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Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly

severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by

progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this

progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently

reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van

Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial

neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological

and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations

and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or

homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor

neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved

strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations

cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose

oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical im-

provements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in

10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can

ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.

Keywords: childhood neuronopathy; Brown-Vialetto-Van Laere syndrome; riboflavin therapy; RFVT2; SLC52A2

Introduction
Brown-Vialetto-Van Laere syndrome (OMIM 211530) is a neuro-

degenerative disorder first reported in 1894 by Charles Brown as

an ‘infantile’ form of amyotrophic lateral sclerosis with associated

hearing loss (Brown, 1894). The male index case (Fig. 1) mani-

fested an acute onset of bulbar weakness, hearing loss and re-

spiratory insufficiency at age 12 years, with rapid progression of

symptoms over the course of weeks. The report of three siblings

with pontobulbar paralysis and associated hearing loss by Ernesto

Vialetto in 1936 followed by the report of three sisters with these

clinical features by M.J. Van Laere in 1966 resulted in the term

Brown-Vialetto-Van Laere syndrome (Vialetto, 1936; Van Laere,

1966). Although these reports described markedly similar pheno-

types, the term Brown-Vialetto-Van Laere syndrome subsequently

has been assigned to a heterogeneous group of conditions, some

with clear involvement of cranial nerves VII–XII and others with

only minimal bulbar involvement but prominent limb weakness

(Bosch et al., 2012). Sensorineural deafness is a common feature

of Brown-Vialetto-Van Laere syndrome and had been used to

distinguish this condition from other motor neuron diseases such

as Fazio-Londe disease (OMIM 211500) (McShane et al., 1992),

before the observation that Brown-Vialetto-Van Laere disease and

Fazio-Londe disease seem to be allelic conditions that present

along a phenotypic spectrum (Dipti et al., 2005; Bosch et al.,

2011).

The recent identification of mutations in the riboflavin trans-

porter genes SLC52A3 (formerly C20orf54) (Green et al., 2010)

and SLC52A2 (Johnson et al., 2012) [coding for human riboflavin

transporters RFVT3 (formerly RFT2) and RFVT2 (formerly RFT3),

respectively] has uncovered the aetiology in a large proportion of

cases with Brown-Vialetto-Van Laere syndrome. Furthermore,

the recognition of abnormal acylcarnitine profiles mimicking

multiple acyl-CoA dehydrogenase deficiency in patients with

Treatable childhood neuronopathy Brain 2014: 137; 44–56 | 45



Brown-Vialetto-Van Laere syndrome (Bosch et al., 2011) has elu-

cidated a link between the putative function of SLC52A3 and

SLC52A2 as riboflavin transporters and this neurodegenerative

condition. In addition, a deletion in SLC52A1, coding for a third

riboflavin transporter, RFVT1 (formerly RFT1), was reported in a

case of maternal riboflavin deficiency without an associated

Brown-Vialetto-Van Laere syndrome phenotype (Ho et al.,

2011). Here we characterize clinically, genetically and neurophy-

siologically 18 patients with Brown-Vialetto-Van Laere syndrome

caused by mutations in the SLC52A2 gene and report in detail the

significant and sustained clinical and biochemical improvements

observed in response to high-dose oral riboflavin therapy in two

patients and preliminary clinical response data in 13 patients with

associated biochemical response data in 10 patients.

Materials and methods

Study subjects
Patients were enrolled with informed consent from the patient and/or

parental guardian. DNA was collected from 78 cases (72 probands and

six familial cases) presenting with a phenotype of cranial neuropathies

and sensorimotor neuropathy � respiratory insufficiency. Patient DNA

was collected at 21 medical centres in England (including from patients

originating from Pakistan, India, Saudi Arabia, Kuwait, Iran and

Turkey) and from medical centres in Wales, Scotland, Northern

Ireland, Ireland, France, Belgium, The Netherlands, Greece, Malta,

Russia, Lebanon, Iceland, Australia and the USA following the an-

nouncement of an ongoing molecular study at the University College

London Institute of Neurology (Queen Square, London) of patients pre-

senting with this phenotype. This study was ethically approved by the

University College London Hospital, the Sydney Children’s Hospitals

Network and the University of Miami Miller School of Medicine.

