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ABSTRACT As transistor sizes are downscaled, a single trapped charge has a larger impact on smaller
devices and the RandomTelegraph Noise (RTN) becomes increasingly important. To optimize circuit design,
one needs assessing the impact of RTN on the circuit and this can only be accomplished if there is an
accurate statistical model of RTN. The dynamic Monte Carlo modelling requires the statistical distribution
functions of both the amplitude and the capture/emission time (CET) of traps. Early works were focused on
the amplitude distribution and the experimental data of CETs were typically too limited to establish their
statistical distribution reliably. In particular, the time window used has been often small, e.g. 10 sec or less,
so that there are few data on slow traps. It is not known whether the CET distribution extracted from such
a limited time window can be used to predict the RTN beyond the test time window. The objectives of this
work are three fold: to provide the long term RTN data and use them to test the CET distributions proposed
by early works; to propose a methodology for characterizing the CET distribution for a fabrication process
efficiently; and, for the first time, to verify the long term prediction capability of a CET distribution beyond
the time window used for its extraction.

INDEX TERMS Random telegraph noise (RTN), jitters, traps, capture time, emission time, fluctuations,
yield, device-to-device variations, time dependent variations, statistical distributions.

I. INTRODUCTION
As the downscaling of transistor size continues, random
telegraph noise (RTN) is becoming increasingly impor-
tant [1]–[5], because of three reasons. First, a single trapped
charge has a larger impact on smaller devices. Second, the
RTN-induced malfunction of a system is mainly caused by
the devices in the tail of its amplitude statistical distribution.
More transistors per chip increase the number of devices in
the tail. Third, low power requires smaller overdrive volt-
age, (Vdd-Vth), so that there is less room to tolerate the
RTN-induced jitter of threshold voltage, 1Vth.
To take RTN into account when optimizing circuit design,

substantial efforts have been made to model RTN [6]–[11].
For dynamic Monte Carlo modelling, one needs the sta-
tistical distributions of the number of traps per device,
the amplitude of RTN per trap, and the capture/emission
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time (CET) of traps [3], [11], [12]. Early works [9], [13] have
focused their attentions on the amplitude distributions and
the CET distribution has been rarely reported based on test
data [1], [14]–[17]. This is because it is difficult to obtain
sufficient amount of experimental CET data to establish a
convincing statistical distribution.

The difficulties arise from that, when CET is mea-
sured directly from the two discrete states of drain current,
it requires a device having one trap only within the test time
window [14]. This limits the number of CETs available. The
Hidden Markov Model (HMM) [17], [18] has been used to
extract trap properties. To analyze the RTN of multiple traps,
Factorial HMM (FHMM) is proposed, where the measured
signal is assumed to be a superposition of a number of
independent two level RTNs, with each of them from one
trap and modeled by a Markov chain [19], [20]. Although
this raises the number of traps analyzable from one device,
it becomes increasingly difficult to apply as the number
of traps in a device increases with time window. Although

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 182273

https://orcid.org/0000-0003-4987-6428
https://orcid.org/0000-0003-1138-804X
https://orcid.org/0000-0003-4600-7382


M. Mehedi et al.: Assessment of the Statistical Distribution of Random Telegraph Noise Time Constants

it is generally believed that there is no clear up-limit for
CETs [1], [3], [12], [21], the time window used in early works
is often limited, e.g. 10 sec or less [14], [17], partially to
control the number of active traps in one device and partially
for test convenience. RTNs were measured for longer time
windows [22]–[25], but the statistical CET distributions were
not established based on these test data.

Based on the limited data, two cumulative distribu-
tion functions (CDF) have been proposed for CET: Log-
uniform [1], [3] and Log-normal [15], [16]. A Log-uniform
distribution means that CET is statistically uniformly dis-
tributed against logarithmic time. As shown in Fig. 1, the
two distributions are very different, especially if they are
used to predict the long term RTN outside the time window
for their extraction. Log-uniform CDF predicts that number
of active traps increases linearly against logarithmic time
without saturation, while the Log-normal CDF predicts that
there are fewer traps with long CETs and the CDF approaches
saturation. As a result, the long term RTN modelling cannot
be trusted unless one has a trustable CET distribution.

FIGURE 1. A comparison of the cumulative distribution functions (CDF)
proposed for CETs: Log-normal versus Log-uniform.

The objectives of this work are three-fold: to obtain the
long term RTN data experimentally and, based on them,
to assess if any of these two and other distributions of CETs
are correct; to propose a methodology for characterizing the
CET distribution; and to address the issue how accurately
a distribution can make long term RTN predictions. As the
practical time window for statistical tests is ∼ day, it is of
importance to assess how accurate these data can be used to
predict the RTN years ahead.

