toxicity Syndromes (FATS) (McKim et al., 1987). Therefore it is preferable for modelling 72 

purposes to treat the two narcosis mechanisms separately (Ellison et al., 2008; Nendza et al., 2014; Su 73 

et al., 2014). Roberts and Costello (2003) proposed that the mechanistic difference between the two 74 

classes is caused by the hydrophilic, ‘polar’, part of a compound remaining in the aqueous 75 

environment at the outer part of a biological membrane which then limits the compound’s position in 76 

the membrane. In contrast baseline narcotics pass through fully into the centre of the membrane, 77 

where they then accumulate. Thus, compounds in Class 2 should contain a dipole moment significant 78 

enough to create distinctive hydrophilic areas within a molecule, which may be brought about by 79 

hydrogen bond interactions from an aromatic hydroxyl or amino group. 80 

Compounds acting by reactive (Class 3) mechanisms include those containing specific electrophilic 81 

moieties that enable the compound to react with nucleophilic sites on biological macromolecules. 82 

These compounds can only be modelled using hydrophobicity alone when there is consistency in the 83 

reactivity i.e. a group of compounds with the same reactive functional group but varying chain length; 84 

however the addition of an electronic descriptor within specific electrophilic mechanisms can create 85 

useful models (Netzeva and Schultz, 2005; Schultz et al., 2007). Also included in this class are 86 

molecules which can undergo bioactivation into an electrophilic compound (Hermens, 1990; Lipnick, 87 

1991). 88 

The final set of compounds defined by Verhaar et al, those acting via a specific mechanism (Class 4), 89 

is a diverse group which covers all molecules that exhibit toxicity via interactions with certain 90 

receptor mediated events. Examples of compounds in this class include organic phosphorus esters 91 

which inhibit acetylcholinesterase (Verhaar et al., 1992), and aromatic compounds which can act as 92 

weak acid respiratory uncouplers of oxidative phosphorylation (Schultz and Cronin, 1997). 93 

The classes defined by Verhaar et al, therefore, have the potential to group compounds into 94 

mechanistically relevant categories to aid modelling, read-across and hence hazard assessment. The 95 

Verhaar scheme for classification of environmental pollutants has been coded into a number of pieces 96 

of software, with little development or incorporation of new knowledge. In 2008 Enoch and co-97 

workers evaluated the performance of the Verhaar scheme as implemented in the software Toxtree ver. 98 

1.5 (Enoch et al., 2008). A number of misclassifications were noted, and as a result improvements 99 

were suggested. It was proposed that these could be achieved by reordering the rules in the system 100 



and implementing additional rules to identify compounds in Classes 3 and 4, as well as refining some 101 

of the existing rules. 102 

Since the publication by Enoch and co-workers in 2008, updates have been made to the Toxtree 103 

software and the current version (2.6) is freely available to download (http://Toxtree.sourceforge.net). 104 

The aim of the work presented here was to examine the utility of the Verhaar scheme as implemented 105 

in Toxtree version 2.6 to assign compounds to the correct mechanism of action as defined by well-106 

established datasets, and to determine whether additional rules would be beneficial to classify 107 

compounds correctly. Improvement to the classification performance would aid grouping by the 108 

creation of more robust mechanistically interpretable categories thus enabling better and more robust 109 

prediction of toxicity.  110 

2. Methods 111 

2.1 Datasets 112 

The data used to assess the performance of the Verhaar scheme as implemented in Toxtree ver. 2.6 113 

were acquired from the supplementary information of Enoch et al (2008). The same data were used so 114 

that a direct comparison could be made between Toxtree versions 1.5 (as used by Enoch et al, 2008) 115 

and 2.6 (see below). The supplementary information comprised two datasets: a set of 408 compounds 116 

tested using Pimephales promelas and assigned to mechanisms of action (Russom et al., 1997) and a 117 

set of 250 compounds tested using Tetrahymena pyriformis and also assigned mechanisms of action 118 

