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Abstract: 1 

We investigated the ability of testosterone (T) to restore differentiation in multiple 2 

population doubled (PD) murine myoblasts, previously shown to have reduced 3 

differentiation in monolayer and bioengineered skeletal muscle cultures vs. their parental 4 

controls (CON) (Sharples et al. 2011, Sharples et al., 2012). Cells were exposed to low serum 5 

conditions in the presence or absence of T (100 nM) ± PI3K inhibitor (LY294002) for 72 hrs 6 

and 7 days (early and late muscle differentiation respectively). Morphological analyses were 7 

performed to determine myotube number, diameter (μm) and myonuclear accretion as 8 

indices of differentiation and myotube hypertrophy. Changes in gene expression for 9 

myogenin, mTOR and myostatin were also performed. Myotube diameter in CON and PD 10 

cells increased from 17.32 ± 2.56 μm to 21.02 ± 1.89 μm and 14.58 ± 2.66μm to 18.29 ± 11 

3.08μm (P ≤ 0.05) respectively after 72 hrs of T exposure. The increase was comparable in 12 

both PD (+25%) and CON cells (+21%) suggesting a similar intrinsic ability to respond to 13 

exogenous T administration. T treatment also significantly increased myonuclear accretion 14 

(% of myotubes expressing 5+ Nuclei) in both cell types after 7 days exposure (P ≤ 0.05). 15 

Addition of PI3K inhibitor (LY294002) in the presence of T attenuated these effects in 16 

myotube morphology (in both cell types) suggesting a role for the PI3K pathway in T 17 

stimulated hypertrophy. Finally, PD myoblasts showed reduced responsiveness to T 18 

stimulated mRNA expression of mTOR vs. CON cells and T also reduced myostatin 19 

expression in PD myoblasts only. The present study demonstrates testosterone 20 

administration improves hypertrophy in myoblasts that basally display impaired 21 

differentiation and hypertrophic capacity vs. their parental controls, the action of 22 

testosterone in this model was mediated by PI3K/Akt pathway.  23 

http://www.sciencedirect.com/science/article/pii/S0960076013000769
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1. Introduction 

Muscle wasting occurs within many life-threatening diseases such as cancer (termed cancer 

cachexia) [1], AIDS [2], Sepsis [3], heart failure [4] and ageing (sarcopenia) [5-7]. 

Individuals that experience muscle loss during these various disease states have a reduced 

physiological and functional capacity, altered metabolism [8,9] and a reduction in circulating 

levels of Growth Hormone, Insulin-like-Growth Factor-I (IGF-I) and Testosterone  [2]. 

These accumulative factors manifest themselves in increased frailty and morbidity and 

therefore reduced quality of life that subsequently leads to earlier mortality [10, 11].  In the 

instance of cancer cachexia approximately 50% of patients suffer with cachexia (muscle 

atrophy), which alone accounts for 25% of all cancer deaths [12-14]. The regulation of 

skeletal muscle mass is reliant on the balance between hypertrophy (e.g. protein 

synthesis/anabolism) and atrophy (e.g. protein breakdown/catabolism). A potential clinical 

intervention for promoting a positive net balance in the favour of protein synthesis is 

Testosterone (T) administration [15, 16]. T replacement therapy has been observed to 

increase muscle strength and mass in various clinical populations including patients with 

AIDS, COPD and sarcopenia [12, 17-20]. However a limited number of studies have 

investigated the role of T in skeletal muscle hypertrophy and atrophy [21-23] at the cellular 

level.  

Skeletal muscle fibre numbers are set in-utero i.e. fibres are terminally differentiated or post 

mitotic and unable to divide. Skeletal muscles regenerative capacity therefore occurs as a 

result of a specialised cell type, the satellite cell, which resides underneath the basal lamina 

of the mature fibre and has mitotic potential. With the relevant cues, satellite cells are 

activated (termed myoblasts), then proliferate or return to quiescence for subsequent 

regenerative bouts. Activated myoblasts repair the muscle by fusing with the existing fibres, 

a process known as differentiation [24, 25]. Most recently, our laboratories have highlighted 

two myoblast models to study reduced differentiation capacity [7, 26, 27]. The first 

investigated the parental mouse C2 myoblasts vs. their subclone, the C2C12 cells. Despite their 

shared origins, we observed differences in morphological and biochemical responses 

between the C2 and C2C12 cells. The C2 cells displayed slower and diminished differentiation 

profiles compared to the C2C12 cells and were also more susceptible to TNF-α-induced 

inhibition of differentiation and induction of apoptosis [27]. Because muscle wasting is 

associated with reduced muscle mass [28, 29] and increased susceptibility to TNF-induced 

muscle protein degradation [30-32], this comparative model provided us with an excellent 

representation of muscle atrophy, hypertrophy and adaptability, thus, enabling the 

determination of potential regulators associated with muscle wasting. The second model 

utilised C2C12 cells that had undergone multiple population doublings (PD) vs. parental 

http://www.sciencedirect.com/science/article/pii/S0960076013000769
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control cells (CON), which have undergone no doublings relative to the PD cells [7]. These 

cells also display impaired differentiation in monolayer [7] and in three dimensional culture 

systems [26] vs. their parental controls. We reported that the PD cells had a significantly 

reduced number of cells exiting the cell cycle in G1, a prerequisite for fusion, with 

corresponding decreases in transcript expression of IGF-I, myoD, myogenin and reduced 

activation of Akt with increases in IGFBP5 mRNA and JNK activation vs. control cells [7]. 

Interestingly, similar morphology, transcript and signalling processes were also observed in 

cells isolated from aged human muscle [33-35] and in whole tissue biopsies [36, 37]. Thus, 

these cells can be used as a representative model to investigate mechanisms of atrophic 

phenotypes (PD) vs. parental control cells (CON) that display hypertrophic phenotypes [7].  

