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Computational Design of Self-actuated
Deformable Solids via Shape Memory Material
Yucheng Sun, Wenqing Ouyang, Zhongyuan Liu, Ning Ni, Yann Savoye, Peng Song, and Ligang Liu

Abstract—The emerging 4D printing techniques open new horizons for fabricating self-actuated deformable objects by combing strength
of 3D printing and stimuli-responsive shape memory materials. This work focuses on designing self-actuated deformable solids for 4D
printing such that a solid can be programmed into a temporary shape and later recovers to its original shape after heating. To avoid a high
material cost, we choose a dual-material strategy that mixes an expensive thermo-responsive shape memory polymer (SMP) material
with a common elastic material, which however leads to undesired deformation at the shape programming stage. We model this shape
programming process as two elastic models with different parameters linked by a median shape based on customizing a constitutive
model of thermo-responsive SMPs. Taking this material modeling as a foundation, we formulate our design problem as a nonconvex
optimization to find the distribution of SMP materials over the whole object as well as the median shape, and develop an efficient and
parallelizable method to solve it. We show that our proposed approach is able to design self-actuated deformable objects that cannot be
achieved by state of the art approaches, and demonstrate their usefulness with three example applications.

Index Terms—Computational design, deformable solid, shape memory material, constitutive model, 4D printing

F

1 INTRODUCTION

A deformable object refers to an object whose shape changes
when forces or other means are applied. These objects are
more adaptable to the working environment and safer to use
due to their soft material, and thus have been widely used
in many applications such as soft robotics [1], biomedical
devices [2], and customized toys [3]. Deformable objects com-
monly require external forces to drive their deformation from
an initial shape to a target shape [3], [4]. Recently, researchers
are interested in designing self-actuated deformable objects
that can change their shape without relying on any external
forces. One excellent solution is to attach 3D printed rigid
tiles [5] or flexible rods [6] on a pre-stretched 2D planar sheet
such that once released, restoring forces of the sheet can
drive the deformation until achieving an equilibrium state
with internal forces among the tiles/rods.

Following the spirit of designing self-actuated deformable
objects, other researchers resort to the emerging technique of
4D printing [7] that combines the strength of 3D printing and
stimuli-responsive shape memory materials (SMMs). These
objects with SMMs can be deformed from their permanent
shape to a temporary shape when heated with external forces
applied (i.e., shape programming stage; see Figure 1(top)).
Due to the shape memory effect, the object will keep at
that temporary shape when the environmental temperature
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Fig. 1: Shape memory process of SMMs, where the perma-
nent, median, and temporary shapes are colored in blue,
green, and orange respectively. The external forces are
colored in red.

is decreased and the external forces are removed (i.e.,
unloading). In the shape recovery stage, the temporary shape
can turn back to the permanent one after being reheated;
see Figure 1(bottom). Existing works design such objects by
inserting actuators 3D printed with SMMs at specified loca-
tions in the object such that when heated local deformations
(e.g., bending) caused by shape recovery effect at multiple
actuators can drive the object deformation behavior. Due
to this design strategy, the resulting designs are limited to
origami-like objects [8], [9] and mesh structures [10].

In this work, we focus on designing self-actuated de-
formable solids for 4D printing, whose geometry does not
provide explicit hints to embed SMM actuators. To avoid
a high material cost, we choose a dual-material strategy
that mixes an expensive 1 thermo-responsive shape memory
polymer (SMP) material with a common elastic material
(i.e., thermoplastic elastomer (TPE) material) for fabricating
our objects. This dual-material strategy does not affect the

1. SMP material (e.g., 1000 USD/kg) could be around 30 times more
expensive than TPE material (e.g., 30 USD/kg).
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Fig. 2: Our deformable solid partially made with thermo-
responsive SMPs. Taking (a) a permanent and (b) a temporary
shape as inputs, our design method optimizes (c) both
the dual-material distribution (SMPs colored in cyan) and
external forces (in red) applied on the object such that the
permanent shape can be programmed into (d) the temporary
shape. (e) The fabricated temporary shape automatically
turns back to (f) the permanent shape when reheated.

