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Modelling Segmented Cardiotocography Time-Series
Signals Using One-Dimensional Convolutional

Neural Networks for the Early Detection of
Abnormal Birth Outcomes

Paul Fergus , Carl Chalmers , Casimiro Curbelo Montanez, Denis Reilly, Paulo Lisboa , and Beth Pineles

Abstract—Gynaecologists and obstetricians visually interpret
cardiotocography (CTG) traces using the International Federation
of Gynaecology and Obstetrics (FIGO) guidelines to assess the
wellbeing of the foetus during antenatal care. This approach has
raised concerns among professionals with regards to inter- and
intra-variability where clinical diagnosis only has a 30% positive
predictive value when classifying pathological outcomes. Machine
learning models, trained with FIGO and other user derived features
extracted from CTG traces, have been shown to increase positive
predictive capacity and minimise variability. This is only possible
however when class distributions are equal which is rarely the case
in clinical trials where case-control observations are heavily skewed
in favour of normal outcomes. Classes can be balanced using either
synthetic data derived from resampled case training data or by
decreasing the number of control instances. However, this either
introduces bias or removes valuable information. Concerns have
also been raised regarding machine learning studies and their
reliance on manually handcrafted features. While this has led
to some interesting results, deriving an optimal set of features
is considered to be an art as well as a science and is often an
empirical and time consuming process. In this article, we address
both of these issues and propose a novel CTG analysis methodology
that a) splits CTG time-series signals into n-size windows with
equal class distributions, and b) automatically extracts features
from time-series windows using a one dimensional convolutional
neural network (1DCNN) and multilayer perceptron (MLP) en-
semble. Collectively, the proposed approach normally distributes
classes and removes the need to handcrafted features from CTG
traces. The 1DCNN-MLP models trained with several windowing
strategies are evaluated to determine how well they can distinguish
between normal and pathological birth outcomes. Our proposed
method achieved good results using a window size of 200 with 80%
(95% CI: 75%, 85%) for Sensitivity, 79% (95% CI: 73%, 84%)
for Specificity and 86% (95% CI: 81%, 91%) for the Area Under
the Curve. The 1DCNN approach is also compared with several
traditional machine learning models, which all failed to improve
on the windowing 1DCNN strategy proposed.
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I. INTRODUCTION

ACCORDING to the United Nations Children’s Fund
(UNICEF) 130 million babies are born each year. Approx-

imately 3.5 million will die due to perinatal complications and
one million will result in stillbirth. [1]. According to a National
Health Service (NHS) Resolution report published in 2017, the
number of reported live birth deliveries in England in 2015
was 664,777 of which 1137 resulted in death [2]. The report
also states that in the same year there were 2,612 stillbirths. In
2016/2017, maternity errors linked to adverse outcomes cost the
NHS £1.7bn with the most expensive claims being for avoidable
cerebral palsy [2].

According to MBRRACE-UK there has been a steady fall in
the rate of stillbirths, however, neonatal deaths have remained
largely static [3]. Cardiotocography (CTG) transducers placed
on the mother’s abdomen record fetal heart rate and uterine con-
tractions and is the gold standard for assessing the wellbeing of
the fetus during antenatal care. The foetal heart rate describes the
modulation influence provided by the foetuses central nervous
system. When the oxygen supply is compromised, the cardiac
function of the fetus is impaired [4].

Clinicians use features defined by the International Federation
of Gynaecology and Obstetrics (FIGO) to interpret CTG traces.
FIGO features include the real fetal heart rate baseline (RBL),
Accelerations, and Decelerations. The RBL is the mean of the
signal [5] with peaks and troughs (±10 beats per minute (bpm)
from a virtual base line (VBL)) removed from the signal. VBL
is the mean of the complete signal.