II. METHODOLOGY AND MEASUREMENT
A. METHODOLOGY
Early works used two approaches to obtain the statistical CET
distribution: extracting CET directly [14]–[17] or inferring
the CET distribution from indirect measurements [1], [12].
As mentioned earlier, the difficulties in extracting CET
directly often led to inadequate data to establish CET

distribution unambiguously [1], [14]. Based on the measured
CETs, some researchers proposed Log-normal CET distribu-
tion [15], [16].

The 1/f noise spectrum was used to infer the CET distribu-
tion [1]. It has been shown theoretically that a Log-uniform
CET distribution will produce the commonly observed linear
relation between power spectrum density and 1/f [1]. There
are, however, two concerns with this inference. Kirton and
Uren [1] showed that 1/f spectrum is insensitive to CET dis-
tribution and different CET distributions can produce similar
spectrum. Another concern is that the 1/f spectrum typically
has a low frequency limit of ∼1 Hz, corresponding to an
up-limit in the time domain of∼1 sec. There is a lack of data
for the long term distribution, therefore.

A Log-uniform CET distribution is also inferred from the
negative bias temperature instability (NBTI) tests [12]. It has
been shown that the1Vth grows linearly against logarithmic
time within the first∼1 sec [12]. Unfortunately, the charging
kinetics starts deviating from this linear relationship [12],
as new traps are generated [26], [27].

As the approaches adopted by early works did not give
long term data for establishing CET distribution, we will
not follow them here. Instead, we carried out overnight RTN
tests. Fig. 2 shows the result of an overnight noise measure-
ment. Although the noise amplitude may appear insensitive
to time when plotted in linear scale in Fig. 2a, the plot
against logarithmic time in Fig. 2b shows that noise amplitude
clearly increases for longer time. It is difficult to extract CETs
from such data unambiguously. Instead, the increase of noise
amplitude with time in Fig. 2b can be used to uncover the
underlying CET distribution and the methodology is given
below.

For a time window of tw, traps with CETs less or close
to tw are covered by the measurement. An increase in tw
will bring slower traps into measurements, leading to a higher
cumulative RTN amplitude, as shown in Fig. 2b. The build-up
of RTN amplitude with time can be used to uncover the
cumulative distribution function of CETs, therefore.

To illustrate this methodology, a case study is given
in Fig. 3. Fig. 3a shows the combined simulation results
of 5 traps with their amplitude, capture and emission times
listed in Table 1. The envelope of the complex multi-level
RTN, Env, is extracted by,

Env(ti) =

{
1Vth(ti), if 1Vth(ti) > Env(ti−1);
Env(ti−1), if 1Vth(ti) ≤ Env(ti−1).

The RTN of each trap is given in Figs. 3b-3f. When the
fastest trap makes a capture, it causes the first step-up of
the envelope in Fig. 3a, as marked out by ‘(1)’ in Figs. 3a
and 3b. As the amplitude of this trap is fixed, the envelope
remains the same when this trap goes through subsequent
RTN events. When the second fastest trap becomes active,
it causes the second step-up of the envelope, as marked out
by ‘(2)’ in Figs. 3a and 3c. As time increases further, slower
traps progressively become active, resulting in more step-ups
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FIGURE 2. A typical overnight RTN measurement plotted against time
linearly (a) and logarithmically (b). Although RTN amplitude appears
constant against time in linear scale, it increases with time in log-scale.

TABLE 1. Properties of traps used for the simulation in Fig. 3.

in the envelope, as marked out by the corresponding numbers
in Figs. 3a and 3d-f. The evolution of the envelope with
time in Fig. 3a originates from a distribution of time constants
of the underlying traps, therefore.

FIGURE 3. A simulation result of a device with 5 traps with their
properties in Table 1. (a) shows the combined multi-level RTNs and the
extraction of envelope. The RTN of each trap is shown in (b)-(f),
respectively. The red arrows mark the first contribution of each trap to the
envelope.

VOLUME 8, 2020 182275
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FIGURE 4. Simulation results for 400 devices with Log-uniform CDF
(a) and Log-normal CDF (b). Each grey line represents one device. The
black line is the average.