(Schultz et al., 1997). The information included: compound names; SMILES strings; toxicity values 119 

(LC50 and IGC50 respectively); assigned mechanism of action (details below); expected Verhaar 120 

scheme class (based on assigned mechanism); and Toxtree v1.5 classification. It was assumed that all 121 

information provided was correct; no quality analysis was performed on the data and Toxtree v1.5 122 

predictions were not repeated. However it was noted that 23 compounds from the T. pyriformis 123 

dataset had been recorded against Class 3, whereas their mechanism was actually Class 4. This 124 

typographical error was corrected before the data were used. 125 

The P. promelas dataset included compounds exhibiting the following mechanisms of toxicity: 126 

baseline narcosis (239 chemicals); polar narcosis (36 chemicals); reactive via electrophilic 127 

mechanisms (96 chemicals); respiratory uncoupling (12 chemicals); acetylcholinesterase inhibition 128 

(16 chemicals); and central nervous system seizure (9 chemicals). A combination of the assessment of 129 

whether a chemical exhibited excess toxicity (compared to that which would be predicted if the 130 

chemical was a baseline narcotic) together with the presence of structural features known to cause 131 

excess toxicity and experimental analysis (behavioural, dose–response and toxicodynamic profiling) 132 

was used previously to assign mechanisms of action (Russom et al., 1997). 133 

http://toxtree.sourceforge.net/


The T. pyriformis dataset included compounds exhibiting the following mechanisms of toxicity: polar 134 

narcosis (173 chemicals); reactive via electrophilic mechanisms (27 chemicals); reactive via pro-135 

electrophilic mechanisms (i.e. metabolic activation is required; 27 chemicals); respiratory uncoupling 136 

(19 chemicals); and pro-redox cycling (4 chemicals). These mechanisms were previously assigned 137 

based on clusters of chemicals identified in a 3D toxic response surface (energy of the Lowest 138 

Unoccupied Molecular Orbital (ELUMO), logarithm of the octanol:water partition coefficient (logP) and 139 

the inverse logarithm of the 50% Inhibitory Growth Concentration (log IGC50
-1

)). Clusters of 140 

chemicals were observed within broad ranges of ELUMO values, where chemicals with lower ELUMO 141 

values were classified as potential soft electrophiles, whilst chemicals with higher ELUMO values were 142 

classified as polar narcotics. The metabolically converted pro-electrophiles, weak acid respiratory 143 

uncouplers and pro-redox cyclers were assigned based on the presence of known structural features 144 

and ELUMO values (Schultz et al., 1997). As this dataset did not contain any baseline, non-polar 145 

narcotics additional data were included from another publication to ensure all mechanistic categories 146 

were represented in both species (Ellison et al., 2008). The data from Ellison et al (2008) comprised 147 

the toxicity (log IGC50
-1

), log P, SMILES and CAS numbers of 64 alcohols and 23 ketones which are 148 

accepted to act as baseline narcotics (Könemann, 1981; Veith et al., 1983), and had been tested in the 149 

same T. pyriformis assay (Schultz, 1997) as the phenols published by Schultz and co-workers (Schultz 150 

et al., 1997). The full compilation of all data for both species is available as supplementary 151 

information to this paper (which also includes the classifications from Toxtree 1.5, Toxtree 2.6 and 152 

the KNIME post-processing filter). 153 

2.2 Software 154 

Toxtree was developed by Ideaconsult Ltd (Sofia, Bulgaria) under the terms of a contract from the 155 

European Commission Joint Research Centre (JRC). The software encodes several decision trees and 156 

classification schemes useful for analysing the potential toxicity hazards of compounds (Pavan and 157 

Worth, 2008). The software is freely available (http://Toxtree.sourceforge.net) and the current version 158 

(2.6) includes an updated encoding of the Verhaar scheme under the title “Verhaar scheme 159 

(Modified)”. All 745 compounds described above were classified using the “Verhaar scheme 160 