Accelerations and Decelerations are described as the num-
ber of transient increases and decreases (±10 bpm) from the
RBL, that last for 10s or more [6]. Accelerations are a sud-
den increase in the baseline fetal heart rate. They are a good
indicator of adequate blood delivery and a reassuring sign for
medical practitioners. Decelerations occur due to physiological
provocation, such as compromised oxygenation, which often
happens when uterine contractions are present. If decelerations
fail to recover (i.e. no visible accelerations are present), this
is a strong indication that the fetus is compromised due to
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some underlying pathological incidence, such as umbilical cord
compression, and is a worrying sign for clinicians [7]. One of
the fundamental problems with human CTG analysis is poor
interpretation and high inter-intra-observer variability. In many
cases, it is not easy to interpret CTG traces and often requires
expert knowledge in signal processing. This has therefore made
the prediction of neonatal outcomes challenging among health-
care professionals [8]. Computer scientists have investigated this
problem using machine learning algorithms to automatically
interpret CTG trace patterns. Warrick et al. [9] for instance, use
FHR and Uterine Contraction (UC) signal pairs to model and
estimate the dynamic relationships that often exist between the
two [50]. Using their trained models a system was developed to
detect pathological outcomes one hour and forty minutes before
delivery with a 7.5% false positive rate. Kessler et al. [10], on the
other hand modelled ST waveforms to provide timely interven-
tion for caesarean and vaginal deliveries. While Menai et al. [11]
developed a system to classify foetal state using a Naive Bayes
(NB) classifier model and four feature selection techniques: Mu-
tual Information, Correlation-based, ReliefF, and Information
Gain. The NB model with ReliefF features produced 93.97%,
91.58%, and 95.79% for Accuracy, Sensitivity and Specificity,
respectively. Spilka et al. [12], used a Random Forest (RF)
classifier and latent class analysis (LCA) [13] and produced Sen-
sitivity and Specificity values of 72% and 78% respectively [14].
Generating slightly better results in [15], Spilka et al. detected
perinatal outcomes using a Support Vector Machine (SVM)
with 10-fold cross validation, this time achieving 73.4% for
Sensitivity and 76.3% for Specificity.

The fundamental problem with most machine learning studies
in CTG trace analysis are twofold. First, machine learning
algorithms are sensitive to skewed class distributions which
is often the case with data derived from clinical trials where
observations are typically normal outcomes [16]. For example,
the dataset used in this study, contains 552 singleton pregnancy
CTG recordings of which 46 are cases (abnormal birth deliv-
eries) and 506 are controls (normal deliveries). The Synthetic
Minority Oversampling Technique (SMOTE) is commonly used
to solve this problem [17]. Case observations (minority class)
are oversampled using each case record from the training set.
This means that new synthetic records are generated along the
line segments that join the k minority class nearest neighbours.
For a detailed account of our own work in CTG and SMOTE
analysis the reader is referred to [18].

Second, expert knowledge is required to extract features from
CTG traces and these are application specific. This means hand-
crafted features are time-consuming and expensive to generate.
The rapid progression of signal processing technologies there-
fore needs a general signal analysis framework that can quickly
be deployed to automate this process and accommodate new
application requirements.

In this paper, we solve both of these issues using CTG trace
segmentation (windowing) to balance class distributions and a
one-dimensional convolutional neural network (1DCNN) to au-
tomatically learn features from the segmented CTG traces [19].
All windows derived from cases are retained while win-
dows are randomly sampled in controls such that both class

distributions are equal. Features are then automatically learned
from all case-control window segments. The learnt feature space
in the 1DCNN (based on random uniform kernel initialisation)
are feed into several fully connected MLPs as input during
training. The trained 1DCNN-MLP classifiers are evaluated in
several experiments and the results are compared with those
obtained from an MLP trained with random weight initialisation,
a Support Vector Machine (SVM), a Random Forest (RF), and
a Fishers Linear Discriminant Analysis (FLDA) classifier.

The main contributions in this paper are therefore twofold:
First, the morphological and nonlinear patterns in CTG traces
are modelled using a 1DCNN. The benefits provided by this
approach are: 1) it offers a paradigm to learn low and high-level
features and interactions that are more flexible than those crafted
manually (typically a laborious, subjective, and error prone
process), and 2) since all existing state-of-the-art computerised
CTG systems use manually extracted features, they generally
do not scale well with new data. Therefore, the proposed CTG
framework can be quickly deployed to perform CTG modelling
on new CTG modalities and applications with little to no human
intervention. Second, skewed datasets are balanced using a win-
dowing strategy. The benefits of windowing are: 1) synthetic data
to balance classes is not required (algorithms are modelled using
real data only), and 2) datasets are not biased due to the addition
of data points that are similar to those used by resampling tech-
niques. The performance of the proposed approach is assessed
with 552 singleton pregnancy CTG recordings to demonstrate
that the proposed framework achieves better performance than
existing state-of-the-art methods modelled with synthetic data
and handcrafted features.