In the present study we utilised the latter model to investigate T administration on 

PD cells displaying impaired differentiation. As the PD cells display a reduction in Akt 

activation [7], the PI3K/Akt/mTOR pathway was investigated in the present study, as it is 

inextricably involved in protein synthesis [38] and most recently linked to T’s regulation of 

muscle hypertrophy [23].  

The aims were to: 1) Improve the impaired differentiation and hypertrophy profiles 

observed previously in PD cells using T administration; 2) Manipulate the role of PI3K/Akt 

in Ts regulation of differentiation in PD and CON cells. We hypothesised that T would 

induce improved differentiation and hypertrophy in CON cells and would improve the 

impaired differentiation in the PD cells. Further by inhibiting PI3K, testosterone’s ability to 

restore differentiation action would be negated in both cell types. The overall objective of 

the research was to utilise an in vitro model that is representative of impaired differentiation 

(PD) in order to elucidate the ability of T to improve differentiation and hypertrophy and to 

investigate its cellular and molecular mechanisms of action. 

  

http://www.sciencedirect.com/science/article/pii/S0960076013000769
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2. Materials and Methods 

2.1 Cell Culture 

Mouse C2C12 [39, 40] (ATCC, Rockville, MD, USA) skeletal muscle myoblasts were seeded at 

80,000 cells per ml in 2 ml of growth media (GM) per well (Dulbecco’s modifed eagle’s 

medium, DMEM (Sigma, Dorset, UK)), 20% fetal bovine serum (FBS) (PAA, Somerset, UK), 

1% PenStrep (Invitrogen, Paisley, UK)) onto 0.2% porcine gelatin-coated (Sigma, Dorset, 

UK) 6-well plates (Fisher Scientific, Loughborough, UK) and grown in a humidified 5% CO2 

atmosphere at 37oC. Population doubled (PD) cells and their parental controls (CON) were 

developed as detailed in Sharples et al. [7, 26]. Briefly, PD cells underwent an extra 58-60 

population doublings vs. their CON cells. Once confluent, the myoblasts were changed from 

growth media to low serum media/differentiation media (DM; composed of: DMEM, 2% 

horse serum (HS), 1% Penstrep and 1% L-Glutamine) which promotes the fusion of the 

myoblasts into multinucleated myotubes. C2C12 myoblasts undergo spontaneous 

differentiation into myotubes on serum withdrawal, and do not require growth factor 

addition to stimulate the process [40]. Cells were incubated in DM for 30 minutes at 37oC in 

a 5% CO2 atmosphere with this period of equilibration denoted as, 0 hour time point. Cells at 

the time points of 72 hrs and 7 days (early and late muscle differentiation respectively) were 

fixed (see below) for subsequent morphology analyses or isolated for reverse transcription 

quantitative real-time polymerase chain reaction (RT-PCR). 

2.2 Cell Treatments 

All treatments were administered in DM described above. The treatments comprised of a 

vehicle control (DMSO at a concentration of 0.01%), Testosterone alone (T) 100 nM (Tocris 

Bioscience, Bristol, UK), PI3K inhibitor (LY) 5 μM (LY294002- Calbiochem, Middlesex, UK), 

100 nM T + 5 μM LY. DMSO was used as the solvent for T reconstitution at the same 

concentration as the vehicle (0.01%). For results and figure legends the following 

nomenclature will be used DMSO, T, LY and T + LY respectively. All treatments were added 

at 0 hrs and existing media was further supplemented at 72 hrs. The inhibitor, LY at a dose 

of 5 μM has been extensively shown to be highly specific and effective in C2C12 cells in 

inhibiting PI3K and downstream Akt [41-46].  
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2.3 RNA Isolation 

Plates for each time point (0 hrs, 72 hrs and 7 days) were washed with 1ml/well phosphate 

buffer saline (PBS) (Fisher Scientific, Loughborough, UK) and extracted for RNA using 250 

μl TRIzolTM Reagent (Sigma, Dorset, UK) in each well. Total RNA was extracted by following 

manufacturer’s instructions. RNA concentration and purity were assessed through UV 

spectroscopy at ODs of 260 and 280 nm, using the Nanodrop spectrophotometer 3000 

(Fisher, Rosklide, Denmark). Only samples with a 260:280 ratio of between 1.9 and 2.15 

were carried forward for reverse transcription and PCR analysis detailed below.  

2.4 Primer Design 

Primer sequences (Table 1.) were identified using Gene (NCBI, www.ncbi.nlm.nih.gov/gene) 

and designed using both web-based OligoPerfect™ Designer (Invitrogen, Carlsbad, CA, USA) 

and Primer-BLAST (NCBI, http://www.ncbi.nlm.nih.gov/tools/primer-blast). Sequence 

homology searches ensured specificity. Three or more GC bases in the last 5 bases at the 3’ 

end of the primer were avoided. Secondary structure interactions (hairpins, self-dimer and 

cross dimer) within the primer were avoided. All primers ranged between 18 and 23 bp and 

amplified a product between 173 and 197 bp. GC content was between 36.3 and 55.5% (Table 

1). Primers without the requirement of further purification were purchased from Sigma 

(Suffolk, UK). 

 

<<<INSERT TABLE 1. NEAR HERE>>> 

 

2.5 Reverse Transcription Quantitative Real Time Polymerase Chain Reaction (rt-qRT-

PCR) 

70 ng of RNA/sample was reverse transcribed and amplified using QuantiFast™ SYBR® 

Green RT-PCR one-step kit on a Rotogene 3000Q (Qiagen, Crawley, UK) supported by 

Rotogene software (Hercules, CA, USA). rt-qRT-PCR was performed as follows: 10 min, 50oC 

(reverse transcription), 5 min 95oC (transcriptase inactivation and initial denaturation), 

Followed by: 10 secs, 95oC (denaturation), 30 secs, 60oC (annealing and extension) for 40 

cycles. Following completion, melting curve analyses were performed to exclude primer-

dimer and non-specific amplification (all melt analysis in this study presented single 

reproducible peaks). All PCR efficiencies were comparable (standard deviation ± 0.03%) 

across all conditions and genes. Relative mRNA expression was quantified for myogenin, 

mTOR and myostatin (Table 1.) using the comparative Ct (ΔΔct) method [7, 47] against a 

http://www.sciencedirect.com/science/article/pii/S0960076013000769
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stable reference gene of RP-IIb (combined Ct value for all runs across experimental 

conditions 16.63 ± 0.38) and calibrator of CON treatment at 0 hrs.  