shape recovery stage in the shape memory process since both
materials are in hyperelastic state when heated. However,
the shape of mixed materials after cooling and unloading
will not remain unchanged but undergo a certain amount of
undesired deformation since the SMPs try to keep its temporary
form due to the shape memory effect yet the elastic TPEs
attempt to go back to the permanent form. Hence, the shapes
before and after unloading are different, named as median
and temporary shapes respectively; see the green and orange
shapes in Figure 1.

Inspired by the recent research progress on constitutive
models [11] that describe shape memory behavior of SMPs
in material science, we customize one suitable constitutive
model of thermo-responsive SMPs and incorporate it into our
design framework to guide the distribution of SMP material
as well as a sparse set of external forces over the whole object
such that the object partially made with SMPs can take a
user-specified permanent or temporary shape depending on
the environmental temperature; see Figure 2 for an example.
In particular, we present the following contributions:

• We simplify the constitutive model in [12] to describe
shape memory effect of SMPs such that it is feasible to
be incorporated into our computational framework.

• We formulate the design of self-actuated deformable
solids with dual materials as a nonconvex optimiza-
tion and take the undesired deformation due to
material-mixing into consideration.

• We propose a novel and effective method to solve the
nonconvex optimization problem.

Our designed deformable solids are self-actuated at the
shape recovery stage, i.e., transform from a temporary shape
to a permanent shape purely by the environmental stimulus
(i.e., heating), as demonstrated in physical experiments on
a number of fabricated results. Three example applications
further show their advantages: 1) a grasper that relies on
shape memory effect to control the grasping process; 2) a
smart key-lock system that can be locked by adjusting envi-
ronmental temperature; and 3) an assembly of deformable
solids for efficient packing and automatic deployment.

2 RELATED WORK

Designing Deformable Objects. Computational design
and fabrication of deformable objects have attracted signif-
icant attention from the computer graphics community in
recent years. Some researchers focus on investigating new
metamaterials as a foundation of the design process. One
typical example is to design 3D printable microstructures
that can achieve controllable elastic material properties, by
geometrically modeling microstructures as a connection of
parametric and tileable cubic patterns [13], [14], a Voronoi
cell structure [15], [16], or an aperiodic and stochastic graph
structure [17].

Deformable objects with desired behavior can be de-
signed by optimizing the distribution of multiple base ma-
terials [18]. Skouras et al. [3] designed actuated deformable
characters by optimizing internal material distribution and
external actuation forces while Zehnder et al. [19] fabricated
composite silicone rubbers by injecting inclusions of dopant
material with the optimized number, size, and locations into
a silicone matrix material. Others achieve the deformable be-
havior by optimizing the object geometry instead, including
cross-sectional profiles of rods in flexible meshes [20], shell
thickness of hollowed objects [21], and rest shape of an object
that can deform to its target shape under external forces (e.g.,
gravity) [4]. Material distribution and object geometry can
be jointly optimized to achieve desired deformation, e.g., to
design soft pneumatic objects [22]. Rather than relying on
external actuation forces, some researchers are interested in
designing 3D objects that can form from pre-stretched 2D
planar sheets [5], [6] with internal restoring forces.

All the above works design deformable objects for fabrica-
tion with 3D printing, optionally with modified printers [19]
or post-processing such as gluing [5]. Hence, the fabricated
objects can deform only under external actuation forces or
internal restoring forces. In contrast, our work focuses on
designing deformable objects for 4D printing with shape
memory materials, enabling the object to deform from a
temporary shape to the permanent shape purely based on
environmental stimulus (i.e., heating).

