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Highlights 

 Freezing of Gait (FoG) is a motor symptom of Parkinson’s disease

 It negatively impacts on the quality of life of people suffering from this disease

 This study focus on prediction of the onset of a FoG event using machine learning

 The effect of signal features and window size in FoG prediction is investigated

 Balanced classification is attained using RBF-SVM and a 3s transition period
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AB ST R ACT  

Freezing of gait (FoG) is a motor symptom of Parkinson’s disease (PD) that frequently occurs in the long-term sufferers of the 

disease. FoG may result to nursing home admission as it can lead to falls, and therefore, it impacts negatively on the quality of 

life. The focus of this study is the systematic evaluation of machine learning techniques in conjunction with varying size time 

windows and time/frequency domain feature sets in predicting a FoG event before its onset. In the experiments, the Daphnet 

FoG dataset is used to benchmark performance. This consists of accelerometer signals obtained from sensors mounted on the 

ankle, thigh and trunk of the PD patients. The dataset is annotated with instances of normal activity events, and FoG events. To 

predict the onset of FoG, the dataset is augmented with an additional class, termed ‘transition’, which relates to a manually 

defined period prior to the occurrence of a FoG episode. In this research, five machine learning models are used, namely, 

Random Forest, Extreme Gradient Boosting, Gradient Boosting, Support Vector Machines using Radial Basis Functions, and 

Neural Networks. Support Vector Machines with Radial Basis kernels provided the best performance achieving sensitivity 

values of 72.34%, 91.49%, 75.00%, and specificity values of 87.36%, 88.51% and 93.62%, for the FoG, transition and normal 

activity classes, respectively. 

Keywords: Freezing of Gait, Feature Selection, Early Detection, Gait Analysis 

2012 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The world population is rapidly aging with the prevalence of 

long-term chronic diseases, coupled with reducing numbers of 

professional carers [1]. Nowadays, many older adults prefer to 

live independently in their home environment, albeit associated 

risks due to physical and cognitive decline. Reduction in the care 

costs and institutionalization is favored by both policymakers and 

politicians. Moreover, consumers are increasingly questioning 

the value of services offered by such institutions, e.g., nursing 

homes. Therefore, many governments advocate the use of 

Ambient Assisted Living (AAL) technology. AAL refers to a 

new paradigm of technology, which can enable older people to 

stay connected to their communities, better manage their health, 

compensate physical and cognitive impairment and get access to 

the services they need to enhance their quality of life and live 

independently in their homes while utilizing the AAL tools and 

systems supporting the home monitoring, fall detection, and 

social interaction. 

Parkinson’s disease (PD) is a neurodegenerative disease 

characterized by rigidity, muscle weakness, involuntary tremor, 

bradykinesia, and freezing of gait [2], [3]. In addition to the 

motor impairment triggered by the disease, patients are also 

affected by the non-motor symptoms, i.e., anxiety, stress and 

depression [4]. The degree of motor impairment and disability of 

PD patients gets worse with the progression of the disease [5]. A 

common practice to describe the stages of  PD is through the 

Hoehn and Yahr (H&Y) scale [6] that include: 1) one side of the 

body is affected with some or no functional loss, 2) both sides of 

the body are affected, however there is no loss of balance, 3) 

there is loss of balance but the patient is still autonomous, 4) the 

disease developed further and the person is noticeably disabled, 

however they can still walk and stand without assistance, 5) there 

is a need for support, otherwise the patient is restricted to a 

wheelchair or bed. Previous research related to PD revealed that 

the disease typically appears between the ages of 50-60, however 

it could start at an earlier age. 

Freezing of gait (FoG) is one of the most distressing motor 

symptoms of PD, typically occurring in longer term patients or 

those diagnosed at an advanced disease stage [7],[8]. It is defined 

as ‘a brief episodic absence or marked reduction of the forward 

progression of the feet despite the intention to walk’ [9]. 

Individuals, affected by FoG often report that they feel as if their 

feet are glued to the ground. However, most of the times, FoG 

does not constitute a complete freeze of motion. There is still 

movement in the legs during FoG, however, patients cannot 

move onward and prolong walking straight away [10]. In [11], 

the forces in the feet during FoG were analysed and it was found 

that the FoG is not an entirely akinetic state, instead forces under 

the feet diverge in a systematic pattern. 

A common pharmacological treatment for PD is Levodopa 

[12]. Levodopa is a dopamine precursor and can sometimes 

reduce the number of FoG events, however, it is not always 

effective. It is unclear whether the side effects of Levodopa 

contribute in a positive or negative way. For instance, the drug 

may cause motor complications after some years of treatment 

leading to the occurrence of FoG [13]. Therefore, non-

pharmacological treatment is important for the prevention of 

FoG. 