The remainder of this paper is organised as follows. Section
2 describes the Materials and Methods used in the study. The
results are presented in Section 3 and discussed in Section 4
before the paper is concluded and future work presented in
Section 5.

II. MATERIALS AND METHODS

This section describes the dataset adopted in this study and the
steps taken to a) pre-process the data and balance class distribu-
tions and b) automatically learn features from n-sized windows
with a 1DCNN. The section is concluded with a discussion on
the performance metrics implemented to evaluate the machine
learning models presented in the results section.

A. Data Collection and Preprocessing

Cudacek et al. carried out a study between April 2010 and
August 2012 alongside obstetricians to captured intrapartum
CTG Traces from the University Hospital in Brno (UHB) in
the Czech Republic with support from the Czech Technical
University (CTU) in Prague. The CTU-UHB database contains
552 CTG recordings for singleton pregnancies with a gestational
age less than 36 weeks. The STAN S21/31 and Avalon FM
40/50 foetal monitors were connected to the mothers abdomen
to acquire the CTG records. The dataset contains ordinary clean
obstetrics cases and the duration of stage two labour is less
than or equal to 30 minutes. The foetal heart rate signal quality
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TABLE I
TRAINING SET CASE/CONTROL SEGMENTS

is greater than 50% in each 30 minute window and the pH
umbilical arterial blood sample for each record is available. The
dataset contains 46 caesarean section deliveries and 506 ordinary
vaginal deliveries. The 46 cases in this study are classified as
caesarean delivery due to pH ≤ 7.20 - acidosis, n = 18, pH ≥
7.20 and pH ≤ 7.25 - foetal deterioration, n = 4; and caesarean
section without evidence of pathological outcome measures,
n = 24. Note that the dataset curators do not give a reason why
caesarean deliveries were necessary for the 24 subjects were
no pathological outcome measures were recorded. Therefore, in
this study an assumption is made that the decision to deliver by
caesarean was supported by underlying pathological concerns
(however, there is no way to validate this). The CTU-UHB
database is publicly available from Physionet.

The recordings begin 90 min or less before delivery and
contain both the FHR (measured in beats per minute) and uterine
contraction (UC) time-series signals. Each signal is sampled at
4 Hz. The FHR is recorded via an ultrasound transducer attached
to the abdominal wall and is the only signal used in this study
as it provides direct information about the foetal state. Noise
and missing values are removed from all recordings using cubic
Hermite spline interpolation.

B. Cardiotocography Time-Series Windowing

Each of the 552 signals are split using several windowing
strategies with n-size data point coefficients equal to 100, 200,
300, 400 and 500 respectively. First the data set is split into
training and test datasets. 405 observations from control records
are retained for training and 101 for testing. While 36 case
records are retained for training and 10 for testing. In each
observation, windowing begins at the first data point in the record
with no segments overlapping. For example, in record 2001,
using a 300 data point windowing strategy, the first segment
starts at 0 and ends and 300, while segment 2 begins at 301
and ends at 600, and so on. All segments are retained from all
case observations in the training dataset respectively with an
equal number of segments randomly selected from all control
records in the training. Note there will be significantly more
segments in controls as the dataset is skewed in favour of CTG
records for those mother who had normal deliveries. Therefore,
we do not need them all only enough such that the number of
control segments are equal to the number of case segments - this
allows the dataset to be balanced. Table I describes the number
of segments in the training data set using different windowing
strategies. The resulting datasets are used to train the machine
learning models in this study.

TABLE II
TEST SET CASE/CONTROL SEGMENTS

The same process is repeated for the test dataset as illustrated
in Table II. Again these are used to test all trained models
produced.

This class balancing strategy allows the number of case ob-
servations to be increased using real data only. Most studies
reported in the literature, including our own, have addressed the
class skew problem using either over or under sampling [20]. We
will discuss our own over sampling strategy later in the paper
and compare the results with those obtained using the 1DCNN
models produced in this study.

