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Abstract: Calanolides are tetracyclic 4-substituted dipyranocoumarins. Calanolide A, isolated from
the leaves and twigs of Calophyllum lanigerum var. austrocoriaceum (Whitmore) P. F. Stevens,
is the first member of this group of compounds with anti-HIV-1 activity mediated by reverse
transcriptase inhibition. Calanolides are classified pharmacologically as non-nucleoside reverse
transcriptase inhibitors (NNRTI). There are at least 15 naturally occurring calanolides distributed
mainly within the genus Calophyllum, but some of them are also present in the genus Clausena.
Besides significant anti-HIV properties, which have been exploited towards potential development
of new NNRTIs for anti-HIV therapy, calanolides have also been found to possess anticancer,
antimicrobial and antiparasitic potential. This review article provides a comprehensive update on all
aspects of naturally occurring calanolides, including their chemistry, natural occurrence, biosynthesis,
pharmacological and toxicological aspects including mechanism of action and structure activity
relationships, pharmacokinetics, therapeutic potentials and available patents.

Keywords: calanolides; pseudocalanolides; calanolide A; Calophyllum; Calophyllaceae; anti-HIV;
reverse transcriptase; non-nucleoside reverse transcriptase inhibitors (NNRTIs)

1. Introduction

Calanolides are tetracyclic 4-substituted dipyranocoumarins, and their C-ring contains
a gem-dimethyl group (Figure 1), e.g., (+)-calanolide A (1), (−)-calanolide B (costatolide) (14) (Figure 2).
The discovery of calanolides from the leaves and twigs of the tree Calophyllum lanigerum var.
austrocoriaceum (Whitmore) P. F. Stevens, collected from Sarawak, Malaysia in 1987 happened during
one of the largest anti-HIV screening programs conducted by the National Cancer Institute (NCI)
during 1987–1996. In that program, over 30,000 plant extracts were screened utilizing an in vitro
cell-based anti-HIV screen that could determine the degree of HIV-1 replication in treated infected
lymphoblastic cells versus that in treated uninfected control cells [1,2]. Calanolide A (1) (Figure 1),
which can be described as a 11,12-dihydro-2H,6H,10H-dipyrano[2,3-f:2′,3′-h]chromen-2-one substituted
by a hydroxyl (–OH) group at C-12, methyl groups at positions 6, 6, 10 and 11 and a propyl group at C-4
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(the 10R,11S,12S stereoisomer), was isolated as the first member of anti-HIV compounds, calanolides,
as a potential novel therapeutic option for the treatment of HIV infections. However, a subsequent
attempt to recollect this plant sample failed and the collection of other specimens of the same species
(not necessarily the same variety), afforded only a negligible amount of calanolide A (1). In fact,
calanolides are among the first plant-based compounds to demonstrate potential anti-HIV-1 activity.
Later, an extract of the latex of C. teysmanii showed significant anti-HIV activity in the screening, but the
major active compound was (−)-calanolide B (14, also known as costatolide), regrettably not calanolide
A (1) (Figure 2). The anti-HIV activity of (−)-calanolide B (14) was less potent than that of calanolide
A (1), possibly because of difference in stereochemistry at the chiral centers. To date calanolides
A-F and some of their methyl, acetyl and dihydro derivatives have been reported mainly from various
Calophyllum species (Figure 2). Among these, the structures of calanolides C (6) and D (7), as reported
initially by Kashman et al. [1] from C. lanigerum, were revised and renamed as pseudocalanolides
C (8) and D (9) [3] (Figure 2). However, the true calanolides C (6) and D (7) were later reported from
C. brasiliense Cambess. [4–6].

Figure 1. Rings A, B, C and D, and carbon numbering in (+)-calanolide A (1).

The first isolation of calanolides from C. lanigerum var. austrocoriaceum, involved multiple
steps, starting with the extraction of dried fruits and twigs of this plant with a 1:1 mixture of
dichloromethane and methanol, followed by a sequential solvent partitioning process involving various
solvents. The n-hexane and CCl4 fractions emerged as the active fractions [1]. Repeated vacuum
liquid chromatography (VLC) on silica gel, eluting with a mixture of n-hexane and ethyl acetate
afforded crude calanolides, which were further purified by HPLC, employing normal phase for
calanolide A (1), calanolide B (4) and pseudocalanolide D (9) [reported incorrectly as calanolide D (7)],
while reversed-phase for 12-acetoxycalanolide A (2), 12-methoxycalanolide A (3), 12-methoxycalanolide
B (5), pseudocalanolide C (8) [reported as calanolide C (6)] and calanolide E (10). The structures of
these compounds were determined by a combination of UV, IR, NMR and MS spectroscopic methods,
and all spectroscopic data were published [1]. The absolute stereochemistry of calanolides A (1) and
B (4) was confirmed by a modified Mosher′s method.

There is a review [7] and a book chapter on calanolides [8], published about six years ago,
that mainly cover anti-HIV activity, and the literature published until early 2014. This present review is
not on the genus Calophyllum, the family Calophyllaceae or pyranocoumarins a such, but it exclusively
focuses on various aspects of naturally occurring calanolides. This review is significantly different from
any other previous articles on calanolides in its approach and coverage, and is a comprehensive update
on naturally occurring calanolides, encompassing their chemistry, natural occurrence, biosynthesis,
pharmacological and toxicological aspects including mechanism of action and structure activity
relationships, pharmacokinetics, therapeutic potentials and available patents.
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Figure 2. Cont.
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Figure 2. Naturally occurring calanolides

2. Occurrence

Calanolides, calanolide A (1) being the first member of these 4-substituted pyranocoumarins
isolated from C. lanigerum var. austrocoriaceum, are almost exclusively distributed within the genus
Calophyllum L., which comprises a large group of ca. 200 species of tropical trees distributed in the
Indo-Pacific region, but was also reported from one species (Clausena excavate Brum. f.) of the closely
related genus Clausena [9–12] (Table 1). Calanolide A (1) and other calanolides were subsequently
isolated from other Calophyllum species, e.g., C. brasiliense Cambess. [4,13,14], C. inophyllum L. [6],
C. teysmanii Miq. [2] and C. wallichianum Planch. & Triana [15]. In a chemotaxonomic study on
the Calophyllum species, the presence of calanolides was detected in the extracts of C. inophyllum,
C. lanigerum var. austrocoriaceum, C. mole King, C. nodosum, aff. Pervillei Vesque., C. soulattri Burm. f.,
C. tacamahaca Willd. and C. teysmanii [9] (Table 1).
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Table 1. Naturally occurring calanolides, their sources and properties.

