
Shah, MA, Adnan, M, Rasul, A, Hussain, G, Sarfraz, I, Nageen, B, Riaz, A, 
Khalid, R, Asrar, M, Selamoglu, Z, Adem, Ş and Sarker, SD

 Physcion and Physcion 8-O-β-D-glucopyranoside: Natural Anthraquinones 
with Potential Anti-cancer Activities.

http://researchonline.ljmu.ac.uk/id/eprint/13924/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Shah, MA, Adnan, M, Rasul, A, Hussain, G, Sarfraz, I, Nageen, B, Riaz, A, 
Khalid, R, Asrar, M, Selamoglu, Z, Adem, Ş and Sarker, SD (2020) Physcion 
and Physcion 8-O-β-D-glucopyranoside: Natural Anthraquinones with 
Potential Anti-cancer Activities. Current Drug Targets. ISSN 1389-4501 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


 

Physcion and Physcion 8-O-β-D-glucopyranoside: Natural Anthraquinones 

with Potential Anti-cancer Activities 

Muhammad Adnan1, Azhar Rasul1*, Ghulam Hussain2, Muhammad Ajmal Shah3*, Iqra Sarfraz1, 

Bushra Nageen1, Ammara Riaz1, Rida Khalid1, Muhammad Asrar1, Zeliha Selamoglu4, Şevki 

Adem5, Satyajit D. Sarker6 

1Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 

Pakistan 

2Department of Physiology, Faculty of Life Sciences, Government College University, 

Faisalabad, Pakistan 

3Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College 

University, Faisalabad, Pakistan 

4Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, 

Nigde, Campus 51240 Turkey 

5Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, Uluyazı Campus 

Çankırı, Turkey 

6School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, England, 

UK 

 

*Corresponding authors 

1. Dr. Azhar Rasul, Assistant Professor, Cell and Molecular Biology Lab, Department of 

Zoology, Government College University, Faisalabad, Pakistan.  

Tel: +92 3218409546, E-mail: drazharrasul@gmail.com; azharrasul@gcuf.edu.pk 

2. Dr. Muhammad Ajmal Shah, Assistant Professor, Department of Pharmacognosy, 

Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 

Pakistan  

Tel: +92 3058265476, Email: ajmalshah@gcuf.edu.pk / ajmal.shangla@gmail.com

mailto:drazharrasul@gmail.com
mailto:azharrasul@gcuf.edu.pk
mailto:ajmalshah@gcuf.edu.pk
mailto:ajmal.shangla@gmail.com


 

Abstract 

Nature has provided prodigious reservoirs of pharmacologically active compounds for drug 

development since times. Physcion and physcion 8-O-β-D-glucopyranoside (PG) are bioactive 

natural anthraquinones which exert anti-inflammatory and anti-cancer properties with minimum 

or no adverse effects. Moreover, physcion also exhibits anti-microbial and hepatoprotective 

properties while PG is known to have anti-sepsis as well as ameliorative activities against 

dementia. This review aims to highlight the natural sources and anti-cancer activities of physcion 

and PG along with associated mechanisms of actions. On the basis of the literature, physcion and 

PG regulate multitudinous cell signaling pathways through the modulation of various regulators 

of cell cycle, protein kinases, microRNAs, transcriptional factors, and apoptosis linked proteins 

resulting in the effective killing of cancerous cells in vitro as well as in vivo. Both compounds 

effectively suppress metastasis, furthermore, physcion acts as inhibitor of 6PGD and also play an 

important role in chemosensitization. This review article suggests that physcion and PG are 

potent anti-cancer drug candidates but further investigations on their mechanism of action and 

pre-clinical trials are mandatory in order to comprehend the full potential of these natural cancer 

killers in anti-cancer remedies. 

Keywords: Physcion, physcion 8-O-β-D-glucopyranoside, natural products, anthraquinone, 

anticancer 

 

 

 

 

 

 

  



 

1. Introduction 

Natural products (NPs) are biologically active chemical substances produced by living organisms 

having molecular weight lower than 3000 Da [1]. NPs have been proven to be valuable source 

for drug development [2-3]. They can attain the same level of effectiveness as synthetic drugs, 

are safer to use for prolonged period of time and are reported to have fewer side effects [4-5]. 

The earliest records of plant-based medicinal system date back to 2600 BC, which reports the use 

of around 1000 plant-derived drugs in Mesopotamia. The Ebers Papyrus also records the 

utilization of more than 700 drugs, majority of which belongs to plants. The Chinese Materia 

Medica and Indian Ayurveda system have been reported extensively over centuries for their 

medicinal values [6]. Historically, all the medicinal preparations were acquired through NPs. 

Recently natural products have provided number of lead compounds for development of anti-

microbial and anti-cancer agents. From 1981-2010, about 34% of the drugs sanctioned by the 

FDA were either natural products or their derivatives [7]. 

Natural products play vital role in the discovery of new anti-cancer agents. Most of the natural 

anti-cancer agents have a wide spectrum of molecular targets as compared to the mono-targeted 

synthetic anti-cancer drugs [8]. Almost 50% of the approved anti-cancer drugs between 1940-

2014 are either directly acquired from natural sources or their synthetic derivatives [9]. 

Vincristine, vinblastine, etoposide phosphate, vinflunine, paclitaxel, homoharringtonine, 

vincristine sulfate, and topotecan are some examples of anti-cancer drugs from plant origin [10-

12] while anthracyclines, bleomycin, dactinomicine and mitomycin are microbial-derived anti-

cancer agents [13]. Citarabine, aplidine, bryostatin-1, ET-743, and dolastatin 10  are examples of 

anti-cancer agents obtained from marine sources [14-15], all of which highlights the immense 

significance of NPs in drug discovery. 

Nature derived phenolic compounds such as flavonoids, carotenoids and tannins are bioactive 

entities with versatile pharmacological properties [16-17]. Anthraquinones are the derivatives of 

1,8-dihydroxyanthrone which belongs to the class of phenolic compounds [18]. Anthraquinone 

enriched plants like rhubarb have been utilized in folk medicine for centuries. Anthraquinone 

derivatives exhibit several pharmacological activities such as antifungal, anti-viral, anti-bacterial, 

anti-oxidant, anti-platelet, and anti-cancer. They also have the capability to cure multiple 

sclerosis and malaria [19-21].  

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/cytarabine
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/dehydrodidemnin-b
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/bryostatin-1
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/dolastatin-10


 

To date, no review is available on the anti-cancer potential of natural anthraquinones, physcion 

and physcion 8-O-β-D-glucopyranoside (PG). This review aims to summarize the studies 

relevant to the pharmacological efficacy of physcion and PG against different cancer types. It is 

speculated that the accumulated data will pave a path for researchers towards the development of 

these natural compounds into pharmacological drugs in the future. The literature was collected 

through various e-sites such as Elsevier Science Direct, Springer Link, Scopus, PubMed, and 

other medical linked journals. Keywords used for searching were “Natural products”, 

“Physcion”, “Physcion 8-O-β-D-glucopyranoside (PG)”, “Anti-cancer activity” and “Antitumor 

effect”. 