(Modified)” decision tree through the batch processing functionality of Toxtree v2.6. Additionally the 161 

87 non-polar narcotics taken form Ellison et al (2008) were also processed through the “Verhaar 162 

scheme” in Toxtree ver 1.5 to enable to comparison of classifications for these compounds. Structures 163 

were entered as SDfiles which were generated from the SMILES strings using MarvinBeans v14 164 

(www.chemaxon.com). The possible outcomes from the scheme have not altered between versions: 165 

Class 1 (narcosis or baseline toxicity); Class 2 (less inert compounds); Class 3 (unspecific reactivity); 166 

Class 4 (compounds and groups of compounds acting by a specific mechanism); Class 5 (Not possible 167 

to classify according to rules). The first four classes directly relate to the Verhaar classes described 168 

above whereas Class 5 can be considered as “out of domain”. 169 

http://toxtree.sourceforge.net/
http://www.chemaxon.com/


KNIME is a freely available analytics platform that allows processes and workflows to be easily 170 

encoded (www.knime.org). After the compounds had been processed through Toxtree v2.6 and the 171 

data had been analysed (see below) a KNIME workflow was developed to act as a post-processing 172 

filter to Toxtree. The aim of the filter was to expand the domain of the Verhaar scheme so that fewer 173 

compounds were placed into Class 5. 174 

2.3 Data analysis 175 

The classifications produced by the modified Verhaar scheme as implemented in Toxtree 2.6 were 176 

compared with the original expert assigned mechanisms of action for all compounds to assess the 177 

performance of the software. If a compound was classified into Class 1, 2, 3 or 4 and this matched the 178 

assigned mechanism then this was considered a correct classification, whereas if the class did not 179 

match then this was considered an incorrect classification. If a compound was placed into Class 5 then 180 

the compound was considered to be outside of the domain of the scheme. The performance of the 181 

scheme for each class was assessed by calculating the Positive Predictivity Value (PPV) within each 182 

category using the following equation: 183 

PPV = Nc / (Nc +Ni) 184 

Where Nc is the number of compounds correctly classified and Ni is the number of compounds 185 

incorrectly classified. 186 

The performance of the modified Verhaar scheme (as implemented in Toxtree v2.6) was compared to 187 

the performance of the Verhaar scheme as implemented in Toxtree v1.5, as reported by Enoch and co-188 

workers (Enoch et al., 2008). Enoch and co-workers did not report the PPV values so these were 189 

calculated in the same manner using the data provided in the supplementary information.  190 

The results from Toxtree v2.6 were further analysed to identify possible improvements and 191 

refinements that could be made to the system. To this end the compounds which were out of the 192 

domain of the model (Class 5) were examined to see if they could be made classifiable by the scheme, 193 

through refinement of the existing rules. This was performed manually where expert judgement was 194 

used for each compound to assess whether it was truly out of the domain of the model, or if it should 195 

have been classifiable using an existing rule. The definitions of the rules used in this process were 196 

those found in Toxtree software under the menu ‘Method | View decision tree’ along with the more 197 

in-depth perspective offered by the original Verhaar publication (Verhaar et al., 1992). Where three or 198 

more compounds could be classified correctly by the modification of an existing rule, then this 199 

modified rule was implemented in a post-processing filter using the KNIME software. More 200 

specifically, structural filters were written using SMARTS patterns in the RD kit ‘Substructure 201 

http://www.knime.org/


Structure Filter’ node. A minimum of three compounds was utilised to reduce the risk of over-fitting 202 

the scheme for the specific compounds present in the datasets used in this analysis. 203 

