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Abstract

Lumbar Spinal Stenosis causes low back pain through pressures exerted on the spinal

nerves. This can be verified by measuring the anteroposterior diameter and foraminal widths

of the patient’s lumbar spine. Our goal is to develop a novel strategy for assessing the extent

of Lumbar Spinal Stenosis by automatically calculating these distances from the patient’s

lumbar spine MRI. Our method starts with a semantic segmentation of T1- and T2-weighted

composite axial MRI images using SegNet that partitions the image into six regions of inter-

est. They consist of three main regions-of-interest, namely the Intervertebral Disc, Posterior

Element, and Thecal Sac, and three auxiliary regions-of-interest that includes the Area

between Anterior and Posterior elements. A novel contour evolution algorithm is then

applied to improve the accuracy of the segmentation results along important region bound-

aries. Nine anatomical landmarks on the image are located by delineating the region bound-

aries found in the segmented image before the anteroposterior diameter and foraminal

widths can be measured. The performance of the proposed algorithm was evaluated

through a set of experiments on the Lumbar Spine MRI dataset containing MRI studies of

515 patients. These experiments compare the performance of our contour evolution algo-

rithm with the Geodesic Active Contour and Chan-Vese methods over 22 different setups.

We found that our method works best when our contour evolution algorithm is applied to

improve the accuracy of both the label images used to train the SegNet model and the auto-

matically segmented image. The average error of the calculated right and left foraminal dis-

tances relative to their expert-measured distances are 0.28 mm (p = 0.92) and 0.29 mm (p =

0.97), respectively. The average error of the calculated anteroposterior diameter relative to

their expert-measured diameter is 0.90 mm (p = 0.92). The method also achieves 96.7%

agreement with an expert opinion on determining the severity of the Intervertebral Disc

herniations.
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1. Introduction

Lumbar Spinal Stenosis (LSS) causes low back pain through pressures exerted on the spinal

nerve and could result in sciatica which symptoms include radicular pain, atypical leg pain,

and neurogenic claudication [1]. A review of the literature shows some loose consensus that

categorizes low back pains that persist for more than twelve weeks as Chronic Lower Back

Pain (CLBP). An economic impact study on CLBP [2] concluded that the success chance of a

patient’s rehabilitation depends largely on early identification of the cause of the back pain.

Unfortunately, due to a heavy demand for neuroradiologists and specialists, early identifica-

tion may not always be possible. The overall time for a diagnosis could take many weeks to

complete since it may include referral and waiting time for a specialist doctor and the time for

a medical scan and the subsequent analysis. In England for example, the NHS reported a sig-

nificant and increasing number of cases where the wait time for diagnostic radiology exceeds

its maximum target of thirteen weeks [3]. This problem is expected to deteriorate since the

number of scans always increases historically. The Royal College of Radiologists reported [4]

that three-quarters of UK medical imaging departments do not have sufficient radiology con-

sultants to deliver safe and effective patient care, and subsequently, more money is being spent

to pay outsourcing, overtime, and locums to cover radiologist work every year. This problem

is exacerbated by the fact that there is a 12.3% average annual growth in demand for radiogra-

phical imaging including Magnetic Resonance Imaging (MRI) and Computed Tomography

(CT) scans since 1995 [5]. This rationalizes the need for a new approach to increase the effi-

ciency and effectiveness of the imaging diagnostic process. Hence, in this paper, we propose a

methodology that could help improve the situation, particularly in LSS diagnosis through

automatic measurement of anteroposterior (AP) diameter and the left and right foraminal

widths on MRI images.

2. Background and related work

The size of the spinal cord is generally considered as an important factor in the symptomatol-

ogy of LSS [6]. Together with our brain, the spinal cord makes up our central nervous system.

It is a cylindrical structure that starts at the end of the brain stem and continues down the

spine and ends where cauda equina starts. The spinal cord and cauda equina contain a bundle

of nerves that are enclosed by a membranous sheath containing the thecal sac (TS). Nerve sig-

nals from the brain to other parts of the body and vice versa are transmitted via motor roots

and sensory roots that are contained in the TS. These roots exit the spinal cord and cauda

equina through the left and right openings between vertebrae as spinal nerves and caudal

nerve roots, respectively. A narrowing of the osteoligamentus vertebral canal and/or the inter-

vertebral foramina could cause direct or indirect compression of nerve bundles in the TS and

their nerve roots [7]. Fig 1 exemplifies such compression of the nerve bundles and nerve roots,

creating a central and lateral foraminal stenosis, around an L5-S1 Intervertebral Disc (IVD)

viewed from the axial perspective.

Most LSS occurs in the last three IVDs namely L3-L4, L4-L5, and L5-S1. A neuroradiologist

almost always starts his or her inspection of these IVDs in the mid-sagittal view since it can

provide a general overview of the lumbar spine. This is reflected also by the popularity of auto-

mated inspection of sagittal MRI to detect and localize IVD herniations [8–12]. However, a

more accurate assessment of the actual location and extent of the stenosis can only be obtained

through inspection of each IVD in axial view [13, 14]. An axial slice that cuts closest to the

half-height of each IVD is generally considered as the best slice to use when the neuroradiolo-

gist inspects the disc. He or she then manually locates several regions of interest (ROIs) includ-

ing three important ones namely, the IVD, the posterior element (PE), and the TS with the
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view of using them to calculate three measurements namely the AP diameter and the left and

right foraminal widths. The process may take several minutes since it often requires the neuro-

radiologist to scan the entire image and to zoom in and out of specific parts of the image. Com-

puter assistance is necessary to reduce the occurrence of human errors and to speed up the

process. This assistance may include an accurate delineation of the bottom boundary of the

IVD region and the top boundary of the PE region and automatic measurement of the AP

diameter and the left and right foraminal widths. These boundaries and the three measure-

ments are illustrated in Fig 2.

There are several methods proposed in the literature to localize LSS. Zhang et al. [15] pro-

posed using a weakly-supervised classifier, which had been trained using pathological labels, to

identify vertebrae regions in axial MRI images to localize LSS. A stochastic objective function,

optimized using the Regularized Dual Averaging algorithm, is used to perform the learning

process. The paper claims that the weakly-supervised classifier performs better than the

strongly-supervised alternatives.