Shape Memory Materials are a class of stimuli-responsive
materials that have the capability of changing their shape
upon application of an external stimulus [23]. Among a
number of types of SMMs developed so far, shape memory
alloys (SMAs) [24] and shape memory polymers (SMPs) [25]
are the most important ones. Comparing with other SMMs,
SMPs possess advantages of large deformation capacity, low
density and cost, and have been widely used in many areas.

Of all types of SMPs, thermo-responsive SMP is the first
and the most widely used one, which can be deformed
and fixed in a temporary shape at a certain condition and
recovers the permanent shape when heated. The increasing
interest in employing thermo-responsive SMPs in the design
of innovative products motivates an in-depth investigation
of their shape memory behavior. To this end, a number
of constitutive models have been developed for thermo-
responsive SMPs; please refer to [11] for a review. Among all
existing constitutive models, the 3D finite-strain phenomeno-
logical model in [12] has significant advantages including a
thermodynamically consistent mathematical framework and
considering the peculiar thermomechanical features of SMPs,
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which, however, also make it computationally heavy. In this
work, we simplify the constitutive model to improve its
efficiency for incorporating it into our computational design
framework; see Section 4 for the details.

Design for 4D Printing. 4D printing is defined as 3D
printing plus one more dimension of time, meaning that the
shape, property, or functionality of a 3D printed structure
can change as a function of time. 4D printing originates from
3D printing technology, but requires additional stimulus and
stimulus-responsive materials. Research into 4D printing
has attracted unprecedented interest since the idea was first
introduced [7]. We refer readers to an excellent survey [26]
for recent advances in 4D printing.

4D printed objects can exhibit programmed behavior
including self-assembly, self-repair, and reconfiguration
through environmental free energies. Due to these intriguing
properties, a number of methods and tools have been devel-
oped to design objects for 4D printing (mostly with SMP).
Typical works are about designing self-actuated deformable
objects, including active origami [8], self-folding objects [9],
morphing mesh structures [10], and bistable reconfigurable
structures [27], by inserting actuators 3D printed with shape
memory thermoplastic at specified locations in the object. To
support the design process, experiments and quantitative
analyses have been conducted to characterize the relationship
between material/printing parameters (e.g., actuator length,
layer thickness) and the resulting deformation performances
(e.g., bending angle). Compared with the above works, we
design self-actuated deformable objects by solving the distri-
bution of SMP materials (considered as “micro-actuators”)
over the whole object based on optimization, enabling us to
design deformable solids that were not possible before.

3 OVERVIEW

We take a permanent shape and a temporary shape of an
object represented as a pair of compatible tetrahedral meshes
as our inputs, denoted as Xperm and X temp respectively;
see Fig. 3(a&b). Our goal is to distribute two types of
material (i.e., elastic TPE and thermo-responsive SMP) over
the permanent shape Xperm such that it can be deformed
to the temporary shape X temp based on a few external
forces denoted as {fext} at the shape programming stage; see
Fig. 3(c-e). We address the material distribution as a binary
labeling problem, where each tetrahedron in the permanent
shapeXperm is assigned a label, e.g., 1 for SMP and 0 for TPE.
In the followings, we overview our material modeling with
TPEs and SMPs, and our approach to solving the problem.

Material modeling. The physical traits of a given material
are usually described by its constitutive model that relates
stimuli (e.g., deformations) to the material response (e.g.,
force, stress, energy) they trigger [28]. In this paper, consti-
tutive models are all described by the formula for the strain
energy density as a function of the deformation gradient. Our
material consists of two base materials: elastic TPEs and
thermo-responsive SMPs. We assume TPE is a hyperelastic
material and describe it with the well-known Neo-Hookean
constitutive model.