C. Feature Learning with One Dimensional
Convolutional Neural Network

In contrast to manually extracted features based on input from
domain knowledge experts, features in this study are automat-
ically learnt from the data using a 1DCNN [21]. Windowed
CTG traces are input directly to a convolutional layer in the
1DCNN. The convolutional layer detects local features along the
time-series signal and maps them to feature maps using learnable
kernel filters. Local connectivity and weight sharing is adopted to
minimise network parameters and avoid overfitting [22]. Pooling
layers are implemented to reduce computational complexity
and generate hierarchical data representations [22]. A single
convolutional and pooling layer pair along with a fully connected
MLP comprising two dense layers and softmax classification
output is used to complete the 1DCNN network. The proposed
1DCNN architecture implements one dimensional vectors for
kernel filters and feature maps as illustrated in Fig. 2.

The network model is trained by minimizing the cost function
using feedforward and backpropagation passes. The feedfor-
ward pass constructs a feature map from the previous layer to
the next through the current layer until an output is obtained.
The input and kernel filters of the previous layer are computed
as follows:

zlj =
M l−1∑
l=1

1dconv(xl−1
i , kl−1

ij ) + blj , (1)

where xl−1
i and zlj are the input and output of the convolutional

layer, respectively, and kl−1
ij the weight kernel filter from the

ith neuron in layer l − 1 to the jth neuron in layer l, 1dconv
represents the convolutional operation, and blj describes the bias
of the jth neuron in layer l. M l−1 defines the number of kernel
filters in layer l − 1. A ReLU activation function is used for
transforming the summed weights (empirically this activation
function produced the best results) and is defined as:

xl
j = ReLU(zlj) (2)
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Fig. 1. Using the FHR signal (Beats per Minute) to calculate the real baseline.

Fig. 2. One dimensional convolutional neural network architecture.

wherexl
j is the intermediate output at current layer l before down

sampling occurs. The output from current layer l is defined as:

ylj = downsampling(xl
j)x

l+1
j ) = ylj (3)

where downsampling() represents a max pooling function that
reduces the number of parameters, and ylj is the output from
layer l, as well as the input to the next layer l + 1. The output
from the last pooling layer is flattened and used as the input to
a fully connected MLP. Figure 3 shows the overall process.

The error coefficientE is calculated using the predicted output
y:

E = −
∑
n

∑
i

(Ynilog(yni)) (4)

where Yni and yni are the target labels and the predicted outputs,
respectively, and i the number of classes in the nth training set.
The learning process optimizes the network free parameters and
minimisesE. The derivatives of the free parameters are obtained
and the weights and biases are updated using learning rate (η). To

Fig. 3. Convolution and max pooling process.

prompt rapid convergence, we utilise Adam as an optimisation
algorithm and apply He weight initialisation. The learning rate
(η) is set to 0.005 for all experiments. The weights and bias
in the convolutional layer and fully connected MLP layers are
updated using:

klij = klij − η
∂E

∂klij
blj = blj − η

∂E

∂blj
, (5)

Small learning rates are used to reduce the number of oscilla-
tions and allow lower error rates to be generated. Rate annealing
and rate decay are implemented to address the local minima
problem and control the learning rate change across all layers.

Momentum start, ramp and stable are set to 0.5, 1 ∗ 10−6 and
0 respectively. Momentum start and ramp control momentum
when training starts and the amount of learning for which
momentum increases. While momentum stable controls the
final momentum value reached after momentum ramp training
examples. Complexity is controlled with an optimised weight
decay parameter, which ensures that a local optimum is found.

The number of neurons and hidden layers required to min-
imise E, including activation functions and optimisers, were
determined empirically. Using 10 input neurons in two hidden
layers, and 1 final output node for softmax classification pro-
duced the best results.

The network free parameters where obtained using the train-
ing and validation sets over 500 epochs and evaluated with a
separate test set comprising unseen data.

D. Performance Measures

Sensitivity and Specificity are implemented to describe the
correctly classified normal and pathological birth outcomes.
Sensitivity describes the number of true positives (normal de-
liveries) and Specificity the true negative rate (pathological
deliveries).

The area under the curve (AUC) metric calculates the degree
of separability between normal and pathological observations.
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If S0 is the sum of the ranks of values of inferences for test data
in class C1, and similarly for class C2, then the AUC can be
defined as:

Â =
1

n1n2

(
S0 − 1

2
n1(n1 + 1)

)
(6)

where n1 and n2 are the number of samples in each class.
Confidence intervals are used to quantify the uncertainty of

an estimate based on asymptotic normal approximation. This is
described as:

CI(pi) = (p̂i − k

√
p̂i(1− p̂i)

#Wi
, p̂i + k

√
p̂i(1− p̂i)

#Wi
) (7)

where i is the 1− α/2) - quantile of the standard Gaussian
distribution, and the term

√
p̂i(1− p̂i)/#Wi is an estimate of

the standard deviation of the estimated probability p̂i. A 95%
confidence level shows the likelihood that the rangex to y covers
the true Sensitivity, Specificity and AUC values of a particular
model.