SpineNet [16] is a convolutional neural network (CNN) framework that localizes and pre-

dicts radiological grading of pathologies on lumbar spine MRI images using IVD volumes as

its inputs. SpineNet predicts several gradings at the same time and can be trained using a

multi-task loss function without needing segmentation level annotation. It is tested on a data-

set that contains T2-weighted sagittal MRIs acquired from multiple machines. The paper

claimed a “near-human” performance in grading IVD degeneration using Pfirrmann grading,

disc narrowing, upper/lower endplate defects, upper/lower marrow changes, spondylolisthesis,

and central canal stenosis.

Fig 1. Axial view MRI of L5-S1 IVD showing a) central stenosis and b) left and right lateral foraminal stenosis, both of

which impinging upon the nerve bundle contained in the thecal sac and the nerve roots exiting the spine.

https://doi.org/10.1371/journal.pone.0241309.g001
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DeepSpine [17] was proposed to fully-automate LSS grading by leveraging expert’s infor-

mation stored in large-scale archived free-text radiology reports and MRI images. The method

used a natural-language-processing scheme to extract information from the reports as ground-

truth labels for the various types and grades of LSS. It applied a U-Net architecture combined

with a spine-curve fitting method to segment and localize vertebrae in the axial and sagittal

MRI images. A multi-class CNN, trained using both the extracted label and segmented images,

is then used to perform central canal and foraminal stenosis grading. The paper reported a sig-

nificant improvement to the overall classification accuracy compared to [15, 16] when tested

on a proprietary dataset containing 22,796 disc-levels MRI images of 4,075 patients.

Accurate delineation of region boundaries in an image requires image segmentation, a pro-

cess that partitions an image into multiple segments, where all pixels belonging to each seg-

ment having a set of common characteristics. There are several approaches in the literature

that segment lumbar spine MRI images including one for spinal canal detection [8], and for

vertebrae and IVD detection [10, 12]. In the more general field of image processing, active

contour model is a popular class of image segmentation and boundary delineation method

due to its ability to fit a curve to an object boundary. It works by, given an initial boundary esti-

mate, iteratively expanding or contracting the estimate to minimize an energy function. Sev-

eral active contour models have been used to segment and delineate boundaries in different

types of medical images [18–20].

We have, however, previously shown [21, 22] two drawbacks in existing active contour

models. Firstly, existing approaches cannot apply contour evolution to only specific parts of

Fig 2. The three measurements that are necessary to determine the extent of LSS. The a) AP diameter is used to

determine how much pressure exerted on the spinal cord, b) left and c) right foraminal widths which are used to

determine the pressure exerted on left and right spinal nerve roots, respectively. The red and blue lines delineate the

important boundaries of IVD and PE regions, respectively.

https://doi.org/10.1371/journal.pone.0241309.g002
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the contour. Having the ability to decide which part of the contour to evolve and which feature

to use, would allow for a more adaptive contour evolution. Secondly, the inclusion of all con-

trol parameters when calculating the energy function minimization makes it harder to find the

right combination that yields the best results. The effect of adjusting one control parameter

may counter the effect of adjusting the others which results in finding the right combination of

parameter values involves trial-and-error and can be very tricky and case dependent. In the

next section, we will describe the approach we have taken in using our contour evolution

method to improve the result of automated image segmentation, and in turn, allows for an

accurate location of region boundaries and landmarks in the image to measure the AP diame-

ter and foraminal widths.

3. Material and method

3.1 Lumbar spine MRI dataset

One of the many issues in the methodologies proposed in the literature is that they are tested

on a proprietary dataset which makes it difficult to verify and reproduce. In this study, we use

our open-access Lumbar Spine MRI dataset [23] collected from 515 patients with symptomatic

back pain. We can confirm that all procedures performed in this study are in accordance with

the ethical standards of both the United Kingdom and the Kingdom of Jordan and comply

with the 1964 Helsinki declaration and its later amendments. The approval was granted by the

Medical Ethical Committee of Irbid Speciality Hospital in Jordan.

Each MRI study is annotated by expert radiologists with information on the condition and

observed characteristics of the lumbar spine, and presence of diseases which include central/

foraminal stenosis, spondylolisthesis, ligamentum flavum hypertrophy, annular tears, endplate

defects (Modic type) and degeneration, facet joint defects, scoliosis, TS compressing, IVD

bulges and bone marrow disease.

3.2. The proposed methodology

Our methodology to measure the AP diameter and foraminal widths starts with selecting an

axial slice that cuts closest to the mid-height of each of the last three IVDs [14] from the T1

and T2 sequences of each patient’s MRI study. We then apply image registration to each T1-

and T2-weighted image pair to ensure that every pixel at the same location in both images cor-

responds to the same point in an organ or tissue. This is performed by finding the minimum

difference between the fixed T1-weighted image and a set of transformed T2-weighted images

calculated over a search-space of affine transforms. The minimum and maximum limits of the

radius of the search-space are set to 1.5e-6 and 13e-3, respectively. The search is carried out up

to 300 iterations with a parameter growth factor of 1.05. To counter the effect of high-fre-

quency noise and low-frequency inhomogeneity field on both T1 and T2 modalities, a

parametric bias field estimation is applied before being corrected using the PABIC method

[24]. A search optimization algorithm called (1+1)-Evolutionary Strategy is employed by

locally adjusting the search direction and step size while at the same time provides a mecha-

nism to step out of non-optimal local minima. After the registration process completes, a com-

posite 3-channel image is created using the fixed T1-weighted and transformed T2-weighted

images for the first and second channels. The third channel is set to the Manhattan distance of

the two images.

The resulting 1545 composite images are then randomly split into a training and a test set,

containing 80% and 20% of the overall dataset, respectively. The images in the training set are

used to train a SegNet model [25]. The training process starts by developing label images by

manually annotating several ROIs in each composite image. For each label image, two specific
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region boundaries, namely important IVD boundary and important PE boundary, are located.