2. Natural sources of physcion and PG 

Physcion has been isolated from Rheum tanguticum [22], Rheum palmatum [23] or Radix et 

Rhizoma Rhei [24-26], Rheum emodi [27], Rhamnus sphaerosperma var. pubescens [28], 

Polygonum multiflorum [29], Frangula rupestris [21], Muehlenbeckia hastulata [30], Reynoutria 

elliptica [31], Anethum sowa [32], Vismia rubescens [33], Ventilago madraspatana Gaertn. [34], 

Cassia tora [35], Cassia alata [36], Cassia javanica, Cassia accutifolia, Cassia biflora, Cassia 

italic, Cassia spectabilis, Cassia sophera, Cassia renigera [37], Rumex crispus [38], Osmunda 

japonica [39], marine fungus Microsporum sp. [19, 29, 40], and sponge associated fungus 

Eurotium cristatum [41]. Along with many important herbs like Vitis vinifera, Plantagines 

lanceolatae and Rhizoma graminis, physcion is also found in many vegetables such as beans, 

cabbage lettuce and peas [42] (Table 1) (Figure 1). 

Table 1. Natural sources of physcion and their parts used 

Name of Plants 
Parts used References 

Scientific Name Common Name 

Anethum sowa Dill Roots [32] 

Polygonum multiflorum He shou wu, Tuber fleece flower Dried roots [29] 

Rheum emodi Revand-chini, Himalayan rhubarb Rhizome [27] 

Rheum palmatum Turkey rhubarb, Chinese rhubarb Rhizome [23-26] 

Rheum tanguticum Rhubarb Rhizome [22] 

Rheum dentatus Toothed dock Roots [43] 

Ventilago madraspatana Red creeper Stem bark [34] 

Muehlenbeckia hastulata Wirevine Leaves [30] 

Rhamnus sphaerosperma 

var. pubescens 

Fruto-de-pombo, Arracacho, 

Cangica 
Dried stem [28] 

Cassia javanica Pink shower Leaves [37] 



 

Cassia tora Sickle Senna Seeds [35, 37] 

Cassia alata Candle bush Roots [36-37] 

Rumex crispus Curly dock --- [38] 

Osmunda japonica Asian royal fern --- [39] 

Frangula rupestris --- Stem bark [21] 

Vismia rubescens --- Stem bark [33] 

Eurotium cristatum --- --- [41] 

Reynoutria elliptica Asian knotweed --- [31] 

Microsporum sp --- --- [19, 29, 40] 

Vitis vinifera Grape vine Leaves [42] 

Latuca sativa var. 

capitate 
Cabbage lettuce Leaves [42] 

 

Figure 1. Natural sources and chemical structure of physcion 

PG is a biologically active component of Rheum palmatum[44], Rheum officinale, Polygonum 

multiflorum, Polygonum reynoutria [45], Polygonum cuspidatum [46], Reynoutria sachalinensis 

[47], Fallopia sachalinensis [48] and Rumex japonicus Houtt (Figure 2) [49-52].  



 

Table 2. Natural sources of PG and their parts used 

Name of Plants 
Parts used References 

Scientific Name Common Name 

Rheum palmatum Turkey rhubarb, Chinese rhubarb Roots [44] 

Rheum officinale Chinese rhubarb, Indian rhubarb Roots [45] 

Polygonum multiflorum He shou wu, Tuber fleece flower Roots [45] 

Polygonum reynoutria Japanese knotweed Roots [45] 

Polygonum cuspidatum Peashooter plant, Huzhang Roots [46] 

Reynoutria sachalinensis Giant knotweed Flowers [47] 

Fallopia sachalinensis Giant knotweed Rhizome [48] 

Cassia obtusifolia Sicklepod Seeds [37] 

Cassia occidentalis Coffee senna Seeds [37] 

Rumex japonicus Houtt Goat-hoof Whole plant [49-52] 

 

 

 

Figure 2. Natural sources and chemical structure of PG 

  



 

3. Biological activities of physcion and PG 

The biologically and pharmacologically active anthraquinones, physcion and PG have been well-

known for their potential anti-cancer [19, 22-23, 28, 49, 51] and anti-inflammatory activities [34, 

53]. Moreover, physcion also shows anti-microbial [33] and hepatoprotective properties [54] 

while PG displays ameliorative effects against dementia [46] and have anti-sepsis properties 

[55]. This review spotlights on the mechanism by which both these compounds act to combat 

cancer progression.  

3.1 Anti-cancer activity 

Cancer is a multifaceted malady encompassing genetic, signaling and metabolic aberrations that 

remarkably disturb cellular homeostasis [56]. It is the 2nd leading cause of mortalities worldwide 

with approximately 9.6 million cancer-associated deaths reported in 2018 [57]. Currently 

available treatments for cancer are based on chemotherapeutic drugs which have limited clinical 

effectiveness due to high toxicity and poor selectivity which arouse the ultimate demand for 

safer, reliable and cheap anti-cancer drugs [58]. NPs have been utilized since ancient times for 

the management of several ailments including cancer. Therapeutic potential of NPs against 

cancer is associated with prohibiting angiogenesis, halting metastasis, inducing cell cycle arrest, 

activating tumor suppressor genes as well as regulating cell signaling pathways [59-61]. 

Chemoprevention by naturally occurring entities specifically phytochemicals has turned up as 

auspicious and pragmatic strategy to decrease the risk of cancer and this area of research is 

gaining attention [62]. These natural bioactive entities are multi-targeted having promising 

competency to halt cancer growth and development as compared to monotarget-synthetic drugs,  

[63]. 

Anthraquinones comprise a large class of natural bioactive compounds with their broad spectrum 

of applications in the biological systems [18]. Approximately 700 varied anthraquinone 

derivatives have been reported, out of which 200 belongs to medicinal plants. Anthraquinone 

monomers like rhein, emodin, chrysophanol, physcion, hypericin, and aloe-emodin are gaining 

attentiveness due to their excellent medicinal competency against pathological conditions such as 

cancer. The anti-cancer properties of many anthraquinones are influenced by the substituents 

present on anthraquinone ring. For single anthraquinone, the position of OH-group (C-8 and -5) 

may play a vital role in its anti-tumor activity and hydroxylation at C-1 position can 

subsequently increase its cytotoxicity suggesting that the phenolic OH-groups contribute towards 



 

the anti-cancer potential of anthraquinones [20]. Anthraquinones including physcion and PG 

exert their anti-cancer effects by suppressing the growth of cancerous cells, reprograming cancer 

cell metabolism, inhibiting metastasis, triggering apoptosis, inducing cell cycle arrest, regulating 

various signaling pathways, and improving efficacy of chemo drugs in drug resistance cancer 

cells [18, 20, 64]. 

3.1.1 Induction of cell cycle arrest 

Cell cycle progression from one phase towards the next is predominantly regulated by cyclins 

and cyclin-dependent kinases (CDKs). The amount of CDKs throughout the cell cycle remains 

relatively stable, whereas cyclins’ concentration rises or falls during different stages of the cell 

cycle [65]. Cyclin H binds to CDK7 which serves as a CDK activating kinase. Cyclin D1/D2/D3 

bind to CDK4 and 6 and this CDK-cyclin D network is indispensable for entrance into the G1 

phase. Cyclin E binds to CDK2 and controls advancement from G1 into S-phase. For S-phase, 

Cyclin A-CDK2 complex is essential. Cyclin A binds with CDK1 during late G2 and initial 

mitotic phase to promote entry into it. Cyclin B in complex with CDK1 further regulates mitosis 

[66].  

Physcion and PG have been reported to halt cell cycle at G0/G1 and G2/M phases in many 

cancer cells. Physcion arrested HCT116 cells at G0/G1 phase via downregulating cyclin D1 and 

E [67]. Physcion treatment led to the reduction in cyclin A/D/E, cyclin-dependent kinases 2 and 

4, PCNA, elevation of p21 and suppression of c-Myc and p-Rb, ultimately arresting the cell 

cycle at G0/G1 in MDA-MB-231 breast cancerous cells [22]. SGC-7901 cells treated with 

physcion reduced cyclin A and B1 expression causing cell cycle arrest at G2/M phase [68]. 