To assess the utility of the final classifications once all improvements had been implemented, it was 204 

investigated whether it would be possible to develop QSARs within a class of compounds all acting 205 

via the same mechanism. To this end QSARs were developed for the baseline and polar narcosis as 206 

these should be well modelled by log P alone.  207 

3. Results and Discussion 208 

In 2008 Enoch and co-workers assessed the utility of the Verhaar scheme in Toxtree (v1.5) and 209 

provided recommendations for improved implementation of the scheme (Enoch et al., 2008). Since 210 

then, Toxtree has been updated and version 2.6 has been modified with consideration of the 211 

improvements suggested by Enoch and co-workers. This study examined the effect of these 212 

modifications using the same datasets as Enoch and co-workers; that is the 408 compounds tested in 213 

Pimephales promelas (Russom et al., 1997) and 250 phenols tested in Tetrahymena pyriformis 214 

(Schultz et al., 1997), as well as 87 compounds classified as baseline narcotics and tested in T. 215 

pyriformis (Ellison et al., 2008). All 745 compounds were assigned a ‘true’ mechanistic class 216 

previously (Russom et al., 1997; Schultz et al., 1997; Ellison et al., 2008) and it was against this 217 

classification that the performance of Toxtree 2.6 was assessed. Thus a compound was considered to 218 

have received a ‘correct’ classification when the previously assigned mechanism matched the 219 

classification provided by Toxtree.  220 

The comparison of results between the Verhaar scheme as implemented in Toxtree versions 1.5 and 221 

2.6 is available as supplementary information for all data used in this analysis. An initial inspection of 222 

these results indicates a marginal improvement; 45% of all compounds were correctly classified in 223 

Toxtree v1.5 (note that this figure is an improvement on the figure published by Enoch and co-224 

workers [38%] because of the addition of the 87 baseline narcotics tested in T. pyriformis) and in 225 

Toxtree v2.6 this figure raises to 49%. However, when considering the number of misclassified 226 

compounds, the modified version is significantly outperforming the previous version (196 227 

misclassifications in Toxtree v1.5 compared to 126 misclassifications in Toxtree v2.6; a reduction of 228 

35%). The positive predictivity value of the Verhaar scheme in Toxtree 1.5 was 0.63, whereas the 229 

scheme in Toxtree 2.6 has a value of 0.74 thus showing a significant improvement.   230 

The improvement in the classifications provided by Toxtree 2.6 is also apparent when examining the 231 

individual groups of compounds, as shown in Table 1. The positive predictivity value (PPV) is greater 232 

than 0.7 for three of the four classes, and the PPV value for Class 3 has improved from 0.34 to 0.57. 233 

Thus the scheme now performs better over a wider range of mechanisms rather than only performing 234 

well when identifying baseline narcotics. The number of compounds correctly classified as Class 1 235 



has increased from 158 to 182. However a greater number of compounds overall now fall into Class 1 236 

and thus the PPV has fallen from 0.95 to 0.83. It is clear that although improvements to the Verhaar 237 

classification within Toxtree have occurred between versions 1.5 and 2.6, the performance when 238 

using these datasets could be improved further. 239 

Table 1: Number of compounds (in)correctly classified for each class in the Verhaar scheme as 240 

implemented in Toxtree versions 1.5 and 2.6, and with additional post-processing filters (Fig. 3)  241 

where PPV is the Positive Predictive Value. 242 

 

 Toxtree 1.5  Toxtree 2.6  Additional Post-

processing filter 

 Correct Incorrect PPV Correct Incorrect PPV Correct Incorrect PPV 

T
. 

p
yr

if
o
rm

is
 

Class 

1 

84 0 1.00 84 25 0.77 87 0 1.00 

Class 

2 

79 20 0.80 79 19 0.81 152 27 0.85 

Class 

3 

9 63 0.13 5 17 0.23 32 21 0.60 

Class 

4 

0 0 N/A 1 1 0.5 9 5 0.64 

P
. 

p
ro

m
el

a
s 

Class 

1 

74 8 0.90 98 12 0.89 100 10 0.91 

Class 

2 

21 23 0.48 19 17 0.53 21 29 0.42 

Class 

3 

67 82 0.45 56 29 0.66 58 31 0.65 

Class 

4 

0 0 N/A 20 6 0.77 25 8 0.76 

C
o

m
b

in
ed

 