Thermo-responsive SMP material can change its state
upon temperature changes; in particular, transit from its

Fig. 3: Taking a pair of user-specified (a) permanent and (b)
temporary shapes as inputs, our method optimizes both the
material distribution (SMP in cyan and TPE in gray) and a
sparse set of external forces (red line in (d)) such that (c) the
permanent shape can be deformed into (d) a median shape
based on the force(s), which after unloading will eventually
transform to (e) the temporary shape (the median shape is
rendered in purple to highlight the undesired deformation).

glassy state to the rubbery state when the temperature is
above θT ; see Fig. 4. For the SMP used in our experiments,
θT = 328K, where K is Kelvin unit of thermodynamic
temperature. In practice, the transition does not occur
instantaneously once the SMPs are heated above θT , but
within in a temperature range [θT − ∆θ, θT + ∆θ], where
∆θ represents the half-width of the temperature range. We
choose and simplify the constitutive model in [12] to describe
SMP materials; see Section 4.

Overview of our approach. To find the material distribu-
tion, we initially allow an arbitrary affine combination of the
two base materials within each tetrahedron of the object, and
later drive the tetrahedrons materials toward one of the base
materials, leading to a discrete material distribution in the
object [3]. We formulate a nonconvex optimization problem
to solve the material distribution as well as the external
forces for shape programming while taking the undesired
deformation into consideration; see Section 5. The key idea is
to take the median shape (e.g., the green shape in Fig. 1 and
the shape in Fig. 3(d)) as an intermediate variable to model
the undesired deformation after unloading. By utilizing the
special structure of the optimization problem, we introduce

Fig. 4: Elasticity of SMP materials change as a function of
temperature θ, resulting in three different phases: 1) glassy
phase when θ < θT − ∆θ; 2) mixture phase when θ ∈
[θT −∆θ, θT +∆θ]; and 3) rubbery phase when θ > θT +∆θ.
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proper auxiliary variables and reformulate the optimization
to a form that is suitable to be solved by the Alternating
Direction Multiplier Method (ADMM), a well-established
optimization solver; see Section 6.

4 SIMPLIFIED CONSTITUTIVE MODEL OF SMPS

This section presents our simplified constitutive model of
SMPs based on [12]. To facilitate understanding, we first
present our selected elastic model, and then the original
constitutive model of SMPs proposed by Boatti et al. [12].
Note that the elastic model will be used not only to help
construct our simplified constitutive model of SMP materials,
but also to describe TPE materials.

4.1 Elastic Model
We model elastic materials using the Neo-Hookean consti-
tutive model since it can predict the nonlinear stress-strain
behavior of materials undergoing large deformations [28]. In
the followings, we show how this model describes the strain
energy density within an elastic shape as a function of the
deformation gradient F.

Given an input elastic shape, it is first discretized into
a set of finite elements, i.e., tetrahedrons. The deformation
gradient F within each tetrahedron is constant as we assume
linear elements for efficiency. Denote a tetrahedron with its
four vertices at the rest pose as [v1, v2, v3, v4] and its corre-
sponding tetrahedron at the deformed pose as [ṽ1, ṽ2, ṽ3, ṽ4],
with vj = [xj , yj , zj ]

T ∈ R3, ṽj = [x̃j , ỹj , z̃j ]
T ∈ R3,

j ∈ {1, 2, 3, 4}. Given the tangential vectors (local coordi-
nate) at the rest pose V = [v1 − v4, v2 − v4, v3 − v4] and
Ṽ = [ṽ1 − ṽ4, ṽ2 − ṽ4, ṽ3 − ṽ4] at the deformed pose, the
deformation gradient is expressed as F = Ṽ V −1 ∈ R3×3.

The right Cauchy-Green tensor C ∈ R3×3 is defined as
C = FTF and the Green-Lagrange tensor E ∈ R3×3 is
defined as E = C−I

2 . The strain energy density function of
the compressible Neo-Hookean material is given as:

ψ (F) =
µ

2
J−

2
3 (tr (C)− 3) +

κ

2
(J − 1)

2 (1)

where J = detF is the determinant of F, tr (C) is the trace
of C, and µ and κ are material parameters denoting the
shear modulus and bulk modulus respectively. The strain
energyW of a given tetrahedron is calculated asW = V ψ,
where V is the volume of this tetrahedron in the undeformed
configuration.