Exome and Sanger sequencing
Sanger sequencing of SLC52A2 was performed in 78 patients as

described previously (Johnson et al., 2012). Primer sequences are

shown in the Supplementary material. Exome sequencing was per-

formed in seven patients, with SLC52A2 mutations confirmed by

Sanger sequencing. Detailed exome sequencing methods are included

in the Supplementary material. Mutations in SLC52A1 and SLC52A3

were excluded in all patients.

Array-based genotyping
Haplotype analysis was carried out using single nucleotide polymorph-

ism-based arrays or genotyping of single nucleotide polymorphisms

around the SLC52A2 gene in Patients A1–A2, A5–A7 and L1 as well

as the affected members of the family described by Megarbane et al.

(2000), to determine whether this was a shared ancestral allele, given

that these patients are of Lebanese origin and all carry homozygous

p.Gly306Arg SLC52A2 mutations.

Riboflavin uptake, SLC52A2 protein
expression and RNA expression
Seven SLC52A2 mutations [p.Trp31Ser (c.92G4C), p.Gln234X

(c.700C4 T), p.Ala284Asp (c.851C4A), p.Tyr305Cys (c.914A4G),

p.Gly306Arg (c.916G4A), p.Leu312Pro (c.935T4C) and

p.Leu339Pro (c.1016T4C)] were analysed in an in vitro transient

expression system. 3H-riboflavin transport activity, protein expression

and RNA expression of SLC52A2 (92G4C; W31S), SLC52A2

(700C4 T; Q234X), SLC52A2 (851C4A; A284D), SLC52A2

(914A4G; Y305C), SLC52A2 (916G4A; G306R), SLC52A2

(935T4C; L312P) and SLC52A2 (1016T4C; L339P) were assessed.

Detailed methods are included in the Supplementary material.

High-dose oral riboflavin therapy
Oral riboflavin was commenced at a dose of 10 mg/kg/day and se-

quentially increased to 50 mg/kg/day in paediatric patients and

1500 mg/day in adult patients. We performed clinical and biochemical

assessments before and after the initiation of oral riboflavin, following

recommendations personally shared by Dr Annet Bosch (Department

of Paediatrics, University of Amsterdam, The Netherlands) and pub-

lished online (http://www.bvvlinternational.org/B2_Therapy_Protocol.

html).

Results

SLC52A2 mutations
SLC52A2 mutations were found in 18 individuals: 13 probands,

including one previously described individual [Patient E1; Family D

Figure 1 Index case from Dr Charles Henry Brown’s original

report (Brown, 1894). Reproduced with permission from Kluwer

Academic Publishers.
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(Johnson et al., 2012)], and five affected family members. Eight

of the individuals harbouring SLC52A2 mutations (Patients E2–5,

A1–2, I1 and L1; seven probands and one affected sibling) had

been specifically selected for Sanger sequencing of SLC52A2 after

being identified as having a clinical phenotype evocative of the

initial report (Johnson et al., 2012). Three patients (Patients E1, E6

and E7) were part of a cohort of 63 unrelated individuals with

cranial neuropathies and sensorimotor neuropathy � respiratory

insufficiency that were Sanger sequenced for mutations in

SLC52A1, SLC52A2 and SLC52A3. Seven patients (Patients

A3–A7, U1 and U2; three probands and four affected siblings)

had SLC52A2 mutations found through exome sequencing.

The nature and location of each SLC52A2 mutation are shown in

Fig. 2A. Seven different missense mutations and one premature stop

mutation were identified. The SLC52A2 mutations p.Gly306Arg

(c.916G4A) and p.Leu339Pro (c.1016T4C) have been reported

previously (Haack et al., 2012; Johnson et al., 2012). The other six

mutations reported here are novel. All mutations were predicted as

not tolerated by the SIFT prediction program and predicted as prob-

ably damaging by PolyPhen2, except for p.Ala284Asp

(c.851C4A), which was predicted as possibly damaging. All mu-

tations except the nonsense mutation p.Gln234X (c.700C4T) (only

conserved in the Gorilla gorilla and RFVT1) and the p.Ala284Asp

(c.851C4A) mutation (not conserved in Danio rerio) alter amino

acids evolutionarily conserved from humans to D. rerio and are also

conserved in RFVT1 and RFVT3 (Fig. 2B).

Patients A1, A2, A5, A6, A7 and L1, and the two affected mem-

bers of the original Lebanese BVVL family (Megarbane et al., 2000)

were found to be homozygous for the p.Gly306Arg mutation and

at all 11 single nucleotide polymorphisms studied, indicating that

the mutation arose on a common haplotype within the Lebanese

population as a founder mutation (data available on request).