These boundaries are important because they are used to locate certain points or landmarks

from which the AP diameter and foraminal widths can be measured. Since the accuracy of

locating these boundaries directly affect the accuracy of the AP diameter and foraminal widths

measurements, we decide to improve the accuracy of the label images along these boundaries

using a contour evolution technique [21]. These improved label images and their correspond-

ing composite images are then used to train the SegNet model. This model is subsequently

used to automatically segment the composite images in the test dataset. The contour evolution

technique is then applied to the resulting segmented images to further improve the region

boundaries before the important IVD boundary and the important PE boundary are located.

From these boundaries, we locate several important points that are used to measure the AP

diameter and foraminal widths [26].

We have previously shown the applicability of the SegNet architecture in segmenting axial

MRI images using unmodified label images [27]. We will use the previously reported results as

a baseline to measure the improvement in the segmentation accuracy along the important

boundaries using the proposed method. An overview of the proposed methodology is eluci-

dated in a flowchart shown in Fig 3. The remainder of this section will elaborate on three main

elements of our methodology.

3.2.1. Segmentation of regions of interest. The first main step in our approach is to auto-

mate the process of identifying the three important ROIs through image segmentation of axial

MRI images using a SegNet model. The input to the SegNet model is a composite image con-

taining the T1-weighted image, the registered T2-weighted image, and their Manhattan dis-

tance. The model training process is guided using manually developed label images containing

the three important regions stated previously (IVD, PE, and TS) plus three other regions. The

first one is the Area between Anterior and Posterior (AAP) vertebrae elements. This region rep-

resents the space that extends from the cervical spine down to the lumbar spine between the

front and back vertebrae elements. In the axial view, this region is the region between the IVD

and PE. The second region contains a set of pixels where T1-weighted pixels have no corre-

spondence with any of the transformed T2-weighted pixels. We refer to this as the ‘Unregis-

tered’ region. Any other pixels that do not belong to any of the above five regions are labeled as

‘Other’. Each of these regions represents a class for classification purpose and as a reference for

the remainder of this paper, they are identified with their unique identification numbers as

1 = Unregistered, 2 = IVD, 3 = PE, 4 = TS, 5 = AAP, and 6 = Other. An example of such a label

image and its corresponding composite input image are shown in Fig 4.

To help formulate the definition of the important IVD and PE boundaries, the set descrip-

tor of the points along these boundaries is provided as follows. Important IVD boundary,

denoted as A2 2 <2, is defined as a set of points that are adjacent to the IVD region and the

Fig 3. An overview of the overall methodology.

https://doi.org/10.1371/journal.pone.0241309.g003
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AAP, TS, or PE regions. Equally, important PE boundary, denoted as A3 2 <2, is defined as a

set of points bordering between the PE region and the AAP, TS, or IVD regions. They are

defined as a union of each boundary set that makes them:

A2 ¼ E23 [ E24 [ E25

A3 ¼ E32 [ E34 [ E35

Where Eab 2 <2 is a set of 2D coordinate of the boundary points between region a and

region b.

3.2.2. Precise boundary delineation with contour evolution. The accuracy of the label

images used to develop a classifier model plays a significant part in determining the accuracy

of the model. Simply put, training a classifier model with inaccurate label images would pro-

duce an inferior model. However, the process of manually annotating label images is very labo-

rious and error-prone. Even when the process is done by a skilled labeler, there is still a high

level of probabilities of inaccuracies, especially along region boundaries. To illustrate this

point, we show in Fig 5 an example of the region boundaries of a manually created label image

and its corresponding automatically segmented image using the SegNet model we developed

previously in [27]. Fig 5A clearly shows the challenges in manual segmentation, especially

around the aforementioned important boundary areas. The figure shows numerous holes at

various locations along the important boundaries in the manually created label image.

Although the automatically segmented image shown in Fig 5B is relatively free of these holes,

it still inherits the inaccuracy from the training label images. We aim to resolve this problem

by improving the segmentation accuracy along these boundaries through an application of our

contour evolution method.

Fig 4. An example of the T1- and T2-weighted composite input image (left) and the label image used to train the SegNet model (right). The regions in the label

image are 1) Unregistered, 2) IVD, 3) PE, 4) TS, 5) AAP and 6) Other.

https://doi.org/10.1371/journal.pone.0241309.g004
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Our approach to contour evolution to obtain more precise boundary delineation uses two

structures, namely the Modified Boundary Grid and Sparse Boundary Representation, originally

proposed in [28] to represent the segmented image and the contour information, respectively.

The description of these two structures and the algorithms to evolve them are described as

follows:

The most straightforward way to represent the regions in an image is by using a matrix of

labels with the same size as the original image. As an example, an instance where a 4×4 image

that is segmented into three regions is illustrated in Fig 6. The figure depicts the region’s

boundaries as red lines between pixels that have different labels.

Boundary locations are naturally sub-pixels because they exist between two adjacent pixels.

They can be stored as a Boundary Grid which is a matrix whose size is twice that of the label

image minus one. A version of the Boundary Grid that was proposed in [28] using the label

image is shown in Fig 6 (bottom).

In the above example, the cells with boundary information are shaded in red and their cell

values signify the normalized boundary strength. It is worth noting that not all cells in a

Boundary Grid can be boundary cells and in general only cells that have either 1) an even row

number and an odd column number or 2) an even column number and an odd row number,

can be boundary cells. Those cells that do not belong to either category cannot be boundary

cells and are marked with a red cross. Furthermore, boundary cells in category (1) mark only

horizontal boundaries whereas those in category (2) mark only vertical boundaries. Any of the

cells that meet the criteria but are not boundary cells have a cell value of 0. The rest of the cells

contain the corresponding input image pixel values.

Our modification to this approach is twofold. First, instead of storing the input image pixel

values, we replace them with the label pixel value. The rationale for this change is, since we are

Fig 5. A color-coded boundary of a manually labeled lumbar spine MRI image (left) and the automatic segmentation result (right). The left image clearly shows

ambiguities and inaccuracies, particularly along the important boundary locations.

https://doi.org/10.1371/journal.pone.0241309.g005
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using this structure to evolve the boundary, we will need to be able to also modify the relevant

pixel’s label. The resulting label image can be simply reproduced by downsampling the Bound-

ary Grid at every odd pixel location. Our second modification is to use the boundary cells,

including the red-shaded boundary cells, to store image feature values instead of edge

strengths. This image feature will be used as one of the factors to evolve the boundary. The

type of image feature chosen is a design decision and is important to the accuracy and suitabil-

ity of the algorithm to any given problem. In this paper, we use the image horizontal and verti-

cal gradients as the chosen feature to use.