To support this methodology, dynamic Monte Carlo sim-
ulations were carried out. We assume that the CET is either
Log-normal or Log-uniform distributed, as shown in Fig. 1
and 2,000 traps are then Poisson distributed into 400 devices.
Each grey line represents the Env of one device in Fig. 4a
for log-uniform and in Fig. 4b for Log-normal distributions.
The black lines are the average results. Although the envelope
of individual device increases in steps, their average rises
smoothly with time. A comparison with the CDF of CETs in
Fig. 1 clearly shows that the average Env correctly uncovers
the underlying cumulative distribution of CETs. We can use
the experimental Env of RTN to extract the CET distribution,
therefore.

B. DEVICES AND MEASUREMENT
nMOSFETs with a channel length and width of 27 × 90 nm
were used. The high-k/SiON stack has an equivalent oxide
thickness of 1.2 nm and the gate is metal.

FIGURE 5. Extraction of RTN Envelope from experimental data (black
lines). The green trace represents a device of limited step-like change
in 1Vth.

Tests start by measuring a pulse Id ∼ Vg with Vd = 0.1 V
and a pulse edge time of 3 µs. The Vg is then stepped from
zero to 0.5 V and Id is monitored against time under Vd =
0.1 V. The average threshold voltage of the nMOSFETs used
here is 0.45 V and Vg is chosen to be Vth+0.05 V, as the
requirement of low power is driving Vdd towards Vth and
the near threshold computing acutely suffers from RTN [28].
The temperature is between 28 ◦C and 125 ◦C.

It has been reported that both as-grown traps and traps
generated by stresses can induce RTN [29]–[31]. The gen-
eration process, however, follows power law [32], which is
different from the Log-uniform [1], [3] or Log-normal distri-
butions [15], [16] of time constants for charging-discharging
as-grown traps. This work focuses on investigating the distri-
bution of time constants for charging-discharging as-grown
traps and a low Vg= 0.5 V is chosen for the tests to minimize
the interference from trap generation process [33]. Moreover,
metastable and anomalous RTNs have been reported [3], [4]
and their effects have been included in the experimental data.

The Id fluctuation, 1Id, is calculated from Id-Iref, where
Iref was evaluated from the average Id between 1 and 10 µs.
As Vg is close to Vth, 1Vth can be evaluated from
−1Id/gm [5], where gm is the transconductance and is
obtained from the pulse Id∼Vg. The system noise is below
±1 mV.

The extraction of the envelope from experimental data is
illustrated in Fig. 5. The sampling rate used here is 1 MS/sec,
where ‘MS’ is ‘Mega-Sample points’. Although there are
only a limited steps in the Env, it does not mean that a low
sampling rate can be used to extract the Env. Fig. 6 plots the
Env obtained from test data taken at different sampling rate.
Slower sampling rate leads to lower Env, as it fails to capture
the fast traps [34].

With 1 MS/sec, the size of dataset for one measurement
is 10 MS for a time window of 10 sec. For a time window of
105sec (∼ day), the data size rises to 100 GS, which is beyond
the memory depth of modern oscilloscope. To overcome this
difficulty, we used different rates for data sampling and data
recording. As shown in Fig. 4, the number of steps in Env are
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FIGURE 6. The impact of sampling rate on the envelope.

FIGURE 7. The overnight RTN envelopes measured by two oscilloscopes:
The oscilloscope 1 covers up to 10 sec and the oscilloscope 2 covers
longer time. Each grey line represents one device. The red line represents
the average. The temperature is 125 ◦C.

limited and Env remains constant most of the time. Env can
be recorded under much slow rate, although it is measured
at 1 MS/sec, therefore.

In this work, we used two oscilloscopes to monitor Id. One
of them has a time window of 10 sec and every data point
is recorded. The other has a time window of 105 sec and
monitors Env at 1 MS/sec, but the result is only recorded
every 20 sec for the overnight test. The Env measured by this
set-up is given in Fig. 7 for 51 different devices. Each grey
line represents one individual device and the red line is their
average. The Env measured by the two oscilloscopes joins
together smoothly.

The statistical tests require repeating the same test many
times for different devices. For a time window of overnight,
the test becomes costly in terms of test time and it is desirable
to minimize the number of devices under test (DUTs). For a
time window of 10 sec, DUTs up to 402 were used and the
average Env at 10 sec is plotted against the number of DUTs

FIGURE 8. The Impact of the number of devices on the average envelope.
When the number of devices is over 50, the error is within 2%.

in Fig. 8. Initially, the average is sensitive to the number, but
settles down within 2% when the number is over 50. We can
use 50DUTs to extract the average Env for the overnight tests,
therefore.