In recent years, interdisciplinary research efforts from the 

computer science and health professional communities have 

emerged to develop the computational methods to further 

investigate the phenomenon of FoG. One promising direction is 

the use of machine learning (ML) in gait analysis to classify the 

human activities, coupled with the pattern recognition 

for prediction of the gait irregularities [14]. 

This work proposes a ML approach to classify patterns from 

the PD gait time series data, which can be used as a predictive 

and potentially, preventive system, i.e., prior to the occurrence of 

a FoG event. Such a system may contribute towards an integrated 

framework for FoG management in the context of AAL. The 

novelties of this research include: 

• The notion of the transition class, i.e., the time period 

between normal walking and FoG, is utilized in the 

accelerometer signals dataset for the prediction of FoG prior to 

its onset. Three window sizes of 2, 3 and 4s prior to a FoG event 

are evaluated. 

• An exhaustive set of features from the time and frequency 

domains is extracted. The Boruta algorithm is used to select the 

most informative features in the context of real-time 

performance. 

• Five state-of-the-art ML classifiers, specifically, Random 

Forest (RF), Extreme Gradient Boosting (XGB), Gradient 

Boosting Machine (GMB), Support Vector Machines with Radial 

Basis Function kernels (RBF-SVM) and Multilayer Perceptrons 

(MLP) are systematically evaluated for varying window sizes and 

feature sub-sets in FoG prediction. 

The reminder of this work is organized as follows. Section 2 

presents a thorough analysis of ML methods used for FoG 

detection. Section 3 describes the proposed methodology 

including signal preprocessing, the introduction of the transition 

class in the dataset, and feature extraction. Section 4 presents a 

performance comparison of the use of different feature sets, time 

windows and the five ML classifiers. Section 5 discusses the 

results, and compares them to relevant findings in the state-of-

the-art techniques. Section 6 presents the conclusions and 

avenues for further research. 

2. Related work 

A variety of approaches were proposed for the detection of 

FoG, exploring the suitability of wearable devices, feature 

extraction and ML algorithms. For instance, in [15], the 

significance of features for FoG detection under normal living 

conditions was investigated. Varying window sizes (i.e. 0.8, 1.6, 

3.2 and 6.4s) were considered with feature sets including mean, 

frequency domain features, skewness and kurtosis, and the high 

order principal components. Support Vector Machines (SVM) 

with a window size of 1.6s achieved the best results with a 

sensitivity of 91.7% and a specificity of 87.4%, respectively. A 

wearable technological assistant for real-time FoG detection 

through a smartphone using supervised ML was proposed in [16]. 

The Daphnet dataset [17] was used in their research which is also 

employed in the current study. It was found that the most 

discriminative features were the mean, standard deviation, the 

Freeze Index and the power of the signal in the 3-8Hz and 0.5-

3Hz bands [18]. Both window sizes of 1s and 4s achieved 

sensitivities and specificities of over 95%, although the 4s 

window demonstrated a slightly higher performance. While these 

results are very encouraging, the classifiers were trained and 

tested using data from the same patient. In an extension of their 

work [19], [20], a wrist-mounted sensor was proposed for 

detection of FoG using a combination of accelerometers and 

gyroscopes. Both studies compared the wrist movements of the 

subject, while experiencing freezing to investigate whether wrist 

movements are associated with the freezing episodes. The FoG 

hit rates were 0.85 and 0.9, respectively, for subject- dependent 

and independent classification using C4.5 decision trees. 
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Regarding specificity, the results were 0.8 and 0.66, for subject- 

dependent and independent classification, respectively. Work in 

[21] presented a training and support system, named ‘GaitAssist’, 

based on the C4.5 classifier that was developed for the patients 

suffering with PD. The authors claim that this approach is able to 

provide auditory cueing in the occurrence of FoG, and supports 

training through FoG provoking exercises. A detection rate of 99 

out of 102 FoG events was reported with less than 0.5s latency, 

for a window size of 2s and 0.25s overlap. 

Similar techniques were used in [22] exploring the use of 6 

accelerometer and 2 gyroscope signals for FoG detection. 

