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Abstract Biomedical and clinical sciences are experiencing a renewed interest in the fact that

males and females differ in many anatomic, physiological, and behavioural traits. Sex differences in

trait variability, however, are yet to receive similar recognition. In medical science, mammalian

females are assumed to have higher trait variability due to estrous cycles (the ‘estrus-mediated

variability hypothesis’); historically in biomedical research, females have been excluded for this

reason. Contrastingly, evolutionary theory and associated data support the ‘greater male variability

hypothesis’. Here, we test these competing hypotheses in 218 traits measured in >26,900 mice,

using meta-analysis methods. Neither hypothesis could universally explain patterns in trait

variability. Sex bias in variability was trait-dependent. While greater male variability was found in

morphological traits, females were much more variable in immunological traits. Sex-specific

variability has eco-evolutionary ramifications, including sex-dependent responses to climate change,

as well as statistical implications including power analysis considering sex difference in variance.

Introduction
Sex differences arise because selection acts on the two sexes differently, especially on traits associ-

ated with mating and reproduction (Darwin, 1871). Therefore, sex differences are widespread, a

fact which is unsurprising to any evolutionary biologist. However, scientists in many (bio-)medical

fields have not necessarily regarded sex as a biological factor of intrinsic interest (Clayton, 2016;

Flanagan, 2014; Karp et al., 2017; Klein et al., 2015; Prendergast et al., 2014; Shansky and

Woolley, 2016). Therefore, many (bio-)medical studies have only been conducted with male sub-

jects. Consequently, our knowledge is biased. For example, we know far more about drug efficacy in

male compared to female subjects, contributing to a poor understanding of how the sexes respond

differently to medical interventions (Nowogrodzki, 2017). This gap in knowledge is predicted to

lead to overmedication and adverse drug reactions in women (Zucker and Prendergast, 2020).

Only recently have (bio-)medical scientists started considering sex differences in their research

(Dorris et al., 2015; Ingvorsen et al., 2017; Robinson et al., 2017; Smarr et al., 2017;

Zajitschek et al. eLife 2020;9:e63170. DOI: https://doi.org/10.7554/eLife.63170 1 of 17

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.63170
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Ahmad et al., 2017; Foltin and Evans, 2018; Thompson et al., 2018). Indeed, the National Insti-

tutes of Health (NIH) have now implemented new guidelines for animal and human research study

designs, requiring that sex be included as a biological variable (Clayton, 2016; Clayton and Collins,

2014; NIH, 2015a).

When comparing the sexes, biologists generally focus on mean differences in trait values, placing

little or no emphasis on sex differences in trait variability (see Figure 1 for a diagram explaining dif-

ferences in means and variances). Despite this, two hypotheses exist that explain why trait variability

might be expected to differ between the sexes. Interestingly, these two hypotheses make opposing

predictions.

First, the ‘estrus-mediated variability hypothesis’ (Figure 2), which emerged in the (bio-)medical

research field, assumes that the female estrous cycle (see e.g. Prendergast et al., 2014; Beery and

Zucker, 2011) causes higher variability across traits in female subjects. A wide range of labile traits

are presumed to co-vary with physiological changes that are induced by reproductive hormones.

High variability is, therefore, expected to be particularly prominent when the stage of the estrous

cycle is unknown and unaccounted for. This higher trait variability, resulting from females being at

different stages of their estrous cycle, is the main reason for why female research subjects are often

excluded from biomedical research trials, especially in the fields of neuroscience, physiology and

pharmacology (NIH, 2015a). Female exclusion has traditionally been justified based on the grounds

that including females in empirical research leads to a loss of statistical power, or that animals must

be sampled across the estrous cycle for one to make valid conclusions, requiring more time and

resources.