Physcion led CNE2 cells to G1 phase arrest via enhanced p21/27 expression and reduced cyclin 

D1 and cyclin E expression [26]. It repressed HOXA5 (Homeobox A5) expression which 

resulted in cyclin D1 reduction and cell cycle arrest at G1 phase in NALM6 and SUPB15 cells 

[25]. Physcion up-regulated the level of p21 in HeLa cells which ultimately leads to cell cycle 

arrest [19]. 

In NALM6 and SupB15 cells, PG caused cell cycle arrest at G0/G1 phase due to SphK1 

suppression and downregulating cyclin A and cyclin D1 while upregulating p27 and p21 

expression [69]. G1 phase arrest in HepG2 cell line by PG was linked with a decrease in the level 

of cyclin D1 and cyclin E and elevated p21 and p27 expression [70]. PG possesses the capacity 

to halt cell cycle at G1 phase in glioblastoma U87 and U251 cells [51]. PG significantly lowered 



 

the level of cyclin D1, CDK4 and CDK6 eventually arresting cells at G1/G0 phase in A549 and 

H358 cells [71]. PG arrested A549 lung cancer cells at G2/M phase by decreasing the levels of 

cyclin B1 and cdc2 [72] while in case of renal cancer cells by decreasing cyclin B1 and 

increasing CDK2 level [73]. Although physcion and PG has been reported to halt cell cycle at 

G2/M or G0/G1 phase, however, whether at G2, M, G0 or G1 needs to be investigated. 

Furthermore, whether physcion and PG directly targets p21 or via its upstream mediator, p53, 

also needs to be studied in future investigations.  

3.1.2 Induction of apoptosis 

In response to various stimuli, cells undergo a programmed death or apoptosis [74]. Apoptosis is 

designated by distinctive biochemical and morphological alterations involving chromatin 

condensation, shrinkage of nucleus, plasma membrane blebbing, and oligonucleosomal DNA 

fragmentation [75-76]. A number of pathophysiological and physiological stimuli can induce 

apoptosis like TNF-α (tumor necrosis factor-α) [77], CD95 (cluster of differentiation 95) [78], 

UV radiations [79], oxidative stress [80], ceramide treatment [81], growth factors [82], bacteria 

[83] as well as cytotoxic drugs [84-86].  

Two significant pathways are mainly involved in the activation of apoptosis, classified as 

extrinsic and intrinsic pathways [76]. These pathways stimulate activation of pioneer caspases 

(caspase-8, -9, and -12) that in turn activate executioner caspases which cleave target proteins 

leading to the cell death [87-88]. Physcion has been documented to trigger apoptosis in different 

cancer cell lines including MDA-MB-231 [22], HeLa [19], HCT116 [67], SGC-7901 [68], 

NALM6, SUPB15 [25], Huh7, Bel7402 [40], SMMC7721, Hep3B [23], and in CNE2 cells [26] 

(Table 2a). PG has been documented to stimulate apoptosis in several cancerous cells such as 

MG-63 [52], NALM6, SupB15 [69], SMMC7721, HepG2 [24], SMMC7721, BEL7402 [89], 

H358, A549 [58, [72], RCC4, ACHN [73], and in KB cells [90] (Table 2b).  

3.1.2.1 Intrinsic apoptotic pathway 

Mitochondria plays key role in induction of apoptosis through modulation of Bcl-2 (B-cell 

lymphoma 2) family members [91]. The role of Bcl-2 family is significant in apoptosis as it 

contains pro-apoptotic and anti-apoptotic proteins. The ratio of Bcl-2 to Bax (Bcl-2-associated x 

protein) has a critical role in determining the fate of cell [92]. Apoptosis resistance and tumor 

cell survival are correlated in many cancers due to an increased proportion of anti- to pro-

apoptotic Bcl-2 proteins [93]. Controlling the discharge of cytosolic cytochrome c from 



 

mitochondria has been the primary mechanism of Bcl-2 family members for apoptosis 

regulation. Elevated expression of anti-apoptotic proteins forbids the loss of cytochrome c while 

pro-apoptotic proteins induce cytochrome c release [91]. The stimuli result in mitochondria outer 

membrane permeabilisation (MOMP) leading towards the discharge of cytochrome c. 

Cytochrome c oligomerises APAF-1 (apoptotic protease activating factor 1) to generate 

apoptosome that activates procaspase-9 and then activates effector caspase-3/-7. These effector 

caspases in turn cleave many substrates causing cell death. Cancer cells prevent MOMP via up-

regulating the level of Bcl-2 by various mechanisms like microRNAs down-regulation or 

transcriptional up-regulation by oncogenic signaling [94]. Moreover, Smac/DIABLO (second 

mitochondria-derived activator of caspase/direct inhibitor of apoptosis protein (IAP)-binding 

protein with low PI) released from the mitochondria to cytosol interact with anti-apoptotic XIAP 

(X-linked inhibitor of apoptosis) protein antagonizing its effect, which normally binds with 

caspases-3, -7 and -9 via IAP repeat domain and prevent heedless activation of caspases [95]. 

Physcion results in the down-regulation of Bcl-2 [19, 22-23, 25] and Ras [96], up-regulation  of 

Bax [19, 23, 25, 96], loss of MMP (mitochondrial membrane potential) [19, 40, 67-68], opening 

of MPT (mitochondrial permeability transition) pore [40], release of cytochrome c to the cytosol 

[26, 40, 67-68], enhanced expression of activated caspase-3 and -9 [19, 22-23, 25, 40, 67-68, 96], 

and cleaved PARP (Poly (ADP-ribose) polymerase) [25-26, 40] resulting in apoptosis. PG causes 

up-regulation of Bax and decrease in Bcl-2 level [69, 72], loss of MMP, cytosolic release of 

cytochrome c [52, 70, 90], increased caspase-9 and -3 activation [52, 69-72, 89-90], increased 

level of cleaved caspase-7 [72], and PARP activation [52, 69, 71, 89] leading to apoptosis. 

Whether physcion and PG targets other members of Bcl-2 family proteins such as Bak and Bad 

to induce apoptosis should be investigated in future researches.  

3.1.2.2 Extrinsic apoptotic pathway 

Death ligands from the family of TNF bind to their associated receptors at the surface of cell to 

initiate extrinsic apoptotic pathway. Upon binding, they form a death inducing signaling network 

which activates caspase-8 and then caspase-8 cleaves procaspase-3 ensuing apoptosis [97]. In 

addition to intrinsic pathway, physcion also induces apoptosis in nasopharyngeal CNE2 cell line 

via extrinsic pathway which is obvious by increased expression of Fas, DR5 (death receptor-5), 

TRAIL (TNF-related apoptosis-inducing ligand), and caspase-8 [26]. Down-regulation of Bid 

(BH3 interacting domain death agonist) and increased caspase-8 activity by physcion is also 



 

found in MDA-MB-231 and PC3 cells along with increased caspase-9 expression [22, 96]. 

Together with intrinsic pathway activation, PG activates extrinsic apoptotic pathway in HepG2 

cells evident from caspase-8 activation and increased DR4 and TRAIL expression although the 

levels of Fas and DR5 remain the same [70].  