We refer to this modification as the Modified Boundary Grid, denoted as B0. The image

function of B0 is given as:

B0 :

Ω! GjðΩ1 mod 2Þ 6¼ 0 ^ ðΩ2 mod 2Þ 6¼ 0

Ω! <jðΩ1 mod 2Þ ¼ 0� ðΩ2 mod 2Þ ¼ 0

Ω! �jotherwise

8
>><

>>:

where Ωi is the ith element of Ω and Γ = {1,. . ., N} is region label where N is the maximum

number of regions in the image.

The algorithm to construct our B0 is as follows: Let I: Ω!< be the input image function

and χ: Ω! Γ be its associated label image function, both with domain Ω�<2. At locations

where (Ω1 mod 2) 6¼ 0 Λ (Ω2 mod 2) 6¼ 0, B0 contains the label information as prescribed in χ.

At locations (Ω1 mod 2) = 0 Λ (Ω2 mod 2) 6¼ 0, B0 contains vertical gradients and at locations

(Ω1 mod 2) 6¼ 0 Λ (Ω2 mod 2) = 0, B0 contains horizontal gradients.

In practice, the gradient values are calculated using the convolution of the input image I
with a Gaussian kernel Gσ of width σ to minimize high-frequency elements in the derivative

operation. Hence the horizontal and vertical gradient image functions gh: Ω!< and gv: Ω!
< are defined as gh =rh (Gσ � I) and gv =rv (Gσ � I), respectively. The sizes of the horizontal

and vertical gradient images are H × (W– 1) and (H– 1) ×W, respectively. To illustrate the

process to construct our B0, we show the horizontal gh and vertical gv gradient images of the

input images we used previously in the top left and the top right of Fig 7, respectively. The

resulting modified Boundary Grid B0 is shown at the bottom of Fig 7. Note the boundary cells

now contain values of the image gradient features.

The Modified Boundary Grid structure is, however, neither efficient nor compact if we

want to use it in an iteration to search for the coordinates of a specific region’s boundary. To

compensate for this shortcoming, we also use a Sparse Boundary Representation, denoted as

BS, as a look-up table to index pairs of neighboring regions. This is a much more compact and

efficient representation of the boundary information because any search or information

retrieval operations that are carried out in this representation are carried out faster due to

them being dependent only on the number of boundary pixels rather than the number of pix-

els. We can construct BS from B0 by parsing the latter once, to gather all edge coordinates for

each neighboring region pairs. Table 1 shows the Sparse Boundary Representation of the Mod-

ified Boundary Grid example we used earlier. Note that matrix subscripts are expressed as row

and column order.

Contour evolution using our method is achieved by applying the SubPixelBoundaryEvolu-

tion algorithm on the Modified Boundary Grid and the Sparse Boundary Representation struc-

tures. The algorithm iteratively interpolates the Modified Boundary Grid and makes a call to

Fig 6. An example of a 4x4 image (top left) that is segmented into a label image containing three regions with red lines marking

the boundaries between them (top right) and its Boundary Grid (bottom).

https://doi.org/10.1371/journal.pone.0241309.g006
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another algorithm namely EvolveBoundaries that performs the boundary evolution. An over-

view of the process is illustrated in Fig 8.

The description of the method and algorithms are as follows. Let S be a set containing the

matrix subscript pairs of all the boundary points that we want to evolve using image gradient

features. We construct S directly by querying BS. For each element in S, we find its location in

B0 and, based on the values of the coordinate, we can ascertain the type of edge it is. A horizon-

tal edge is evolved horizontally by evaluating the feature vectors in the horizontal direction.

Likewise, vertical edges are evolved vertically. We need to decide the value of the search width,

w, (in pixel) of the evolution, where w is a positive integer number. The value of w affects the

speed and accuracy of the evolution and typically we want to use a small number. Large w
value may result in a label that is very different from the original estimate. The evolution of the

boundary contour will be based directly on S and is done by altering the label contents of B0 as

described in Algorithm 1 in S1 File.

Our new contour is then obtained directly by parsing the evolved B0 while generating the

new BS. The algorithm is executed iteratively until the number of pixels in the Boundary Grid

that change from one iteration to the next, averaged over n number of iterations, converges

below a specified threshold τ.
To further improve the precision of our method, we upsample our input and label images

at the end of each complete evolution. We can repeat this for k number of times, where k 2 N,

to increase the boundary precision to the nearest 2−(k+1) of a pixel as described in Algorithm 2

in S1 File.

We design our method to allow the decoupling of the different parameters of the contour

evolution process. To this effect, we apply an adaptive curve smoothing function at the end of

the above contour evolution process. The rationale for this is to allow us to adjust the tightness

of the curve to the feature and only concern about smoothing the results afterward. The curve

smoothing process is image-feature dependent and implemented using variable width moving

average method. Let A = 〈pn | n 2 N and n< card(A)〉 where pn 2 <2 is a sorted sequence

of set S. We define the sort operation such that ||pn − pn-1|| for 1� n� card(A) is minimized.

We then apply a moving average on A at every point p along its curvature with variable half-

width wp 2 N such that:

pi ¼

Pwp
j¼� wp piþj

2� wp þ 1

For 8p that meets the wp< p< card(A) − wp requirement. The value of wp is set between

wmin and wmax and tied to the value of the image feature at the location of the boundary points.

In our experiment, we use the second derivative of the image function I@ as the image feature

and set wp to wmin when the I@ is at its lowest value, to wmax when the I@ is at its highest value

and linearly interpolated and rounded to the nearest integer when in between.

Fig 7. The horizontal gradient image (top left) and the vertical gradient image (top right) and the Modified Boundary Grid

(bottom) of the 4x4 input and label images shown at the top of Fig 6.

https://doi.org/10.1371/journal.pone.0241309.g007

Table 1. Sparse boundary representation.