Figure 2 Mutations in SLC52A2 in Brown-Vialetto-Van Laere syndrome. (A) Predicted transmembrane domains in RFVT2, gene structure

and location of mutations identified in SLC52A2 in this patient cohort. Reference sequence NM_024531.4. The Washington Exome

Variant Server (http://evs.gs.washington.edu/EVS/), single nucleotide polymorphism database (dbSNP) (http://www.ncbi.nlm.nih.gov/

snp) and 1000 Genomes Project (http://www.1000genomes.org/) databases were screened for the identified mutations. (B) Structural

conservation of relevant amino acid residues in RFVT2 across species and in RFVT1 and RFVT3. Dark blue, medium blue and light blue

colours correspond to amino acids conserved in 56, 55 or 53 of 7 sequences, respectively. Conservation among species of the affected

amino acid residues was determined using Ensembl to retrieve the sequences and Clustal Omega software (Thompson et al., 1994) for

multiple sequence alignment. The Ensembl protein IDs for the RFVT2 orthologous sequences reported are ENSGGOP00000028056,

ENSSSCP00000028741, ENSMUSP00000023220 and ENSDARP00000045674.
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Clinical presentation
Eighteen patients (13 probands) were found to harbour either

compound heterozygous or homozygous mutations in SLC52A2.

Clinical and genetic features of these patients are listed in Table 1.

Seven patients were identified in England (Patients E1–E7), seven

in Australia (Patients A1–A7), two in the USA (Patients U1 and

U2), one in Ireland (Patient I1) and one in Lebanon (Patient L1).

Our cohort demonstrates a female predominance, with a female

to male ratio of 11:7.

The most common presenting symptom was an ataxic gait, re-

ported in 9 of 18 (50%) patients, secondary to a progressive sen-

sory neuropathy. Parents reported noticing symptoms as early as

age 7 months (nystagmus) and as late as age 8 years (ataxic gait).

Optic atrophy was diagnosed in 14 of 15 patients (93%) after

formal ophthalmologic evaluations, often prompted by evidence

of nystagmus. In particular, nystagmus was the presenting symp-

tom in Patient E6 at just 7 months of age and Patient I1 at 16

months of age. All 18 patients had symptoms of hearing loss with

audiometry documenting bilateral sensorineural hearing loss.

Tongue fasciculations were documented in 11 of 18 patients

with evidence of a correlation between severity of fasciculations

and length of time following the onset of first symptoms. No

tongue fasciculations were evident in Patient I1 who started ribo-

flavin therapy 6 months after the emergence of his first symptom,

whereas tongue fasciculations along with tongue weakness and

atrophy were noted in Patient U1, who was found to harbour

mutations in SLC52A2 and was initiated on riboflavin therapy 50

years after the onset of her first symptom.

Rapidly progressive upper limb weakness was noted after evi-

dence of a sensory ataxic gait. An initial pattern of weakness of

neck extension and the distal upper limbs progressed to involve

the proximal upper limbs. A striking and consistent phenotype

characterized by maintenance of the ability to walk (with head

and trunk support) despite subgravity upper limb and neck

strength was observed in all but one patient in this cohort, result-

ing from the comparatively milder lower limb weakness in contrast

to the severe involvement of axial and upper limb muscles (Fig. 3).

Respiratory insufficiency developed in 13 patients (Table 1).

Patient A3 developed subacute respiratory failure at 3.5 years of

age and died despite ventilator support. Other clinical features

consistently observed in this cohort include the absence of deep

tendon reflexes and the presence of a flexor plantar response.

Cognition was preserved in all 18 patients despite significant

visual and hearing impairments.

Biochemical studies
Plasma acylcarnitine profiles were performed in 17 of 18 patients

with SLC52A2 mutations before the initiation of high-dose oral

riboflavin therapy. Ten of 17 patients tested (59%) had abnormal

profiles (Supplementary material). A normalization of the acylcar-

nitine profile was documented after the initiation of riboflavin

therapy in each of nine patients with abnormal profiles before

riboflavin therapy (who had a repeat acylcarnitine profile per-

formed) (Supplementary material), including within as short a

time period as 2 weeks after the first riboflavin dose (Patient

I1). Increases in riboflavin, flavin adenine dinucleotide and flavin

mononucleotide levels (or increases in flavin adenine dinucleotide

levels alone, when measured in isolation) were observed in 9 of 10

patients with measurements performed (in whole blood or plasma)

before and after the initiation of riboflavin therapy (Supplementary

material).