Second, the ‘greater male variability hypothesis’ suggests males exhibit higher trait variability

because of two different mechanisms. The first mechanism is based on males being the heteroga-

metic sex in mammals. Mammalian females possess two X chromosomes, leading to an ‘averaging’

of trait expression across the genes on each chromosome. In contrast, males exhibit greater variance

because expression of genes on a single X chromosome is likely to lead to more extreme trait values

(Reinhold and Engqvist, 2013). The second mechanism is based on males being under stronger sex-

ual selection (Pomiankowski and Moller, 1995; Cuervo and Møller, 1999; Cuervo and Møller,

eLife digest Males and females differ in appearance, physiology and behavior. But we do not

fully understand the health and evolutionary consequences of these differences. One reason for this

is that, until recently, females were often excluded from medical studies. This made it difficult to

know if a treatment would perform as well in females as males. To correct this, organizations that

fund research now require scientists to include both sexes in studies. This has led to some questions

about how to account for sex differences in studies.

One reason females have historically been excluded from medical studies is that some scientists

assumed that they would have more variable responses to a particular treatment based on their

estrous cycles. Other scientists, however, believe that males of a given species might be more

variable because of the evolutionary pressures they face in competing for mates. Better

understanding how males and females vary would help scientists better design studies to ensure

they provide accurate answers.

Now, Zajitschek et al. debunk both the idea that males are more variable and the idea that

females are more variable. To do this, Zajitschek et al. analyzed differences in 218 traits, like body

size or certain behaviors, among nearly 27,000 male and female mice. This showed that neither male

mice nor female mice were universally more different from other mice of their sex across all features.

Instead, sex differences in how much variation existed in male or female mice depended on the

individual trait. For example, males varied more in physical features like size, while females showed

more differences in their immune systems.

The results suggest it is particularly important to consider sex-specific variability in both medical

and other types of studies. To help other researchers better design experiments to factor in such

variability, Zajitschek et al. created an interactive tool that will allow scientists to look at sex-based

differences in individual features among male or female mice.
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Figure 1. Overview of meta-analytic methods used to detect differences in means and variances in any given trait

(e.g. body size in mice). The orange shading represents females (F), turquoise shading stands for males (M). The

solid circle represents a mean trait value within the respective group. Solid lines represent standard deviation, with

upper and lower bounds indicated by diamond shapes. Below, we present three types of effect sizes that can be

used for comparing two groups, along with the respective formulas and interpretations. Compared to lnVR (the

Figure 1 continued on next page
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2001). Empirical evidence supports higher variability of traits that are sexually selected, often har-

bouring high genetic variance and being condition-dependent, which makes sense as ‘condition’ as

a trait is likely to be based on numerous loci (Rowe and Houle, 1996; Tomkins et al., 2004). Thus,

higher genetic and, thus, phenotypic variance resulting from sexual selection is expected to charac-

terise sexually selected traits. In mammals, it is likely that both mechanisms are operating concomi-

tantly. So far, the ‘greater male variability hypothesis’ has gained some support in the evolutionary

and psychological literature (Reinhold and Engqvist, 2013; Lehre et al., 2009).

Here, we conduct the first comprehensive test of the greater male variability and estrus-mediated

variability hypotheses in mice (Figure 2; Reinhold and Engqvist, 2013; Johnson et al., 2008;

Figure 1 continued

ratio of SD), lnCVR (the ratio of CV or relative variance) provides a more general measure of the difference in

variability between two groups (mean-adjusted variability ratio).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Mean-variance relationships (log(Mean) vs log(SD, standard deviation)) across all traits for

males (A) and females (B).

Figure 2. The two hypotheses (‘greater male variability’ versus ‘estrus-mediated variability’) have different predictions on how variabilities influence total

observed phenotypic variance (Vtotal in the figure). For greater male variability, the within-subject (or within-trait) variation Vwithin could be potentially

negligible or is equal in males and females. This is illustrated as the shaded distributions around each individual mean (dashed vertical lines), which are

of equal area for the males (turquoise) and females (orange). The greater value of Vtotal is driven by wider distribution of mean trait values in males

compared to females (i.e. Vbetween, represented by a thick horizontal bar). The estrus-mediated variability hypothesis, in contrast, assumes that within-

subject [or within-trait] variability is much higher in females than in males (broader orange-shaded trait distributions than turquoise distributions), while