Class 

1 

158 8 0.95 182 37 0.83 187 10 0.95 

Class 

2 

100 43 0.70 98 36 0.73 173 56 0.76 

Class 

3 

76 145 0.34 61 46 0.57 90 52 0.63 

Class 

4 

0 0 N/A 21 7 0.75 34 13 0.72 

 243 

A major problem with the implementation of the Verhhar scheme is the number of compounds which 244 

fall into Class 5 (unclassified); overall 34% of compounds are unclassified. Modifications to the 245 



system enabling these compounds to be placed into the correct class would improve the overall 246 

performance of the Verhaar scheme. Inspection of the unclassified compounds identified three rules 247 

as potential targets for modification: 248 

- Rule 1.5.2 (“Be aliphatic alcohols but not allylic/propargylic alcohols”) – a modification 249 

would enable correct classification of an additional two compounds from the P. promelas 250 

dataset and three compounds from the T. pyriformis dataset.  251 

- Rule 1.7.1 (“Are halogenated compounds that comply with rule 1.5 (“Contain C, H & O”) 252 

but not alpha-, beta- halogen substituted compounds”) – a modification would enable 253 

correct classification of an additional four compounds from the P. promelas dataset. 254 

- Rule 2.1 (“Be non- or weakly acidic phenols”) – a modification would enable correct 255 

classification of an additional 32 compounds from the T. pyriformis dataset and two 256 

compounds from the P. promelas dataset. 257 

The four compounds which are currently unclassified but should be covered by rule 1.5.2 are shown 258 

in the Figure 1a. Only four compounds are shown as cyclohexanol has been tested against both P. 259 

promelas and T. pyriformis. All these compounds are aliphatic alcohols and therefore should be 260 

covered by rule 1.5.2 but it appears their ring structures are not currently covered by the rule. 261 

Therefore a simple change in the implementation of this rule would lead to these compounds being 262 

correctly classified. 263 

264 
Figure 1. Compounds which (a) do not currently hit rule 1.5.2 but should be covered (cyclohexanol; 265 

(1R,2S,5R)-(-)-menthol; 1-adamantanol; and Isoborneol) and (b) do not currently hit rule 1.7.1 but 266 

should be covered (2,3,4,5-tetrachlorophenol; 2,3,4-trichloroacetophenone; 2,4-dichloroacetophenone; 267 

and 4,4-isopropylidene-bis-2,6-dichlorophenol) 268 

The group of compounds which should be covered by rule 1.7.1 but were assigned to Class 5 are 269 

shown in Figure 1b. These compounds are not alpha-, beta- halogen substituted compounds, but 270 



instead contain an aromatic bond where a double bond is expected. Therefore a simple change in the 271 

implementation of this rule would lead to these compounds being correctly classified. 272 

Another rule which appears to be not performing as expected is rule 2.1. There are 34 unclassified 273 

polar narcotics in total which would be covered by this rule if the strict interpretation of Verhaar’s 274 

original rule was interpreted with more flexibility. Verhaar’s original rule only included phenols with 275 

one nitro substituent, and/or one to three chlorine substituents, and/or alkyl substituents. However, all 276 

phenols can be contain a dipole and therefore could act as polar narcotics unless they are electrophilic 277 

or have the ability to act via a specific mechanism (e.g. respiratory uncoupler of oxidative 278 

phosphorylation). In addition, while examining the unclassified compounds it became apparent that 279 

there were a large number of reactive phenols which are not currently covered by the scheme. These 280 

include many pro-electrophilic phenols which are precursors to quinones (e.g. 2,3-281 

dimethylhydroquinone). Thus implementation of a series of new rules to identify these phenols will 282 

lead to an improvement in the ability of the Verhaar scheme to assign this class of chemicals correctly.   283 