Logloss is implemented in this study to manage overfitting
and measure the accuracy of classifiers - penalties are imposed
on classifications that are false. The Logloss value is calculated
by assigning a probability to each class rather than stating what
the most likely class would be as follows:

logloss = − 1

N

N∑
i=1

[yilog(pi) + (1− yi)log(1− pi)] (8)

whereN is the number of samples, and yi is a binary indicator
for the outcome of instance i. If models classify all instances
correctly the Logloss value will be zero. For miss-classifications,
the value will be progressively larger.

III. EXPERIMENTS

In this section three experiments are performed to evalu-
ate CTG classification. First, a trained multi-layer feedforward
neural network classification model using raw CTG traces and
several windowing strategies is demonstrated. Second, a trained
1DCNN is compared with the trained MLP approach under the
same experimental conditions (raw windowed signals). Third,
our proposed 1DCNN model is compared with an SVM, RF
and a FLDA classifier, again under the same experimental
conditions. The performance of each model is measured using
Sensitivity, Specificity, AUC, and Logloss (during training). The
data set is split randomly into training (80%), validation (10%)
and testing (10%). Our method was implemented in Python with
Tensorflow GPU 1.13 [23] and Keras 2.2.4 [24]. All experiments
were conducted on a computer with an NVidia GTX1060 GPU,
a Xeon Processor, and 16GB of RAM.

A. Multi-Layer Feedforward Neural Network

1) Classifier Performance: In the first experiment a single
MLP is evaluated using five hidden layers with 10 nodes in
each and a final softmax output to classify normal and abnormal
birth outcomes. A Relu activation function is used with dropout
equal to 0.5. Adam optimisation is implemented with the initial

TABLE III
BASELINE MLP TRAINING AND VALIDATION RESULTS

Fig. 4. Baseline MLP training and validation logloss plot for window size 200.

Fig. 5. Baseline MLP training and validation accuracy plot for window size
200.

learning rate equal to 0.001. The batch size coefficient is set
to 32 and training occurs over 500 epochs. Table III provides
the performance metrics for the training and validation sets.
Metric values for window sizes 100, 200, 300, 400, and 500
were obtained and averaged over 500 epochs, respectively.

Looking at the validation set the best model was achieved
with W= 200. Fig. 3 and 5 show that overfitting is appropriately
managed. The AUC plots provide information about early diver-
gence between the training and validation curves. As evidenced
in Fig. 3 and 5 learning tends to plateau around 400 epochs.

Table IV provides the performance metrics for the test set.
Metric values for window size 100, 200, 300, 400, and 500
were again obtained and averaged over 500 epochs, respectively.
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TABLE IV
BASELINE MLP TEST SET RESULTS

Fig. 6. Baseline MLP test ROC curves for all window sizes.

The results are better than those achieved by the validation set,
however there is significant imbalance between Sensitivity and
Specificity values across all window configurations.

2) Model Selection: The ROC curve in Fig. 6 shows
that an MLP model with W=200 produced the best results
with Sensitivity=89% (CI: 85%,93%), Specificity=51% (CI:
45%,58%) and AUC=74% (CI:68%,80%). As can be seen the
Specificity values are low indicating that the model has difficulty
classifying pathological birth outcomes.

B. One-Dimensional Convolutional Neural Network

In the second experiment, the same raw CTG signals are used
to model a 1DCNN with the network configuration described in
Fig. 2 and the network parameter coefficient settings previously
discussed.

1) Classifier Performance: This time several 1DCNN mod-
els are trained using all window size configurations. A single
convolutional layer with 20 filters and a kernel size half that of
the windowing strategy, i.e. 150 for 300 data points (empirically
this produced the best results). A ReLU activation function is
implemented in the convolution layer, which is followed by a
single max pooling layer and two fully connected dense layers
(the first layer contains 10 nodes and the second a single node
to classify case and control instances). The nodes in the fully
connected layers implement a sigmoid activation function.