We denote the elastic force incurred by the deformation as
f . An explicit expression to calculate f is presented based on
two stress tensors. The second Piola-Kirchhoff stress tensor
is defined as:

S = 2
∂W
∂C

= µJ−
2
3 I− µ

2
J−

2
3 tr (C)C−1 +κ (J − 1) JC−1

(2)
where I is the 3 × 3 identity matrix. And the first Piola-
Kirchhoff stress tensor is defined as:

P = FS = µJ−
2
3F− µ

3
J−

2
3 tr (C)F−T + κ (J − 1) JF−T

(3)

Based on Equation 3, the elastic force f i of the ith vertex in
the shape can be computed as f i = Pni, where ni is the
normal of the ith vertex in the rest pose.

4.2 Constitutive Model of SMPs
We give a brief introduction to the constitutive model
proposed by Boatti et al. [12]. This model is based on a
phenomenological description of SMP behavior, considering
the three material phases (i.e., glassy, mixture, and rubbery
phases) in Figure 4. In the followings, we use the superscript
r and g to denote quantities of SMP materials in rubbery and
glassy states respectively.

Volume Fraction Evolution. A given local SMP sample at
a given temperature θ is assumed to be a mixture of the soft
rubbery state and the hard glassy state, i.e.,

φr (θ)+φg (θ) = 1 with φr (θ) , φg (θ) ∈ [0, 1]
(4)

where φr(θ) and φg(θ) are the fractions of material volume
in rubbery and glassy states respectively. In particular, φg (θ)
is postulated as:

φg (θ) =


1 if θ ≤ θT −∆θ

1

1 + exp (2ψ · (θ − θT ))
if θT −∆θ < θ < θT + ∆θ

0 if θ ≥ θT + ∆θ
(5)

where ψ = 0.02 K−1 is a constant controlling the sensitivity
of the fraction relative to the temperature change.

Phase-specific Deformation Gradients. The total deforma-
tion gradient F is assumed to be consistent for the rubbery
and glassy phases:

F = Ftr = Ftg (6)

where Ftr and Ftg denote the total deformation gradient for
the rubbery and glassy phases respectively.

During the glassy phase, the SMP material exhibits an
elastoplastic behavior and the deformation Ftg is decom-
posed as

Ftg = Fg · Ff (7)

where Fg is the glassy deformation gradient and Ff is the
frozen deformation gradient. And the glassy deformation
gradient Fg can be further decomposed as

Fg = Feg · Fpg (8)

where Feg and Fpg denote the elastic and plastic components
of the glassy deformation gradient respectively.

During the rubbery phase, the SMP material exhibits a
hyperelastic behavior and the total deformation gradient Ftr

is decomposed as

Ftr = Fr · Fp (9)

where Fr is the rubbery deformation gradient consistent with
its elastic part Fer (i.e., Fr = Fer) and Fp is the permanent
deformation gradient of the non-ideal shape recovery. Please
refer to the supplementary material for analytical definitions
of the plastic component of glassy deformation gradient Fpg ,
frozen deformation gradient Ff , and permanent deformation
gradient Fp.

Constitutive Model. The Helmholtz specific free energy
Ψ for SMPs is defined as a function of the deformation
gradients [12]:

Ψ = (1− φg (θ)) ·Ψr + φg (θ) ·Ψg (10)
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where Ψr = Ψr(θ, Fr) and Ψg = Ψg(θ, Feg, Fpg) are the
free energies of rubbery phase and glassy phases, respectively.
And these two free energies are defined as:

Ψr = Ψer + Ψr
ther + Ψr

ref (11)
Ψg = Ψeg + Ψpg + Ψg

ther + Ψg
ref (12)

where Ψer and Ψeg are the elastic potential energy for the
rubbery phase and the glassy phase respectively. Ψpg is the
plastic contributions in the glassy phase. Also, Ψr

ther and Ψg
ther

are the specific free energies related to thermal expansion.
Finally, Ψr

ref and Ψg
ref are the specific free energies related to

the temperature change with respect to the reference state.
In particular, the free energy Ψpg is defined as

Ψpg =
1

2
h ‖Epg‖2 (13)

where h is a positive parameter describing the material hard-
ening and Epg is the Green-Lagrange tensor corresponding
to the plastic component of glassy deformation gradient F pg .