the variability of the means between individuals stays the same (thick horizontal bars).
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Hedges and Nowell, 1995; Itoh and Arnold, 2015; Becker et al., 2016; Beery, 2018), examining

sex differences in variance across 218 traits in 26,916 animals. To this end, we carry out a series of

meta-analyses in two steps (Figure 3). First, we quantify the natural logarithm of the male to female

coefficients of variation, CV, or relative variance (lnCVR) for each cohort (population) of mice, for dif-

ferent traits, along with the variability ratio of male to female standard deviations, SD, on the log

scale (lnVR, following Nakagawa et al., 2015, see Figure 1). Then, we analyse these effect sizes to

quantify sex bias in variance for each trait using meta-analytic methods. To better understand our

results, and match them to previously reported sex differences in trait means (Karp et al., 2017), we

also quantify and analyse the log response ratio (lnRR). Next, we statistically amalgamate the trait-

level results to test our hypotheses and to quantify the degree of sex bias in and across nine
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Figure 3. Workflow of data processing and meta-analysis.
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functional trait groups (for details on the grouping, see below). Our meta-analytic approach allows

easy interpretation and comparison with earlier and future studies. Further, the proposed method

using lnCVR (and lnVR) is probably the only practical method to compare variability between two

sexes within and across studies (Nakagawa et al., 2015; Senior et al., 2020), as far as we are aware.

Also, the use of a ratio (i.e. lnRR, lnVR, lnCVR) between two groups (males and females) naturally

controls for different units (e.g. cm, g, ml) as well as for changes in traits over time and space.

Results

Data characteristics and workflow
We used a dataset compiled by the International Mouse Phenotyping Consortium (Dickinson et al.,

2016) (IMPC, dataset acquired 6/2018). To gain insight into systematic sex differences, we only

included data of wildtype-strain adult mice, between 100 and 500 days of age. We removed cases

with missing data, and selected measurements that were closest to 100 days of age (young adult)

when multiple measurements of the same trait were available. To obtain robust estimates of sex dif-

ferences, we only used data on traits that were measured in at least two different institutions (see

workflow diagram, Figure 3).

Our dataset comprised 218 continuous traits (after initial data cleaning and pre-processing; Fig-

ure 3). It contains information from 26,916 mice from nine wildtype strains that were studied across

11 institutions. We combined mouse strain/institution information to create a biological grouping

variable (referred to as ‘population’ in Figure 3B; see also Supplementary file 1, Table 1 for details),

and the mean and variance of a trait for each population was quantified. We assigned traits accord-

ing to related procedures into functionally and/or procedurally related trait groups to enhance

interpretability (referred to as ‘functional groups’ hereafter; see also Figure 3G). Our nine functional

trait groups were: behaviour, morphology, metabolism, physiology, immunology, hematology, heart,

hearing and eye (for the rationale of these functional groups and related details, see Methods and

Supplementary file 1, Table 3).

Testing the two hypotheses
We found that some means and variabilities of traits were biased towards males (i.e. ‘male-biased’,

hereafter; turquoise shaded traits, Figure 4), but others towards females (i.e. ‘female-biased’, here-

after; orange shading, Figure 4) within all functional groups. These sex-specific biases occur in mean

trait sizes and also in our measures of trait variability. There were strong positive relationships

between mean and variance across traits (r > 0.94 on the log scale; Figure 1—figure supplement

1), and therefore, we report the results of lnCVR, which controls for differences in means, in the

main text. Results on lnVR are presented as figure supplements (Figure 4—figure supplements 1

and 2).

There was no consistent pattern in which sex has more variability (lnCVR) in the examined traits

(left panel in Figure 4A). Our meta-analytic results also did not support a consistent pattern of either

higher male variability or higher female variability (see Figure 4B, left panel: ‘All’ indicates that

across all traits and functional groups, there was no significant sex bias in variances; lnCVR = 0.005,

95% confidence interval, 95% CI = [�0.009 to 0.018]). However, there was high heterogeneity

among traits (I2 = 76.5%, Supplementary file 1, Table 4 and see also Table 5), indicating sex differ-

ences in variability are trait-dependent, corroborating our general observation that variability in

some traits was male-biased but others female-biased (Figure 4A).