3.1.2.3 Role of ROS and microRNAs in physcion and PG induced apoptosis 

Various studies have documented that excess ROS production causes oxidative stress which 

disturbs intracellular redox status and leads to mitochondria mediated apoptosis in cancer cells 

[98-99]. In cancerous cells, a slight escalation in ROS production can increase drug resistance, 

cell survival and growth, nevertheless, excessive increase of ROS can cause cell cycle arrest and 

apoptosis [100]. The role of ROS in regulating Sp1 (specificity protein 1) expression through 

multiple signaling pathways is evident from several reports. High ROS level modulates Sp1 

expression via activating ERKI/2 (extracellular-signal-regulated kinase) signaling in breast 

cancer [101] and primary human diploid fibroblast cells [102], while activating p38 MAPK 

(mitogen-activated protein kinase) signaling in liver cancerous cells [103].  Suppression of Sp1 

by regulation of miR-27a has also been reported [104]. 

MicroRNAs work either as tumor suppressors or oncogenes. They control different cellular 

processes such as proliferation, differentiation, apoptosis, and invasion via suppressing target 

genes expression [105]. Besides apoptosis, miRNAs have a critical role in regulating autophagy 

[106]. miR-370 serves as the tumor suppressor in gastric cancer [107], acute myeloid leukemia 

[108] and laryngeal squamous cell carcinoma [109] while have an oncogenic role in wilms tumor 

[110]. miR-124 is documented to be down-regulated in various cancers such as liver [111], 

breast [112] and gastric [113] cancers.  

Physcion caused up-regulation of miR-370 leading to mitochondrial apoptosis in SMMC7721 

and HepG2 cells [24]. Physcion increased intracellular ROS and mediated the miR-27a/ZBTB10 

(zinc finger and BTB domain containing 10) axis by decreasing miR-27a and elevating ZBTB10 

expressions which ultimately down-regulated Sp1 at both mRNA and protein levels in 

nasopharyngeal cancer [26]. In osteosarcoma MG-63 cells, PG treatment resulted in ROS 

production, which reduced the level of miR-27a and in turn up-regulated Sp-repressor ZBTB10. 

miR-27a is found to have a regulatory effect on Sp1. Down-regulation of miR-27a decreased Sp1 

expression which subsequently suppressed EMMPRIN (extracellular matrix metalloproteinase 

inducer) suggesting miR-27a role in PG induced pro-apoptotic effect [52]. PG also decreased the 



 

expression of miR-21 in KB cells which then up-regulated PTEN (phosphatase and tensin 

homolog) expression and reduced p-Akt and p-GSK3β (Ser9) (glycogen synthase kinase 3 beta), 

thus, inactivating Akt/GSK3β signaling and decreasing survivin expression that led towards 

apoptosis [90]. Several studies have shown that down-regulation of survivin also inhibits 

metastasis [114-116], so, possibly PG may have anti-metastatic role in KB cells which needs to 

be investigated. miR-124, which has been down-regulated in malignant melanomas, acts as a 

tumor suppressor gene and RLIP76 (Ral binding protein) mediates its anti-neoplastic effect 

[117]. Over-expression of RLIP76 is reported in various tumors and its down-regulation results 

in the regression of tumor in many models [118]. PG exerts its antitumor effects in A375 and 

SK-MEL-1 cancer cells via up-regulating miR-124 and down-regulating mRNA and protein of 

RLIP76 dose dependently [117]. RLIP76 is also needed for the angiogenesis of solid tumors 

[119], thus, miR-124 may have suppressive function on angiogenesis along with cell 

proliferation and invasion which should be examined in future studies.  

3.1.3 Inhibition of metastasis by physcion and PG 

The metastasis of cancer is a sequential process that includes cancer cells invasion in the 

nearby tissues, their continuance in circulatory system, penetration in blood or/and lymphatic 

vessel’s wall, and macroscopic secondary tumor growth in the far-away organs [120]. Natural 

products have turned up as potential reservoirs of anti-metastatic agents. Thus, inhibition of 

migration and invasion capability of malignant cells with natural phytochemicals may provide 

new avenues to cure different types of cancer [121].  

EMT (epithelial–mesenchymal transition) is a major step in metastasis of cancer and β‐catenin 

nuclear translocation is the main feature of EMT [122]. After treating HCT116 and 

MDA‐MB‐231 cells with PG, researchers found aggregation of β‐catenin in the cell membrane 

suggesting EMT inhibition by PG [49-50]. PG reduced the level of transcriptional repressors 

(Snail, Slug and Twist) and mesenchymal markers (N-cadherin, fibronectin, vimentin, α‐SMA) 

in addition to the enhanced expression of epithelial marker (E-cadherin) in MDA‐MB‐231 [49], 

HepG2 [70] and HCT116 cells [50]. These transcriptional repressors have important role in 

regulation of mesenchymal and epithelial markers [123]. PG regulates HIF-1α (hypoxia-

inducible factor-1α) through PTEN/Akt signaling. It caused dose dependent increase in PTEN 

and inhibited Akt activation which in turn down-regulated the protein level of HIF-1α and 

EMMPRIN in HCT116 cells [50].  



 

Physcion prohibited metastasis in colorectal SW620 cancer cells by enhancing E-cadherin 

expression and down-regulating the levels of fibronectin, vimentin, N-cadherin, and α‐SMA 

along with transcriptional repressors Slug, Twist and Snail [124]. Physcion causes the 

suppression of migration in SMMC7721 and Hep3B cells in a dose responsive way by 

decreasing the level of MMP-2/-9 (matrix metalloproteinases) and increasing that of TIMP3 

(tissue inhibitor of metallopeptidase inhibitor 3) [23]. Whether physcion and PG directly interact 

with Snail, Twist and Slug to inhibit their activity or targets their nuclear transport machinery, 

further needs to be investigated.  

3.1.4 Role of AMPK in physcion and PG induced apoptosis and metastasis inhibition 

AMPK (AMP-activated protein kinase) signaling acts as a central switch between apoptosis and 

cell survival. AMPK can inhibit cancer by regulating cell proliferation, cell polarity, cell growth, 

autophagy, and stress feedbacks [125]. Inhibition of proliferation in several cancerous cells has 

been documented by elevating p53, p21Cip and p27Kip through AMPK activation [126]. In 

colorectal HCT116 cells, physcion enhanced AMPK phosphorylation, thus, activating AMPK 

signaling which in turn down-regulated HIF1-α expression and subsequently suppressed 

EMMPRIN, causing increased apoptosis. As physcion represses HIF1-α, it has potential to 

thwart aggressive behavior of tumor cells due to hypoxia and invasion [67]. EMMPRIN is 

enriched at the surface of several malignant cancerous cells and acts as an adhesion molecule 

that promotes invasion and metastasis by inducing secretion of matrix metalloproteinases. Along 

with invasion and metastasis, the link between apoptosis and EMMPRIN has been reported in 

various tumor cells [127-128]. HIF-1α up-regulates EMMPRIN by binding at hypoxia 

responsive element in the promoter region of EMMPRIN [129]. Physcion increased p-AMPK 

which then induced endoplasmic reticulum stress in Bel7402 and Huh7 carcinoma cells. 