2.6 Morphological Analysis 

Following media aspiration and 2 × PBS washes (1 ml/well), cells were fixed by adding 1 ml 

methanol/acetone (1:1) to 1 ml PBS in each well in a drop-wise manner and incubated for 10 

mins RT. Following aspiration, 2 ml methanol and acetone (1:1) were added to each well and 

incubated for a further 10 mins. Finally PBS (2ml/well) was added after removal of the 

methanol and acetone mix and plates were stored at 4oC until further analyses. This fixing 

process allows nuclei to become discernible under light microscopy alone, without the need 

for additional nuclear staining. A total of 30 fields per condition for each time point were 

captured with a cell imaging system at x10 magnification (Inverso-TC, CETI, Medline 

Scientific Limited, Oxon, UK) and analysed using Image J (Java) software (National 

Institutes of Health, USA). Morphology was assessed by determination of myotube diameter, 

number of myotubes per view, mean number of nuclei per myotube per field of view, fusion 

index (cell fusion) and total nuclei counts (changes in total cell number and therefore an 

indices for proliferation). A myotube was defined as containing 3+ nuclei encapsulated within 

cellular structures, so to avoid counting of single cells undergoing mitosis. Myotube diameter 

(μm) was determined by measuring the diameter of 3 equidistant points on each myotube 

(left end, middle, right end) and determining the mean of the 3 values as previously 

described [48, 49]. An indicator of myonuclear accretion (fusion index) was calculated by 

dividing myotubes into two classes; myotubes which expressed 3-4 nuclei or myotubes which 

expressed 5+ nuclei, with the data expressed as percentages.  

2.7 Statistical Analyses  

Experiments were performed 3 times (n = 3) in triplicate. Data are presented as mean + S.D. 

Morphology data at 72 hrs were assessed using a (2×2) mixed two-way factorial ANOVA 

(GraphPad Software, Inc., San Diego, USA) for interactions between cell type (PD, CON) and 

treatments (DMSO, T). LY and T+LY treatment were excluded from the aforementioned 

analysis, as there were no observable myotubes at 72 hrs in these conditions. Morphology 

data at 7 days were assessed using a (2×4) mixed two-way factorial ANOVA for interactions 

between cell type (PD, CON) and treatments (DMSO, T, LY and T + LY). Gene expression 

data were assessed using a (2×2×4) mixed three-way factorial ANOVA for interactions 

between cell type (PD, CON), time (72 hrs and 7 days) and treatments (DMSO, T, LY and T + 

LY). Bonferroni post hoc analyses were performed where main effects for treatment or cell 

type occurred, without a significant interaction between treatment and cell type. If 

significant interactions were present, independent t-tests were conducted to confirm 

http://www.sciencedirect.com/science/article/pii/S0960076013000769
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statistical significance between variables of interest. Furthermore, paired-sample t-tests were 

undertaken for variable of interests within cell type and treatment. Myonuclear Accretion 

(fusion index) measures were analysed using Chi Square to investigate whether myotube 

categories (3-4 nuclei or 5+ nuclei) differed from one another based on treatment exposure. 

A P-value of ≤ 0.05 was considered to represent a statistically significant difference.  

3. Results  
 
3.1 Exogenous T treatment increases myotube hypertrophy in both CON and PD cells  

The administration of exogenous DMSO, T, LY, T+LY to CON and PD cells brought about 

morphological changes in differentiation (Figs 1 & 2). Firstly, it is important to mention that 

in support of previous observations showing reductions in differentiation in PD vs. CON cells 

[7]; a significant difference for mean myotube diameter at 72 hrs was again observed in the 

present study (CON 17.32 ± 2.56 vs. PD 14.58 ± 2.66, P = 0.01, Fig. 3A, supporting the 

atrophic phenotype observed previously in PD cells [7,26]. Importantly, in the present study, 

T administration appeared to increase hypertrophy (myotube diameter) in both cell types. 

Statistical analyses confirmed the morphological observations in Fig. 1 and 2 and revealed 

that a T-stimulus significantly increased myotube diameter in both CON and PD cells after 

72 hrs (CON+T 21.02 ± 1.89 vs. CON 17.32 ± 2.56; PD+T 18.29 ± 3.08 vs. PD 14.58 ± 2.66, P 

= 0.01, Fig. 3A) and 7 days (CON+T 22.03 ± 2.65 vs. CON 17.50 ± 2.38; PD+T 20.49 ± 1.99 

vs. PD 15.70 ± 1.59, P = 0.01, Fig. 3A) compared with non-treated cells, respectively.  

 

<<<INSERT FIGURE NEAR HERE 1.>>> 

 

Importantly, the magnitude of change between both cell models in response to T 

administration and compared with their respective baseline controls was not significantly 

different at either time points, with T increasing myotube diameter in both PD (+25% and 

+23%) and CON (+21% and +20%) cells to the same extent after 72 hrs (Fig. 3A) and 7 days 

(Fig. 3C); respectively. Overall, this suggests that cells with a reduced differentiation 

phenotype have the same capacity to undergo hypertrophy in response to exogenous 

testosterone administration as CON cells. Furthermore, the addition of T significantly 

increased myotube number in CON cells (CON+T 2.90 ± 0.72 vs. CON 2.23 ± 0.68, P ≤ 0.05, 

Fig. 3D) after 7 days exposure only (at 72 hrs although there were mean increases this was 

not statistically significant (P = N.S.)). There were no significant changes in myotube 

number in PD cells after 72 hours or 7 days exposure (P = N.S.). This suggests testosterone 

http://www.sciencedirect.com/science/article/pii/S0960076013000769
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increases hypertrophy (myotube diameter) in both cells types; however, T only enhanced 

myotube number in CON cells at 7 days.  