As expected, specific functional trait groups showed significant sex-specific bias in variability

(Figure 4B). The variability among traits within a functional group was lower than that of all the traits

combined (Supplementary file 1, Table 4). For example, males exhibited an 8.05% increase in CV

relative to females for morphological traits (lnCVR = 0.077; CI = [0.041 to 0.113], I2 = 67.3%), but CV

was female-biased for immunological traits (6.59% higher in females, lnCVR = �0.068, CI = [�0.098

to 0.038], I2 = 40.8%) and eye morphology (7.85% higher in females, lnCVR = �0.081, CI = [�0.147

to (�0.016)], I2 = 49.8%).

The pattern was similar for overall sexual dimorphism in mean trait values (here, a slight male bias

is indicated by larger ‘turquoise’ than ‘orange’ areas; Figure 4B, right and Figure 4B, lnRR: ‘All’,

lnRR = 0.012, CI = [�0.006 to 0.31]). Trait means (lnRR) were 7% larger for males (lnRR = 0.067; CI =
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Figure 4. Sex bias in trait groups. Panel (A) shows the numbers of traits that are either male-biased (turquoise) or female-biased (orange) across

functional groups. The x-axes in Panel A represents the overall percentages of traits with a given direction of sex bias: orange shading when meta-

analytic mean < 0 (female-biased), turquoise shading when meta-analytic mean > 0 (male-biased). White numbers inside the turquoise bars represent

numbers of traits that show male bias within a given group of traits, numbers inside the orange bars represent the number of female-biased traits.

Panel (B) shows effect sizes and 95% CI from separate meta-analysis for each functional group (Figure 3H). Traits that are male-biased in Panel B are

shifted towards the righthand side of the zero-midline (near the turquoise male symbol), whereas female-biased traits are shifted towards the left (near

the orange female symbol).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Numbers of sex-biased traits.

Source data 2. Effect sizes of sex bias in functional groups.

Figure supplement 1. Percentages and numbers of either male (turqoise bars) or female (orange bars) biased traits (Panel A) across functional groups,

this time for lnCVR (left hand side), lnVR (middle) and lnRR (right hand side).

Figure supplement 2. Sex bias in trait groups for lnCVR, lnVR and lnRR.
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[0.007 to 0.128]) in morphological traits and 15.3% larger in males for metabolic traits (lnRR = 0.142;

CI = [0.036 to 0.248]). In contrast, females had 5.59% (lnRR = 0.057, CI = [�0.107 to (�0.007)]) larger

means than those of males for immunological traits. We note that these meta-analytic estimates

were accompanied by very large between-trait heterogeneity values (morphology I2 = 99.7%,

metabolism I2 = 99.4%, immunology I2 = 96.2; see Supplementary file 1, Table 4), indicating that

even within the same functional groups, the degree and direction of sex bias in the mean was not

consistent among traits.

Discussion
We tested competing predictions from two hypotheses explaining why sex biases in trait variability

exist. Neither the ‘greater male variability’ hypothesis nor the ‘estrus-mediated variability’ hypothesis

explain the observed patterns in sex-biased trait variation on their own. Therefore, our results add

further empirical weight to calls that question the basis for the routine exclusion of one sex in bio-

medical research based on the estrus-mediated variability hypothesis (Flanagan, 2014; Klein et al.,

2015; Prendergast et al., 2014; Shansky and Woolley, 2016; Becker et al., 2016). It is important

to know that for each trait we estimated the mean effect size (i.e. lnCVR) over strains and locations.

As such, our results may not necessarily apply to every group of mice, which may or may not result

in stronger support for either of the two hypotheses.