Endoplasmic reticulum stress was evident by the increase in p-PERK (protein kinase R (PKR)-

like endoplasmic reticulum kinase), GRP78 (78-kDa glucose-regulated protein), CHOP (C/EBP 

homologous protein), eIF2a (eukaryotic translation initiation factor 2A), ATF6 (activating 

transcription factor 6), and GRP94 (94 kDa glucose-regulated protein) levels along with elevated 

expression of activated caspase-12 (a key indicator of ER stress) proposing that physcion 

triggered intrinsic apoptosis by ER stress via activating AMPK signaling cascade [40]. Physcion 

treatment has potential to up-regulate ROS production in gastric SGC-7901 cells which activates 

AMPK leading to apoptosis [68]. Most of the human genome methylation including anomalous 



 

methylation in cancers occurs by DNMT1 (DNA methyltransferase 1) [130]. DNMT1 

overexpression has been documented in various tumors such as pancreatic [131], hepatocellular 

[132] and non-small cell lung carcinomas [133]. In, SMMC7721 and HepG2 cells, AMPK 

activation by physcion decreases Sp1 expression both at mRNA and protein levels which in turn 

suppress DNMT1 and leads to apoptosis [24]. In glioblastoma U87 and U251 cells, PG exerts its 

anti-tumor effects (apoptotic and anti-invasive) by repressing Skp2 (S-phase kinase-associated 

protein expression) and results in the subsequent up-regulation of p21/p27 which are the 

downstream targets of Skp2. PG treatment enhanced ROS generation with AMPK activation and 

mTOR suppression which indicates the regulation of Skp2 expression by PG via ROS generation 

and modulation of AMPK/mTOR. Either compound C (AMPK inhibitor) or NAC (ROS 

inhibitor) remarkably abolished the suppressing effect of PG on Skp2 expression, showing that it 

regulated the Skp2 expression via modulation of ROS/AMPK/mTOR signaling [51]. 

Several investigations have proven the conflicting role of AMPK in metastasis where AMPK 

signaling inhibits metastasis in some cancers and promotes metastasis in other. AMPK activation 

by metformin in melanoma resulted in the prohibition of invasion and migration [121] while 

lysophosphatidic acid induced AMPK activation enhanced metastasis in ovarian cancer [134]. 

Metastatic potential in SW620 cells is halted by physcion via the down-regulation of SOX2 (Sex 

determining region Y-box 2) which is carried out by the activation of AMPK/GSK3β signaling 

due to intracellular ROS production predominately of hydrogen peroxide [124]. In HepG2 cells, 

PG treatment enhanced intracellular level of ROS and activated AMPK. AMPK activation 

decreased expression of Sp1 which subsequently suppressed DNMT1 expression. Down-

regulation of DMNTI induced apoptosis and suppressed metastasis [57].  MDA-MB-231 cells 

treated with PG led to the inhibition of AMPK which in turn decreased the level of Sp1 protein 

and subsequently reduced the expression of DNMT1. Down-regulation of DMNTI reduced 

mesenchymal markers expression and boosted the E‐cadherin expression, thus, suppressed 

metastasis [49, 70]. In contrast, DNMT1 is as an upstream target of Sp1 in bladder cancerous 

cells [135]. PG suppresses metastasis by AMPK activation in HepG2 and SW620 cells while 

AMPK inhibition in MDA-MB-231 and this conflicting role of AMPK in metastasis might be 

associated with the difference in cancer but further researches are mandatory to fully 

understand AMPK signaling role in cancer. Anti-cancer activities of physcion and PG are 

summarized in Table 2(a) and Table 2(b), respectively. 



 

Table 3 (a) Anti-cancer activities of physcion 

Cancer type Cell line No. of cells 
Treatmen

t time 
EC50/Dose Molecular targets 

Cell cycle 

arrest 
References 

Liver 

Hep3B, 

SMMC7221 
5×103 cells/well 24h, 48h 5, 10 μM 

↑Cleaved caspase-3, ↑Bax, 

↓Bcl-2, ↑LC3B II, ↑Beclin-1, 

↑Atg5, ↓p62, ↓MMP-2/-9 

↑TIMP3, ↓p-JAK2, ↓p-

STAT3, ┴JAK2/STAT3 

pathway 

--- [23] 

Huh7, 

Bel7402 
--- 

24h, 48 h, 

72h 
5, 10 μM 

↑GRP78/94, ↑CHOP, 

↑Caspase-3, ↑PARP, 

↑Caspase-9, ↑Caspase-12, ↑p-

PERK, ↑BIP, ↑p-eIF2a, 

↑ATF6, ↑p-AMPK 

--- 
[40] 

 

SMMC7721 

and HepG2 
1×105 cells/ml 24h, 48 h 10, 20 μM 

↑Caspase-3/-9, ↑miR-370, 

↑p-AMPK, AMPKAct,↓Sp1, 

↓DNMT1 

G1 [24] 

Leukemia 
NALM6, 

SuPB15 
5 × 105 cells/well --- --- 

↑Caspase-3, ↑PARP, 

↓HOXA5, ↑Bax, ↓Bcl-2, 

↓cyclin D1 

G1 [25] 

Breast 
MDA-MB-

231 
5 × 104 cells/ml 72 h 45.4 μM 

↓Cyclin A/D/E, ↓CDK2, 

↑CDK4, ↓PCNA, ↑p21, ┴c-

Myc, ┴Rb, ↑caspase-3/-8/-9, 

↑cleavage of PARP, ↓Bcl-2, 

↓Bid 

G0/G1 [22] 

Nasopharyn- 

geal 

 

CNE2 
5.0×103 

cells/well 
24h, 48h 10, 20 μM 

↓Cyclin D1,↓Cyclin E, ↑p21, 

↑p27, ↑Caspase-3, ↑Cleavage 

of PARP,↑caspase-9, 

↑TRAIL, ↑Fas, ↑DR5, ↓Sp1, 

↑ROS, ↑LC3B-II, ↓p62, 

↑ZBTB10, ↓miR-27a 

G1 [26] 

Colorectal SW620 5×103 cells/well --- --- 
┴EMT, ↑E‐cadherin, 

↓Vimentin, ↓αSMA, 
--- [124] 



 

↓N-cadherin, ┴Snail, ┴Twist, 

┴Slug, ↑ROS, ↑p-AMPK, 

↑GSK3β, ↓SOX2 

HCT116 5×103 cells/well 
24h, 48 h, 

72h 

1.25, 2.5, 5 

μM 

↓ Cyclin D1, ↓Cyclin E, 

↑Caspase-9/-3, ↑p-AMPK, 

AMPKAct, ↓HIF-1α, 

↓EMMPRIN 

G0/G1 [67] 

Cervical 

HeLa 

 
5×103 cells/well 24h --- 

↑ROS, ↑Caspase-3 and -9, 

↑p53, ↑p21, ↑Bax, ↓Bcl-2 
--- [19] 

SiHa, C33A 

 
5×103 cells/well 24h 

12.5 

to 50 

μg/ml 

↑TBARS, ↑Micronuclei 

formation, ↑PARP-1 
--- 

 
[28] 
 

Oral HSC-3 5×103 cells/well 12h 

12.5 

to 50 

μg/ml 

↑Caspase-3, ↓p-Akt, --- [28] 

Gastric SGC-7901 --- 
24h, 48h, 

72h 

1.25, 2.5, 5 

μM 

↓Cyclin A, ↓Cyclin B1, 

↑Caspase-3, ↑ROS , 

↑p-AMPKa1, ┴mTOR 

G2/M [68] 

Neuro- 

blastoma 

SK-N-BE(2)-

C 
--- --- 40 µM 

↑JNK, ↑p-ERK, ↑p38 MAPK, 

↑hST8Sia VI 
--- [29] 