The above mentioned additions and alterations to the scheme were implemented through a KNIME 284 

workflow employed after processing the compounds through Toxtree v2.6. A schematic 285 

representation of the workflow is presented in Figure 2 (the KNIME workflow is available as 286 

supplementary information). The updated predictive performance and statistics are shown in Table 1 287 

and Figure 3. There is a marginal increase in the combined predictive performance when using the 288 

post-processing filter which arises from a significant improvement in the predictions made for the T. 289 

pyriformis dataset but this is countered to some extent by the decline in performance in predicting 290 

mechanistic assignments for the P. promelas dataset. 291 



292 
Figure 2. Schematic representation of post-processing filter used to improve classifications 293 

294 
Figure 3. Comparison of positive predictivity values from the Verhaar scheme as implemented in 295 

Toxtree v2.6 and those obtained using the additional post-processing filter. 296 

It is important to note that the classification performance of the Verhaar scheme between the datasets 297 

cannot be compared directly; the original classifications of the compounds were performed using 298 

different methods. The P. promelas data were classified using a combination of measured LC50 values, 299 



animal behaviour during testing and chemical structure (McKim et al., 1987). Conversely, the T. 300 

pyriformis data were classified simply using structure and membership of relevant QSARs. This leads 301 

to some discrepancies in the assigned mechanisms between the 69 compounds tested in both species, 302 

with only 49 being assigned the same mechanism (Table 2). Thus some of the differences in 303 

performance of the Verhaar scheme between the two datasets can be attributed to how the compounds 304 

were historically classified into mechanisms.  305 

Table 2: Historically assigned mechanisms for compounds tested in both P. promelas and T. 306 

pyriformis assays 307 

Compound Classification  

 P. promelas T. pyriformis 

Matching classifications:   