Respiratory chain studies were performed in muscle samples

from five patients (Patients E1, E2, E5, E6 and A6) with abnormal

results in two: Patient E2 with slightly decreased complex IV ac-

tivity (0.012; reference range: 0.014–0.034) and Patient E6

with decreased complex I activity (0.089; reference range:

0.104–0.268).

Neurophysiology
Neurophysiological studies were consistent with an axonal sensori-

motor neuropathy in all 18 patients (Table 2). In patients with

sequential nerve conduction studies, neurophysiological evidence

of a sensory neuropathy clearly preceded that of a motor neur-

opathy (Table 2; numerical data in Supplementary material), and

all patients demonstrated the same pattern of distribution of

motor neuropathy with upper limbs more affected than lower

limbs. This pattern is in contrast to inherited sensorimotor poly-

neuropathies that are typically length-dependent, with sensory

symptoms and weakness in the lower limbs preceding and pro-

gressing to a greater degree than the upper limbs (Lindh et al.,

2005).

Histopathology
Sural nerve biopsies were performed and adequately preserved in

six patients (Patients E2, E3, E5, A3, A6 and I1), demonstrating

findings consistent with a moderate to severe chronic axonal

neuropathy, with accompanying fibrosis and variable ongoing de-

generation (Fig. 4). Large myelinated fibres were consistently more

severely affected. Regeneration was strikingly absent. Unmyeli-

nated fibres were generally better preserved. There was no inflam-

mation, pathological hypomyelination or demyelination, and

barring artefacts, the surviving axons were morphologically

normal or in a few instances atrophic (Supplementary material).

Neuroimaging
Brain MRI was performed in 14 patients and revealed no structural

or signal abnormalities. This finding is in contrast to reports of

hyperintensity of brainstem nuclei (Koul et al., 2006; Malheiros

et al., 2007), atrophy of the brainstem (Francis et al., 1993; Koc

et al., 2003; Malheiros et al., 2007) and atrophy of the cerebellum

(Francis et al., 1993; Koc et al., 2003) in genetically undifferenti-

ated cohorts of patients with Brown-Vialetto-Van Laere syndrome.

Functional analyses of SLC52A2
mutations
To assess the functional alterations caused by mutations in the

SLC52A2 gene, 3H-riboflavin transport activity was assessed using

an in vitro transient expression system (Fig. 5A). 3H-Riboflavin
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uptake by the SLC52A2 mutations p.W31S, p.Q234X, p.A284D,

p.Y305C and p.L339P was completely abolished, and SLC52A2

mutations p.G306R and p.L312P showed a moderate but

significant decrease in 3H-riboflavin transport activity compared

with wild-type SLC52A2. To determine whether the transport

activity reduction was caused by the reduced expression of trans-

porter proteins in the plasma membranes, western blot analysis was

carried out using the crude membrane of HEK293 cells transiently

transfected with these variants (Fig. 5B). The expression levels of

SLC52A2 mutants except for p.W31S were decreased compared

with wild-type SLC52A2, which are well correlated with the

reduction ratios of the transport activity for these variants. The

dysfunctional p.W31S mutant was expressed in the plasma

membrane. Moreover, to confirm the transfection efficiency of

these cells, reverse transcription-PCR analysis was carried out.

The RNA expressions of SLC52A2 variants expressing cells were

comparable to that of SLC52A2 expressing cells (Fig. 5C). Native

SLC52A2 was only slightly observed in the cells transfected with

empty vector.

Response to riboflavin therapy
Sixteen patients have received high-dose riboflavin therapy ran-

ging from 1 month to 20 months in duration, which has been

well-tolerated and without evidence of toxicity. One patient died

prior to being identified as harbouring SLC52A2 mutations, and

one patient refused riboflavin therapy. Fifteen patients have re-

ported stable or improved function after the initiation of riboflavin

therapy, and one patient was lost to follow-up (Supplementary

material). Although most patients await repeat neurophysiological,

pulmonary, visual evoked potential and audiometry evaluations

while on high-dose riboflavin, we had the opportunity to study

in detail two patients (Patients I1 and E1), whose significant and

sustained clinical improvements are reported here.