Prostate PC3 
5 × 104 

cells/ml 
72 h 

0 to 100 

μM 

↑Bax, ↓Bcl-2, ↓Ras, ↓Bcl-

xL,↑Caspase-3, ↑Caspase-8, 

↑Caspase-9 

 [81] 

 

 

 

 

 

       



 

 Table 3 (b). Anti-cancer activities of PG 

Cancer type Cell line No. of cells 
Treatment 

time 
EC50/Dose Molecular targets 

Cell cycle 

arrest 
References 

Liver 
SMMC7221, 

Bel-7402 
--- --- --- 

↑Caspase-3, ↑PARP, 

↑Caspase-9, ↓PIM1, ↓Bcl-2, 

↓Bcl-xL, ↑Bax 

--- [89] 

 HepG2 5×103 cells/well 
24h, 48 h, 

72h 
--- 

↓Cyclin D1, ↓Cyclin E, 

↑p21/27, ↑Caspase-3, 

↑PARP, ↑Caspase-8, 

↑Caspase-9, 

↓N-cadherin, ↑E-cadherin, 

↓DNMT1, ↓Sp1, ↑ROS, 

↑p-AMPK 

G1 [70] 

Lungs 

A549, H358 

 
1×105 cells/ml 24h, 48h 10, 20 μM 

↑Caspase-3, ↑Cleaved PARP, 

↓CDK4, ↓CDK6, ↓Cyclin 

D1, ↑PPARγ 

G0/G1 
 
[71] 
 

A549 1×104/0.2ml 24 h, 48 h 

53.01 

μg/ml at 

24h, 27.31 

μg/ml at 

48h 

↓p-Cdc2 (Tyr15), ↑Bax, 

↑Caspase-3/-7, ↓Bcl-2, 

↓Cyclin B1, 

G2/M [72] 

Leukemia 
NALM6, 

SuPB15 
--- 

24h, 48h, 

72h 
5,  10 μM 

↑Caspase-3, ↑PARP, ↓Bcl-2, 

↑Bax, ↓Cyclin D1, ↓Cyclin 

A, ↑p21/27, ┴SphK1 at 

translational level, ↓S1P, 

↑ceramide 

 

G0/G1 [69] 

Renal RCC4, ACHN --- 24h, 48h 

 

10, 20μM 

 

 

↓Ki-67 protein, ↑CDK2, 

↓Cyclin B1, ↑Cleaved 

Caspase-9, ↑Caspase-3, 

↓HK2 

G2/M 
 
[73] 
 

Glioblastoma U87, U251 1×104cells --- --- 
↓Skp2, ↑p21, ↑p27, ↑ROS, 

AMPKAct 
G1 [51] 



 

Breast MDA-MB-231 
1×104 

cells/well 

24h, 48h, 

72h 

10, 20, 50 

μg/ml 

┴EMT, ↑E‐cadherin, 

↓N‐cadherin, 

↓Vimentin, ↓α‐SMA, 

↓Fibronectin, ↓Snail, 

↓Slug, ↓Twist, ┴DNMT1, 

↓Sp1, ↓EMMPRIN, 

↑p-AMPK 

--- [49] 

Colorectal HCT116 cells 1.2×105 cells/ml --- --- 

↑E‐cadherin, ↓Vimentin, 

↓N-cadherin, ┴EMT, 

↓Fibronectin, ↓Snail, ↓Slug, 

↓αSMA, ↓Twist, ↑PTEN, 

↓AktAct, ↓HIF1α, 

↓EMMPRIN 

--- [50] 

Osteosarcom

a 

 

MG-63 3×103  cells 
24h, 48h, 

72h 

50, 100 

μg/ml 

↑Caspase-3, ↑Caspase-9, 

↑PARP, ↑ROS, ↓miR-27a , 

↑ZBTB10, ↓Sp1,  

↓EMMPRIN 

--- [52] 

Melanoma 

 

SK-MEL-1, 

A375 

 

 

5x103 cells/well --- --- ↑miR-124,↓RLIP76 --- [117] 

Oral 

 
KB 3×104 

24h, 48h or 

72 h 

10, 20, 50 

μg/ml 

↑Bax, ↓Bcl-2, ↓miR-21, 

↑Caspase-3/-9, ↑PTEN, 

↓p-GSK3β, ↓p-Akt, ↓miR-21, 

↓Survivin 

--- [90] 

Up-regulation  ↑, Down-regulation ↓, Inhibition ┴, Activation Act



 

3.1.5 Induction of autophagy by physcion 

Autophagy is defined as type-II programmed cell death and is distinguished by the production of 

autophagy vacuoles in the cytoplasm. It is a response of cancerous cells towards different anti-

cancer treatments. Recent evidences have shown that natural bioactive compounds are involved 

in modulating autophagy via inhibiting or inducing various transcriptional factors and cellular 

signaling pathways [136-137]. Physcion induced autophagy in SMMC7721 and Hep3B cells 

which was evident by the decreased level of p62 and increased level of autophagy markers Atg5 

(Autophagy related 5), Beclin1 and LC3B-II, autolysosomes and autophagosomes. Physcion 

induced autophagy involves JAK2/STAT3 (Janus kinase 2/signal transducer and activator of 

transcription 3) signaling. Physcion reduced phosphorylation of JAK2 and STAT3, thus, 

inactivating JAK2/STAT3 pathway.  

Regarding metastasis, autophagy can have pro-metastatic or anti-metastatic action. Blocking 

autophagy abrogated the anti-metastatic effects of physcion in liver cancer cells, indicating its 

anti-metastatic role [23]. Physcion also stimulated autophagy in CNE2 nasopharyngeal cells 

which is noticeable by increased LC3B-II and decreased p62 levels [26]. Pro-autophagic effects 

on osteosarcoma cells have been reported by ROS generating agents [138-139] and PG is known 

to induce ROS mediated apoptosis in osteosarcoma, so, research in this regard is needed that PG 

might also inhibit proliferation of osteosarcoma cells via inducing autophagy. 

3.1.6 Synergistic effects of physcion  

Currently, mono-drug therapy is not a conventional therapeutic approach for treating diseases 

with intricate pathophysiology such as AIDS and cancer where single drug proves less effective, 

so, the conservative approach of “one disease, one drug, one target” has been shifted towards 

multi-drug therapy [140]. Sorafenib’s anti-proliferative effects in Huh and HepG2 cells were 

enhanced by physcion treatment. Physcion with sorafenib down-regulated Notch 3 expression 

which in turn decreased the level of p-Akt, thus, repressing Notch 3/Akt signaling [141]. 

Leukemic K562/ADM cells are resistant to adriamycin and have significantly down-regulated 

miR-146a expression associated with elevated expression of CXCR4 (C-X-C chemokine 

receptor type 4) (miR-146a target). Drug resistance to adriamycin was reversed by physcion via 

elevating the expression of miR-146a hence, down-regulating CXCR4 expression. Physcion also 

impeded binding between CXCR4 and CXCR12 to impair migration [142]. 

3.1.7 Physcion as inhibitor of 6-phosphogluconate dehydrogenase (6PGD) 



 

Reprogrammed cell metabolism generally exists in different types of cancerous cells. These 

abnormal changes in metabolism provide energy as well as metabolic intermediates which are 

essential for the increased proliferation of cancer cells. Various investigations have revealed that 

cancer cells overexpress oxidative pentose phosphate pathway enzymes to support cellular 

growth and survival. 6-phosphogluconate dehydrogenase (6PGD) is the 3rd enzyme in the 

oxidative PPP (pentose phosphate pathway) that converts 6-phosphogluconate to ribulose-5-

phosphate (Ru-5-P) and generates NADPH to control redox status in the mammalian cells [143]. 