1-butanol Narcosis I Non-polar narcosis 

1-decanol Narcosis I Non-polar narcosis 

1-heptanol Narcosis I Non-polar narcosis 

1-hexanol Narcosis I Non-polar narcosis 

1-nonanol Narcosis I Non-polar narcosis 

1-octanol Narcosis I Non-polar narcosis 

1-pentanol Narcosis I Non-polar narcosis 

1-propanol Narcosis I Non-polar narcosis 

2,4-dimethyl-3-pentanol Narcosis I Non-polar narcosis 

2,4,6-trichlorophenol Narcosis II Polar narcosis 

2,4-dimethylphenol Narcosis II Polar narcosis 

2,4-dinitrophenol Uncoupler Respiratory uncoupler 

2,6-dinitrophenol Uncoupler Respiratory uncoupler 

2-butanol Narcosis I Non-polar narcosis 

2-butanone Narcosis I Non-polar narcosis 

2-chlorophenol Narcosis II Polar narcosis 

2-decanone Narcosis I Non-polar narcosis 

2-dodecanone Narcosis I Non-polar narcosis 

2-ethyl-1-hexanol Narcosis I Non-polar narcosis 

2-heptanone Narcosis I Non-polar narcosis 

2-methyl-1-propanol Narcosis I Non-polar narcosis 



2-methyl-2,4-pentanediol Narcosis I Non-polar narcosis 

2-methyl-2-propanol Narcosis I Non-polar narcosis 

2-nonanone Narcosis I Non-polar narcosis 

2-octanone Narcosis I Non-polar narcosis 

2-propanol Narcosis I Non-polar narcosis 

2-tridecanone Narcosis I Non-polar narcosis 

2-undecanone Narcosis I Non-polar narcosis 

3,3-dimethyl-2-butanone Narcosis I Non-polar narcosis 

3-methoxyphenol Narcosis II Polar narcosis 

3-methyl-2-butanone Narcosis I Non-polar narcosis 

3-pentanone Narcosis I Non-polar narcosis 

4,6-dinitro-o-cresol(4,6-dinitro-2-methylphenol) Uncoupler Respiratory uncoupler 

4-chloro-3-methylphenol Narcosis II Polar narcosis 

4-chlorocatechol Reactive Pro-electrophile 

4-chlorophenol Narcosis II Polar narcosis 

4-methoxyphenol Narcosis II Polar narcosis 

4-methyl-2-pentanone Narcosis I Non-polar narcosis 

5-methyl-2-hexanone Narcosis I Non-polar narcosis 

5-nonanone Narcosis I Non-polar narcosis 

acetone Narcosis I Non-polar narcosis 

cyclohexanol Narcosis I Non-polar narcosis 

cyclohexanone Narcosis I Non-polar narcosis 

ethanol Narcosis I Non-polar narcosis 

methanol-rhodamine B Narcosis I Non-polar narcosis 

o-cresol(2-methylphenol) Narcosis II Polar narcosis 

pentabromophenol Uncoupler Respiratory uncoupler 

pentachlorophenol Uncoupler Respiratory uncoupler 

phenol Narcosis II Polar narcosis 

Non-matching classifications:   

2,3,4,5-tetrachlorophenol Narcosis I Respiratory uncoupler 

2,3,6-trimethylphenol Narcosis I Polar narcosis 

2,4,6-tribromophenol Narcosis I Polar narcosis 



2,4,6-trimethylphenol Narcosis I Polar narcosis 

2,5-dinitrophenol Reactive Respiratory uncoupler 

2,6-di(tert)butyl-4-methylphenol(BTH) Narcosis I Polar narcosis 

2-hydroxy-4-methoxybenzophenone Narcosis I Polar narcosis 

salicylamide(2-hydroxybenzamide) Narcosis I Polar narcosis 

2-nitrophenol Narcosis II Soft electrophile 

3,5-dibromosalicylaldehyde Reactive Polar narcosis 

3-ethoxy-4-hydroxybenzaldehyde Narcosis I Polar narcosis 

4-nitro-3-(trifluoromethyl)-phenol Narcosis II Soft electrophile 

4-amino-2-nitrophenol Narcosis II Soft electrophile 

4-nitrophenol Narcosis II Soft electrophile 

5-bromovanillin Reactive Polar narcosis 

catechol Narcosis II Pro-electrophile 

o-vanillin(3-methoxysalicylaldehyde) Reactive Polar narcosis 

salicylaldehyde(2-hydroxybenzaldehyde) Reactive Polar narcosis 

tetrachlorocatechol Uncoupler Pro-electrophile 

vanillin(3-methoxy-4-hydroxybenzaldehyde) Reactive Polar narcosis 

 308 

Irrespective of the differences between datasets, overall the post-processing filters have improved the 309 

performance of the Verhaar scheme as implemented in Toxtree v2.6. The post-processing filter has 310 

been especially useful in reducing the number of compounds placed into Class 5: reduced from 257 to 311 

130; and thus expanding the applicability domain of the scheme. The slight decrease in the positive 312 

predictivity percentages for the P. promelas dataset may be offset by the increase in the number of 313 

compounds which can now be correctly classified; 204 compounds compared to 193. The 130 314 

compounds which remain out of the domain of the model and thus within Class 5 provide the 315 

opportunity to analyse where the Verhaar scheme could be expanded. Indeed Verhaar and co-workers 316 

(1992) stated in their original publication that “…this paper is intended as a continuing effort in the 317 

development of predictive techniques that can be applied in hazard assessment…” and thus it seems 318 

the expansion is well overdue. However, a full study on the expansion of the Verhaar scheme is 319 

outside the scope of this paper and therefore these 130 compounds were not analysed further. It is 320 

hoped that these compounds will be analysed to elicit the relationships between their structure and 321 

mechanism of toxicity, and used in conjunction with other structurally diverse data, in a thorough 322 

analysis of where the scheme could be expanded in the future. 323 



The improvement achieved in using the post-processing filters developed here is apparent in the 324 

QSAR models built using compounds within these classes. Log P dependent QSAR models for the 325 