All models are compiled with a binary cross entropy loss
function and Adam optimizer with the learning rate set to
0.0001, beta1 to 0.9, beta2 to 0.999, epsilon to 0.0, decay to
0.0, and amsgrad to false. Accuracy and Logloss are used as
the evaluation metrics with a batch size of 32 and a training

TABLE V
CONV1D TRAINING AND VALIDATION RESULTS

Fig. 7. 1D CNN training and validation logloss plot for window size 200.

Fig. 8. 1D CNN training and validation accuracy plot for window size 200.

strategy that utilises 500 epochs. Ten percent of the training
data is retained for model validation.

Table V provides the performance metrics for the training and
validation sets. Again, different window size configurations are
used and averaged over 500 epochs. The results show that the
validation set produced the best results with W=200 based on
the highest AUC and lowest Logloss values.

As shown in Fig. 7 the Logloss value converges around 0.50
after 500 epochs with no significant evidence of overfitting.
Fig. 8 supports this and shows that both the training and val-
idation plots are closely aligned after 500 epochs.

Table VI this time illustrates that the best per-
formance metrics for the test data was produced with
W=200: Sensitivity=80% (CI: 75%,85%), Specificity=79%
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TABLE VI
CONV1D TEST SET RESULTS

TABLE VII
SVM TEST SET RESULTS

Fig. 9. Baseline CNN test ROC curves for window sizes.

(CI: 73%,84%) and AUC=86% (CI:81%,91%). The metric
values are higher than those obtained by the validation set and
significantly higher than those produced by the MLP models.
The Sensitivity and Specificity values are balanced indicating
that the model can distinguish reasonably well between case
and control observations with equal accuracy.

2) Model Selection: This time Fig. 9 shows that models
trained on W=200 and W=300 performed much better than
all other window size configurations.

The likely improvement is due to the fact that 1DCNNs are
able to extract complex non-linear features (particularly data
points with strong relationships) in a way not possible using an
MLP alone.

C. Comparison With SVM, RF and FLDA

In the final experiment the 1DCNN results are compared with
SVM, RF and FLDA models. The same window configurations
are used to model normal and pathological birth CTG traces.

1) SVM Classifier Performance: In the first experiment, the
same windowed CTG trace configurations are adopted to train
the SVM models. Each model is trained by fitting a logistic
distribution, using maximum likelihood, to the decision values.

TABLE VIII
RANDOM FOREST TEST SET RESULTS

Fig. 10. SVM Test ROC curves for all window sizes.

The same data split strategy is used and a radial kernel function
is implemented with gamma and cost parameters 0.3333 and 1
respectively.

This time the performance values for the test set are
provided in Table VII. The results shown that all SVM
models perform poorly. The best model using W=500
achieved Sensitivity=68% (CI: 60%,76%), Specificity=56%
(CI: 48%,65%) and AUC=62% (CI:54%,70%).

2) Model Selection: Fig. 9 shows that the ROC curves for
all SVM models are located close to the dashed line (random
guessing). All models in this experiment fail to produce better
classification results than the proposed 1DCNN model.

3) Random Forest Classifier Performance: In this second
experiment, a Random Forest (RF) model is evaluated us-
ing Breiman’s RF ensemble learning classifier. Models are
trained by decorrelating 500 grown trees generated using
bootstrapped training samples. The best model using W=200
achieved Sensitivity=65% (CI: 59%,71%), Specificity=69%
(CI: 63%,75%) and AUC=67% (CI:61%,73%). The RF per-
formed better than the SVM models, but failed to improve on
the results obtained by the 1DCNN.

4) Model Selection: The ROC curves in Fig. 11 for all trained
RF models interestingly shows that all models across the five
windowing strategies produced similar results - window size
appears to have had little or no effect on performance.

5) FLDA Classifier Performance: In the final experiment, a
FLDA classifier is implemented to linearly combine features to
determine the optimal separation between the normal and patho-
logical birth observations. By finding the ratio of between-class
to within-class variances, data can then be projected onto a line.
This allows classification to be performed in a one-dimensional
space. The projection maximizes the distance between the means

Authorized licensed use limited to: LIVERPOOL JOHN MOORES UNIVERSITY. Downloaded on October 21,2020 at 13:33:21 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 11. RF test ROC curves for all window sizes.

TABLE IX
FLDA TEST SET RESULTS

TABLE X
SMOTE OVERSAMPLING RESULTS

of the two classes while minimizing the variance within each
class.