Over-expression of 6PGD has been documented to be involved in several cancers such as lung, 

thyroid, cervical intraepithelial neoplasia, and colorectal cancers. Prohibition of 6PGD causes 

decreased cellular proliferation and H2O2-induced cell death, probably due to scarcity of 

formation of reducing power NADPH. Thus, 6PGD acts as a novel promising target to overcome 

chemotherapeutic resistance [144-147].  

Physcion and its derivative S3 acted as 6PGD inhibitors with IC50 values of about 17.8 µM and 

38.5 µM, respectively, while Kd value of interaction between S3-6PGD and physcion-6PGD 

were found to be 17.1 µM and 26.0 µM, respectively. Molecular docking showed that physcion 

attaches to a pocket near 6-PG binding site surrounded by residues Lys 76, Met 15, His 452, and 

Lys 261 of 6PGD and creates hydrophobic interaction with them as well as with Asn 103 forms 

hydrogen bond via its 10 keto group. Treatment of K562 cells with physcion and H1299 cells 

with S3 for 12 h decreased ratio of NADPH/NADP+, levels of Ru-5-P, biosynthesis of lipids, 

RNA and PPP oxidative flux while increased intracellular level of 6-PG without triggering 

apoptosis. Enhanced p-AMPK, p-ACCA1 (Acetyl-coenzyme A carboxylase carboxyl 

transferase), intracellular levels of ATP, lactate formation, and LKB1 (liver kinase B1) complex 

disruption was found in H1299 cells treated with physcion or S3. LKB1-deficient A549 cells 

showed decreased expression of Ru-5-P and 6PGD activity without affecting lipogenesis and 

phosphorylation of AMPK. HFF and HaCaT cells reduced the levels of Ru-5-P and 6PGD 

activity upon physcion treatment while lipogenesis was decreased along with enhanced p-AMPK 

[146]. Inhibition of 6PGD by physcion in HCC cells reduced cellular growth and triggered 

apoptosis. Furthermore, physcion also considerably increased the pro-apoptotic and anti-

proliferative effects of cisplatin, doxorubicin and paclitaxel in HCC cells [148]. Physcion 

suppressed 6PGD activity in CaLo and CaSki cervical cells. Inhibition of 6PGD enhanced 

apoptosis while migration and proliferation were significantly down-regulated in cervical 



 

carcinoma cells. Physcion activated AMPK which suppressed 6PGD and in turn decreased the 

activity of Rac1 and RhoA, both having cell migratory roles [149]. Inhibition of 6PGD by 

physcion sensitized the response of breast cancer to chemotherapeutic agents as evident from 

increased death and reduced growth of breast cancer cells upon exposure to combined treatment 

with physcion and doxorubicin or paclitaxel as compared to single drug treatment. Inhibition of 

6PGD by physcion was brought about by the activation of AMPK which in turn inhibited ACC1 

by phosphorylating it at S79. Prohibition of ACC1 results in significantly reduced lipid 

biosynthesis [150]. It is noted that AMPK inhibition in HCC, breast and cervical cancer cells 

attenuated the physcion induced effects suggesting prohibition of 6PGD acts on HCC, breast and 

cervical cancer cells by activation of AMPK. [148-150]. DHA and physcion synergistically 

reduced proliferation and triggered apoptosis in K562 cells without causing hemolysis. Halting 

the viability of leukemia cells was neither due to induced oxidative stress nor by COX2 

(cyclooxygenase-2) inhibition. Rather, physcion and DHA activated AMPK which in turn 

inhibited ACC1 by phosphorylating it and resulted in reduced cellular proliferation and 

attenuated biosynthesis of lipids [147]. Ru-5-P formation by 6PGD prevents activation of AMPK 

through disruption of the LKB1 active complex [146]. Physcion and DHA treated cells showed 

reduced level of Ru-5-P and elevated activity of LKB1 suggesting LKB1 as the upstream AMPK 

activator with synergistic drug treatment and the effect of physcion and DHA was mainly 

mediated via ribulose-5-phosphate dependent regulation of LKB1 in cells [147]. Thus, treatment 

combined with physcion and DHA may serve as a treatment strategy against leukemia with no 

hemolysis. Thus, future studies are recommended to further investigate the role of combinatorial 

treatment of physcion with chemo-drugs in halting metastasis and chemo-sensitization of cancer 

cells as 6PGD is an important mediator of metastatic transformations and drug resistance in 

cancer. Being a nutraceutical, intake of dietary supplements of physcion with chemotherapy 

might have potential to reduce the side effects of chemotherapy and enhance the efficacy of 

cancer drugs.  

3.1.8 Other molecular targets associated with anti-cancer activity of physcion and PG 

Physcion triggered necrosis and caspase independent apoptosis in cervical C33A and SiHa as 

well as oral HSC-3 carcinoma cells by inducing various cellular events. Treatment with physcion 

caused high oxidative stress and induced irreversible DNA injury during cell cycle in cervical 

cancer cells. Physcion inhibited Akt in HSC-3 cells as compared to cervical cancer cells. 



 

Oxeiptosis and many other cell deaths have been linked with increased oxidative stress. Reactive 

oxygen and nitrogen species interact with physcion to alter the concentration of •NO and H2O2, 

therefore, affecting the activity of enzymes such as superoxide dismutase and NADPH oxidase 1 

[28]. In the case of limited DNA damage, PARP-1 repairs DNA by catalyzing ADP-ribosylation 

using NAD+ which is then regenerated using adenosine triphosphate. If DNA is not repaired, cell 

undergoes apoptosis via caspase dependent pathway. On the contrary, extensive DNA damage 

may lead to necrosis as continuous PARP-1 activation exhaust ATP and  NAD+ stocks so, ATP 

dependent caspase pathways cannot be initiated [151]. Physcion treatment led to the down-

regulation of HOXA5 in NALM6 and SUPB15 cells which then increased Bax and decreased 

Bcl-2 level leading to mitochondrial apoptosis [25]. SphK1 (sphingosine kinase 1), an enzyme 

involved in the regulation of the ceramide/S1P balance, is inhibited at translational level by PG, 

thus, significant increase in the ceramide/S1P ratio results when intracellular level of ceramide 

increases while that of SIP1 decreases which resulted in enhanced apoptosis in human SUPB15 

and NALM6 cells [69]. As the up-regulation of miR-124 by PG is evident in melanoma [117] 

and SphK1 is documented as a direct target of miR-124 in various cancerous cells [113, 152], 

therefore, research in this regard is needed whether SphK1 expression by PG is down-regulated 

due to increased expression of miR-124 or not. PG anti-neoplastic effects in Bel7402 and 

SMMC7721 cells were linked with dose dependent suppression of mRNA expression and protein 

level of PIM1 (Proto-oncogene serine/threonine-protein kinase 1) along with its downstream 

targets Bcl-2 and Bcl-xL [89]. Furthermore, PG activates apoptosis in lung cancer cells via 

mitochondrial pathway by up-regulation of PPARγ (Peroxisome proliferator-activated receptor 

gamma) at transcriptional and translational levels [71]. In ACHN and RCC4 cells, PG inhibited 

glycolysis and induced apoptosis via suppressing HK2 (hexokinase 2) expression. Glycolysis 

inhibition was evident from the decreased lactate production and glucose consumption. PG 

decreased HK2/VDAC (voltage dependent anion channel) binding and former’s mitochondrial 

fraction by enhancing its dissociation from mitochondrial membrane and increasing its cytosolic 

fraction, thus, redistributing HK2 [73]. The molecular targets and mechanisms of action of 

physcion and PG have been displayed in Figure 3 and Figure 4, respectively. 