Neighbors Edge Matrix Subscripts (S)

x,y (1,6) (2,5) (3,4)
x,z (4,1) (4,3)
y,z (4,5) (5,6) (6,7)

https://doi.org/10.1371/journal.pone.0241309.t001

PLOS ONE Automated measurement of anteroposterior diameter and foraminal widths in MRI images

PLOS ONE | https://doi.org/10.1371/journal.pone.0241309 November 2, 2020 12 / 27

https://doi.org/10.1371/journal.pone.0241309.g007
https://doi.org/10.1371/journal.pone.0241309.t001
https://doi.org/10.1371/journal.pone.0241309


Fig 8. An overview of the proposed contour evolution process.

https://doi.org/10.1371/journal.pone.0241309.g008
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The contour evolution technique is applied to the manually created label images in the train-

ing set before they are used to train the SegNet model. They are also applied to the automatically

segmented images in the test set before important points or landmarks are located on them.

3.2.3. Important points location. The procedure to measure the left and right foraminal

widths and the AP diameter requires identifying and locating a set of important points on the

MRI image. These points are the TL, TR, BL, BR, BM, and DC, which locations are shown inFig

9. Points TL and BL are the top and bottom endpoints of the shortest line segment connecting

the upper and lower part of the left foramina, respectively. Similarly, points TR and BR are their

equivalent on the right foramina. Point BM is the lowest point of the top boundary of the PE

region between BL and BR points, whereas DC is the centroid of the IVD region.

The line segment connecting BM and DC, denoted as BM-DC, approximates a line that

bisects the IVD region. This bisecting line is important and will be used to aid the measure-

ment of the AP diameter since any compression on the spinal cord can be observed in the

region around this line. The AP diameter can be estimated as the distance between BM and q0,
a point that lies on the BM-DC line segment. Point q0 is the projection of point q on to the BM-
DC line. Point q is a point that lies on the important IVD boundary (marked in red) between

TL and TR. The location of q, hence the location of q0, relative to the TL-TR line segment can

indicate the presence of IVD herniation.

Yates et. al. investigated the influence of the IVD shape and size on the pathway of hernia-

tion [29]. Through an in-vitro examination of cadavers, they concluded that the shape of the

IVD influences stress distributions within it. It is also reported that the mean shape of a healthy

IVD in a range of horizontal cross-section MRI images resembles a kidney-shaped [30]. Based

on these, we postulate that the important boundary of a healthy IVD should be above the

Fig 9. The location of nine important points for determining AP diameter and foraminal widths.

https://doi.org/10.1371/journal.pone.0241309.g009
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TL-TR line segment and the distance between them is maximum at around its center. If the

IVD is expected to be healthy, point q is determined as the furthest point on the red boundary

line to both the TL-TR line segment and the BM point. On the other hand, if the red boundary

line is below the TL-TR line segment, an IVD herniation exists. The neurologist can estimate

the extent of the IVD herniation, if it exists, by observing how far the red boundary line is rela-

tive to the TL-TR line segment. The further down the red line is, the more severe the herniation.

The location of point q, in this case, is determined as the furthest point on the red line to the

TL-TR line segment that is also closest to the BM point. Using the derivation we provided in

[26], the point q can be found using:

q ¼ arg max
z2MIVD

ðjz � TLTR j � dðz;BMÞÞ

where MIVD is the set of points on the important IVD boundary bounded by TL and TR, and

where d() and � are the Euclidean distance operator and the dot product operator, respectively.

The state of disc herniation can be categorized using the ratio r = dq0 / dp where dq0 = d(BM, q0)
and dp = d(BM, p), and point p is the intersection of TL-TR and BM-DC line segments. A healthy

kidney-shaped IVD would result in r� 1.1, which means point q0 is sufficiently above the TL-
TR line segment. A herniated IVD, on the other hand, would result in smaller values of r. We

further classify this case into two sub-categories, namely minor and severe herniations. A

severe IVD herniation is detected when dq0 is much shorter than dp and minor herniation is

when dq0 is slightly shorter or about the same length as dp. We use a threshold value of 0.8 to

differentiate the two instances, i.e., severe herniation when r� 0.8 and minor herniation when

0.8< r< 1.1.

4. Experiment setup, result analysis, and discussion

We conducted two types of experiments to demonstrate the workflow and to evaluate the per-

formance of the proposed method. The first experiment is designed to show the result of the

segmentation and the improvement achieved by the contour evolution technique. The second

experiment is designed to show the performance of the overall approach in measuring the AP

diameter and foraminal widths and classifying the IVD herniation.

4.1. Segmentation and boundary delineation

4.1.1. Experiment setup and performance metrics. We adopted the transfer learning

approach [31] when training the SegNet model instead of developing the model from scratch

since we have shown previously that the former approach produces significantly better seg-

mentation than the latter approach [27]. We did this by using a SegNet model with pre-trained

VGG16 coefficients on the ImageNet database [32]. The classification layer was replaced with

a new randomly initialized fully connected neural network before the whole network is

retrained using the training dataset.

During the training process, the SegNet model’s weights and biases are updated using the

popular Stochastic Gradient Descent with Momentum algorithm [33] with a learning rate of

0.001. The size of the training batch is 40 and the maximum number of epochs is 100. The

input images need to be resized to 360×480 to match the input size requirement of the VGG16

network. Furthermore, to balance the importance of all classes due to class population imbal-

ance, we apply class weighting [34]. To make sure that small-sized classes, such as the TS and

AAP, are not underrepresented in our training data we set the class weighting to be inversely

proportional to the class population. The segmented images produced by the trained model

are then resized back to 320×320 before being used in the rest of the workflow.
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The segmentation performance along the two important boundaries is measured using a

semantic contour-based metric namely the BF-score [35], denoted as Fc, of every class c. The

metric is calculated as:

Fc ¼
2� Pc � Rc
Pc þ Rc

Where Pc and Rc are the precision and recall [36] for each class c at a distance threshold dT,

respectively, and calculated as:

Pc ¼
1

jBpcj

X

z2Bpc

½dðz;BgcÞ < dT�

Rc ¼
1

jBgcj

X

z2Bgc

½dðz;BpcÞ < dT�

Where Bpc and Bgc are the sets containing the coordinates of the contour of the region of

class c from the predicted and ground-truth segmentation images, respectively. The function d
(z,B) denotes the shortest Euclidian distance between point z and all the points in set B, and dT
denotes the distance error tolerance.