Following the pre-processing, the entropy is extracted and used 

by multiple MLclassifiers. The best results were achieved with 

the RF with accuracy over 90%. [23] performed a comparative 

study of varying features, window sizes and ML techniques in 

FoG detection. Accelerometer signals from sensors mounted on 

the waist were used. A variety of algorithms were used. The 

majority of higher performance results were observed with a 

window size of 256 samples. The most informative features were 

the mean, mean of the difference between the x, y, z axes, 

standard deviation, correlation between the 3 axes, frequency 

standard deviations in 0.1-0.68 Hz, 0.68-3 Hz, 3-8 Hz, 8-20 Hz 

and 0.1-8 Hz bands, maximum harmonic amplitude, frequency 

center of mass, integrals, auto-regressive coefficients using the 

Bourg method, skewness and kurtosis. The best performing 

classifier was Support Vector Machines. In [24], an alternative 

approach was explored, using features the Wavelet cross 

spectrum, Wavelet cross frequency energy ratios, and statistical 

features (e.g., mean, standard deviation, skewness, kurtosis, 

maximum, and minimum) from EEG signals. The performance of 

multilayer perceptrons and k nearest neighbor was compared. 

Three classes were considered, specifically walking, FoG, and 

transition, which related to a group of data 5s prior to the 

occurrence of a FoG event. Recently, a study focused on the 

detection of FoG events using deep learning methods [25] and 

achieved accuracy, sensitivity, and specificity values of 94.3%, 

96.1%, and 95.5%, respectively. In our previous work, we 

performed an initial investigation of the use of ML for FoG 

detection, using a window size of 5s to detect the transition event 

[26]. Promising results were obtained, however, the need for 

systematic analysis of the problem was identified. Specifically, in 

the current study, we focus on the early detection of a FoG event, 

through classification of the transition class (i.e., prior to the 

presence of FoG), contrary to the majority of previous studies 

that recognize FoG once it has occurred. 

3. Methodology 

In this research, we use the Daphnet Freezing of Gait dataset 

[17] comprising the data from 10 PD patients (7 males and 3 

females) who experience regular FoG. The data was attained 

using wearable sensors, located on the ankle, thigh, and trunk, 

which collect accelerometer signals, sampled at 64Hz. 

Participants were required to perform a number of tasks: 

 Walking back and forth in a straight line, including 180 

turns. 

 Random walking, including a series of initiated stops and 

several 360 turns. 

 Walking typical of daily living activities. 

The recruited subjects were capable of walking without 

assistance in OFF
1
 periods. Patients 2 and 8 were the only 

                                                 
1  ON-OFF period: Levodopa is the medication used for Parkinson’s 

disease treatment. ON/OFF periods refer to times when the medication is 

subjects, who took part in the experiment in ON
1
 periods. 

Patients with a diagnosis of hearing/vision loss, dementia, or 

other neurological disorders were excluded. Gait variability for 

each patient in the dataset is quite large. For some patients, gait 

differentiation between healthy and PD participants was poor. 

Throughout the study, 8 out of the 10 patients experienced a FoG 

event. Patients 4 and 10 did not experience any FoG events 

during the experiments. A total of 8.20 hours of recordings were 

logged, producing a total of 237 FoG events. Algorithm 1 

provides the definition of variables used in the experiments. 

__________________________________________________ 

Algorithm 1: Variable definitions for the experiments 

Let PD be a set of Parkinson disease patients  

Let R represent the set of data of PD 

Let T represent the index of time  

T = {t | t in ms at 64Hz} 

Let A represent the ankle gait measurements 

A = {AnkleHorizontal, AnkleVertical, AnkleLateral}   

Let G represent a set of gait measurements 

    

Let FoG = {0, 1} represent the presence of FoG, where 0/1 

corresponds to the patient performing tasks in the 

absence/presence of a FoG event, respectively. 

 such that: 

 
__________________________________________________ 

3.1. Data Preparation 

The aim of this research is to early predict the occurrence of a 

FoG event by identifying the ‘transition’ period from a normal 

walking event to FoG. Statistical reports for all patients with 

event counts, mean duration, range, maximum and minimum 

duration, and standard deviation were produced. The FoG event 

statistics per patient are shown in Figure 1. As previously 

                                                                                     
effective/no longer effective in controlling the effects of motor response 

fluctuations due to PD, respectively. 

 
(a) 

 
(b) 

Fig. 1. FoG events (a) number and (b) duration per patient. Patients 

1, 2, 3, and 7 had 2 recordings. Patients 6, 8 and 9 had only 1 

recording. 
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mentioned, patients 4 and 10 did not experience any FoG events 

during the experiments and were therefore excluded. It is 

observed that the maximum duration of the freezing episodes 

varies considerably (i.e., 5-40s) between patients, compared to 

the minimum duration values, which are mostly in the range of 3-

4s. 