Greater male variability vs. estrus-mediated variability?
Evolutionary biologists commonly expect greater variability in the heterogametic sex than the homo-

gametic sex. In mammals, males are heterogametic, and hence are expected to exhibit higher trait

variability compared to females, which is also consistent with an expectation from sexual selection

theory (Reinhold and Engqvist, 2013). Our results provide only partial support for the greater male

variability hypothesis, because the expected pattern only manifested for morphological traits (see

Figures 4 and 5). This result corroborates a previous analysis across animals, which found that the

heterogametic sex was more variable in body size (Reinhold and Engqvist, 2013). However, our

data do not support the conclusion that higher variability in males occurs across all traits, including

for many other morphological traits.

The estrus-mediated variability hypothesis was, at least until recently (Prendergast et al., 2014;

Smarr et al., 2017), regularly used as a rationale for including only male subjects in many biomedical

studies. So far, we know very little about the relationship between hormonal fluctuations and general

trait variability within and among female subjects. Our results are consistent with the estrus-medi-

ated variability hypothesis for immunological traits only. Immune responses can strongly depend on

sex hormones (Zuk and McKean, 1996; Grossman, 1989), which may explain higher female variabil-

ity in these traits. However, if estrus status affects traits through variation in hormone levels, we

would expect to also find higher female variability in physiological and hematological traits. This was

not the case in our dataset. Interestingly, however, eye morphology (structural traits, which should

fluctuate little across the estrous cycle) also appeared to be more variable in females than males, but

little is known about sex differences in ocular traits in general (Wagner et al., 2008; Shaqiri et al.,

2018). Overall, we find no consistent support for the female estrus-mediated variability hypothesis.

In line with our findings, recent studies have refuted the prediction of higher female variability

(Prendergast et al., 2014; Smarr et al., 2017; Beery and Zucker, 2011; Becker et al., 2016;

Beery, 2018). For example, several rodent studies have found that males are more variable than

females (Prendergast et al., 2014; Smarr et al., 2017; Becker et al., 2016; Beery, 2018;

Fritz et al., 2017; Mogil and Chanda, 2005). Further studies should investigate whether higher

female variability in immunological traits is indeed due to the estrous cycle, or generally because of

greater between-individual variation (Figure 2).

In general, we found many traits to be sexually dimorphic (Figure 5) in accordance with the previ-

ous study, which used the same database (Karp et al., 2017). Although the original study also pro-

vided estimates for sex differences in traits both with and without controlling for weight (we did not

control for weight; Nakagawa et al., 2017). More specifically, males are larger than females, while

females have higher immunological parameters (see Figure 5). Notably, the most sexually dimorphic

trait means also show the greatest differences in trait variance (Figures 4 and 5). Indeed, theory pre-

dicts that sexually selected traits (e.g. larger body size for males due to male-male competition) are
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Figure 5. Summary of sex differences in the mean trait values (lnRR) and variances (lnCVR) across nine functional

trait groups, and overall.
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likely more variable, as these traits are often condition-dependent (Rowe and Houle, 1996). There-

fore, this sex difference in variability could be more pronounced under natural conditions compared

to laboratory settings. This relationship may explain why male-biased morphological traits are larger

and more variable.

Eco-evolutionary implications
We have used lnCVR values to compare phenotypic variability (CV) between the sexes. When lnCVR

is used for fitness-related traits, it can signify sex differences in the ‘opportunity for selection’

between females and males (Rowe and Houle, 1996). If we assume that phenotypic variation (i.e.

variability in traits) has a heritable basis, then large ratios of lnCVR may indicate differences in the

evolutionary potential of each sex to respond to selection, at least in the short term (Hansen and

Houle, 2008). For example, more variable morphological traits of males could potentially provide

them with better capacity than females to adapt morphologically to a changing climate. We note,

however, that in our study, lnCVR reflects sex differences in trait variability within strains, such that

the variability differences we observe between the sexes may be partially the result of phenotypic

plasticity.

Demographic parameters, such as age-dependent mortality rate (Lemaı̂tre et al., 2020) can often

be different for each sex. For example, a study on European sparrowhawks found that variability in

mortality was higher in females compared to males (Colchero et al., 2017). In this species, sex-spe-

cific variation affects age-dependent mortality and results in higher average female life expectancy.