Calanolides Sources Physical State Mol. Formula Mol. Weight Optical Rotation
[a]D

UV λmax (MeOH) nm References

Calanolide A (1)

Calophyllum lanigerum
var. austrocoriaceum

Oil C22H26O5 370.44 [a]D +60◦ (c, 0.7 in CHCl3) 228, 284 and 325

[1,9,11,16]

Calophyllum brasiliense [4,17,18]
Calophyllum inophyllum [6,11]
Calophyllum teysmannii [19]

Clausena excavata [10]

12-O-Acetylcalanolide A (2) Calophyllum lanigerum
var. austrocoriaceum Oil C24H28O6 412.48 [a]D +20◦ (c, 0.5 in CHCl3) 228, 284 and 325 [1]

12-O-Methylcalanolide A (3) Calophyllum lanigerum
var. austrocoriaceum Oil C23H28O5 384.47 [a]D +32◦ (c, 0.8 in CHCl3) 228, 284 and 325 [1]

Calanolide B (4)

Calophyllum lanigerum
var. austrocoriaceum

Oil C22H26O5 370.44 [a]D +8◦ (c, 1.0 in acetone) 228, 284 and 325
[1]

Calophyllum brasiliense [5,17]
Calophyllum teysmannii

var. inophylloide [9]

12-O-Methyl-calanolide B (5) Calophyllum lanigerum
var. austrocoriaceum Oil C23H28O5 384.47 [a]D +34◦ (c, 0.5 in CHCl3) 228, 284 and 325 [1]

Calanolide C (6) Calophyllum brasiliense Oil C22H26O5 370.44 - - [4,5]
Calanolide D (7) Calophyllum brasiliense Amorphous solid C22H24O5 368.42 - - [6]

Calanolide E (10)

Calophyllum lanigerum
var. austrocoriaceum

Amorphous powder C22H28O6 388.50 [a]D +30◦ (c, 0.7 in acetone) -

[1,9,20]

Calophyllum membranaceum [21]
Calophyllum molle [9]

Calophyllum polyanthum [22]
Calophyllum teysmannii

var. inophylloide [20]

Calophyllum wallichianum [15]

Calanolide E1 (11)

Calophyllum lanigerum
var. austrocoriaceum Amorphous powder C22H28O6 388.50 - -

[9,20]

Calophyllum brasiliense [9,14]
Calophyllum molle [9]

Calanolide E2 (12)

Calophyllum lanigerum
var. austrocoriaceum

Amorphous powder C22H28O6 388.50 - -

[9,20]

Calophyllum brasiliense Cambess. [14]
Calophyllum membranaceum [21]

Calophyllum molle [9]
Calophyllum polyanthum [22,23]
Calophyllum teysmannii

var. inophylloide [9,20]
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Table 1. Cont.

Calanolides Sources Physical State Mol. Formula Mol. Weight Optical Rotation
[a]D

UV λmax (MeOH) nm References

Calanolide F (13)
Calophyllum lanigerum

var. austrocoriaceum Amorphous powder C22H26O5 370.44 [a]D −51.5 (c, 0.3 in CHCl3) 227, 283, 322 [9,20]

Calophyllum teysmannii
var. inophylloide [9,20]

Costatolide (14)
[(−)-Calanolide B]

Calophyllum brasiliense
Crystals

(M.p. 181–183◦) C22H26O5 370.44 [a]D −19.9 (c, 0.42 in CHCl3) 228, 284 and 325

[4]
Calophyllum costatum [24]

Calophyllum inophyllum L. [24]
Calophyllum teysmannii

var. inophylloide [9,19,25]

7,8-Dihydrocalanolide A (15) Calophyllum lanigerum
var. austrocoriaceum Amorphous solid C22H28O5 372.46 Negative optical rotation - [25]

Dihydrocostatolide (16) Calophyllum costatum Amorphous solid C22H28O5 372.46 - - [26]
Pseudocalanolide C (8)
[incorrectly named as

calanolide C (6)]

Calophyllum lanigerum
var. austrocoriaceum Amorphous solid C22H26O5 370.44 [a]D +68◦ (c, 0.7 in CHCl3) - [1,3,9]

Pseudocalanolide D (9)
[incorrectly named as

calanolide D (7)]

Calophyllum lanigerum
var. austrocoriaceum Amorphous solid C22H24O5 368.43 [a]D +60◦ (c, 0.5 in CHCl3) - [1,3]

Tomentolide B (17) Calophyllum tomentosa Amorphous solid
(M.p. 158–160o) C22H24O5 368.43 Racemic mixture - [1,3,9]
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Bernabe-Antonio et al. [5] reported the production of calanolides in a callus culture of C. brasiliense,
where different concentrations and combinations of plant growth regulators were tested in leaf and
seed explants to establish callus cultures capable of producing calanolides. Higher calanolides B (4)
and C (6) production was observed in calluses from seed explants than those developed from leaves.
In continuation of the search for new natural anti-HIV compounds, and at the same time to find
new botanical sources of calanolides, McKee et al. [20] purified calanolide E2 (12), and calanolide
F (13) from the extracts of C. lanigerum var. austrocoriaceum and C. teysmanii var. inophylloide (King.)
P. F. Stevens. Later, costatolide (14), also known as (−)-calanolide B, was reported as an anti-HIV
compound present in C. cerasiferum Vesque and C. inophyllum L. [24]. Calanolides A (1), and C (6),
and costatolide (14) were isolated from the leaves of C. brasiliense, and their anti-HIV potential
was evaluated [4].

3. Biosynthesis

Calanolides are biosynthesized from the parent simple coumarin 7-hydroxycoumarin, also known as
umbelliferone (Schemes 1–3). The biosynthesis of umbelliferone in plants starts from the amino
acid L-phenylalanine, and proceeds through the formation of trans-cinnamic acid, p-coumaric acid,
2-hydroxy-p-coumaric acid, 2-glucosyloxy-p-coumaric acid, and 2-glucosyloxy-p-cis-coumaric acid with
the help of various enzymes like cinnamate 4-hydroxylase, 4-coumarate-CoA ligase, 4-coumaroyl
2′-hydroxylase and so on [27]. The biosynthesis of dipetalolactone, a pyranocoumarin, and subsequent
conversion to the 3-propyl-intermediate for calanolides may proceed through two routes, one through
conversion of umbelliferone to osthenol (Scheme 1), and the other via formation of 5,7-dihdroxycoumarin
(Scheme 2). Reactions are generally mediated by p450 monooxygenase and other non-p450 enzymes [28].
3-Propyl-intermediate is converted to the precursor compound for calanolides A–C (1, 4 and 6), utilizing the
Wagner-Meerwein rearrangement reaction, and the precursor compound is believed to be converted
to calanolides with the help of p450 monooxygenase enzyme (Scheme 3). Published studies on the
biosynthesis of calanolides are rather limited and only two publications are available on this topic to
date [28,29]. Therefore, detailed knowledge of specific enzymes involved in the biosynthesis of calanolides
is still in its infancy.