It should be clarified that, in addition to RTN, the measure-
ment can also include other sources contributing to the 1/f
spectrum. By using the measured data to characterize RTN,
we effectively treated the other sources as additional RTN
through a higher RTN amplitude. For nanoscale MOSFETs,
RTN plays a dominant role. This can be seen from the
step-like changes of the envelope in Figs. 5 and 7. Fig. 5 also
shows that, when the step-like changes are small, the total
noise is much lower (the green trace).

III. RSULTS AND DISCUSSIONS
A. STATISTICAL DISTRIBUTIONS OF CETS
For the first time, we use the overnight RTN experimental
results in Fig. 7 to assess the statistical distribution of CETs.
The non-saturation behavior is widely observed for device
ageing, which typically follows a power law [35]–[38]. To test
if the Env also follows a power law, we attempted to fit it with
a power law. Fig. 9a shows that the agreement with power
law is not good. Figs. 9b and 9c show that the experimental
data fit reasonably well with Log-uniform and Log-normal
distributions, respectively. This demonstrates that good fitting
with experimental data is not a sufficient criterion for quali-
fying a model [27], [33], [35]. As the mission of modelling
is to use the model to predict the device performance where
experimental data are not available for model extraction,
we will test the predictive capability of these models next.

B. PREDICTION OF THE LONG TERM CETS
Although Figs. 9b and 9c show that the CETs within a time
window of∼ day can be fitted reasonably by the Log-uniform
and Log-normal distributions respectively, most electronic
products requires a lifetime of years, rather than days.
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FIGURE 9. The evolution of envelopes with time. Symbols are
experimental data and dashed lines are fitted with (a) power law,
(b) Log-uniform, and (c) Log-normal.

To optimize a design, one needs modelling the impact of RTN
over thewhole device lifetime. As it is impractical to carry out
the repetitive statistical tests with a time window of years, one
relies on that the models extracted from the test of∼ day can

FIGURE 10. Testing the predictive capability of the power law (a),
Log-uniform (b), and Log-normal (c) CDFs. The experimental data up
to 10 sec (blue symbols) were used to extract the CDFs (black solid lines).
The obtained CDFs were then used to make prediction beyond 10 sec by
extrapolation, as shown by the dashed black lines. The Log-uniform CDF
has the best agreement between prediction and the experimental data
(red symbols).

be used to predict three orders of magnitude ahead to reach∼
years [27], [33], [35]. The question is how to verify this long
term prediction capability of a model.

182278 VOLUME 8, 2020
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As we do not have the test data of ∼years, it is impossible
to have a direct verification. What we do have is the test data
up to 2 × 104 sec in Fig. 7. Reducing it by three orders of
magnitude gives us a time window of∼10 sec.We can extract
the model based on the data in a time window of 10 sec and
then use it to predict the RTN three orders of magnitude ahead
to reach ∼104 sec. As we have the test data for ∼104 sec,
we can verify this prediction.

The solid black lines in Figs. 10a-c represent the model
extracted from the data with a time window of 10 sec
for power law, Log-uniform, and Log-normal distributions,
respectively. The dashed lines are obtained by extrapolating
the solid lines according to the extracted models. When com-
pared with the experimental data that have not been used to fit
the models (red symbols), the Log-uniform CDF in Fig. 10b
is the clear winner. It predicts that Env reaches 18.5 mV at
10 years. The power law in Fig. 10a overestimates Env and
gives a value of 47.5 mV at 10 years. On the other hand,
the Log-normal CDF in Fig. 10c underestimates EnV and
gives a value of 12.8 mV at 10 years. The Log-normal CDF
approaches saturation at longer time, which was not observed
in the test data. As a result, the experimental data support the
log-uniform distribution of CETs.

As the model extracted from the test data over five orders
of magnitude of time between 10−4 and 10 sec can be used
to predict three orders of magnitude ahead, it gives us the
confidence that the model extracted over eight orders of
magnitude from 10−4 to 2×104 sec can also be used to predict
three orders of magnitude ahead, reaching ∼ years.

C. CHARACTERIZING LOG-UNIFORM CDF
The Log-uniform CDF of CETs only has one parameter to
be characterized: the number of traps per decade of time, Nt.
We propose the following procedure to extract Nt:

• measure RTN of multiple devices;
• extract the Env of each device, as shown in Fig. 5;
• obtain the average envelope, as shown in Fig. 7, and fit
it with a straight line against logarithmic time, as shown
in Fig. 9b, and obtain the Slope;

• measure the amplitude of RTN per trap and determine
their average value, µ;

• Evaluate Nt by:
Nt = Slope/µ.