 

 <<<INSERT FIGURE NEAR HERE 2.>>>  

 

Together with the changes in myotube diameter at both 72 hrs and 7 days, T significantly 

increased the mean number of nuclei per myotube in CON cells (CON 3.77 ± 0.86 vs. CON+T 

4.98 ± 1.76, P ≤ 0.001, Fig. 3B) at 72 hrs and at 7 days (CON 3.68 ± 0.67 vs. CON+T 4.91 ± 

1.10, P ≤ 0.01, Fig. 3B); again substantiating the morphological observation that 

hypertrophy, rather than hyperplasia was occurring in response to T administration. 

Furthermore, in the PD cells, a similar response was observed for nuclei/tube in the presence 

of T at 72 hrs (PD+T 4.27 ± 1.03 vs. PD 3.33 ± 0.71, P = 0.03, Fig. 3B), and 7 days (PD+T 

5.18 ± 1.31 vs. PD 3.84 ± 0.71, P ≤ 0.001 Fig. 3B) exposure compared to non-treated cells. 

Interestingly, again there were similar magnitude increases in CON and PD cells in the 

presence of T vs. basal conditions at 72 hrs (24.3% CON vs. 22% PD) and 7 days (25.1% CON 

vs. 25.9% PD). 

 

<<<INSERT FIGURE NEAR HERE 3.>>> 

 

 

3.2 PI3K/Akt inhibitor (LY) inhibits testosterone-induced increases in differentiation and 

hypertrophy for CON and PD cells  

The presence of LY inhibitor alone led to a lack of differentiation with no quantifiable 

myotubes being present in both CON and PD cells at 72 hrs (Fig. 1 & 2). As highlighted 

above; the addition of T significantly increased differentiation shown by enhanced myotube 

number in CON cells (CON+T 2.90 ± 0.72 vs. CON 2.23 ± 0.68, P ≤ 0.05, Fig. 3D) after 7 

days exposure. The presence of LY co-incubated with T significantly reduced the effect on 

myotube number (CON+T+LY 2.21 ± 0.56 vs. CON+T 2.90 ± 0.72, P ≤ 0.05, Fig. 3D). LY 

alone was also able to reduce myotube number vs. T treatment (CON+LY 1.77 ± 0.65 vs. 

CON+T 2.90 ± 0.72, P ≤ 0.05, Fig 3D) and non-treated controls (2.23 ± 0.68, P ≤ 0.01, Fig 

3D). Interestingly, T in the presence of the LY inhibitor was unable to restore differentiation, 

shown by non-significant differences with LY alone conditions (P = N.S.) and non-treated 

http://www.sciencedirect.com/science/article/pii/S0960076013000769
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CON cells (Fig. 3D). These observations highlight that Ts increase in myotube number in 

CON cells, as previously observed, is blunted in the presence of the LY inhibitor; returning 

differentiation back to basal levels. As previously highlighted there were no significant 

changes in myotube number after T administration in PD cells. However, LY alone was able 

to reduce myotube number vs. T treatment (PD+LY 1.89 ± 0.80 vs. PD+T 2.35 ± 0.69, P ≤ 

0.05, Fig 3D) and non-treated controls (PD 2.26 ± 0.53, P = 0.05, Fig 3D).  

Following these observations for indices of differentiation we next wished to ascertain the 

impact of T in the presence of the PI3K inhibitor (LY) on myotube hypertrophy. At 7 days, as 

previously highlighted above, the addition of T significantly increased myotube diameter in 

CON and PD cells (Fig. 3C). The presence of LY co-incubated with T significantly reduced the 

effect on myotube diameter in both CON (CON+T+LY 17.49 ± 2.21 vs. CON+T 22.03 ± 2.65, 

P ≤ 0.05, Fig. 3C) and PD cells (PD+T+LY 17.10 ± 2.40 vs. PD+T 20.49 ± 1.99, P ≤ 0.05, Fig. 

3C). LY alone was also able to reduce myotube diameter vs. T treatment in CON cells 

(CON+T 22.03 ± 2.65 vs. CON+LY 17.7 ± 2.91, P ≤ 0.05, Fig 3C). Similar observations were 

observed in PD cells (PD+T 20.49 ± 1.99 vs. PD+LY 15.83 ± 2.53, P ≤ 0.05, Fig 3C). 

Interestingly, T was unable to restore myotube diameter in the presence of the LY inhibitor 

shown by non-significant differences with LY alone conditions in CON cells and non-treated 

CON cells (P = N.S, Fig. 3C). The same observations were mirrored in PD cells where T was 

unable to restore myotube diameter in the presence of the LY inhibitor shown by non-

significant differences with LY alone conditions in PD cells (P = N.S, Fig. 3C). Overall, this 

shows that T’s observed increases in hypertrophy was blunted in the presence of the LY 

inhibitor returning myotube diameter back to basal levels in both cell types.  