Patient I1 presented at 22 months of age with a 6-month his-

tory of nystagmus, a 4-month history of an ataxic gait and a 3-

week history of rapidly progressive bilateral hand and bulbar

weakness. At the time of evaluation, he was unable to walk or

hold a bottle. He then rapidly developed respiratory failure and

Figure 3 Phenotypic characteristics of Brown-Vialetto-Van Laere syndrome caused by mutations in SLC52A2. Severe weakness of neck

extension and upper limbs with comparatively less weakness of lower limbs seen in Patient I1 at 1.8 years of age (A), Patient E4 at 5.8

years of age (B) and Patient E1 at 8.6 years of age (C). Symmetrical atrophy of intrinsic hand muscles of Patient E1’s left (D) and right (E)

hands at 10.5 years of age.
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was unable to swallow. Ophthalmological examination revealed

bilateral optic atrophy, visual evoked response testing revealed

vision loss and auditory brainstem response testing revealed bilat-

eral sensorineural hearing loss. Elevations of C6, C8, C10 and

C14:1 carnitine species were identified on plasma acylcarnitine

profile testing (Supplementary material). Riboflavin was started

within 8 days of initial presentation at a dose of 10 mg/kg/day

and was increased to a dose of 50 mg/kg/day over the course of 4

weeks. Ten days after starting riboflavin, he was extubated and

has remained stable without respiratory support. Within four

weeks of starting riboflavin, he was feeding orally, holding his

head upright, reaching for and grabbing toys and walking with

trunk support. An acylcarnitine profile repeated 2 weeks after the

initiation of riboflavin therapy was normal (Supplementary

material).

Patient E1 was briefly described in relation to the identification

of SLC52A2 (Johnson et al., 2012). She presented with sensory

ataxia at 18 months of age and then developed rapidly progressive

upper limb weakness, hearing loss, vision loss and respiratory in-

sufficiency at age 6 years. She was found to have mutations in

SLC52A2 at age 10 years and was started on a riboflavin dose of

10 mg/kg/day that was titrated up to a dose of 50 mg/kg/day

over the course of 12 weeks. Biochemical and clinical improve-

ments observed after 3 months of riboflavin therapy include a

normalization of the acylcarnitine profile (Supplementary material),

a clear improvement in audiometry testing (responsive to 40–55 dB

at 8 kHz after 3 months of riboflavin therapy, compared with

80 dB at 8 kHz prior to riboflavin therapy) and mild improvements

in pulmonary function and visual evoked potentials (Supplemen-

tary material). This is in contrast with previous sequential

audiometry testing, pulmonary function testing and visual

evoked potentials testing that had documented continual func-

tional decline. There were notable improvements in growth of

weight, height, hair and shoe size, which had remained un-

changed between 6 and 10 years of age. After 20 months of

riboflavin therapy, pulmonary function and audiometry have

remained stably improved. Motor function improvements have

been more marked and include the ability to sit and stand inde-

pendently for the first time in 3 years.

Discussion
Dr. Charles Brown prefaced his presentation of a case of ‘infantile

amyotrophic lateral sclerosis of the family type’ at the meeting of

the American Neurological Association in 1894 by stating that the

‘case opens up a new type of cases for study and that it is a sign

post not to be overlooked’ (Brown, 1894). We have described 18

patients with mutations in the riboflavin transporter gene

SLC52A2 who demonstrate a striking clinical phenotype of sensory

ataxia and upper limb, axial and respiratory weakness as a result

of an axonal sensorimotor peripheral neuropathy; and a cranial

neuropathy affecting cranial nerves II (optic atrophy), VIII (hearing

loss) and XII (tongue fasciculations � tongue weakness and atro-

phy). We also report the consistent neurophysiological profile and

sural nerve pathology associated with mutations in RFVT2 and

demonstrate that SLC52A2 mutations cause reduced riboflavin

uptake and reduced riboflavin transporter protein expression. As

three patients with mutations in SLC52A2 were identified from an

undiagnosed cohort of 63 patients with cranial neuropathies and

Figure 4 Sural nerve pathology in patients with mutations in SLC52A2. Resin semi-thin sections, stained with methylene blue–azure A

and basic fuchsine; �63 magnification (A and C) and toluidine blue; �40 magnification (F) and electron microscopy examination (B, D

and E) of sural nerve fascicle cross sections in Patient E2 at 2 years of age (A and B), Patient E3 at 4 years of age (C and D), Patient E5 at 4

years of age (E), and Patient A3 at 3 years of age (F) demonstrate a loss of myelinated axons, preferentially of large diameters (8–12 mm).