____________________________________________________ 

Algorithm 2: Transition class between walking and FoG 

 and S 

is a set of PD gait signals  

Let w represent a time window  

, where t is the desired transition time in 

seconds 

Let Events = {Walking, Transition, FoG} be the events set  

Let T = {twalking, ttransition, tFoG} represent the time set and T 

 

If twalking < t  twalking  = 0  ttransition = t 

____________________________________________________ 

3.2. Signal Filtering 

Previous studies indicated that the majority of information in 

human gait signals contained the frequencies under 20Hz [27], 

[28]. We utilize a third order low pass Butterworth filter [23] at 

20Hz, for the noise reduction. Figures 2 and 3 illustrate raw and 

filtered signals of FoG and normal walking. 

Fig. 2. Raw and filtered signals of a FoG event. Horizontal  forward 

acceleration (x), vertical acceleration (y), horizontal lateral acceleration (z) 

Fig. 3. Raw and filtered signals of a normal walking event. . Horizontal  

forward acceleration (x), vertical acceleration (y), horizontal lateral 

acceleration (z) 

3.3. Data Manipulation and Segmentation 

Prediction of the onset of a FoG event is posed as a 

classification problem by augmenting the original two classes of 

events, i.e., ‘walk’ and ‘FoG’, with a new class, i.e., ‘transition’. 

Events ‘walk’, ‘transition’ and ‘FoG’ were segmented into 

periods of 2, 3 and 4s, so as to investigate which period produces 

the best results. The state-of-the-art indicates that these intervals 

suffice for patients to be warned for the onset of a FoG event. 

Algorithm 2 shows the proposed method for class augmentation. 

3.4. Feature Extraction 

Feature extraction uses time and frequency domain 

approaches to extract a set of distinctive features from the filtered 

data. We apply feature extraction on the filtered signals of the 

horizontal forward (x), vertical (y), and horizontal lateral (z) 

accelerations from the ankle sensor. This provides sufficiently 

rich information in regards to gait variations for the detection of 

FoG [27]. 

Table 1: Features extracted from the x, y, z acceleration signals 

Time domain features 

Mean Signal average value  

Standard Deviation Signal standard deviation  

Min, max The minimum and maximum signal values  

Quartile1, Quartile3 Quartile 1 is the middle value between the 

minimum and the median of the signal. 

Quartile 3 is the middle value between the 
median and the maximum value of the signal  

Median The median value of the signal (Quartile2) 

skew, kurt The skewness and kurtosis of the signal 

Zero crossing Rate The rate of the sign changes of the signal 

Peak-to-Peak  The minimum minus the maximum of the 

signal 

Crest Factor  The ratio of the peak value to the RMS value 

Root Mean Square 

(RMS)  

The square root of the mean of the square of 

the signal (known as quadratic mean) 

Velocity Root Mean 
Square 

The quadratic mean of the speed of the 
signal in the time domain 

Entropy Entropy of the signal in the time domain 

 

Frequency Domain Features 

Freeze Index The power in the 3-8Hz band divided by the 
power in the 0.5–3 Hz band 

Power difference The difference of the sum of the powers in 

the bands 3 - 8 Hz and 0.5–3 Hz 
Fast Fourier Transform 

mean magnitude  

Fast Fourier Transform features from the 

acceleration magnitudes of the signal 

Fast Fourier Transform 
mean phase 

Mean signal phase in the frequency domain 

Power spectrum The distribution of the power of the first  

stronger frequencies of the signal in the 
window  

 

Features extracted from x, y, z acceleration 

Integrals  The sum of the integrated acceleration 
signals in the x, y, z directions 

Centre of Gravity of x, y, 

z components 

The center of gravity in the x, y, and z 

components of the accelerometer signal 
Angles of x, y, z 

components 

The angles of the x, y, and z components of 

the accelerometer signal 

 

Table 1 lists the extracted feature set consisting156 

parameters. Skewness and kurtosis were estimated to provide 

information about the shape of the distribution, thus supporting 

the detection of differences between acceleration measurements 
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[29], [30]. As this study, for the first time, targets a three-class 

problem (i.e., normal walk, transition and FoG), we will 

investigate the contribution of these features in the classifier 

performance. 

3.5. Feature Selection 

Feature selection is performed on the extracted features in an 

iterative process, as shown in Figure 4. First, the Boruta 

algorithm [31], a wrapper built around the RF classifier was used. 

This uses the Z score [32] and the notion of a ‘shadow’ attribute 

as a means of estimating feature importance. Boruta reduces the 

original feature set to the 91 most relevant features.  