3.3 T-treatment enhancement in differentiation and hypertrophy is accompanied by 

increases in cell fusion 

 To address the effects of the various treatments on cell fusion, myonuclear accretion 

was calculated. The administration of T resulted in a greater percentage of myotubes 

expressing 5+ nuclei for both CON (CON+T 67.9% vs. CON 32.1%, 𝝌𝟏
𝟐= 32.99, P ≤ 0.05) and 

PD cells (PD+T 67.2% vs. PD 32.8%, 𝝌𝟏
𝟐= 20.58, P ≤ 0.05) compared to untreated cells after 

7 days exposure (Fig 4A & 4B respectively). Furthermore, the addition of LY with T 

treatment reduced the percentage of myotubes expressing 5+ nuclei back to similar levels of 

LY-alone treated cells (CON+T+LY 28.1% vs. CON+LY 15.2%, 𝝌𝟏
𝟐= 2.53, P = N.S; PD+T+LY 

37.5% vs. PD+LY 21.6%, 𝝌𝟏
𝟐= 3.4, P=N.S, Fig 4A & 4B respectively). In accordance with these 

observations, there was no significant difference in total nuclei counts for all treatments in 

either cell type at both time points (P = N.S). There was however a significant interaction 

between cell type as the PD cells had a significantly higher total nuclei count (P ≤ 0.05) 

http://www.sciencedirect.com/science/article/pii/S0960076013000769
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compared to CON cells at both time points, a finding confirmed previously by Sharples et al. 

[7], who highlighted a continued proliferation at the expense of exiting the cell cycle in G1 

and differentiating.  

 

<<<INSERT FIGURE 4. NEAR HERE>>> 

 

3.4 Expression of myogenin mRNA increases after T-administration in both PD and CON 

cells 

There was a significant difference in myogenin transcript expression levels between CON 

and PD cells after 72 hrs (CON 191.51 ± 12.84 vs. PD 48.58 ± 8.14, P ≤ 0.001, Fig. 5A) and 7 

days exposure (CON 128.36 ± 27.11 vs. PD 59.22 ± 4.57, P ≤ 0.001, Fig. 5A). Whilst still 

remaining significantly different, the expression of myogenin significantly increased in both 

CON and PD cells when treated with T (CON+T 222.18 ± 36.63 vs. CON 191.51 ± 12.84; 

PD+T 67.00 ± 5.35 vs. PD 48.58 ± 8.14, P ≤ 0.05, Fig. 5A) after 72 hrs. The increase in 

myogenin mRNA expression also continued at 7 days in PD treated cells (PD + T 74.15 ± 8.13 

vs. PD 59.22 ± 4.57, P ≤ 0.001, Fig. 5A), yet there was no difference in myogenin mRNA 

expression at this time point between non-treated and T-treated CON cells. However, 

absolute levels of myogenin transcript expression were basally significantly higher (shown 

above) in CON treated cells vs. PD treated (CON+T 131.46 ± 24.53 vs. PD+T 67.00 ± 5.35, P 

= 0.001) cells at 7 days. The presence of LY, significantly reduced myogenin expression after 

72 hrs exposure in CON cells (CON+LY 134.38 ± 16.13 vs. CON 191.51 ± 16.00, P ≤ 0.05 Fig. 

5A), with no reductions being observed in PD cells at the same time point. Furthermore, LY 

alone had no effect on myogenin mRNA expression after 7 days culture in either cell type (P 

= N.S Fig. 5A). 

 

<<<INSERT FIGURE NEAR HERE 5.>>> 

 

T in the presence of LY inhibitor significantly attenuated myogenin expression after 72 hrs 

when compared with T alone in both cell types (CON+T 222.18 ± 36.63 vs. CON+T+ LY 

146.09 ± 24.58, P ≤ 0.05; PD+T 67.00 ± 5.35 vs. PD+T+LY 56.04 ± 11.50, P ≤ 0.05, Fig. 5A). 

At 7 days, there were no significant changes for any treatment conditions in CON cells (P = 

N.S for all comparisons) for myogenin expression. However in PD cells, T further enhanced 
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myogenin expression significantly, even when administered in the presence of LY (PD 59.22 

± 4.57 vs. PD+T+LY 69.93 ± 3.98, P ≤ 0.05; PD+LY 57.04 ± 9.22 vs. PD+T+LY 69.93 ± 3.98, 

P ≤ 0.05 Fig. 5A). Thus, T caused an increase in myogenin expression in both cells types, 

whether LY was present or absent. This may suggest at the molecular level at least, that T 

elevates myogenin expression, independently of PI3K/Akt, but appears to be not sufficient 

enough to rescue morphological differentiation/hypertrophy in PD cells.  

3.5 Testosterone increases mTOR expression in the presence of PI3K inhibitor in CON cells   

The expression of mTOR did not change after 72 hrs in either cell type (CON 0.97 ± 0.08 vs. 

PD 0.97 ± 0.12, Fig. 5B). After 7 days exposure, T administration alone significantly 

increased mTOR mRNA expression compared to CON non-treated cells (CON+T 121.08 ± 

15.87 vs. CON 111.95 ± 19.36, P ≤ 0.05 Fig. 5B). Furthermore, the treatment of T + LY 

significantly increased mTOR mRNA compared to LY alone (CON+T +LY 135.14 ± 16.08 vs. 

CON+LY 112.70 ± 13.62, P ≤ 0.001, Fig. 5B) and untreated controls (CON+T +LY 135.14 ± 

16.08 vs. CON 111.95 ± 19.36, P ≤ 0.05). This highlights T administration increases in mTOR 

expression even in the presence of LY. In the PD cells, all treatments were without effect on 

mTOR expression at 7 days exposure (Fig. 5B).   However, at 7 days under basal conditions, 

CON cells displayed significantly higher mTOR expression than PD cells (CON 111.95 ± 19.36 

vs. PD 1.01 ± 0.10, P ≤ 0.05, Fig. 5B). 