Therefore, population dynamic models, which make predictions about how populations change in

their size over time, should take sex differences in variability into account to produce more accurate

predictions (Caswell and Weeks, 1986; Lindström and Kokko, 1998). In our rapidly changing

world, better predictions on population dynamics are vital for understanding whether climate

change is likely to result in population extinction and lead to further biodiversity loss.

Statistical and practical implications
It is now mandatory to include both sexes in biomedical experiments and clinical trials funded by the

NIH, unless there exists strong justification against the inclusion of both sexes (NIH, 2015a;

NIH, 2015b). In order to conduct meaningful research and make sound clinical recommendations for

both male and female patients, it is necessary to understand both how trait means and variances dif-

fer between the sexes. If one sex is systematically more variable in a trait of interest than the other,

then experiments should be designed to accommodate relative differences in statistical power

between the sexes (which has not been considered before, see Flanagan, 2014; Klein et al., 2015;

Prendergast et al., 2014; Shansky and Woolley, 2016). For example, female immunological traits

are generally more variable (i.e. having higher CV and SD). Therefore, in an experiment measuring

immunological traits, we would need to include a larger sample (N) of females than males

(N[female] > N[male]; N[total] = N[female] + N[male]) to achieve the same power as when the experiment

only includes males (N[total*] = 2N[male]). In other words, in an experiment with both sexes we would

need a larger sample size than the same experiment with males only (N[total] > N[total*]).

To help researchers adjust their sex-specific sample size to achieve optimal statistical power, we

provide an online tool (ShinyApp; https://bit.ly/sex-difference). This tool may serve as a starting

point for checking baseline variability for each sex in mice. The sex bias (indicated by the % differ-

ence between the sexes) is provided for separate traits, procedures, and functional groups. These

meta-analytic results are based on our analyses of more than 2 million rodent data points, from

26,916 individual mice. We note, however, that variability in a trait measured in untreated individuals

maintained under carefully standardized environmental conditions, as reported here, may not

directly translate into the same variability when measured in experimentally treated individuals, or

individuals exposed to a range of environments (i.e. natural populations or human cohorts). Further,

these estimates are overall mean differences across strains and locations. Therefore, these may not

be particularly informative if one’s experiment only includes one specific strain. Nonetheless, we

point out that our estimates may be useful in the light of a recent recommendation of using ‘hetero-

genization’ where many different strains are systematically included (i.e. randomized complete block

design) to increase the robustness of experimental results (Voelkl et al., 2020). However, note that

an experiment with heterogenization might only include a few strains with several animals per strain.
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Even in such a case, using just a few strains, our tool could provide potentially useful benchmarks.

Incidentally, heterogenization would be key to making one’s experimental outcome more generaliz-

able (Webster and Rutz, 2020).

Importantly, when two groups (e.g. males and females) show differences in variability, we violate

homogeneity of variance or homoscedasticity assumptions. Such a violation is detrimental because it

leads to a higher Type I error rate. Therefore, we should consider incorporating heteroscedasticity

(different variances) explicitly or using robust estimators of variance (also known as ‘the sandwich

variance estimator’) to prevent an inflated Type I error rate (Cleasby and Nakagawa, 2011), espe-

cially when we compare traits between the sexes.

Conclusion
We have shown that sex biases in variability occur in many mouse traits, but that the directions of

those biases differ between traits. Neither the ‘greater male variability’ nor the ‘estrus-mediated var-

iability’ hypothesis provides a general explanation for sex differences in trait variability. Instead, we

have found that the direction of the sex bias varies across traits and among trait types (Figures 4

and 5). Our findings have important ecological and evolutionary ramifications. If the differences in

variability correspond to the potential of each sex to respond to changes in specific environments,

this sex difference needs to be incorporated into demographic and population dynamic modelling.

Moreover, in the (bio-)medical field, our results should inform decisions during study design by pro-

viding more rigorous power analyses that allow researchers to incorporate sex-specific differences

for sample size. We believe that taking sex differences in trait variability into account will help avoid

misleading conclusions and provide new insights into sex differences across many areas of biological

and bio-medical research. Ultimately, such considerations will not only better our knowledge, but

also close the current gaps in our biased knowledge (Tannenbaum et al., 2019).