Scheme 1. Plausible biosynthetic route to 2′-hydroxydihydrodipetalolactone from umbelliferone via
formation of 5-hydroxy-6-prenylseselin.
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Scheme 2. Plausible biosynthetic route to 2′-hydroxydihydrodipetalolactone from umbelliferone via
formation of 8-prenylalloxanthoxyletol.

In a recent study, the influence of soil nutrients, e.g., Ca2+ and K+, on the biosynthesis of
pharmacologically active calanolides in the seedlings of C. brasiliense was studied [29]. It was observed
that the use of K+ deficient modified Hoagland solution (MHS) could induce a 15, 4.2 and 4.3-fold
decrease of calanolides B (4), C (6), and apetalic acid concentrations in the leaves of the seedlings,
respectively. On the other hand, Ca2+ deficient MHS could lead to a decrease of 4.3 and 2.4-fold for
calanolides B (4) and C (6), respectively. This study demonstrated that, like many other plant secondary
metabolites, the biosynthesis of calanolides, albeit genetically controlled, may also be affected by
environmental conditions, e.g., soil nutrients (minerals).

As genes dictate biosynthesis of secondary metabolites, a study was conducted to identify
candidate genes that regulate to the biosynthesis of calanolides in C. brasiliense [28]. The unigene
dataset constructed in this study could offer an insight for further molecular studies of C. brasiliense,
particularly for characterizing candidate genes responsible for the biosynthesis of angular and linear
pyranocoumarins. The candidate genes, e.g., UN36044, UN28345 and UN34582, identified in the
transcriptome of the leaves, stem and roots of C. brasiliense might be involved in the biosynthesis of
calanolides, which are essentially modified angular pyranocoumarins. Candidate unigenes in the
transcriptome dataset were screened using mainly homology-based BLAST and phylogenetic analyses.
It is worthy of mention that the BLAST programs are widely used for searching protein and DNA
databases for optimizing sequence similarities [30]. For protein comparisons, several definitional,
algorithmic and statistical refinements allow substantial decrease in the execution time of the BLAST
programs and enhancement of their sensitivity to weak similarities.
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Scheme 3. Plausible biosynthetic route to calanolides A (1), B (4) and C (6) from the intermediate,
2′-hydroxydihydrodipetalolactone.

4. Pharmacological Properties

Although well-known for non-nucleoside reverse transcriptase inhibitory activity offering anti-HIV
potential, calanolides have also been shown to possess various other pharmacological properties
(Figure 3). The following sub-sections deal with anticancer, anti-HIV, antimycobacterial and antiparasitic
activity of naturally occurring calanolides. As much of the published pharmacological studies,
both in vitro and in vivo including human trials, on naturally occurring calanolides are about their
anti-HIV property, over the years, significant amounts of information have become available on their
mechanism of action, structure-activity-relationships, synergistic and/or additive property and their
potential in anti-HIV combination therapy, which have been discussed adequately under individual
headings within the anti-HIV sub-section. All other pharmacological properties of these compounds as
outlined in different publications still require further investigations to establish their realistic therapeutic
potential. Also, in silico pharmacological activity and toxicity studies on these pyranocoumarins have
just begun to emerge in recent years.
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Figure 3. A pictorial summary of pharmacological properties of naturally occurring calanolides.

4.1. Anticancer Activity

In the later part of 1980s, as a part of the initiative of the United States National Cancer Institute
(NCI), plant samples from the Malaysian flora were collected for routine screening for potential
cytotoxicity against a collection of cancer cell lines as well as for possible anti-HIV activity. One of
the samples, the leaves and twigs of the tree C. lanigerum var. austrocoriaceum, despite not being
active against any of the cancer cell lines tested, showed inhibitory activity of viral replication when
tested against HIV-1 virus [31,32]. However, later, calanolide A (1) and calanolide C (6) were shown
to possess antiproliferative or antitumor-promoting property through inhibition of TPA-induced
EBV-EA activation in Raji cell lines [13]. The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA)
is a potent stimulator of differentiation and apoptosis in myeloid leukemia cells. Calanolide A (1)
was found to be more active (IC50 = 290 mol ratio/32 pmol TPA) than its 10,11-cis-isomer, calanolide C (6)
(IC50 = 351 mol ratio/32 pmol TPA). It was inferred that 4-substituted pyranocoumarins like calanolides
might possess potential as cancer chemopreventive agents or antitumor-promoters. A recent study
with the crude ethanolic extract of the leaves of C. inophyllum revealed its potential as a cytotoxic
agent (IC50 120 µg/mL) against the breast cancer cell line MCF-7 [33]; it was also found to possess
antiproliferative and apoptotic properties. However, no definitive proof was provided to establish
which of the secondary metabolites biosynthesized by this plant, calanolides being one major class,
were responsible for the putative anticancer activity. Although not calanolides, a few other 4-substituted
coumarins, isolated from C. brasiliense, were tested against human leukemia HL-60 cells with some
promising results [34], which might highlight the need for more comprehensive studies with all
major 4-susbtitued coumarins, including calanolides, to find antileukemia lead compounds for new
anticancer drug development. Calanolide A (1), isolated from a chloroform extract of Clausena excavata,
was found to induce toxicity to the cells used in a syncytium assay for anti-HIV activity [10].

The efficacy of calanolide A (1) in AIDS-associated cancer was evaluated in silico utilizing
an integrated approach combining network-based systems biology, molecular docking and molecular
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dynamics [35]. Molecular targets were screened and only the targets, e.g., HRAS, that are common
to HIV and sarcoma, HIV and lymphoma, and HIV and cervical cancer, were utilized in this study.
Calanolide A (1) was found to form a stable complex with the screened target HRAS, which is a small
G protein in the RAS subfamily of the RAS superfamily of small GTPases, and is considered as
a proto-oncogene; when mutated, this proto-oncogene has the potential to cause normal cells to
become cancerous.

4.2. Anti-HIV Activity

Calanolide A (1), an anti-HIV non-nucleoside reverse transcriptase inhibitor (NNRTI), paved the
way for the discovery and synthesis of a series of 4-substituted angular pyranocoumarins with
potential anti-HIV property [1,36]. NNRTIs are a class of anti-HIV drugs that prevent healthy T-cells
in the body from becoming infected with HIV. Kashman et al. [1] first reported this new class of
anti-HIV agents from the tropical rainforest tree, C. lanigerum. Calanolide A (1), 12-acetoxycalanolide
A (2), 12-methoxycalanolide A (3), calanolide B (4), 12-methoxycalanolide B (5), pseudocalanolide
C (8), pseudocalanolide D (9) and calanolide E (10) (Figure 2) were isolated through an anti-HIV
bioassay-guided isolation. Calanolides A (1) and B (4) were found to be protective against HIV-1
replication and cytopathicity with EC50 values of 0.1 µM and 0.4 µM, respectively. However,
both compounds were inactive against HIV-2, which is known as less pathogenic than HIV-1 and
mainly found in West African countries. The other compounds showed a low level of anti-HIV-1
activity. This study involving purified bacterial recombinant reverse transcriptases established that the
calanolides are indeed HIV-1 specific reverse transcriptase inhibitors. A comparative report on the
anti-HIV potentials of calanolide A (1), costatolide (14) and dihydrocostatolide (16) against a series
of HIV isolates of different cellular phenotypes was published by Buckheit et al. [26], which clearly
demonstrated that calanolide A (1) was the best anti-HIV candidate among the three calanolides tested.