4.1.2. Experiment results and analysis. The experiment was implemented using

MATLAB on a Windows 10 PC with i7-7700 CPU @ 3.60GHz, 64 GB RAM, and two NVIDIA

Titan X GPUs. To allow for comparative analysis, two other active contour methods were also

implemented. They are geodesic active contour (GAC) by Caselles [37] and the active contour

without edges by Chan and Vese (CV) [38]. We experimented with several combinations of α, β,

and γ parameter values when implementing the GAC method to produce an acceptable compro-

mise between accuracy and smoothness, and we found that α = 1, β = 160, and γ = 500 are the

best combination to use. We employed a convergence test at the end of each iteration of both

methods to terminate the boundary evolution. The test checks if the number of pixel changes

between successive iterations falls under a threshold. The threshold value is dependent on the

number of pixels in the image. We also applied a morphological closing on the input label image

prior to applying each technique to remove any small 1×1-sized holes and gaps in the image.

As a baseline, we use the BF-Score calculated between unmodified manually labeled images

vs. unmodified predicted label images produced by a SegNet model trained using the unmodi-

fied manually labeled images. This is shown in the first row of Table 2. The result shows that

only 68% of the important IVD boundary points and 79% of the important PE boundary

points of the segmented images are correctly located within one pixel of their actual locations.

Table 2. Averaged BF-score of important IVD and PE boundaries after improvement.

IVD Boundary PE Boundary

Experiment dT = 1 dT = 2 dT = 3 dT = 1 dT = 2 dT = 3

Baseline 0.68 0.87 0.90 0.79 0.91 0.94

Proposed 1 0.51 0.88 0.95 0.74 0.93 0.96

Proposed 2 0.80 0.91 0.95 0.87 0.93 0.95

GAC 1 0.65 0.89 0.94 0.78 0.92 0.95

GAC 2 0.61 0.79 0.88 0.64 0.81 0.89

CV 1 0.66 0.86 0.90 0.75 0.90 0.93

CV 2 0.67 0.86 0.90 0.70 0.87 0.92

https://doi.org/10.1371/journal.pone.0241309.t002
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These low baseline BF-Scores, especially when dT = 1, indicate that there is significant room

for improvement to be had by applying the contour evolution techniques.

Each contour evolution algorithm is tested in two experimental setups. In the first setup, we

compare the contour-evolved manually labeled images vs. unmodified predicted label images

produced by a SegNet model trained using the contour-evolved manually labeled images. The

second setup compares the contour-evolved manually labeled images vs. contour-evolved pre-

dicted label images produced by a SegNet model trained using the contour-evolved manually

labeled images. The results of the experiment using these setups are shown in Table 2.

The table shows that when Experiment Setup 1 is employed, all applications of contour evo-

lution methods (Proposed 1, GAC 1, and CV 1) yield worse performance especially when dT =

1. This suggests that improving the boundary only on the manually created label images would

have minimal impact on the boundary accuracy of the predicted label images. A marked

improvement in the BF-Score occurs when our contour evolution method is applied to both

the manually created and predicted label images.

On average, the execution speed of our method when compared to the GAC method at up

sampling levels k = 0, 1, and 2 are 10.2, 8.6, and 5.2 times faster, respectively. We observed that

the main reason why our method is significantly faster is that it carries out a shorter number of

iterations before it meets the iteration termination criteria. When compared to the CV method

at up sampling levels k = 0, 1, and 2, our method is 2.2, 2.1, and 1.5 times faster, respectively.

Figs 10, 11 and 12 compare a typical number of pixel changes between successive iterations for

each method. As can be seen from these figures, our method solves the bulk of the pixel

changes in the first iteration resulting in a much quicker convergence than the GAC method.

Although the CV method was shown to have a shorter number of iterations, the method

spends more time per iteration than our method which makes it slower than the latter.

Fig 10. A typical example of the number of pixel changes between successive iterations of our proposed method.

https://doi.org/10.1371/journal.pone.0241309.g010
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The visual quality of the three contour evolution methods can be seen in Fig 13. We

highlighted four cases of boundary changes that exemplify the superiority of our method (Fig

13B) over the others. Case 1 demonstrates a situation where the true boundary is characterized

by a significant difference in intensity levels. In this case, our method successfully tightens the

boundary line between the darker PE region and the lighter AAP region as do the other two

methods. However, a closer inspection of images should show that the CV method (Fig 13D)

is less accurate than the other two. Case 2 and 3 demonstrate a situation where the true bound-

ary is characterized by a subtle difference in intensity levels. In both cases, our contour evolu-

tion method produces reliably accurate boundaries that are consistent with the manual label.

The GAC method (Fig 13C) on the other hand produces inaccurate boundary in case 2 while

producing reasonably good boundary in case 3, whereas the CV method produces inaccurate

boundary in case 3 while producing reasonably good boundary in case 2. Case 4 shows another

artefact of a similar situation. Since we cannot selectively apply GAC or CV method to a spe-

cific contour segment, we end up changing the entire boundary. Our contour evolution

method, on the other hand, allows this. In our experiment, since we can selectively apply our

contour evolution method to only the important IVD and PE boundaries and not to every

other region boundaries, those region boundaries such as the one marked 4 can be made unal-

tered and did not suffer deterioration as shown in Fig 13C and 13D.

4.2. Measurement of AP diameter and foraminal widths

In this section, we describe the experiments to assess the suitability of our method in assisting

an LSS diagnosis process. The experiments were carried out with the supervision and advice

Fig 11. A typical example of the number of pixel changes between successive iterations of the geodesic active

contours method.

https://doi.org/10.1371/journal.pone.0241309.g011
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from the expert neuroradiologist members of the team. The objectives of the experiment are as

follows:

1. To develop a ground truth of important points/landmarks locations, the AP diameter, the

left and right foraminal widths, and the category of the IVD herniation (either normal,

minor herniation, and severe herniation) for each patient’s L3-L4, L4-L5, and L5-S1 IVDs–

a total of 1545 MRI images.

2. To determine the intra-expert variations of the location of the important points in the

ground truth. These will be used as an acceptable tolerance of the error between the auto-

matically located points and the ground truth locations.

3. To determine a set of experiment setup that covers a wide combination of experiment

parameters.