 

 

Figure 3. A diagrammatic representation of molecular targets for anti-cancer activity of physcion and P 

 



 

 

Figure 4. Representation of molecular mechanisms of actions associated with anti-cancer activity of physcion and PG



 

3.2 In vivo studies and safety profiling 

Physcion treatment at the dosage of 20 and 40 mg/kg/day resulted in apoptotic cell death dose 

dependently in xenograft model which was established by injecting Huh7 cells into left flanks. 

Physcion treatment didn’t affected total body mass of the xenograft mouse model. The 

mechanism of action of physcion involves activation of ER stress via reduced level of Ki-67 

along with enhanced level of activated caspases-3/-12 and CHOP [40]. Physcion inhibited tumor 

growth and stimulated apoptosis at the dosage of 20 and 40 mg/kg/day in BALB/c xenograft 

mice model established by inoculation of HepG2 cells. Physcion treatment caused up-regulation 

of miR-370, increased p-AMPK while significantly decreased Sp1 and DNMT1 expression 

suggesting the antitumor efficacy of physcion via modulating AMPK/Sp1/DNMT1 signaling 

pathway [24]. Results from in vivo investigation on pulmonary metastasis model of 

hepatocellular carcinoma showed that physcion treatment decreased tumor size, tumor weight 

and pulmonary metastasis in a dose dependent mode (20 and 40 mg/kg/ day) without affecting 

total body weight and normal body tissues [23]. In CNE2 injected xenograft mouse model, 

physcion suppressed tumor growth without influencing total body weight and caused autophagy 

and apoptotic cell death as evident by increased level of LC3B-II and cleaved caspase-3. 

Inhibition of tumor growth was linked to reduced miR-27a and SP1 expressions [26]. In another 

in vivo investigation, combinatorial treatment of physcion and sorafenib enhanced caspase-3 

activity and repressed Notch/Akt signaling as compared to sorafenib alone [141]. Physcion in 

combination with adriamycin reversed drug resistance in K562/ADM cells. Physcion enhanced 

antitumor effect of adriamycin by upregulating miR-146a expression which then suppressed the 

expression of CXCR4 [142]. Physcion in combination with paclitaxel inhibited tumor growth in 

xenograft mouse model (established by inoculation of MDA-MB-231 cancer cells) more 

effectively as compared to physcion or paclitaxel alone [150]. Treatment with S3 (physcion 

derivative) at dose of 20 mg kg−1 d−1  reduced 6PGD activity, Ki-67 expression and tumor growth 

without causing toxic effects in xenograft models injected with H1299 cells, Tu212 cells and 

K562 cells which further validates the in vivo efficacy S3 as a metabolic inhibitor [146]. Human 

K562 cells inoculated-xenograft model showed significantly reduced tumor growth when treated 

with DHA (dihydroartemisinin) and S3 at dose of 2.5 mg/kg/day and 5 mg/kg/day respectively 

for 15 days. Intraperitoneal administration of this dose caused reduced tumor growth 

accomplished by activation of AMPK without any adverse effect on hematopoietic properties of 



 

xenograft model as no alterations in RBC and hemoglobin count were found. Moreover, 

histological studies show that DHA + S3 administration did not induce any noticeable damage to 

heart, kidney, liver or bone marrow tissues of mouse model. More interestingly, physcion + 

DHA treatment remarkably reduced the growth of primary leukemia cells from a leukemia 

patient while this treatment didn’t exerted any effect on the viability of WBCs and RBCs from a 

healthy human donor which further validates its anti-leukemia potential [147]. Leukemia’s are 

most common and deadliest forms of cancer, thus, physcion’s potential against leukemia should 

be further investigated in patient-derived cancer xenografts and preclinical trials in combination 

with chemo-drugs.  

PG has been investigated in lung metastatic mouse model established through injecting 

MDA‐MB‐231 cells by tail vein of 3-4 weeks old female nude mice. Histological analysis 

showed that PG lowered the metastatic pulmonary tumor amount and micro-

metastatic nodules number per field at both 20 and 50 mg/kg dosage after 3 weeks of injection 

and this anti-metastatic effect was linked by p-AMPK along with SP1 and DNMT1 down-

regulation, thus, supporting in vitro studies [49]. It displayed anti-leukemic activity in xenograft 

model of mouse generated by inoculating NALM6 cells into 2 months old NSI mice through 

angular veins. PG prolonged survival of xenograft model and resulted in tumor reduction evident 

by reduced weight of spleen at both 20 and 40 mg/kg [69]. PG at a dose of 40 and 80 mg/kg 

delayed tumor growth, increased activation of caspase-3 and repressed PIM1 expression in tumor 

tissues suggesting apoptosis induction via PIM1 modulation in xenograft mice model using HCC 

cells, thus, in vivo results correlate with in vitro findings [89]. Investigation of PG efficacy 

against NSCLC has shown delayed tumor growth, dose dependent increase in apoptosis with 

significant increase in caspase-3 and PPARγ,  activation as revealed via IHC assay [71]. The in 

vivo anti-ccRCC effect of PG demonstrated significant tumor growth suppression at a dose of 40-

80 mg/kg without changing body weight of murine model indicating its general safety. In vitro 

results are supported by the fact of increased apoptosis associated with reduction in HK2 

expression in the tumor tissues [73]. PG prohibited tumor progression in nude mice grafted with 

KB cells in dose dependent way (10, 20, 40 mg/kg/day). The inhibitory effect was linked with 

marked downregulation of survivin and miR-21 expression and significant up-regulation of 

PTEN [90].  

  



 

4. Conclusions and future recommendations 

This review highlights the anti-cancer research progress of both physcion and PG in many in 

vitro and in vivo models of cancer. Data obtained from various investigations have shown that 

physcion and PG are potential anti-cancer agents. They trigger apoptosis, cause cell cycle arrest 

and inhibit metastasis in various cancers via interfering with different cellular mechanisms which 

are pivotal in the development of cancer and its progression. Physcion induced autophagy acts as 

both pro-apoptotic and pro-survival factor in different cancers. Physcion acts as potent inhibitor 

of 6PGD and can be used synergistically with chemo-drugs such as adriamycin to enhance their 

anti-cancer effects and to prevail over drug resistance. In vivo studies on physcion indicated its 

general safety as non-toxic compound. However, safety profiling was largely focused on their 

effect on body weight of animal while very few studies provide histological analysis of tissues 

from various organs, thus, future researches should focus on the exploration of hepatotoxicity, 

nephrotoxicity and cardiotoxicity of physcion as well as its effects on serum chemistry. Various 

studies report the anti-cancer potential of physcion in cell-line derived xenografts, thus, physcion 

and its derivatives should also be explored in patient-derived cancer xenografts in future studies. 

Further research should be conducted to determine the safe dosage of physcion and PG for 

therapeutic implications. Natural dietary sources of physcion should also be explored for the 

preparation of nutraceutical supplements for cancer patients. Furthermore, pharmacokinetics, 

pharmacodynamics, drug metabolism and bioavailability of physcion and its derivatives also 

needs to be investigated. Although physcion and PG possess good potential against various 

cancers, however, preclinical and clinical trials are yet mandatory to completely figure out their 

potential in order to establish these compounds as lead candidates for cancer therapies. 
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