Two analogs of calanolide A (1), i.e., costatolide (14) and dihydrocostatolide (16), were shown
to possess anti-HIV property similar to that of calanolide A (1) [26] and could be ascribed to
the class of NNRTIs. In fresh human cells, costatolide (14) and dihydrocostatolide (16) could
significantly inhibit the low-passage clinical virus strains, including those representative of the various
HIV-1 clade strains, syncytium-inducing and non-syncytium-inducing isolates, and T-tropic and
monocyte-tropic isolates [26,37]. In continuation of the search for new natural anti-HIV compounds,
McKee et al. [20] purified calanolide E2 (12), and calanolide F (13) from extracts of C. lanigerum var.
austrocoriaceum and C. teysmanii var. inophylloide (King.) P. F. Stevens, and calanolide E2 (12) emerged as
one of the most active anti-HIV compounds. Later, costatolide (14) was reported as an anti-HIV
compounds present in C. cerasiferum Vesque and C. inophyllum L. [24], while calanolides A (1),
and C (6), and costatolide (14), isolated from the leaves of C. brasiliense, were shown to possess
anti-HIV potential [4]. Comparative anti-HIV activities of some naturally occurring calanolides,
e.g., calanolide A (1), costatolide (14) and dihydrocostatolide (16), against various strains of HIV are
available in the article by Buckheit, et al. [26].

4.2.1. Activity Against Drug Resistant Strains of HIV-1

Interestingly, calanolide A (1) was not only found to be active against standard strains of
HIV-1, but it was also active against the resistant strains, eAZT-resistant G-9106 strain of HIV-1
and pyridinone-resistant A17 strain [1,38]. The activity against the pyridinone-resistant A17 strain
was of interest as this strain is highly resistant to most of the HIV-1 specific NNRTIs, for example,
TIBO, BI-RG-587 and L693,593. Later, it was established that pyranocoumarin 1 could interact with
HIV-1 reverse transcriptase within the previously defined common binding site for nonnucleoside
inhibitors [38]. An assessment of the inhibition patterns of the chimeric reverse transcriptases
containing complementary segments of HIV-1 and HIV-2 reverse transcriptases established that
there was a segment between residues 94 and 157 in HIV-1 reverse transcriptase that was crucial
for inhibition by calanolide A (1) [39]. However, it was assumed that there might be a second
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segment, essential for specifying susceptibility to the drug, between amino acids 225 and 427 in HIV-1
reverse transcriptase. A couple of years later, it was noted that calanolide A (1) was active against
virus isolates resistant to 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine and its derivative,
[1-benzyloxymethyl-5-ethyl-6-(alpha-pyridylthio)uracil] [40]. Furthermore, this pyranocoumarin (1)
showed activity against HIV with the two most common NNRTI-related mutations, K103N and Y181C,
and was found to select for a mutation that does not cause cross-resistance with any other NNRTIs
under investigation. It was postulated that substitution at codon Y188H of reverse transcriptase could
be associated with 30-fold resistance to calanolide A (1) in vitro [41]. The compound is essentially
inactive against all strains of the less common HIV type 2. It is necessary to carry out appropriate in vivo
experimentations, either in animal models or in human clinical trials, to understand the true potential of
any putative drug candidate. In vivo anti-HIV activity of (+)-calanolide A (1) was assessed in a hollow
fibre mouse model [42], and it was observed that this compound could suppress virus replication in
two unique, but separate physiologic compartments following oral or parenteral administration.

Calanolides were found to possess an enhanced antiviral activity against one of the most prevalent
NNRTI-resistant viruses that is engendered by the Y181C amino acid change in reverse transcriptase
as well as with reverse transcriptases that possess the Y181C change together with AZT-resistant
mutations [26,37]. Calanolides could also be active against viruses containing Y181C and K103N dual
mutations, which are generally highly resistant to other known non-nucleus reverse transcriptase
inhibitors. Anti-HIV activity of naturally occurring calanolides against drug-resistant strains of HIV
have made these compounds promising structural templates for new anti-HIV drug development.

4.2.2. Calanolides in Anti-HIV-1 Combination Therapy

For the treatment of HIV infections, use of combination therapy comprising several anti-HIV
drugs has become a common practice in recent years. The synergistic effects of calanolide A (1),
costatolide (14) and dihydrocostatolide (16) [26] in combination with established anti-HIV drugs,
e.g., azidothymidine (AZT), indinavir, nelfinavir and saquinavir, are available in the literature [26].
Synergistic effects were observed in both cultured cells and animal models when calanolides were used
in combination with other anti-HIV agents [43]. Both calanolide A (1) and costatolide (14) were found to
be effective in combination therapy for HIV infections [44]; in combination with NNRTIs, costatolide (14)
could only synergistically inhibit HIV type 1 with UC38, whilst calanolide A (1) in combination with
one of the NNRTIs helped this drug to retain activity against virus isolates with the single Y181C
mutation [26,41,44,45].

A combination of (+)-calanolide A (1) and nevirapine (marketed under the trade name viramune
among others for the treatment and prevention HIV-1 infection) was found to possess an additive
to weakly synergistic effect in blocking replication of HIV-1 in an in vitro tissue culture assay [41],
indicating the possibility of using (+)-calanolide A (1) in anti-HIV-1 combination therapy. In an in vivo
study using a hollow fibre mouse model [42], the synergistic potential of (+)-calanolide A (1)
in combination therapy with AZT, a well-known anti-retroviral medication, was further established.
A more comprehensive study on the anti-HIV activity of (+)-calanolide A (1) and its analogs,
e.g., costatolide (14), dihydrocostatolide (16) and (+)-12-oxo-calanoldie A, in combination with other
inhibitors of HIV-1 replication was published about a decade ago [37,46]. Calanolides were found to
display synergistic antiviral interactions with other nucleoside and non-nucleoside reverse transcriptase
inhibitors and protease inhibitors. In addition, additive interactions were also observed with calanolides
when used with other anti-HIV drugs. It was concluded that the utility of convergent and divergent
combination therapies using reverse transcriptase inhibitors and protease inhibitors in combination with
(+)-calanolide A (1) or one of its analogues could be clinically relevant. Budihas et al. [47] demonstrated
significant synergy between β-thujaplicinol and calanolide A (1).
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4.2.3. Structure-Activity-Relationships (SAR)