3.6 T-stimulus reduces negative muscle mass regulator myostatin in PD cells only  

Myostatin transcript expression was slightly elevated in PD cells after 72 hrs compared to 

CON, although these elevations were not statistically significant (CON 5.93 ± 1.87 vs. PD 

7.63 ± 2.58, Fig. 5C). However, at 7 days, statistically significant observations were observed 

for increases in myostatin mRNA expression in PD cells compared to CON cells (PD 12.93 ± 

4.69 vs. CON 4.57 ± 1.20, P ≤ 0.001 Fig. 5C). This novel finding suggests that under basal 

conditions, myostatin may block differentiation in these myoblasts and thus contribute 

towards reduced myotube hypertrophy. In CON cells, T treatments, LY alone or co-

incubations of T+LY at 72 hrs did not alter myostatin mRNA expression (Fig. 5C). The 

presence of LY alone was the only treatment to significantly reduce myostatin mRNA 

expression after 72 hrs exposure to PD cells (PD+LY 4.27 ± 2.47 vs. PD 7.63 ± 2.58, P ≤ 0.01 

Fig. 5C).  

At 7 days, there were no changes in myostatin mRNA expression in CON cells (CON 4.57 ± 

1.20; CON+T 5.99 ± 1.40; CON+LY 4.32 ± 1.65; CON+T+LY 4.84 ± 1.01, Fig. 5C). However 

in the PD cells, T treatment significantly impaired elevations in myostatin expression 

compared to PD non-treated cells (PD + T 9.73 ± 2.56 vs. PD 12.93 ± 4.69, P ≤ 0.05 Fig. 5C). 
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The reduction in myostatin transcript expression was significantly larger in magnitude with 

the addition of T with LY (-36%) in PD cells at the 7 day time point (PD + T + LY 3.47 ± 0.83 

vs. PD 12.93 ± 4.69, P ≤ 0.01 Fig. 5C), yet similar effects were not observed in CON cells. 

However, the presence of LY alone also brought about reductions in myostatin expression 

(PD+LY 4.98 ± 2.25 vs. PD 12.93 ± 4.69, P ≤ 0.001 Fig. 5C) and the reductions were similar 

to T+LY (P = N.S). Overall, suggesting both LY and testosterone alone reduce myostatin 

expression in PD cells only. It therefore appears that T potentially reduces myostatin 

expression in atrophied PD cells only suggesting a potential mechanism that may explain the 

increase in differentiation/hypertrophy seen in this cell type, whereas in CON cells, the 

increases with T are independent of myostatin expression.   

4. Discussion 

The present study supports a role for testosterone  in enhancing myogenic 

differentiation and myotube hypertrophy [50-55] but more importantly, shows the capacity 

to improve hypertrophy and myonuclear accretion in a previously established model 

displaying impaired differentiation and hypertrophy similar to that of atrophic phenotypes 

such as ageing [7, 26]. Furthermore, testosterone treatment enhanced hypertrophy shown by 

increases in myotube diameter, nuclei per myotube and a larger number of myotubes with 5 

or more nuclei in both control (CON) and multiple population doubling (PD) cells. 

Interestingly, testosterone improved hypertrophy (myotube diameter) to the same 

magnitude in both cell types at 72 hrs and 7 day time points. Thus, despite PD cells having 

undergone multiple population doublings vs. their controls, and therefore displaying a 

reduced basal differentiation capacity as previously described in Sharples et al. [7, 26]; 

testosterone was able to exert similar magnitude increases in myotube hypertrophy. Despite 

this interesting observation, testosterone was unable to fully restore differentiation (myotube 

number) to the level observed in untreated control cells at 7 days; perhaps suggesting 

testosterones predominant role in hypertrophy rather than differentiation in this model. 

Furthermore, in line with previous findings, the current study showed that PD cells had 

reduced myogenin expression vs. CON cells [7, 26], with the present study also supporting 

previous morphological and biochemical (reduced CK activity) findings [7, 26], showing 

myotube diameter was reduced in the PD cells. This further consolidates the use of these 

cells as a representative model to investigate cellular and molecular mechanisms of atrophic 

(PD) vs. hypertrophic phenotypes (CON). 

Importantly, testosterone mediated increases in myotube hypertrophy were 

potentiated via the PI3K/Akt pathway, where inhibition of this pathway in the presence of 

testosterone rendered the hormone unable to exert its potent influence on myotube 
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hypertrophy in both cell types. This study supports previous work where the PI3K/Akt 

pathway has been implicated in testosterones action in L6 myoblasts [22] and human 

skeletal myoblasts [56] where the same PI3K inhibitor (LY294002) also reduced 

testosterone induced hypertrophy. Kovacheva and colleagues [57] have also previously 

reported that Akt signalling downstream of PI3K was restored by testosterone 

administration in elderly mice. The present study further supports that testosterones action 

in myotube hypertrophy is mediated via PI3K/Akt pathway, especially where reductions in 

Akt activation have been previously reported in this model (i.e. lower in PD vs. CON) [7]. 

Overall, these observations further suggest that the manipulation of this pathway by 

testosterone may be imperative for therapeutic restoration of muscle atrophy [38].  

Interestingly, exogenous testosterone improved myogenin expression in both CON 

and PD cells types, whether the PI3K inhibitor (LY294002) was present or absent, 

suggesting testosterone-mediated activation of myogenin independently of the PI3K/Akt 

signalling pathway. Testosterone has previously been shown to increase myogenin in C2C12 

cells [50, 51]. Indeed, community-dwelling older men treated with grades doses of 

testosterone show increases in muscle fibre size accompanied by increased myogenin 

expression [55]. Despite this, testosterone induced increases in myogenin observed in the 

presence of PI3K inhibitor were unable to restore the differentiation/hypertrophy impinged 

by the PI3K inhibitor alone. Therefore, suggesting that myogenin was not the main 

mechanism of action in testosterone-induced increases in hypertrophy. Overall however, 

absolute levels of myogenin were severely reduced in PD vs. CON cells with testosterone 

unable to rescue absolute myogenin expression levels in the cells that display atrophic 

phenotypes (PD’s) to those observed in untreated control cells. Thus, perhaps highlighting 

myogenins more pertinent role in differentiation (not hypertrophy) as testosterone was 

unable to restore absolute levels of myogenin and corresponding myotube numbers in PD 

cells vs. untreated control levels. Although, as discussed above, testosterone was able to 

improve myotube diameter i.e. hypertrophy.  