Class 1 (non-polar narcotics) and Class 2 (polar narcotics) were developed to investigate if the 326 

incorrectly classified compounds were outliers. As all the baseline narcotics tested in T. pyriformis are 327 

classified correctly, the data exactly match the training data used by Ellison and co-workers to 328 

produce the following high quality model with no outliers (Ellison et al., 2008): 329 

log IGC50
-1 

= 0.78 log P – 2.01 330 

n = 87, r
2
 = 0.96 331 

Figure 4a demonstrates the relationship between log P and toxicity for those compounds classified as 332 

baseline narcotics which have been tested against P. promelas. It is apparent that the compounds 333 

incorrectly classified are generally outliers compared to the baseline compounds which form the 334 

following QSAR: 335 

log LC50
-1 

= 0.89 log P – 1.87 336 

n = 100, r
2
 = 0.78 337 

The two outliers below the line are 1,2-dibromobenzene (log P: 3.77; log LC50
-1

: -1.13) and 338 

amylbenzene (log P: 4.5; log LC50
-1

: -0.31). These are experimental anomalies which may be 339 

attributed to the low water solubility of the compounds. The one significant outlier above the line (log 340 

P: 1.18; log LC50
-1

: 1.73) is 2,3,4-trimethoxyacetophenone, which although correctly classified as a 341 

baseline narcotic, shows excess toxicity and may be exhibiting toxicity through another mechanism. 342 

The chemical structure reveals that it may be oxidised into the more reactive quinone and could react 343 

covalently with proteins via the process presented in Figure 5, or may produce free radicals (Bajot et 344 

al., 2011). These outliers have caused the model to be of lower quality to others published in the 345 

literature (e.g. Veith et al., 1983; Yuan et al., 2007; Martin et al., 2015) but the model can still be 346 

considered useful in demonstrating that the correctly classified compounds are acting via the same, 347 

easily modelled, mechanism. 348 



349 
Figure 4. Relationship between (a) toxicity (log LC50

-1
) and hydrophobicity (log P) for the compounds 350 

tested against P. promelas and classified into Class 1 (baseline narcotics). A linear relationship for 351 

correctly classified compounds is shown; (b) toxicity (log IGC50
-1

) and hydrophobicity (log P) for the 352 

compounds tested against T. pyriformis and classified into class 2 (179 compounds) and (c) toxicity 353 

(log LC50
-1

) and hydrophobicity (log P) for the compounds tested against P. promelas and classified 354 

into class 2 (50 compounds). 355 



356 
Figure 5. Proposed mechanistic rationale for 2,3,4-trimethoxyacetophenone exhibiting excess toxicity 357 

The compounds tested in T. pyriformis and classified as polar narcotics demonstrate a similar pattern 358 

with the compounds acting via reactive, or specifically assigned mechanisms of action, being outliers 359 

to the general trend (Figure 4b). The same is not true of the compounds tested using P. promelas and 360 

classified into class 2 (Figure 4c). However, the “true” mechanisms of the misclassified compounds 361 

are different in this instance. Unlike the T. pyriformis example, the majority of compounds 362 

misclassified into class 2 are baseline narcotics. Their toxicity shows a clear trend with 363 

hydrophobicity and, as expected, the compounds lie below the correctly classified polar narcotics.  364 

4. Conclusion 365 

The Verhaar scheme is a useful method for assigning compounds into broad categories to assist with 366 

hazard identification. The implementation of the scheme in Toxtree means that it can be easily 367 

accessed and used by a wide range of scientists in regulatory agencies, industry and academia. This 368 

paper demonstrates that the updated implementation of the scheme in Toxtree v2.6 offers increased 369 

performance compared to previous versions. However, this research has shown changes to three of the 370 

rules in Toxtree v2.6 enabled additional improvements in the scheme to be achieved. The suggested 371 

rule improvements will enable scientists to assign compounds to mechanism-based categories suitable 372 

for hazard identification with a greater degree of confidence when using the Verhaar scheme.     373 
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