The endoneurium is fibrotic, and there are no inflammatory infiltrates. Numerous redundant Schwannian profiles (Bands of Büngner) are

discernible ultrastructurally (B and D, arrows) consistent with the loss of myelinated fibres. Several myelinated fibres in the biopsy of

Patient E5 (E) appear vacuolated and slightly enlarged—probably an artefactual change not to be confused with giant axons. Note the

striking absence of regeneration clusters in all biopsies. Scale bars: B and D = 5 mm; E = 50 mm.

52 | Brain 2014: 137; 44–56 A. R. Foley et al.

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt315/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt315/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt315/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt315/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt315/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awt315/-/DC1


sensorimotor neuropathy � respiratory insufficiency which was

Sanger sequenced for SLC52A1, SLC52A2 and SLC52A3, and

none of the patients in this cohort were found to harbour muta-

tions in SLC52A1 or SLC52A3, it seems that SLC52A2 is perhaps

the most common cause of Brown-Vialetto-Van Laere syndrome.

It is also notable that among eight individuals who had been sep-

arately identified as not only having cranial neuropathies and sen-

sorimotor neuropathy � respiratory insufficiency but also clinical

features evocative of the initial report of SLC52A2 (Johnson

et al., 2012)—including sensory ataxia, predominantly upper

limb and axial weakness, hearing loss and optic atrophy—all

eight were found to harbour mutations in SLC52A2 (and no mu-

tations in SLC52A1 or SLC52A3), suggesting that mutations in this

riboflavin transporter gene may be quite specific to the distinct

phenotype presented here.

Brown-Vialetto-Van Laere syndrome associated with SLC52A2

mutations is inherited as an autosomal recessive condition (Fig. 6),

which helps to differentiate it from other optico-acoustic neuro-

pathies including autosomal dominantly inherited OPA1 or MFN2

mutations, X-linked PRPS1 mutations and mitochondrially in-

herited neuropathy caused by mitochondrial DNA mutations

(such as Leber’s hereditary optic neuropathy or the syndrome of

neuropathy, ataxia and retinitis pigmentosa known as ‘NARP’).

Brown-Vialetto-Van Laere syndrome resulting from mutations in

SLC52A2 can also be clearly distinguished from other neuropathies

that may present with predominantly upper limb weakness,

including distal hereditary motor neuropathies caused by muta-

tions in BSCL2 or GARS, given that autosomal recessive mode

of inheritance, the presence of a sensory neuropathy (in combina-

tion with a motor neuropathy), optic atrophy, hearing loss and

respiratory insufficiency seen in our SLC52A2-specific cohort are

not present in neuropathies caused by mutations in BSCL2 or

GARS (Rossor et al., 2012).

Recessive mutations in the SLC52A3 gene can also result in

Brown-Vialetto-Van Laere syndrome; however, there are differ-

ences in the phenotype of patients harbouring SLC52A2 mutations

compared with the phenotype of patients with SLC52A3 muta-

tions. Early onset weakness in the upper limbs and neck is almost

invariably seen in patients with mutations in SLC52A2, in contrast

to those patients with SLC52A3 mutations or genetically unclassi-

fied Brown-Vialetto-Van Laere syndrome, in whom the onset of

weakness is often more generalized (Green et al., 2010; Bosch

et al., 2011). Another distinctive feature of patients with

SLC52A2 mutations is a lack of upper motor neuron signs in the

lower limbs, a commonly reported clinical feature of Brown-

Vialetto-Van Laere syndrome (Gallai et al., 1981; Hawkins et al.,

1990; Francis et al., 1993; Voudris et al., 2002; De Grandis et al.,

2005; Dipti et al., 2005; Koul et al., 2006) and, in particular,

reported in patients with mutations in SLC52A3 (Green et al.,

2010). Furthermore, the most common initial presenting symptom

reported in case reports and reviews of Brown-Vialetto-Van Laere

syndrome is bilateral hearing loss (Gallai et al., 1981; Sathasivam,

2008). In contrast, the most common presenting symptom in our

cohort of patients with SLC52A2 mutations is an ataxic gait, which

in young children is likely the first indication of an underlying

sensory neuropathy. Some patients presented with nystagmus,

likely related to optic atrophy and serving as a heralding symptom

before a precipitous decline in upper limb strength, respiratory

function and hearing. Given these findings, it is imperative that

neurologists evaluating children with clinical evidence of sensory

ataxia and/or nystagmus/optic atrophy consider the possibility of

an underlying riboflavin transporter defect.