Among the naturally occurring calanolides, calanolide A (1) is one of the most potent anti-HIV
compounds and has been the focus of various studies including the study of its possible mechanism of
action, structural modifications, pharmacokinetics and toxicity [9,48–51]. The structures of naturally
occurring calanolides mainly differ in their stereochemistry at various chiral centers (C-10, C-11 and
C-12) on the ring D (Figures 1 and 2). McKee et al. [20] reported that calanolide-type compounds
with a 12β hydroxyl group (as in compound 1) generally possess anti-HIV activity. While calanolide
A (1) and costatolide (14) were found to be active, (+)-calanolide C (6) was inactive in the in vitro
anti-HIV assay [4,24]. The inactivity of (+)-calanolide C (6) despite possessing the pharmacophoric
ring D, as well as a propyl group on C-4, could be due to the β-cis orientation of methyl groups on
C-10 and C-11.

Like any other optically active drug molecules, optical activity plays an important role in the anti-HIV
activity of calanolides. It has long been established that (+)-calanolide A (1) and (−)-calanolide B (14)
are potent HIV-1 inhibitors, whilst (−)-calanolide A and (+)-calanolide B (4) are inactive against the
virus [52]. It should be mentioned here that (+)-calanolide A (1) is the natural product, but its enantiomer
(−)-calanolide A was prepared from the naturally occurring (−)-costatolide (14), isolated from C. costatum.
Similarly, to establish structure-activity-relationships of calanolides, several analogs of calanolides have
been synthesized to date, and tested in anti-HIV assays [53]. Although the synthesis of calanolides and the
anti-HIV activity of synthetic calanolide analogs are not within the scope of this review, a few examples
are given here in the context of structure-activity-relationships. One of the first attempts in this area
was from Galinis et al. [53], where ∆7,8 olefinic bonds within (+)-calanolide A (1) and (−)-calanolide
B (14) were reduced, and C-12 hydroxyl group in (−)-calanolide B (14) was modified to investigate
variations in anti-HIV activity compared to parent calanolides. In this study, none of the 14 derivatives was
found to possess superior activity to parent calanolides but revealed some preliminary structure-activity
requirements for anti-HIV potencies. Later, in order to identify the structural features of naturally occurring
(+)-calanolide A (1) necessary for its anti-HIV activity and to prepare synthetic analogues, oxo-derivatives
(+)-, (−)- and (±)-12-oxocalanolides, were synthesized and tested in vitro using a biochemical reverse
transcriptase inhibition assay for determining anti-HIV activity with a promising outcome [48]. In a review
article covering various aspects of anti-HIV 4-substitued coumarins with an alkyl or a phenyl group as the
substituent, isolated from the genus Calophyllum, summarized that all trans configurations (10R, 11S, 12 S),
as in (+)-calanolide A (1) and (+)-inophyllum B (a 4-phenyl-substituted pyranocoumarin), are essential for
the best anti-HIV activity [54].

Most of the SAR studies involving calanolides for their anti-HIV activities concentrated on
the three chiral centers at C-10, C-11 and C-12 of (+)-calanolide A (1) [55,56]. As the number of
naturally occurring calanolides are rather limited (calanolides A–F) (Figure 2), the SAR studies were
often carried out with natural calanolides as well as their synthetic analogs. Of the diastereomers,
compounds containing 10,11¬-trans-methylation and 12-(S)-OH chirality (Figure 2) displayed the most
potent activity with EC50 values in between 0.18 and 2.0 µM [55]. It was also observed that either the
enantiomers (12-R-OH) or epimeric alcohols, e.g., calanolide C (6) could not produce any noticeable
anti-HIV effect. It could be concluded that the relative stereochemistry at C-10 and C-11 are essential
structural features for potent anti-HIV activity of calanolides, and at the same time, the S configuration
at C-12 as well as the presence of a heteroatom, e.g., O, at C-12 are necessary for anti-HIV effects.

In order to assess the importance of the presence of 11-methyl functionality on calanolide A for its
anti-HIV activity, the activity of the semi-synthetic racemic mixture of 11-demethyl-calanolide A was
compared with the anti-HIV activity of its parent compound, (±)-calanolide A [57]. The in vitro HIV-1
reverse transcriptase inhibitory activity of these compounds was determined with the isotope 3H
assay, which is a thymidine incorporation assay that often utilizes a strategy wherein a radioactive
nucleoside, 3H-thymidine, is incorporated into new strands of chromosomal DNA during mitotic
cell division; a scintillation beta-counter is used to measure the radioactivity in DNA recovered from
the cells in order to determine the extent of cell division that has occurred in response to a test agent.
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The cytotoxicity and inhibition of cytopathic effect of (±)-calanolide A and (±)-11-demethyl-calanolide
A were studied in HIV-1 IIIB infected MT-4 cell cultures by the MTT staining method. Both compounds
inhibited HIV-1 reverse transcriptase in vitro with IC50 value of 3.028µM/L and 3.965µM/L, respectively,
for (±)-11-demethyl-calanolide and (±)-calanolide A. They also inhibited cytopathic effect in HIV-1
IIIB infected MT-4 cell cultures with IC50 values of 1.081 and 1.297 µM/L, respectively. The outcome
form this study indicated that (±)-11-demethyl-calanolide had a slightly more potent anti-HIV activity
than (±)-calanolide A, suggesting the methyl functionality at C-11 in calanolide A (1) might not be
an essential structural feature for anti-HIV activity. With the help of synthetic analogues a few other
structural features that could impact on the anti-HIV activity of calanolides could be identified. Some of
those are summarized below:

(i) ∆11,12 Olefination diminishes activity.
(ii) A C-12 hetero atom is essential for the activity.
(iii) Relative potencies of C-12 ketone, thiol, azide, amine, and acetylated derivatives suggest stringent

spatial and stereochemical requirements around C-12.
(iv) The enantiomers of 12-oxocalanolide A, synthetic intermediates containing one fewer chiral

center, still retain anti-HIV potency in the cytopathic assays.
(v) The oxygen substituent can either be in the plane of the aromatic system or possess S configuration.
(vi) Optical activity is important. For example, (+)-12-oxocalanolide A and (±)-12-oxocalanolide

A have similar (but not same) anti-HIV activity, but (−)-12-oxocalanolide A is much less active.
(vii) The racemic form, for example, (±)-12-oxocalanolide A, is more active than its pure (+)-enantiomer,

(+)-12-oxocalanolide A, which suggests a possible synergistic effect in the combination of the
two enantiomers.