Table IX provides the performance metrics for the test
set. The best performing model was trained using W=300
with Sensitivity=71% (CI: 64%,79%), Specificity=77% (CI:
70%,84%) and AUC=74% (CI:70%,81%). The best performing
model performs well given that the FLDA is one of the most
simplest and less computationally expensive machine learning
models to implement. However, despite these results the FLDA
model does not outperform those produced by the 1DCNN.

6) Model Selection: Fig. 12 shows the ROC curves for all
trained FLDA models. Again, like the RF models, all windowing
strategies produced similar results.

IV. DISCUSSION

Gynaecologists and obstetricians visually interpret CTG
traces using FIGO guidelines to assess the wellbeing of the
foetus during antenatal care. This approach has raised con-
cerns among healthcare professionals with regards to inter-intra
variability were clinicians only positively predict pathological
outcomes 30% of the time. Machine learning models trained
with features extracted from CTG traces have shown to improve
predictive capacity and minimise variability. However, this is

Fig. 12. FLDA test ROC curves for all window sizes.

only possible when datasets are balanced which is rarely the
case in data collected from clinical trials.

Concerns have also been raised on the efficacy of FIGO and
handcrafted features and their ability to sufficiently describe
normal and pathological CTG traces. Feature engineering re-
quires expert knowledge to extract features and these are often
directly related to modality and application. This means that
handcrafted features are expensive to produce because manually
intensive efforts are required to tune machine learning models
for automated CTG analysis.

Both these issues were addressed in this paper by a) splitting
CTG time-series signals into n-size windows with equal class
distributions using real data only, and b) automatically extracting
features from time-series windows using a 1DCNN. The former
minimises the amount of bias introduced into the analysis phase
and the later automatically extracts features thus removing the
need for manual feature engineering. Collectively, we argue this
simplifies the data analysis pipeline and provides a robust, rig-
orous and scalable platform for automated CTG trace modelling
and classification.

The findings presented in this paper support the claims made
in the study. Splitting CTG traces into n-size windows is a
very simple way to balance case-control datasets using real data
only. Deep learning extracts important hidden features contained
within the data that best describe normal and abnormal CTG
traces. More importantly, using a relatively simple 1DCNN it is
possible to capture the subtle nonlinear dependencies between
the features themselves which may not be easily detected using
human visual inspection alone. Consequently, this has the effect
of eliminating noise and increasing robustness within the feature
extraction process.

Three experiments were presented in this study to eval-
uate and justify the methodological decisions made. In
the first experiment, an MLP, using random weight ini-
tialisation, and several window size strategies were evalu-
ated to provide baseline results. An MLP model with a
window size=200 produced the best results using the test
set (Sensitivity=89% (CI: 85%,93%), Specificity=51% (CI:
45%,58%) and AUC=74% (CI:68%,80%)). When either de-
creasing or increasing the window size, results dropped with
the lowest obtained with window=400 (Sensitivity=42% (CI:
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34%,49%), Specificity=79% (CI: 73%,85%) and AUC=62%
(CI:55%,69%)). Therefore, changing the window size in this
study using the CTG-UHB dataset had no positive impact on
overall performance. More importantly, the MLP configuration
was unable to equally model and predict between case and
control instances as indicated by the Sensitivity and Specificity
values.

The second experiment introduced the results for the pro-
posed 1DCNN which automatically extracts features from
several CTG window size configurations and uses them to
train a fully connected MLP. The results obtained with
the test set showed significant improvements in classi-
fication accuracies. The best result was achieved using
W=200 (Sensitivity=80% (CI: 75%,85%), Specificity=79%
(CI: 73%,84%) and AUC=86% (CI:81%,91%)). The worst
result was obtained using W=400 (Sensitivity=70% (CI:
63%,77%), Specificity=63% (CI: 55%,70%) and AUC=72%
(CI:65%,79%)). The results were much better than those pro-
duced using a standard MLP. The Sensitivity value was lower,
however, Specificity and AUC increased.