Materials and methods

Data selection and process
The IMPC (International Mouse Phenotyping Consortium) provides a comprehensive catalogue of

mammalian gene function for investigating the genetics of health and disease, by systematically col-

lecting phenotypes of knock-out and wildtype mice. To investigate differences in trait variability

between the sexes, we only considered the data for wildtype control mice. We retrieved the dataset

from the IMPC server in June 2018 and filtered it to contain non-categorical traits for wildtype mice.

The initial dataset comprised over 2,500,000 data points for 340 traits. In cases where multiple meas-

urements were taken over time, data cleaning started with selecting single measurements for each

individual and trait. In these cases, we selected the measurement closest to ‘100 days of age’. All

data are from unstaged females (with no information about the stage of their estrous cycle). We

excluded data for juvenile and unsexed mice (Figure 3A; this dataset and scripts can be found on

https://rpubs.com/SusZaj/ESF; https://bit.ly/code-mice-sex-diff; raw data: https://doi.org/10.5281/

zenodo.3759701).

Grouping and effect-size calculation
We created a grouping variable called ‘population’ (Figure 3B). A population comprised a group of

individuals belonging to a distinct wildtype strain maintained at one particular location (institution);

populations were identified for every trait of interest. Our data were derived from 11 different loca-

tions/institutions, and a given location/institution could provide data on multiple populations (see

Supplementary file 1, Table 1 for details on numbers of strains and institutions). We included only

populations that contained data points for at least six individuals, and which had information for

members of both sexes; further, populations for a particular trait had to come from at least two insti-

tutions to be eligible for inclusion. After this selection process, the dataset contained 2,300,000 data

points across 232 traits. Overall, we meta-analysed traits with between 2–18 effect sizes

(mean = 9.09 effects, SD = 4.47). However, each meta-analysis contained a total number of individ-

ual mice that ranged from 83/91 to 13467/13449 (males/females). While a minimum of N = 6 mice

were used to create effect sizes for any given group (male or female), in reality samples sizes of

male/female groups were much larger (males: mean = 396.66 (SD = 238.23), median = 465.56;
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females: mean = 407.35 (SD = 240.31), median = 543.89). We used the function escalc in the R pack-

age, metafor (Viechtbauer, 2010) to obtain lnCVR, lnVR and lnRR and their corresponding sampling

variance for each trait for each population; we worked in the R environment for data cleaning, proc-

essing and analyses (R Development Core Team, 2017, version 3.6.0; for the versions of all the soft-

ware packages used for this article and all the details and code for the statistical analyses, see

Source code 1 and repositories). As mentioned above, the use of ratio-based effect sizes, such as

lnCVR, lnVR and lnRR, controls for baseline changes over time and space, assuming that these

changes affect males and females similarly. However, we acknowledge that we could not test this

assumption.

Meta-analyses: overview
We conducted meta-analyses at two different levels (Figure 3C–J). First, we conducted a meta-anal-

ysis for each trait for all three effect-size types (lnRR, lnVR and lnCVR), calculated at the ‘population’

level (i.e. using population as a unit of analysis). Second, we statistically amalgamated overall effect

sizes estimated at each trait (i.e. overall trait means as a unit of analysis) after accounting for depen-

dence among traits. In other words, we conducted second-order meta-analyses (Nakagawa et al.,

2019). We used the second-order meta-analyses for three different purposes: (A) estimating overall

sex biases in variance (lnCVR and lnVR) and mean (lnRR) in the nine functional groups (for details,

see below) and in all these groups combined (the overall estimates); (B) visualizing heterogeneities

across populations for the three types of effect size in the nine functional trait groups, which comple-

mented the first set of analyses (Figure 3I, Table 6 in Supplementary file 1); and (C) when traits

were found to be significantly sex-biased, grouping such traits into either male-biased and female-

biased traits, and then, estimating overall magnitudes of sex bias for both sexes again for the nine

functional trait groups. Only the first second-order meta-analysis (A) directly related to the testing of

our hypotheses, results of B and C are found in Supplementary file 1 and figures and reported in

our freely accessible code.