It is notable that normal nerve conduction velocities have been

reported in patients diagnosed with Brown-Vialetto-Van Laere

syndrome (Voudris et al., 2002; Dipti et al., 2005; Koul et al.,

Figure 5 Functional studies of SLC52A2 mutations. (A) Uptake

of 3H-riboflavin by HEK293 cells transfected with empty vector

(Vector), wild-type SLC52A2 (WT), SLC52A2 (92G4C; W31S),

SLC52A2 (700C4T; Q234X), SLC52A2 (851C4A; A284D),

SLC52A2 (914A4G; Y305C), SLC52A2 (916G4A; G306R),

SLC52A2 (935T4C; L312P) and SLC52A2 (1016T4C;

L339P). The cells were incubated with 5 nM 3H-riboflavin (pH

7.4) for 1 minute at 37�C. Each bar represents the mean � SEM,

n = 3. Data were analysed by Dunnett’s two-tailed test after

one-way ANOVA. *P50.05, ***P50.001, significantly dif-

ferent from vector-transfected cells. #P50.05, ###P50.001,

significantly different from SLC52A2 (WT)-transfected cells. (B)

Western blot analysis was performed using the crude membrane

of HEK293 cells expressing empty vector, SLC52A2 (WT) and

SLC52A2 variants. The crude membrane fractions were sub-

jected to western blotting using antibodies against FLAG and

Na + /K +-ATPase. Na +/K + -ATPase was used as an internal

standard. (C) RNA expression of SLC52A2 in HEK293 cells

transfected with empty vector, SLC52A2 (WT) and SLC52A2

variants. Reverse transcription-PCR analysis was carried out

using specific primer sets.
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2006) and that sensory loss and abnormalities on sensory nerve

conduction studies have not been commonly recognized as part of

the phenotype of Brown-Vialetto-Van Laere syndrome in cohorts

of genetically undifferentiated patients (Sathasivam, 2008). This is

in stark contrast with our cohort of patients with mutations in

SLC52A2 who presented with sensory ataxia and nerve conduc-

tion studies revealing an axonal sensorimotor neuropathy. Going

forward, it seems advisable to adopt a new nomenclature for

accurately studying the phenotypic subgroups falling under the

term ‘Brown-Vialetto-Van Laere’ syndrome. To this end,

the terms ‘riboflavin transporter deficiency, type 1 (hRFT1), 2

(hRFT2) and 3 (hRFT3)’ were recommended (Bosch et al.,

2012). Using the new protein nomenclature and aiming to achieve

improved clarity, we recommend that the term ‘riboflavin trans-

porter deficiency, type 2’ be used to correspond to the SLC52A2

encoded RFVT2 (formerly RFT3) and ‘riboflavin transporter defi-

ciency, type 3’ to correspond to the SLC52A3 encoded RFVT3

(formerly RFT2).

The identification of mutations in riboflavin transporter genes in

this subset of patients with Brown-Vialetto-Van Laere syndrome

has uncovered a pathophysiological mechanism for this neurode-

generative condition, making possible a therapeutic intervention

for patients for whom no disease modifying therapy had been

available previously (Sathasivam, 2008). Riboflavin (vitamin B2) is

a precursor of flavin mononucleotide and flavin adenine dinucleo-

tide, both cofactors important for carbohydrate, amino acid and

lipid metabolism (Gropper, 2012). Flavin adenine dinucleotide is an

electron acceptor in acyl-dehydrogenation reactions for mitochon-

drial fatty acid beta-oxidation and branched chain amino acid ca-

tabolism (Gregersen et al., 2008), and both flavin adenine

dinucleotide and flavin mononucleotide are required for normal

respiratory chain function. The riboflavin transporter RFVT3 is re-

ported to be a saturable, energy-dependent carrier (Moriyama,

2011). Preliminary human tissue studies of the SLC52A2 encoded

RFVT2 demonstrate a relatively higher expression in the brain and

spinal cord than in the small intestine (Yao et al., 2010).