4. To calculate and compare the performance of the proposed method, the GAC method, and

the CV method under each of the above experiment setups.

4.2.1. Experiment setup. To assess the suitability of our methodology, we developed

a set of reference dataset containing the location of the six important points, the three

measurements, which are the AP diameter, and left and right foraminal widths (in mm),

and state of the IVD herniation (normal, minor herniation, and severe herniation). The loca-

tion of the points is set manually by an expert neuroradiologist in two different settings. Both

settings have a common procedure carried out for each MRI image and are described as

follows.

Fig 12. A typical example of the number of pixel changes between successive iterations of the Chan-Vese method.

https://doi.org/10.1371/journal.pone.0241309.g012
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1. The expert is presented with the MRI image in an axial view then manually locates TL, TR,

BL, and BR points by judging the location of both foraminal widths. The left and right

foraminal widths are then automatically calculated.

Fig 13. An example of the result of the application of a contour evolution method to the a) the original boundary using b)

our proposed method, c) Geodesic Active Contours and d) Chan-Vese methods. The numbers mark the location of the four

cases that illustrate the superiority of our method to the others.

https://doi.org/10.1371/journal.pone.0241309.g013
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2. The expert then manually locates BM and DC points. Points p, q, and q0 are then automati-

cally determined and the values are used to calculate the AP diameter.

3. The expert can choose to override the calculated AP diameter by manually placing point q0.

4. The expert then makes a judgment on the state of the IVD (either normal, minor hernia-

tion, or severe herniation).

5. The expert can redo any stage of the procedure to improve his previous judgment.

The whole process is carried out in two different experiment settings. In the first experi-

ment setting (ES1), the expert receives no assistance from our application. The expert was only

shown the MRI image to carry out the task. In the second experiment setting (ES2), limited

assistance was provided by our application in a form of a segmented image, or region bound-

ary lines, or both, which are superimposed on to the MRI image. This assistance is expected to

reduce the difficulty in getting a more precise location of the points once the expert has an idea

where they should be. The experiment in each setting was repeated five times, each at different

days and times of days resulting in 2×5 sample data points for each important location of the

MRI image. The mean location for each point type is computed and the distance of every sam-

ple data point to their mean value is calculated. Its average is then used as a measure of the

expert’s intra-variation in determining the point’s location. A small average would indicate

higher confidence and vice versa. The intra-expert variations of each of the six types of impor-

tant points, for both experiment settings, are presented in Table 3.

Following an observation on this result, our analysis can be summarized as follows:

1. There are significant variations in the manual placement of the important points in ES1.

This variation is roughly halved in ES2. Since the latter produces less variation, the ES2

result is used as the reference dataset and its variations would be used as the intra-expert

variations of the data points in the ground truth.

2. The placement of point DC has the highest uncertainty because the expert needs to estimate

the center of the disc and its location is not on any boundary.

3. The location of the point BM is relatively easier to decide than the rest, resulting in a lower

variation.

As can be seen in Fig 3, our proposed methodology applies a contour evolution technique

at two different stages in the workflow. The first application is to the manually labeled images

before they are used to train the SegNet model and the second is to the automatically seg-

mented images inferred by the trained SegNet model. To explore the performance of the pro-

posed methodology, we carried out 22 different experiments using a different combination of

contour evolution and SegNet applications. In the first six experiments, no SegNet training

hence no automatic segmentation takes place. The first experiment locates important bound-

aries and important points directly from the manually labeled images. The second experiment

applies a morphological close operation to the manually labeled images prior to locating

important boundaries and important points from them. In the other four experiments, a con-

tour evolution technique is applied to the manually labeled images prior to locating important

boundaries and important points from them. In the other sixteen experiments, a SegNet

Table 3. The intra-expert variations, _, calculated as the average distance, in mm, between each of the five sample data points and their mean locations.

Experiment Setting _TL _BL _TR _BR _BM νDC
ES1 1.99 2.27 1.86 2.34 1.24 2.61

ES2 0.89 1.10 0.83 1.17 0.76 2.20

https://doi.org/10.1371/journal.pone.0241309.t003
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model is trained and is used to automatically segment the MRI images. These sixteen experi-

ments are grouped into four sets of four experiments, with each group uses one of four differ-

ent SegNet models. Each SegNet model is trained using either unmodified manual label

images, modified manual label images using the proposed method, modified manual label

images using the GAC method, or modified manual label images using the CV method. Each

of the four experiments applies the processes to the automatically segmented images in a dif-

ferent setup, which are a combination of a) whether or not a morphological close operation is

applied and b) whether or not the respective contour evolution technique is applied. The over-

all setup of the 22 experiments is summarized in Table 4. Each setup is assigned a unique ID

for ease of reference in subsequent discussions.

4.2.2. Experiment results and analysis. The result of the 22 experiments is tabulated in

Table 5. The table shows the mean error (in mm), averaged over 1545 images, between the pre-

dicted and the reference locations of points TL, TR, BL, BR, BM, and DC. It also shows the mean

error (in mm) between the predicted left and right foraminal widths and AP diameter and

their corresponding values calculated using the reference important points location. The last

column of the table shows the agreement score with an expert opinion on the severity of the

IVD herniation, which is the percentage of correctly predicted IVD herniation state over 1545

images.

Predictions that have lower error than the intra-expert variations are shaded in yellow

whereas the best results are marked in bold.

Our analysis of this result can be summarized as follows:

1. Under an identical setting, our proposed contour evolution method consistently produces

lower errors than when no contour evolution method is applied.

Table 4. The parameters of each experiment setup.

Setup ID Segmentation method Training data used Morphological Close applied? Contour Evolution Technique

M00 Manually N/A No None

M01 Manually N/A Yes None

M10 Manually N/A No Proposed

M11 Manually N/A Yes Proposed

M20 Manually N/A Yes GAC

M30 Manually N/A Yes CV

A10 Automatically M00 No None

A11 Automatically M00 Yes None

A12 Automatically M00 No Proposed

A13 Automatically M00 Yes Proposed

A20 Automatically M11 No None

A21 Automatically M11 Yes None

A22 Automatically M11 No Proposed

A23 Automatically M11 Yes Proposed

A30 Automatically M20 No None

A31 Automatically M20 Yes None

A32 Automatically M20 No GAC

A33 Automatically M20 Yes GAC

A40 Automatically M30 No None

A41 Automatically M30 Yes None

A42 Automatically M30 No CV

A43 Automatically M30 Yes CV

https://doi.org/10.1371/journal.pone.0241309.t004
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2. Our proposed contour evolution method performs significantly better than GAC and CV

methods when they are applied under an identical setting.