The final experiment modelled an SVM, RF and FLDA
classifier, to determine whether these less complex and com-
putationally expensive models could outperform the proposed
1DCNN approach. Under the same evaluation criteria, raw
CTG traces where used to train the models with window sizes
100, 200, 300, 400, and 500. The results obtained showed that
the best performing classifier was the FLDA using W=300
with (Sensitivity=71% (CI: 64%,79%), Specificity=77% (CI:
70%,84%) and AUC=74% (CI:70%,81%)). The SVM classifier
produced the worse results with the best model using W=500
obtaining (Sensitivity=68% (CI: 60%,76%), Specificity=56%
(CI: 48%,65%) and AUC=62% (CI:54%,70%)). This was fol-
lowed by the RF classifier with the best model using W=200
with (Sensitivity=65% (CI: 59%,71%), Specificity=69% (CI:
63%,75%) and AUC=67% (CI:61%,73%)). All of the tradi-
tional classifiers performed worse than the 1DCNN, however,
the FLDA results were interestingly close to those produced
by the 1DCNN with 8% less for Sensitivity and 2% less for
Specificity. This result is particularly interesting given that the
FLDA is a much simpler model to train compared with CNNs
in terms of compute requirements.

In our previous work, SMOTE was utilised as an alternative
class balancing strategy [18]. Using the same dataset 80% of
observations were allocated for training and the remaining 20%
were retained for testing. To balance the dataset the majority
classes in the training data were undersampled by 100% and
the minority classes oversampled by 600% (resulting in 192
caesarean section records and 224 normal delivery records). An
FLDA, SVM and RF classifier were modelled and the average
performance of each classifier was evaluated using 30 simula-
tions.The results are shown in Table VIII. The best performing
classifier overall was the RF model with (Sensitivity=59% (CI:
54%,65%), Specificity=57% (CI: 55%,59%) and AUC=62%
(CI:60%,64%)). However, as can be seen the best windowing
and 1DCNN classifier combination posited in this paper out-
performs the standard SMOTE approach. For a more detailed
discussion on our SMOTE approach the reader is referred to [18].

The results presented in this study are encouraging. While
many other studies based on handcrafted features have reported
better results, in many cases it is not clear how such results were
obtained, i.e. particularly in cases where only accuracy metrics
are shown without reference to Sensitivity and Specificity val-
ues. In other cases, the good results are likely due to the training
and test set minority data points being oversampled rather than
the training data points only. Where this is the cases it introduces
bias and the trained models are unlikely to generalise well on
unseen data. In this sense, we regard the work performed by
Spilka et al. who use the same dataset, a more realistic fit for
evaluation purposes and on these grounds our proposed approach
outperforms the results in [12] and [15].

V. CONCLUSION

A novel framework to deal with imbalanced clinical datasets,
using real data and a windowing strategy is proposed in this
paper. Features are automatically extracted using a 1DCNN
removing the need for manually handcrafted feature extracted
algorithms. Using a dataset containing 552 CTG trace observa-
tions (506 controls and 46 cases) a 1DCNN was trained with a
W=200 windowing strategy to obtain ((Sensitivity=80% (CI:
75%,85%), Specificity=79% (CI: 73%,84%) and AUC=86%
(CI:81%,91%)). Figures 7 and 8 show that there is no significant
evidence of overfitting and Fig. 9 shows that our trained models
have good predictive capacity.

Nonetheless, there is a great deal of work needed. The results
presented in this study are interesting, but the CTG traces used to
train the machine learning models did not contain annotations.
This means that clinically relevant data and noise are combined
in the feature extraction and modelling processes. Therefore,
irrelevant data is being modelled alongside key data points repre-
sentative of abnormal and normal CTG information. Performing
signal processing alongside clinicians to only retain parts of the
CTG trace directly representative of normal and pathological
signals will likely improve the overall predictive capacity of our
1DCNN network.

In future work it may also be interesting to model CTG traces
from mothers who have normal vaginal deliveries and implement
anomaly detection to identify and triage pregnant mothers with
reside outside of normal CTG trace parameters and compare
the results with the 1DCNN approach. Making this accessible
using web technologies would also be useful to the research
community. Therefore, future work will convert Keras models
to protobuf models for web hosting using Flask and online
inferencing.

Overall, the results highlight the benefits of using CTG trace
windowing to balance class distributions and 1DCNNs to auto-
matically extract features from raw CTG traces. This contributes
to the instrumentation, measurement and biomedical fields and
provides new insights into the use of deep learning algorithms
when analysing CTG traces. Work exists in automated CTG trace
analysis, however, to the best of our knowledge the study in this
paper is the first comprehensive study that windows CTG traces
and implements a 1DCNN to automatically extract features for
modelling and classification tasks.
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