The sural nerve biopsies of six patients from this SLC52A2-

specific cohort demonstrate a preferential loss of large diameter

myelinated axons, thus providing a neuropathological correlate to

the clinical finding of absent deep tendon reflexes and the highly

prevalent symptom of sensory ataxia observed in these patients.

Furthermore, the distinct lack of regeneration in these biopsies

points toward a potential underlying neuronopathy and, in par-

ticular, may indicate involvement of the dorsal root ganglion cells.

As this is the first report of sural nerve pathology in patients with

mutations in RFVT2, it remains to be seen if these findings are

indeed SLC52A2-specific. Previous pathological descriptions in pa-

tients with Brown-Vialetto-Van Laere syndrome are limited to rare

post-mortem studies of genetically undifferentiated cohorts and

include findings of neuronal loss and degeneration in lower cranial

nerve nuclei (VII–XII), depletion of anterior horn cells and degen-

eration of spinocerebellar and pyramidal tracts (Brucher et al.,

1981). A severe depletion of motor root axons, an absence of

large motor neurons and an almost complete loss of fibres in

Clarke’s column and the posterior horns of the spinal column

have also been reported (Francis et al., 1993), including evidence

of these findings in the cervical and upper thoracic levels of the

spinal cord with marked sparing of the lumbosacral levels

(Rosemberg et al., 1982).

Further studies may provide information for effectively optimiz-

ing riboflavin transport through RFVT1 and RFVT3 [known ribo-

flavin transporters with high expression in the small intestine (Yao

Figure 6 Autosomal recessive inheritance of SLC52A2 mutations. Pedigrees and corresponding SLC52A2 mutations for Patients E2, E4,

U1, U2, A1, A2, A3, A4, A5, A6 and A7. Squares denote males, circles females, shaded shapes affected individuals, and shapes with dots

carriers. Double bars indicate consanguineous unions, and arrows indicate probands.
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et al., 2010) that presumably remain functional in patients

with SLC52A2 mutations] as well as riboflavin uptake through

diffusion, due to the potential of saturation of these transporters.

Given that the goal of high-dose oral riboflavin therapy is optimal

recovery of axonal damage, which may be secondary to an under-

lying neuronopathy (affecting dorsal root ganglia and anterior

horn neurons) or a primary axonopathy (resulting in the sensori-

motor neuropathy, sensorineural hearing loss and optic atrophy

seen in this condition), these are important research questions to

answer.

Here we have reported significant clinical and biochemical im-

provements observed after the initiation of high-dose oral ribofla-

vin therapy in patients with mutations in the riboflavin transporter

gene SLC52A2 including the apparently life-saving clinical im-

provement evident within 4 weeks of high-dose riboflavin therapy

in a 23-month-old infant (Patient I1). The degree of improvement

observed in this young patient may be a function of the short time

period between the onset of his symptoms and the initiation of

high-dose riboflavin. Given these findings, we suggest that siblings

of affected individuals be promptly screened for mutations in

SLC52A2, particularly as the identification of presymptomatic in-

dividuals would provide a therapeutic opportunity and could de-

termine if presymptomatic high-dose riboflavin therapy could

decrease symptoms of this axonal sensorimotor neuropathy or po-

tentially prevent their emergence. Although the degree of clinical

improvement possible in older affected individuals—with riboflavin

therapy initiated well after the onset of symptoms—remains to be

seen, the clinical and biochemical improvements observed with

high-dose oral riboflavin therapy in our SLC52A2-specific cohort,

as well as previously described patients with mutations in

SLC52A3 (Anand et al., 2012; Bosch et al., 2012; Ciccolella

et al., 2012), are noteworthy. Taken together, and considering

the low risk of toxicity of oral riboflavin even at high doses

(Alhadeff et al., 1984) (as the excess is readily excreted in the

urine), we suggest that patients presenting with the clinical pheno-

type associated with mutations in SLC52A2 described here, as well

as phenotypes described in association with SLC52A3, have high-

dose oral riboflavin therapy initiated early. It is the timely consid-

eration of a diagnosis of a riboflavin transporter deficiency and the

rapid initiation of high-dose riboflavin therapy, even while sequen-

cing of riboflavin transporter genes is in progress, that may hold

the greatest promise of preventing and potentially reversing the

progression of this hitherto elusive and relentlessly progressive

neurodegenerative condition.
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