For the process used in this work, the experimental results
give Nt = 0.75/decade. Using this Nt and Log-uniform CDF
for CETs and a Poisson distribution for traps per device, 400
hypothetic devices were generated for dynamic Monte Carlo
simulation. Fig. 11 shows that the simulated average Env
agrees well with that measured one.

In principle, the Log-uniform distribution can be explained
by two possible mechanisms: trapping-detrapping through
elastic carrier tunneling and inelastic multi-phonon trapping-
detrapping.

It is well known that the carrier tunneling probability
decreases exponentiallywith the tunneling distance [39], [40],

FIGURE 11. (a) Simulation results of 400 devices generated by the
Log-uniform CDF extracted by the procedure given in section III.C. Each
gray line represents one device and the red line is the average Env.
(b) A comparison of the average envelope by simulation (red line) with
the experimental average envelope (black symbols).

resulting in an exponential increase of capture time with
distance when moving from the dielectric/Si interface into
dielectric. An assumption of a spatially uniform distribu-
tion of traps in gate dielectric can explain the Log-uniform
CET distribution, therefore. Recent work [14], however, has
reported that the CETs are not well correlated with the spatial
position of traps. For the thin dielectric used in modern
devices, carriers can readily tunnel through the whole dielec-
tric in short time [41], so that the depth into the dielectric
typically does not control CETs.

For inelastic multi-phonon trapping-detrapping, carriers
from the channel has to overcome an energy barrier, 1E,
to charge a trap. The capture time, τc, increases exponentially
with 1E [1], [14],

τc = τo exp
(
1E
kT

)
, (1)
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FIGURE 12. (a) The overnight RTN envelopes measured at 28 ◦C. Each
grey line represents one device. The red line represents the average.
(b) The symbols are the average experimental Env. The dashed line is
fitted with the Log-uniform.

where τo is a constant, k the Boltzmann constant, and T the
temperature. A statistical uniform distribution of traps in1E
will result in a Log-uniform distribution of CETs.

We now discuss the advantages and disadvantages of our
‘envelope approach’, when compared with the conventional
method, for extracting the statistical distribution of CETs.
Conventionally, a bottom-up method was used: the time con-
stant of each trap is measured first and then used to estab-
lish statistical distributions [15], [16]. The advantage of this
approach is that one knows the time constant of each trap
and we have learnt a lot about the property of individual
traps from the early works [14]–[17]. The disadvantage of this
approach is that the number of traps and their time constants
obtained through experiments is too limited to establish the
statistical distribution convincingly, especially for slow traps.
We do not believe that we can do better than these early works
if we followed the same bottom-up approach.

The envelope approach developed in this work can be
considered as a top-down or integrated method: the results
of multiple traps from multiple devices were combined and

analyzed together to extract the statistical distribution without
knowing the precise time constant of each trap first. The
advantage of this approach is that it allows extracting the
statistical distribution of time constants efficiently based on
the long term RTN data, as shown in Figs. 7 and 9. The disad-
vantage of thismethod is that the precise time constant of each
trap is not known and this precludes any quantitative compar-
ison of simulation with test data for individual devices. As the
precise time constant of each trap is not known, the time
constant of each trap has to be statistically assigned according
to the distribution for the simulation. Fig. 11, however, shows
that the simulation agrees well with test data statistically.

Finally, we investigate if the Log-uniform CDF is appli-
cable to RTN under different test conditions. As RTN is
sensitive to temperature, overnight RTN were measured at 28
◦C in Fig. 12a, while the results in Fig. 7 were measured at
125 ◦C. Fig. 12b shows that the Log-uniform CDF again fits
the experimental data at 28 ◦C well.

IV. CONCLUSION
In this work, we investigated the statistical distribution of the
capture and emission time of traps responsible for RTN by
developing a top-down methodology. We started by using the
dynamic Monte Carlo simulation to confirm that the average
envelope of RTN, resultant from multiple devices and many
traps, can uncover the underlying cumulative distribution of
CETs. The overnight RTN tests were then carried out to
extract the experimental envelopes for RTN. Based on these
long term RTN data, the CDFs proposed by early works for
CETs were assessed. The power law, widely used for ageing,
does not agree well with the test data and overestimates the
long term RTN. On the other hand, the Log-normal CDF
underestimates the long termRTN. The overnight experimen-
tal data endorse the Log-uniform CDF for CETs. A method-
ology is proposed to extract the CDF of CETs efficiently.
For the first time, the long term prediction capability of the
extracted Log-uniform CDF is verified, allowing assessing
the RTN in years, based on the experimental data in days.
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