3. The application of morphological close operation produces marginal but inconsistent

improvement.

4. Most setups yield less variation of DC point location than the intra-expert variation with the

exception of A32 and A33.

5. The best performing setup to measure the left and right foraminal distances uses our pro-

posed contour evolution method on automatically segmented label images using a SegNet

model trained using manually segmented label images that have been improved using the

same method. Using this setup, the average error of the calculated right and left foraminal

distances relative to their expert-measured distances are 0.28 mm (p = 0.92) and 0.29 mm

(p = 0.97), respectively. The value in bracket is the p-value of a one-sample t-test on the

result.

6. Using the same setup, the average error of the calculated AP diameter relative to their

expert-measured diameter is 0.90 mm (p = 0.92), which is slightly less accurate than the

best setup, i.e., using our proposed contour evolution method on manually segmented label

images (0.84 mm average error).

7. Our method produces the best improvement by improving the IVD herniation diagnosis

accuracy performance by 1.6 percentage points (96.7% accuracy compared to 95.1% accu-

racy using only the manually segmented label images).

Table 5. Mean error in mm, ε, between each predicted important point location and its reference location (column 2–7), between the predicted left and right

foraminal widths and AP diameter and their corresponding values (column 8–10) and the IVD herniation diagnosis accuracy in % (last column).

ID εTL εBL εTR εBR εBM εDC εdL εdR εdAP aD

M00 1.95 1.70 1.84 1.69 0.95 1.48 0.8 0.7 1.13 95.1

M01 1.74 1.52 1.52 1.43 0.77 1.45 0.64 0.51 0.92 95.5

M10 1.42 1.26 1.37 1.23 0.64 1.49 0.50 0.49 0.87 95.5

M11 1.19 1.06 1.13 1.00 0.63 1.50 0.41 0.43 0.84 95.8

M20 2.22 1.95 1.82 1.73 2.37 1.83 0.78 0.71 3.07 91.7

M30 1.95 1.70 1.84 1.69 0.95 1.48 0.80 0.70 1.13 95.1

A10 1.75 1.53 1.54 1.44 1.03 1.41 0.85 0.69 1.42 95.4

A11 1.78 1.57 1.51 1.38 0.90 1.42 0.85 0.61 1.15 95.5

A12 0.99 0.88 1.00 0.89 0.72 1.39 0.37 0.37 1.10 95.6

A13 1.01 0.90 1.01 0.89 0.73 1.4 0.37 0.37 1.10 95.7

A20 1.59 1.40 1.37 1.35 0.97 1.36 0.79 0.65 1.36 95.5

A21 1.59 1.39 1.36 1.28 0.79 1.37 0.79 0.57 1.02 95.9

A22 0.41 0.41 0.37 0.37 0.53 1.36 0.29 0.28 0.90 96.7

A23 0.41 0.42 0.37 0.38 0.54 1.36 0.29 0.28 0.91 96.6

A30 2.21 1.93 1.97 1.85 2.05 2.16 1.05 1.00 2.66 93.6

A31 2.21 1.93 1.97 1.85 2.07 2.18 1.05 1.01 2.65 93.8

A32 3.50 3.13 3.16 2.94 4.13 3.96 1.44 1.37 5.26 87.0

A33 3.44 3.09 3.16 2.95 4.12 3.97 1.44 1.39 5.29 86.9

A40 1.77 1.54 1.6 1.51 0.89 1.42 0.85 0.73 1.15 96.1

A41 1.77 1.54 1.59 1.50 0.89 1.43 0.85 0.73 1.15 96.2

A42 1.81 1.61 1.59 1.54 1.24 1.5 0.77 0.67 1.23 95.7

A43 1.80 1.59 1.57 1.51 1.22 1.48 0.77 0.67 1.22 95.8

https://doi.org/10.1371/journal.pone.0241309.t005
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Fig 14 shows the visual interface of the developed computer-aided diagnostic containing

the results of the boundary delineation, foraminal widths measurements, and central IVD her-

niation classification. Fig 14A shows a healthy L3-L4 disk whereas Fig 14B shows a case where

Fig 14. The visual interface of the developed computer-aided diagnostic system showing the results boundary delineation results, foraminal widths

measurements, and central IVD herniation classification. The figure shows a) a healthy L3-L4 disk, b) and c) IVDs with different types of abnormalities and d) a case

where the right foraminal width measurement and diagnostic results are erroneous.

https://doi.org/10.1371/journal.pone.0241309.g014

PLOS ONE Automated measurement of anteroposterior diameter and foraminal widths in MRI images

PLOS ONE | https://doi.org/10.1371/journal.pone.0241309 November 2, 2020 24 / 27

https://doi.org/10.1371/journal.pone.0241309.g014
https://doi.org/10.1371/journal.pone.0241309


the IVD touches the PE causing a complete closing of the lateral foramina gap. to d) IVDs with

different types of abnormalities. Fig 14C shows a case where a severe central IVD herniation is

detected. Fig 14D, on the other hand, shows a situation where misclassification of several

‘Other’ region pixels as belonging to the PE region causing a problem with the right foraminal

width measurement.

5. Conclusion

We have presented in this paper a novel method to help neuroradiologists diagnose lumbar

spinal stenosis by automatic measurement of the AP diameter and foraminal widths that are

calculated using nine important points on an axial MRI image. The points were located after

the automatic segmentation of the image using SegNet and improving important region

boundaries using our contour evolution technique.

The performance of the proposed algorithm was evaluated through a set of experiments on

our publicly available Lumbar Spine MRI dataset containing MRI studies of 515 patients with

symptomatic back pains. Our experiments show that our method can locate all the important

points that are on region boundaries accurately. This allows accurate calculation of the AP

diameter, which in turn, produces high agreement with the expert’s opinion when determining

the severity of the IVD herniations.
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