In addition to this, testosterone increased mTOR expression in CON cells at 7 days, 

previously testosterone has been shown to increase mTOR phosphorylation in both L6 rat 

[22] and in C2C12 [23] myoblasts. Indeed, mTOR mRNA expression in CON cells was 

increased in the presence of testosterone plus PI3K inhibitor (LY), perhaps suggesting an 

important role for testosterone in increasing mTOR independently of PI3K/Akt. 

Furthermore, White and colleagues [23] also observed increases in mTOR phosphorylation 

with incremental doses of T in C2C12 cells, independently of Akt activation. However, mTOR 

expression was not increased in PD cells in the presence of testosterone alone or in 

combination with the PI3K inhibitor suggesting impaired mTOR transcript expression in 

http://www.sciencedirect.com/science/article/pii/S0960076013000769


SUBMITTED VERSION ONLY- There will be errors in this manuscript version in comparison with 

the final published version available in J Steriod Biochem Mol Bol at: Link. 

15 
 

response to exogenous testosterone in the atrophic, reduced differentiation phenotype PD vs. 

control cells. Previously, in our labs we have observed reduced IGF-I transcript expression 

with corresponding reductions in Akt phosphorylation in PD myoblasts [7]. As Akt is 

upstream of mTOR this suggests Akt may be involved the reduction of mTOR observed 

between CON and PD myoblasts basally at 7 days. However, activity of mTOR was not 

directly assessed in the present study and warrants further investigation.  

 

In agreement with the present study where mTOR expression in CON cells was 

increased in the presence of testosterone plus PI3K inhibitor (LY) (albeit mRNA expression 

and not protein activity), other studies have shown that mTOR activation can occur via 

signals independent of canonical IGF-I/Akt, via a pathway involving phospholipase D, 

phosphatidic acid and a downstream regulator Rheb (ras homologue enriched brain) [58-

61]. Redd 2 may also be important in inhibiting mTOR via the tuberous sclerosis 1 (TSC1) 

and 2 (TSC2) complex [62]. As mTOR mRNA expression is increased in CON vs. PD cells, 

testosterone increases mTOR expression in CON cells which is blunted in PD cells at 7 days, 

and mTOR transcript expression is still increased with testosterone even the presence of 

PI3K/Akt inhibitor it begs the question as to the role of testosterone in regulating 

phospholipase D, phosphatidic acid, Rheb and Redd2 and their subsequent interaction with 

mTOR. Especially in light of recent data where following mechanical overload Redd2 is 

reduced to enable mTOR to initiate p70S6K activity, which is involved in protein synthesis 

and hypertrophy, a process that is impaired in the elderly [63]. 

 

Myostatin is a negative regulator of muscle mass in many species [64-67]. There is 

evidence indicating that myostatin inhibits satellite cell activation, proliferation, and 

differentiation [55, 68, 69], possibly mediated through perturbation of Akt and mTOR 

signalling [49]. Therefore reductions in myostatin, as previously observed with testosterone 

administration [69], can enhance muscle mass regulation in muscle wasting diseases such as 

cachexia and sarcopenia [70-72]. Interestingly, in the current study myostatin mRNA 

expression was reduced in myoblasts that have basally impaired hypertrophy (PD cells) 

when administered with testosterone with corresponding increases in myotube hypertrophy. 

The reduction in myostatin mRNA expression at 7 days with T treatment was accompanied 

by increases in myogenin mRNA expression in PD cells, which is supported recent literature 

highlighting myostatin’s role for inhibiting myogenic differentiation [49, 73, 74]. Despite 

this, testosterone did not return absolute levels of myostatin expression to the low levels 

observed in the control cells. These observations suggest that although testosterone may 

reduce myostatin expression, it is not entirely responsible for the improved hypertrophy 

observed in the atrophic phenotype cells. Furthermore, the PI3K inhibitor (LY) alone also 
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substantially reduced myostatin expression where there is a distinct lack of differentiation 

and hypertrophy. This is in contrast to recent studies where there was a reduction in the 

activity of Akt observed in the presence of exogenous myostatin in human myoblasts [49]. 

Therefore, if myostatin was reduced, PI3K/Akt activity may be expected to increase. 

Although inhibition of PI3K in the present study makes it difficult to compare with the 

aforementioned study, this phenomenon requires further investigation in the current model.  

It is important to note the potential effect of T breakdown which may occur within 

the cell culture media as the steroidgenic enzymes 5-α reductase and aromatase are critical 

in converting T to dihydrotestosterone (DHT) and estradiol respectively [75, 76]. Therefore, 

knowing if T is the active steroid compound stimulating hypertrophy in the current model is 

a limiting factor. Future studies may address the impact of other steroid hormones such as 

DHT in rescuing impaired differentiation and hypertrophy via the PI3K/Akt pathway. 

5. Conclusion 

In the present study exogenous testosterone was able to increase hypertrophy in myoblasts 

with reduced differentiation potential (PD cells) to a similar magnitude as the control cells. 

Testosterone induced myotube hypertrophy was mediated via the PI3K/Akt pathway, where 

inhibition of this pathway in the presence of testosterone rendered the hormone unable to 

exhibit its potent influence on myotube hypertrophy in phenotypically atrophic (PD) and 

hypertrophic control (CON) cells Testosterone-induced hypertrophy was also accompanied 

by increased myonuclear accretionin both cell types, with corresponding increases in 

myogenin expression. Furthermore, blunted mTOR expression was observed in response to 

exogenous testosterone administration in atrophic myotubes (PD) vs. control (CON) 

myotubes. Myostatin expression was reduced in the presence of testosterone in atrophic cells 

only. Overall, administration of testosterone shows strong potential to enhance hypertrophy 

in a previously atrophic cell type via the PI3K/Akt pathway.  
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Table 1. Primer sequences for genes of interest. 