Fig. 4. Overview of feature selection process 

 

Table 2:  Top 30 predictors 

Transition 

Duration 

____________ 

Number of 

Features 

____________ 

Feature 

 

____________________________ 

2s 30 Entropy (x, y, m) 
RMS Velocity (x, y, m) 

Integrals 

Freeze Index (y, x, m) 
Power (x, PC3) 

Phase (PC2, PC3, y, z, x) 

FFT 2nd coefficient (PC2, PC3, y)  
FFT 1st coefficient (y, x, PC2) 

Skewness (m)  

Kurtosis (m, x) 
Mean (PC3) 

Center of Gravity (y) 

Angle (y) 
Zero-crossing rate (x) 

3s 30 Entropy (y, m, PC1) 

RMS Velocity (y, z, PC1) 
Freeze Index (x, y, z, m, PC1-3) 

Mean (PC3) 

Integrals 
Phase (PC1, PC3, z, x, y) 

FFT 1st coefficient (x, y) 

Crest Factor (PC3) 
Quartile1 (PC3) 

Zero crossing rate (PC2) 

Kurtosis (m, x) 

4s 30 Entropy (y, z, m, pc1, pc3) 

RMS Velocity (x, y, z, m, pc1, pc2, 
pc3) 

Freeze Index (x, y, m, pc1, pc2, pc3) 

Mean (pc3) 
Integrals 

Center of Gravity (y) 

Phase (m, pc3, z, x) 
FFT 1st coefficient (x) 

FFT 2nd coefficient (z)  

Kurtosis (y, m, pc3) 
 

 

Next, gradient boosting was employed on the reduced feature 

set to provide a greedy approximation to the feature selection 

cost [33], which resulted to the top 30 features. Extreme 

gradient boosting was used to further reduce the number of 

features to the most important 15 and 5, respectively [34]. This 

process was applied to the 3 labelled datasets, which include 

transition events of 2, 3, and 4s, and termed datasets A, B and C, 

respectively. Each of the datasets contains instances of the 3 

classes, i.e., ‘walk’, ‘transition’ and ‘FoG’. Overall, the three 

datasets are fairly distributed with balanced proportions of the 

three classes. Dataset A consists of 220 walk, 237 transition and 

237 FoG events. Dataset B consists of 200 walk, 237 transition 

and 237 FoG events. Dataset C consists of 189 walk, 237 

transition and 237 FoG events. Dataset C is the least balanced 

and this will be considered in result interpretation. The feature 

selection model of Figure 4 is used to reduce feature 

dimensionality into sets of 30, 15 and 5 features, as shown in 

Tables 2-4, respectively. The parameter m in the Tables 

corresponds to the magnitude of the x,y,z accelerometer signal, 

while PC1-3 correspond to the first three principal components. 

 

Table 3: Top 15 predictors 

______________________________________________________________ 

______________________________________________________________ 

 

Table 4: Top 5 predictors 

______________________________________________________________ 

Transition 

Duration 

____________ 

Number of 

Features 

____________ 

Feature 

 

___________________________________ 
2s 5 RMS velocity (y), Entropy (y), Freeze Index 

(x, y), FFT phase (x)  

3s 5 RMS velocity (y), Entropy (y, PC1), Freeze 

Index (x, magnitude)  

4s 5 RMS velocity (magnitude, y, z), Entropy (y), 

Freeze Index (magnitude) 
______________________________________________________________ 

 

4. Simulation Results 

Experiments are conducted using ML classifier-set consists of 

RF, XGB, GMB, RBF-SVM and MLP with two hidden layers. 

The datasets were split into training and test sets with 80% and 

20% ratios, respectively where the training was performed using 

10-fold cross-validation. Statistical measures are used to evaluate 

the performance of the 5 ML models on the test datasets with 

respect to transition times and feature sub-sets.  

Transition 

Duration 

____________ 

Number of 

Features 

____________ 

Feature 

 

____________________________ 

2s 15 Entropy (y, m) 

RMS velocity (x, y, m)  
Freeze Index (x, y, m)  

Integrals 

Power (PC3)  
FFT phase (x, PC3) 

FFT 2nd coeff (PC3) 

Mean (PC3)  
Skewness (m) 

3s 15 RMS velocity (y)  

Entropy (y, m, PC1) 
Freeze Index (m, x, PC1, PC3)  

FFT phase (y, x, z, PC3)  

FFT 1st coefficient (x)  

Kurtosis (m)  

Quartile 1 (m) 

4s 15 RMS velocity (y, z, m) 
Entropy (y, PC1),  

Freeze Index (x, m, PC1-2) 

FFT 1st coefficient (x) 
FFT 2nd coefficient (z, y) 

Kurtosis (y, PC3) 

Phase (z) 
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Table 5 shows the results obtained with the XGB algorithm. 