(viii) Hydrogenation at C-7 and C-8 of calanolides has little effect on the anti-HIV activity,
e.g., the dihydro derivatives of calanolides A (1) and B (4) possess the same activity as the
parent calanolides.

(ix) Modifications at C-4 substituent can affect the anti-HIV activity of calanolides. For example,
a methyl substituent at C-4 (as in cordatolides), instead of a propyl function as in calanolides
reduces the anti-HIV potency.

(x) Both the surface area of the substituted group attached on C-10, S-R3, and the distance between
atoms O-13 and X-14 (O, N, S), L, of the calanolide analogues play important roles in determining
the inhibitory activity of HIV-1 [56].

With the advent of various modern computational tools and mathematical models, it is now
possible to study quantitative structure activity relationships (QSAR) in silico, and to predict the
potential of any drug candidates for any therapeutic application [58]. A Caco-2 cell permeability
QSAR model has recently been used to study various HIV-1 reverse transcriptase inhibitors,
including (+)-calanolides A (1) and B (4), both of which showed a high degree of permeability [59].
This parallel computational screening method incorporated approaches of intestinal absorption
prediction, receptor affinity estimation, inhibitor shape similarity, lipophilicity, and index-based
lipophilic efficiency analyses. Calanolide A (1), among a few other HIV-1 reverse transcriptase
inhibitors, emerged as one of the prioritized hits, as a result of guided prioritization task by the
better binding affinity, crystal ligand similarity, permissible logP value and top lipophilic ligand
efficiency scores.

4.2.4. Mechanism of Action

The evaluation of the activity of (+)-calanolide A (1) against reverse transcriptase and
nonnucleoside reverse transcriptase inhibitor-resistant viruses and enzyme kinetic studies for reverse
transcriptase inhibition suggest that this coumarin possibly interacts with the HIV-1 reverse transcriptase
in a fashion mechanistically different from other known NNTRIs. The biochemical mechanism of
inhibition of HIV-1 reverse transcriptases by calanolide A (1) was studied using two primer systems,
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ribosomal RNA and homopolymeric rA-dT(12-18) [60]. Calanolide A (1) was found to bind near the
active site of the enzyme and interfered with dNTP binding; it inhibited HIV-1 reverse transcriptase in
a synergistic fashion with nevirapine, further distinguishing it from the general class of NNRTIs. It was
also observed that at certain concentrations, this compound could bind HIV-1 reverse transcriptase
in a mutually exclusive manner with respect to both the pyrophosphate analog, phosphonoformic
acid and the acyclic nucleoside analogue 1-ethoxymethyl-5-ethyl-6-phenylthio-2-thiouracil. It was
concluded that calanolide A (1) could share some binding domains with both phosphonoformic acid
and 1-ethoxymethyl-5-ethyl-6-phenylthio-2-thiouracil. It might interact with reverse transcriptase
near both the pyrophosphate binding site and the active site of the enzyme. Later, the same group
of researchers studied possible mechanism of action of action of calanolide A (1) against the HIV
type 1 including a variety of laboratory strains, with EC50 values of 0.10–0.17 µM [60]. Calanolide (1)
could inhibit promonocytotropic and lymphocytotropic isolates from patients in various stages of
HIV disease, and drug-resistant strains, and was found to act early in the infection process like
the known HIV reverse transcriptase inhibitor 2′,3′-dideoxycytidine. It could selectively inhibit
recombinant HIV type 1 reverse transcriptase but not cellular DNA polymerases or HIV type 2
reverse transcriptase. Auwerx et al. [50] studied the possible role of Thr139 in the HIV-1 reverse
transcriptase sensitivity to (+)-calanolide A (1). As T139I reverse transcriptase proved to be resistant to
(+)-calanolide A (1), represents a catalytically efficient enzyme, and requires only a single transition
point mutation (ACA→ATA) in codon 139 could provide some explanation as to why mutant T139I
reverse transcriptase virus strains, but not the other strains containing other amino acid changes at this
position, predominantly emerge in cell cultures under (+)-calanolide A (1) pressure.

Calanolides are non-nucleoside reverse transcriptase inhibitors and mediate their inhibitory effect
in two different template primer systems: primed ribosomal RNA template, and homopolymeric
poly rA-oligoT12-18 primer. Calanolide A (1) was found to inhibit reverse transcriptase by involving
two binding sites, and the action is because of the bi-bi ordered mechanism of reverse transcriptase,
requiring primer binding prior to polymerization [55]. Calanolide A (1) can bind HIV-1 reverse
transcriptase in a mutually exclusive manner with the pyrophosphate analogues phosphoformic acid
or 1-ethoxymethyl-5-ethyl-6-phenylthio-2-thiouracil. This indicates that calanolide A (1) can interact
with reverse transcriptase near the pyrophosphate binding site as well as the active site. Unlike general
non-nucleoside reverse transcriptase inhibitors, calanolide A (1) appears to be at least partially
competitive inhibitor of dNTP binding. Clinical and laboratory assessment on viral load and CD4
count indicated that antiviral effects of calanolide A (1) appeared to be dose-dependent and maximized
on day 14 or 16. Viral life-cycle studies indicated that calanolide A (1) could act early in the infection
process, similar to the known HIV reverse transcriptase inhibitor 2′,3′-dideoxycytidine. In enzyme
inhibition assays, calanolide A (1) could potently and selectively inhibit recombinant HIV type 1
reverse transcriptase but not cellular DNA polymerases or HIV type 2 reverse transcriptase within the
concentration range tested.