Gene Primer Sequence (5’-3’) Ref. Sequence Number Amplicon Length (bp) GC% Content 

Myostatin F: 

TACTCCGAATAGAAGCCATAA 

R: GTAGCGTGATAACGTCATC 

NM_010834 194 36.3 

45 

mTOR F: 

CACTCCACTATCCTGTTACCT 

R: GAGATCCTTGGCACACCT 

 NM_020009  190 47.6 

55.5 

Myogenin F:CCAACTGAGATTGTCTGTC 

R: GGTGTTAGCCTTATGTGAAT 

NM_031189 173 47.3 

40 

RP-IIβ F:GGTCAGAAGGGAACTTGTGG

TAT 

R:GCATCATTAAATGGAGTAGC

GTC 

NM_153798.1 197 50 

44.4 
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Figure 1. 

 

 

Fig. 1. Representative light microscope images (10× magnification) of treatments (DMSO, T, LY, T + LY) exposed to the CON cell type after 72 h and 7 

days. 
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Figure 2.  

 

Fig. 2. Representative light microscope images (10× magnification) of treatments (DMSO, T, LY, T + LY) to population doubled cells after 72 h and 7 days. 
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Figure 3. 

 

Fig. 3. The effect of T-stimulus on CON and PD cells on various morphology variables after 

72 h and 7 days exposure. (A) The effect of T-stimulus on mean myotube diameter for CON 

and PD cells after 72 h exposure. *Reduced mean myotube diameter between CON and PD 

cells (P≤0.01). **T-stimulus significantly increased mean myotube diameter in CON cells vs. 

non-treated CON and PD (P ≤0.01). Dash line represents magnitude change in mean 

myotube diameter with T-stimulus, similar in magnitude for both CON (+21%) and PD 

(+25%) cells. A similar pattern was observed at 7 days (CON +20%; PD +23%). (B) The 

changes in mean nuclei per myotube at 72 h and 7 days with and without exogenous T 

administration. *T significantly increased mean nuclei per myotube in CON (+24%; P ≤ 

0.001) cells after 72 h and 7 days (+25%; P≤0.001) exposure vs. non-treated cells. **T-

treatment in PD cells increased mean nuclei per myotube after 72 h (+22%; P = 0.033) and 7 

days exposure (+25%; P≤0.001). (C) Myotube number is attenuated when LY is co-incubated 

with T at 7 days. *The presence of LY significantly reduced the effect of T on myotube 

diameter (P ≤ 0.05) in CON cells. **A similar effect was observed in PD cells (P ≤ 0.05). / = 

Myotube diameter significantly reduced in PD vs. CON cells, similar to that observed at 72 h 

(see Fig. 2A) (P ≤ 0.05). Dash line represents magnitude change in mean myotube diameter 

with T-stimulus, similar in both CON (+20%) and PD (+23%) cells. It appears that T’s action 

on myotube hypertrophy requires the activity of the PI3K/Akt pathway in both cell types. (D) 

The effect of T and LY treatment on myotube number in CON and PD cells at 7 days. *T-

treated CON cells significantly exhibited a greater number of myotubes compared to non-

treated cells (P≤0.05). **The addition of LY alone and in the presence of T significantly 

reduced the number of myotubes compared to T-treated CON cells (P≤0.05). ***In PD cells, 

LY alone significantly reduced myotube number (P≤0.01) at 7 days, with all other treatments 

showed no significant effects.  
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Figure 4.  

 

Fig. 4. The effect of T and LY treatment on myonuclear accretion in CON (A) and PD (B) 
cells after 7 days exposure. T-treatment significantly increased the percentage of myotubes 
expressing 5+ nuclei in both cell types (P ≤ 0.05). LY alone reduced the percentage of 5+ 
nucleated myotubes back to baseline levels in both cell types. T in the presence of PI3K 
inhibitor (LY) was unable to to restore the number of 5+ nucleated myotubes to the levels 
induced by T alone. 
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Figure 5.  

 

Fig. 5. The effect of T-stimulus on mRNA expression of myogenin (A), mTOR (B) and 
myostatin (C) in CON and PD cells. (A) The effect of T-stimulus on myogenin mRNA 
expression levels after 72 h exposure. *T-stimulus significantly increased myogenin 
expression in CON and PD cells compared to non-treated cells (P ≤ 0.05). **The presence of 
LY with T treatment significantly attenuated T’s effect in CON cells (P ≤ 0.05). ***T exposure 
continued to increase myogenin mRNA in PD cells after 7 days culture, even in the presence 
of LY (P ≤ 0.05). B) Changes in mTOR mRNA expression with the various treatments to 
CON and PD cells after 7 days culture. *CON + T and **CON + T + LY significantly increased 
mTOR expression vs. CON untreated cells (P ≤ 0.05). ***There was a significant difference 
in mTOR expression between CON + LY and CON + T + LY (P ≤ 0.001). Additionally there 
was a significant difference in mTOR expression between untreated CON and PD cells in 7 
days culture. There were no changes in PD cells with the same treatments at either time 
points. (C) The effect of T-stimulus on myostatin mRNA expression after 7 days exposure. *T 
significantly reduced myostatin expression in the PD treated cells after 7 days (P ≤ 0.01). 
**LY alone significantly reduced myostatin levels (P ≤ 0.01) at 72 h and 7 days. / = Plus with 
the addition of T to LY, this reduction was heightened (P ≤ 0.01) compared to non-treated 
PD cells._Basal PD cells had significantly elevated myostatin mRNA levels at 7 days vs. 
parental controls (P ≤ 0.001). 
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