Accuracy ranges from 75.76% to 79.10%, and on average around 

78%. A more balanced class separation was observed, when 30 

features were used on the 4s dataset, with a sensitivity values of 

78.72%, 80.85% and 73.68% for FoG, transition and walk 

events, respectively. The highest sensitivity for the transition 

event was achieved using 5 and 30 features on the 2s dataset at 

93.62%. The lowest sensitivity for the transition event was 

76.60%, with the 15 features set and the 4s dataset. Overall, 

performance for the transition period was consistent. 

Table 5: XGB results 

______________________________________________________________ 
 30 Predictors 

____________ 

15 Predictors 

____________ 

5 Predictors 

____________ 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

______ 

FoG 82.98 78.02 89.36 80.22 80.85 82.42 2 secs 

Transition 93.62 94.51 91.49 92.31 93.62 90.11 

Walk 56.82 94.68 54.55 95.74 59.09 94.68 

Acc. (%) 78.26 78.99 78.26 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 78.72 80.46 80.85 78.16 89.36 75.86 3 secs 

Transition 87.23 96.55 85.11 96.55 87.23 95.40 

Walk 67.50 90.43 67.50 92.55 57.50 96.81 

Acc. (%) 78.36 78.36 79.10 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 78.72 85.88 80.85 77.65 89.98 80.00 4 secs 

Transition 80.85 88.24 76.60 91.76 78.72 91.76 

Walk 73.68 92.55 68.42 93.62 68.42 93.62 

Acc. (%) 78.03 75.76 77.27 

Table 6 presents the results with the RF method. The highest 

sensitivity for the transition event was achieved using 30 and 15 

features with the 2s dataset. With 30 features, RF resulted in a 

sensitivity of 93.62% and a specificity of 94.51%. Similarly, with 

15 features for the 2s dataset, sensitivity was 93.62% and 

specificity was 95.60%, while also achieving a sensitivity of 

85.11% for the FoG event, for both 30 and 15 feature sets. 

Observing the results of the walking events, it is noted that 

classification of this type of event does not achieve sensitivity 

values higher than 65.79%, however, specificity values higher 

than 90% are achieved for all feature sets. The highest accuracy 

was 79.85%, obtained for a 3s transition period, irrespective of 

the number of features. The most balanced results were yielded 

with the 3s transition period and 15 features.  

Table 6: RF results 

______________________________________________________________ 
 30 Predictors 

_____________ 

15 Predictors 

_____________ 

5 Predictors 

_____________ 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 85.11 78.02 85.11 74.73 76.60 81.32 2 secs 

Transition 93.62 94.51 93.62 95.60 91.49 95.60 

Walk 56.82 95.74 52.27 95.74 65.91 90.43 

Acc. (%) 78.99 74.54 78.26 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 80.85 81.61 82.98 79.31 85.11 78.16 3 secs 

Transition 89.36 93.10 87.23 95.40 87.23 96.55 

Walk 67.50 94.68 67.50 94.68 65.00 94.68 

Acc. (%) 79.85 79.85 79.85 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 89.36 76.47 85.11 78.82 80.85 78.82 4 secs 

Transition 78.72 92.94 80.85 89.41 78.72 90.59 

Walk 65.79 97.87 65.79 97.87 65.79 93.62 

Acc. (%) 89.36 76.47 85.11 

     Table 7 presents the results with the GBM algorithm.  

The highest accuracy was 79.55%, using a 4s transition period 

with the 30 and 15 feature sets. For 15 features, FoG sensitivity 

and specificity values were 87.23% and 80%, respectively. 

Sensitivity and specificity values for the walk and transition 

events were 71.05%, 78.72% and 96.81%, 91.76%, respectively. 

The highest transition sensitivity was achieved using a 2s period 

with the 30 feature set at 91.49% and specificity of 94.51%. For 

walking, a sensitivity of 61.36%, and a specificity of 92.55% 

were obtained. 