Meta-analyses: population as an analysis unit
To obtain degree of sex bias for each trait mean and variance (Figure 3C), we used the function

rma.mv in the R package metafor (Viechtbauer, 2010) by fitting the following multilevel meta-ana-

lytic model, an extension of random-effects models (sensu Nakagawa and Santos, 2012):

ESi ~ 1 + (1 | Strainj) + (1 | Locationk) + (1 | Uniti) + Errori, where ‘ESi’ is the ith effect size (i.e.

lnCVR, lnVR and lnRR) for each of 232 traits, the ‘1’ is the overall intercept (other ‘1’s are random

intercepts for the following random effects), ‘Strainj’ is a random effect for the jth strain of mice

(among nine strains), ‘Locationk’ is a random effect for the kth location (among 11 institutions), ‘Uniti’

is a residual (or effect-size level or ‘population-level’ random effect) for the ith effect size, ‘Errori’ is a

random effect of the known sampling error for the ith effect size. Given the model above, meta-ana-

lytic results had two components: (1) overall means with standard errors (95% confidence intervals),

and (2) total heterogeneity (the sum of the three variance components, which is estimated for the

random effects). Note that overall means indicate average (marginalised) effect sizes over different

strains and locations, and total heterogeneities reflect variation around overall means due to differ-

ent strains and locations.

We excluded traits which did not carry useful information for this study (i.e. fixed traits, such as

number of vertebrae, digits, ribs and other traits that were not variable across wildtype mice; note

that this may be different for knock-down mutant strains) or where the meta-analytic model for the

trait of interest did not converge, most likely due to small sample size from the dataset (14 traits,

see SI Appendix, for details: Meta-analyses; 1. Population as analysis unit). We therefore obtained a

dataset containing meta-analytic results for 218 traits, at this stage, to use for our second-order

meta-analyses (Figure 3D).

Meta-analyses: accounting for correlated traits
Our dataset of meta-analytic results included a large number of non-independent traits. To account

for dependence, we identified 90 out of 218 traits, and organized them into 19 trait sub-groups

(containing 2–10 correlated traits, see Figure 3E). For example, many measurements (i.e. traits) from

hematological and immunological assays were hierarchically clustered or overlapped with each other
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(e.g. cell type A, B and A+B). We combined the meta-analytic results from 90 traits into 19 meta-

analytic results (Figure 3F) using the function robu in the R package robumeta with the assumption

of sampling errors being correlated with the default value of r = 0.8 (Fisher et al., 2017). Conse-

quently, our final dataset for secondary meta-analyses contained 147 traits (i.e. the newly condensed

19 plus the remaining 128 independent traits, see Figure 3, Supplementary file 1, Table 2), which

we assume to be independent of each other.

Second-order meta-analyses: trait as an analysis unit
We created our nine overarching functional groups of traits (Figure 3G) by condensing the IMPC’s

26 procedural categories (‘procedures’) into related clusters. The categories were based on proce-

dures that were biologically related, in conjunction with measurement techniques and the number

of available traits in each category (see Supplementary file 1, Table 3 for a list of clustered traits,

procedures and grouping terms). To test our two hypotheses about how trait variability changes in

relation to sex, we estimated overall effect sizes for nine functional groups by aggregating meta-ana-

lytic results via ‘classical’ random-effect models using the function rma.uni in the R package metafor

(Viechtbauer, 2010). In other words, we conducted three sets of 10 second-order meta-analyses

(i.e. meta-analyzing 3 types of effect size: lnRR, lnVR and lnCVR for nine functional groups and one

for all the groups combined, Figure 3H). Although we present the frequencies of male- and female-

biased traits in Figure 4A, we did not run inferential statistical tests on these counts because such

tests would be considered as vote-counting, which has been severely criticised in the meta-analytic

literature (Higgins, 2019).
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