4.3. Antimycobacterial Activity

The antibacterial (against Bacillus cereus, B. pumilius, B. subtilis, Escherichia coli, Pseudomonas aeruginosa,
Salmonella typhi, Staphylocossus aureus and Vibrio cholerae) and antifungal (against Alternaria tenuissima,
Aspergillus fumigatus, Aspergillus niger, Candida albicans and Candida tropicalis) properties of Calophyllum
species and their bioactive secondary metabolites, including calanolides, are already known [6,15,61–67].
Kudera et al. [66] reported in vitro growth inhibitory activity of C. inophyllum extract against
diarrhea-causing microorganisms, e.g., Clostridium difficile infant, Clostridium perfringens, Enterococcus faecalis,
Escherichia coli, Listeria monocytogenes and Salmonella enterica. The extract was particularly active against
C. perfringens and L. monocytogenes (MIC = 128 µg/mL). Later, calanolide E (10) was isolated from
C. wallichianum and tested for its anti-Bacillus activity against Bacillus cereus, B. megaterium, B. pumilus and
B. subtilis [20]. However, calanolide E (10) was not bactericidal on the tested Bacillus species, and at the
tested concentration.
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Based on the initial findings on promising antimicrobial properties of calanolides and Calophyllum
extracts, efforts have recently been directed to the study on the effect of these compounds on the
acid-fast bacillus Mycobacterium tuberculosis that causes tuberculosis [17,68,69]. As over the years several
antibiotic resistant and multidrug-resistant M. tuberculosis strains have emerged, and complicated
the existing treatment modalities for tuberculosis, and there has been a recent increase in incidents
of tuberculosis globally observed, the need for new effective, safe and affordable antimycobacterial
drugs has become paramount. Calophyllum brasiliense extract was reported to be active against
M. tuberculosis (IC50 3.02–3.64 µg/mL), and a follow up HPLC analysis of the active extract provided
evidence of presence of calanolides and the antimycobacterial activity induced by C. brasilliense was
attributed mainly to calanolides A (1) and B (4) [17]. Earlier, Xu et al. [68] demonstrated that
calanolide A (1), from Colombian C. lanigerum, was active against both drug-susceptible and
drug-resistant strains of Mycobacterium tuberculosis, e.g., H37Ra (ATCC 25177), H37Rv (ATCC 27294),
CSU 19, CSU 33, H37Rv-INH-R (ATCC 35822), CSU 36, CSU 38 and H37Rv-EMB-R (ATCC 35837).
Efficacy evaluations in macrophages established that this pyranocoumarin could inhibit intracellular
replication of M. tuberculosis at concentrations below the minimum inhibitory concentration (MIC)
determined in vitro. It was postulated that calanolide A (1), like the antitubercular drug rifampicin,
could rapidly inhibit RNA and DNA synthesis followed by an inhibition of protein synthesis,
and could lead to the generation of a new class of pyranocoumarin-based antitubercular drugs. In this
study, the natural calanolides A (1), B (4) and D (7), as well as their semisynthetic analogues were
tested, and (+)-calanolide A (1) and the semisynthetic analogue, 7,8-dihydrocalanolide B emerged
as most effective against tuberculosis with the MIC value of 3.13 µg/mL. While (–)-calanolide B (14)
was moderately effective, calanolide D (7) was found inactive at the highest tested concentration of
12.5 µg/mL. In fact, calanolides, especially calanolide A (1), is unique in a sense that these compounds
have anti-HIV property and were found to be active against M. tuberculosis (MIC = 3.1 µg/mL)
and an array of drug-resistant strains (MIC = 8–16 µg/mL). The antimycobacterial activity of calanolide
A (1) is comparable to that of the well-known anti-tubercular drug isoniazid, and effective against
rifampicin- and streptomycin-resistant M. tuberculosis strains. A recent patent described potent
antimycobacterial property of calanolides and their analogs and provided a method of using these
compounds for the treatment and prevention of mycobacterial infections [70].

4.4. Antiparasitic Activity

Traditionally, natural products, especially in crude forms, have long been used to treat various
parasitic diseases, like babesiosis, leishmaniasis, malaria, trypanosomiasis and so on. Recently,
leishmaniasis and trypanosomiasis have been in research focus of natural products researchers,
aiming at discovering new drug candidates to treat these neglected diseases [71,72]. Extracts of
C. brasiliense and C. inophyllum and calanolides were shown effective against intracellular parasites
causing American trypanosomiasis and leishmaniasis [6]. In a recent study, Silva et al. (2020) [14]
demonstrated that the MeOH extract from stem bark of C. brasiliense was active against amastigote
forms of Trypanosoma cruzi and Leishmania infantum. Bioactivity-guided purification of the extra
afforded calanolides E1 (11) and E2 (12), which were found to be active against T. cruzi (EC50 values of
12.1 and 8.2 µM, respectively) and L. infantum, (EC50 values of 37.1 and 29.1 µM, respectively) in vitro.
Calanolide E1 (11) displayed the best selectivity index (SI) with values >24.4 to T. cruzi and >6.9 to L.
infantum in comparison to calanolide E2 (12). It was concluded that these coumarins could be utilized
as scaffolds for the design and development of novel drug candidates to treat Leishmaniasis and
Chagas diseases.

5. Toxicological Aspects Including Pharmacokinetics

Among the naturally occurring calanolides (Figure 2), calanolide A (1), a specific nonnucleoside
inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase, first isolated from
a tropical tree C. lanigerum that grows abundantly in the Malaysian rain forest, is the most-studied
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compound in terms of its pharmacology, toxicology and synthesis. A series of animal studies [43]
involving mice, rats and dogs established that calanolide A (1) is generally well-tolerated at oral
doses of up to 150 mg/kg in rats and 100 mg/kg in dogs, and possesses a good safety profile [73,74].
Calenolides A (1), B (4) and C (6) were found to be nontoxic in mice (LD50 = 1.99 g/kg), and no
alternation on hepatocytes could be observed during the histological study of the mice treated with the
highest dose applied [74]. During a study looking at the anti-HIV efficacy and toxicity of calanolides
when used in combination with other anti-HIV drugs, no noticeable toxicity could be detected [46].

In the very first study on the safety and pharmacokinetics of calanolide A (1) in healthy
HIV-negative human volunteers revealed that the toxicity of calanolide A (1) was minimal in the
majority of subjects treated with four successive single dose, 200, 400, 600 and 800 mg. While there
were no acute serious or life-threatening adverse effects were observed, among the usual minor
adverse effects, dizziness, oily taste, headache, eructation, and nausea were noticed, but were of
minimal clinical significance. These adverse effects were non-dose-dependent [73]. In this study, it was
found that calanolide A (1) was rapidly absorbed following administration, with time to maximum
concentration of drug in plasma (Tmax) values, depending on the doses, occurring between 2.4 and
5.2 h. It was noted that the levels of calanolide A (1) in human plasma were higher than would have
been predicted from animal studies, but the safety profile was benign. However, taking calanolide
A (1) with food was found to generate significant variability in pharmacokinetics, but with no
detectable interaction with food. Later, these findings were further confirmed by another similar study
carried out by Eiznhamer et al. [75]. Calanolide A (1), the first member of the new family of NNRTIs,
was found to have long elimination half-life, the benign toxicity profile, to achieve trough plasma levels
approximating the EC90 of calanolide A (1) for HIV-1, to have the potential for twice daily dosing,
and to offer the unique HIV-1 resistance profile could make this compound an attractive candidate for
further clinical studies. It was reported that after oral administration, (+)-calanolide A (1) was generally
well tolerated and indication of any safety concern could be observed [48]. Its plasma concentrations
in humans were higher than anticipated from animal data. The AUC and Cmax values increased with
increasing dose, and it appeared that therapeutic levels could easily be achieved in humans.