Table 7: GBM results 
______________________________________________________________ 

 30 Predictors 

____________ 

15 Predictors 

____________ 

5 Predictors 

____________ 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 80.85 80.22 80.85 73.63 78.72 75.82 2 secs 

Transition 91.49 94.51 89.36 95.60 91.49 94.51 

Walk 61.36 92.55 50.00 91.49 54.55 92.55 

Acc. (%) 78.26 73.91 75.36 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 82.98 78.16 76.60 80.46 82.98 75.86 3 secs 

Transition 85.11 94.25 91.49 91.95 85.11 95.40 

Walk 62.50 93.62 62.50 93.62 65.00 95.74 

Acc. (%) 77.61 77.61 78.36 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 93.62 75.29 87.23 80.00 82.98 81.18 4 secs 

Transition 76.60 92.94 78.72 91.76 80.85 85.88 

Walk 65.79 100.00 71.05 96.81 60.53 95.74 

Acc. (%) 79.55 79.55 75.76 

Table 8 summarises the results with the RBF-SVM algorithm. 

The highest accuracy was observed using 5 predictors and the 3s 

dataset, at 79.85%. Sensitivity and specificity values for the 

transition event were 91.49% and 88.51%, respectively. 

Moreover, FoG events have a sensitivity of 72.34% and a 

specificity of 87.36%. Walk events can be detected with a 

sensitivity of 75% and a specificity of 93.62%. The highest 

sensitivity and specificity values for the transition class were 

obtained using the 4s dataset and 5 features, at 93.62% and 

95.60%, respectively. For the same configuration, classifier 

performance in the walk events was comparatively low, with 

sensitivity and specificity values of 50% and 92.55%, 

respectively. For FoG events, a sensitivity and specificity of 

80.85% and 74.73% were obtained, respectively. 

Table 8: RBF-SVM results 

______________________________________________________________ 
 30 Predictors 

____________ 

15 Predictors 

____________ 

5 Predictors 

____________ 

 

 Sen 

% 

____ 

Spec 

% 

____ 

Sen 

% 

____ 

Spec 

% 

____ 

Sen 

% 

____ 

Spec 

% 

____ 

Period 

 

_____ 

FoG 68.09 80.22 72.34 80.22 76.60 84.62 2 secs 

Transition 91.49 83.52 85.11 83.52 91.49 90.11 

Walk 54.55 93.62 56.82 93.62 65.91 92.55 

Acc. (%) 71.74 71.74 78.26 

 

 Sen 

% 

____ 

Spec 

% 

____ 

Sen 

% 

____ 

Spec 

% 

____ 

Sen 

% 

____ 

Spec 

% 

____ 

Period 

 

_____ 

FoG 70.21 82.76 65.96 80.46 72.34 87.36 3 secs 

Transition 85.11 88.51 93.62 86.21 91.49 88.51 

Walk 67.50 90.43 57.50 92.55 75.00 93.62 

Acc. (%) 74.63 73.13 79.85 

 

 Sen 

% 

____ 

Spec 

% 

____ 

Sen 

% 

____ 

Spec 

% 

_____ 

Sen 

% 

____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 80.85 81.18 78.72 80.00 80.85 74.73 4 secs 

Transition 78.72 87.06 80.85 80.00 93.62 95.60 

Walk 65.79 94.68 57.89 98.94 50.00 92.55 

Acc. (%) 75.76 73.48 75.36 
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The best results with the MLP were observed when using the 

4s dataset and 30 features, shown in Table 9. Accuracy was 

78.79%, while FoG event sensitivity and specificity were 82.98% 

and 82.35%, respectively. For the transition and walk events, 

sensitivities of 78.72%, 73.68% and specificities of 89.41%, 

95.74% were observed, respectively. The lowest sensitivity was 

achieved using 30 features and the 2s dataset at 43.18% and high 

specificity of 92.55%. MLP is the top performer in the case of 

transition events using 30 features and the 3s dataset. However, 

accuracy is lower for the FoG and transition classes. 

Table 9: MLP results 

______________________________________________________________ 
 30 Predictors 

____________ 

15 Predictors 

____________ 

5 Predictors 

____________ 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 70.21 72.53 78.72 76.92 76.60 81.32 2 secs 

Transition 89.36 86.81 89.36 90.11 91.49 95.60 

Walk 43.18 92.55 54.55 94.68 65.91 90.43 

Acc. (%) 68.12 74.64 78.26 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 63.83 88.51 72.34 85.06 85.11 73.56 3 secs 

Transition 95.74 81.61 95.74 88.51 85.11 94.25 

Walk 60.00 90.43 65.00 93.62 57.50 96.81 

Acc. (%) 73.88 78.36 76.87 

 

 Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Sen 

% 

_____ 

Spec 

% 

_____ 

Period 

 

_____ 

FoG 82.98 82.35 82.98 82.35 89.36 77.65 4 secs 

Transition 78.72 89.41 85.11 83.53 76.60 92.94 

Walk 73.68 95.74 60.53 98.94 68.42 96.81 

Acc. (%) 78.79 77.27 78.79 

____________________________________________________ 

5. Discussion 

FoG is a symptom of PD which attracted considerable 

research interest due to its unpredicted and transient nature. In 

our investigations, we focused on prediction of the transition 

class, i.e., the period between normal walking and the occurrence 

of FoG. We considered three time periods of 2, 3 and 4s, 

respectively, prior to the onset of FoG.  