A comparative study on the relative pharamacokinetic parameters and bioavailability of calanolide
A (1) and its synthetic analogue dihydrocalanolide A (15) was reported [76]. This study compared the
intravenous pharmacokinetics of the dihydro analog relative to the parent compound, calanolide A (1),
and determined the relative oral bioavailability of each drug in CD2F1 mice. Both compounds
displayed similar pharmacokinetic parameters, but the oral bioavailability of the dihydro analogue
was considerably better (almost 3.5-fold) than calanolide A (1). Moreover, the relative ability of
calanolide A (1) and its dihydro analog to change to their inactive epimer forms, (+)-calanolide
B (4) and (+)-dihydrocalanolide B, respectively, was also determined; while conversion of active
calanolides to inactive forms occurred in vitro especially under acidic conditions, no epimers of
either compound were observed in plasma of mice after administration of either (+)-calanolide A (1)
or (+)-dihydrocalanolide A (15). It was suggested that the selection of the dihydro derivative of
calanolide A (1) could be a reasonable choice for further preclinical development and possible Phase
I clinical evaluation as an oral drug candidate for the treatment of HIV infection. Calanolide A (1)
was shown to be distributed readily into the brain and lymph [55]. The distribution and elimination
pattern of calanolide A (1) and its 7,8-dihydro derivative were found to be similar, but the apparent
volume of distribution (Vd) and oral clearance of these compounds were significantly different after
oral administration. It was also demonstrated that calanolide A (1) is generally well tolerated in doses
up to 600 mg. As evident from animal studies, the gastrointestinal intolerance for this compound is not
severe, but the most common adverse events as observed in human trails of calanolide A (1) include
an oily after taste and transient dizziness [55]. The calculated half-life of calanolide A (1) from 800 mg
dosing was reported to be 20 h [55,73].

During the study directed to the evaluation of antitubercular property of calanolides and
their semisynthetic analogues, the pharmacokinetic data indicated that the (+)-calanolide A (1)
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concentrations in plasma could be comparable to the observed in vitro MICs against M. tuberculosis [68].
Both calanolides A (1) and B (4) metabolized by cytochrome P450 CYP3A, and their blood levels could
be enhanced if co-administered with ritonavir. Usach et al. [77] reported the safety, tolerability and
pharmacokinetics profiles of calanolide A (1), as a result of a comprehensive Phase I clinical trial.

6. Therapeutic Potential

Naturally occurring calanolides and their synthetic or semi-synthetic analogs have undergone
several pre-clinical and clinical trials for their anti-HIV activity, aiming at novel anti-HIV drug
development [2,16,55,78]. In fact, calanolide A (1) was at an advanced stage of development as an anti-HIV
drug about a decade ago [78]. Buckheit [79] reviewed therapeutic potential of non-nucleoside reverse
transcriptase inhibitors like calanolides as anti-HIV and commented on strategies for the treatment
modalities for HIV infections. In fact, NNRTIs opened a new avenue of treatment of HIV infections,
as previously this therapeutic area was predominantly covered by nucleoside reverse transcriptase
inhibitors and protease inhibitors. Soon after the discovery of calanolides as a potential ant-HIV agents by
the NCI/NIH, Sarawak Medichem Pharmaceuticals (Sarawak, Malaysia) synthesized calanolide A (1) and
started developing calanolide A (1) as a clinical drug for the treatment of HIV infections. It was a joint
venture between the Sarawak State Government and Medichem Research Inc.

During 2001–2005, an interventional clinical trial was conducted on human volunteers [80],
where patients were randomized to receive (+)-calanolide A (1) or placebo for 21 days. All patients
could elect to receive an open-label, 3-month course of approved retroviral therapy (up to triple-drug
therapy) to be selected by, and administered under the care of, the patients’ physicians. If the
patient had no insurance coverage or did not wish to utilize his/her insurance for anti-HIV
medications, Sarawak MediChem Pharmaceuticals provided these medications at no charge
for up to three months. The trial was primarily aimed at the assessment of the safety and
effectiveness of (+)-calanolide A (1) in HIV-infected patients who had never taken anti-HIV drugs.
In 2006, Craun Research (Kuching, Malaysia), a company established by the Sarawak Government,
acquired Sarawak MediChem, and in 2016, Craun Research announced the completion of Phase
I clinical trials for calanolide A (1) with doses of 200 to 800 mg, which initially started in
2013 [77]. In 2017, F18 (10-chloromethyl-11-demethyl-12-oxo-calanolide A), a synthetic structural
analog of calanolide A (1) was shown to have more potent anti-HIV activity than original molecule,
calanolide A (1) [81,82]. This compound showed better druggable profile with 32.7% oral bioavailability
in rat, tolerable oral single-dose toxicity in mice, and suppressed both the wild type HIV-1 and Y181C
mutant HIV-1 at an EC50 of 7.4 nM and 0.46 nM, respectively [83]. Furthermore, it was shown that
two enantiomers F18, (R)-F18 and (S)-F18, had quite similar anti-HIV property, but (R)-F18 was more
potent than (S)-F18 against wild type virus, K101E mutation and P225H mutation pseudoviruses [81].
However, calanolides, particularly calanolide A (1) remains as an investigational anti-HIV drug and
has not yet been approved by the FDA or any other drugs regulatory bodies for their commercial
pharmaceutical production.

7. Patents

In 1999, calanolides and related antiviral compounds were patented by the Board of Trustees of
the University of Illinois [84]. The patent covered novel antiviral compounds, calanolides, and their
derivatives that could be isolated from plants of the genus Calophyllum in accordance with the specified
method. The patent also included the uses of these compounds and their derivatives alone or in
combination with other antiviral agents in compositions, such as pharmaceutical compositions, to inhibit
the growth or replication of a virus, such as a retrovirus, in particular a human immunodeficiency virus,
specifically HIV-1 or HIV-2. Later, another patent, owned by Parker Hughes Institute, was reported,
which described the novel uses of calanolides as Tec family/BTK (Bruton’s tyrosine kinase) inhibitors,
methods for their identification, and pharmaceutical compositions [85]. It can be mentioned here that
the BTK inhibitors inhibit the enzyme BTK, which is a crucial part of the B-cell receptor signaling
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pathway, and these inhibitors have emerged as a new therapeutic target in a variety of malignancies,
e.g., chronic lymphocytic leukemia and small lymphocytic lymphoma [86].

8. Conclusions

Non-nucleoside reverse transcriptase inhibitors (NNRTIs), efavirenz, nevirapine and delavirdine,
have become one of the cornerstones of highly active anti-retroviral therapy for HIV infections.
Calanolides, as they belong to this pharmacological class of NNRTIs, and because of their high
safety margins and favorable pharmacokinetic profiles, are ideal candidates for novel anti-HIV drug
development. While several analogues of the naturally occurring calanolides have been synthesized,
a good number of preclinical and clinical trials have been conducted to date, and there are a few
patents published, further work is still required to commercially bring any of the calanolide candidates,
natural or synthetic, to anti-HIV drug market. As calanolides show an excellent synergistic and additive
profile in combination with other anti-HIV drugs, it is assumed that calanolides can be considered for
use in combination therapy for HIV infections.
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