A detection accuracy between 77%-97% for the transition 

class was achieved in the simulation experiments in the testing 

datasets. These results are comparable with the recent study of 

[24], where a sensitivity of 85% was reported. We considered 

window sizes of 2, 3, and 4s, in contrast to [24], where a 5s 

transition period was adopted. Contrary to [24], which uses EEG, 

our study is based on accelerometer signals similar to [35]. We 

obtained a better performance than [35] that reported an F1-

measure of 55%. However, the features used in this work are 

different, and thus, a fair comparison between the two approaches 

is not possible.  

Classification of the walk class achieved notably low results in 

terms of sensitivity in almost all experiments, with a least 

sensitivity of 43.18%, when using the MLP with a 2s transition 

period and 30 features. The highest sensitivity for the walk class 

was 75%, using the RBF-SVM with 5 features and the 3s dataset. 

The top results in FoG event classification were attained with the 

use of the MLP on the 5 feature, 4s dataset.  

An uneven classification performance for the three classes 

was observed, which could be either due to the lack of 

sufficiently informative features, or variations in FoG and 

transition periods. This was also observed in previous studies 

[15], [18], [35]. Indeed, lack of a clear segmentation of the onset 

of FoG and transition gait events is one of the 

challenges addressed in this study.   

Table 10 summarizes the comparison of results for four 

scenarios, where event classification is reasonably balanced. In 

these instances, although the classification performance for the 

transition class is lower, the overall performance is comparatively 

high. In RBF-SVM, it can be observed that the transition class 

has a sensitivity of 91.49% and a specificity of 88.51%, with the 

5 feature, 3s dataset. In this case, the sensitivity for the walk class 

is 75%, which is the highest in our studies. The GBM model 

using 15 features and the 4s transition events has a FoG 

sensitivity of 87.23% and a specificity of 80%. Most ML models 

perform well in classification of transition events with the 2s 

dataset, while event classification is more balanced with the 4s 

dataset.  

Table 10: Summative performance results 
______________________________________________________________ 

Class 

___________ 

Sen 

_______ 

Spec 

_______ 

Period 

_______ 

Model and 

Features 

______________ 

FoG 82.98% 82.35% 

4 secs  MLP / 30 features 
Transition 78.72% 89.41% 

Walk 73.68% 95.74% 

FoG 87.23% 80.00% 

4 secs  GBM / 15 features 
Transition 78.72% 91.76% 

Walk 71.05% 96.81% 

FoG 78.72% 85.88% 

4 secs XGB / 30 features 
Transition 80.85% 88.24% 

Walk 73.68% 92.55% 

FoG 72.34% 87.36% 

3 secs 
RBF-SVM / 5 

features Transition 91.49% 88.51% 

Walk 75.00% 93.62% 

___________________________________________________________________________________ 

An aspect of this work that merits further investigation relates 

to the selection of the transition period. Specifically, the time 

periods considered for the transition class may not be sufficiently 

representative since a transition event can be considered as an 

event of a variable nature [35]. A clear limitation of this work is 

the size of the dataset, which consists of data from only 10 PD 

patients. Furthermore, the data collection experiments were 

conducted in a controlled environment, which may not be 

sufficiently representative of daily living activities. 

6. Conclusions 

FoG affects the quality of life of PD patients due to falls, 

collisions, etc., and consequently has socioeconomic impacts in 

terms of increased healthcare costs, and decreasing independence 

of sufferers. The detection and prediction of the FoG is a 

challenging task because of the variability of the event’s duration 

and frequency. Improved discrimination of the state of walking 

using ML can be achieved on a patient-dependent basis. The 

results of the current study are in line with those reported in the 

literature, indicating that FoG and walk events can be 

misclassified as the transition period increases.  

In further work, we intend to explore the hypothesis that 

transition events do not purely belong to the transition phase, but 

instead, they may be part of FoG events. A thorough analysis of 

the frequencies for such events needs to be considered. It is 

possible to use complementary sensor technologies, e.g., sound, 

in the context of real-time FoG prediction systems.  
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Finally, there is a need for further investigations with larger 

datasets for the analysis of frequency variations of transition 

events in order to improve the identification of optimal sets of 

features and appropriate ML models for robust prediction of 

FoG. 
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