4.3 Constitutive Model Simplification

We simplify the constitutive model to improve its efficiency
by removing features irrelevant to our design goal based on
three assumptions.

First, the thermal deformation is generally much subtle
comparing to the shape deformation and was not observed
in our experiments. Thus we have the following assumption:

Assumption 1. The thermal deformation can be neglected. i.e.,

Ψr
ther = Ψr

ref = 0, Ψg
ther = Ψg

ref = 0 (14)

Second, when the stress does not exceed the limit yield
stress, the plastic deformation will not happen at the glassy
phase and can be neglected (Table 5 in [12]). Thus, we can
make the following assumption:

Assumption 2. Fpg = I holds in the whole deformation path.

Thus, according to Equation 13, we have:

Ψpg = 0 (15)

Third, in our experiments, we found that both shape-
fixing and shape-recovery are ideal or nearly ideal. Hence,
we can make the following assumption:

Assumption 3. The shape-fixing and shape-recovery are ideal.

Based on Assumption 3, computation of the rubbery
deformation gradient Fr and the elastic component of glassy
deformation gradient Feg can be simplified as follows:

Fr = F, Feg = F
(
Ff
)−1

(16)

See the supplementary material for a deviation.
Combining Assumption 1 and 2, we obtain the following

equalities for the free energies:

Ψr = Ψer and Ψg = Ψeg (17)

Since both Ψr and Ψg contain an elastic component only, we
can compute them based on the elastic model in Section 4.1.

Simplified Constitutive Model. Using the Neo-Hookean
model (see Section 4.1), our simplified model expresses the
free energies Ψr and Ψg as follows:

Ψr =
µr

2
(Jr)

− 2
3

(
tr
(

(Fr)
T
Fr
)
− 3
)

+
κr

2
(Jr − 1)

2

(18)

Ψg =
µg

2
(Jeg)

− 2
3

(
tr
(

(Feg)
T
Feg

)
− 3
)

+
κg

2
(Jeg − 1)

2

(19)

where µr and µg are the shear modulus of SMPs in rubbery
and glassy phases respectively, and κr and κg are the bulk
modulus of SMPs in rubbery and glassy phases respectively.

In our simplified model, Equation (18) is used to model
the process that a permanent shape is deformed into a
median shape caused by external forces while Equation (19)
is used to model the process that the median shape is
deformed into a temporary shape due to unloading and
material mixing; see again Figure 1. Hence, the median
shape forms “a key frame” that bridges the deforming and
unloading steps in the shape programming stage.

5 PROBLEM FORMULATION

Taking a pair of user-specified permanent shape Xperm and
temporary shape X temp as inputs, our goal is to design a
3D object with a distribution ρ of two materials (SMP and
TPE) and a set of external forces {fext} such that 1) the object
can be deformed from its initial shape Xperm to a median
shape Xmed by the forces {fext}; and 2) the median shape
Xmed after unloading can further undergo a certain amount
of deformation (due to material-mixing) to become X temp;
see again Figure 1 and 3. Before presenting our problem
formulation, we first define several relevant notations.

5.1 Notations
Denote nt and nv as the number of tetrahedrons and vertices
of the object respectively. Denote vertices of the median shape
Xmed and the resulting temporary shape Xfinal as xmed ∈
R3nv and xfinal ∈ R3nv , respectively. Denote deformation
gradients of the median shape and final shape as Fmed ∈
R9nt and Ffinal ∈ R9nt , respectively.

The distribution of two base materials (i.e., TPEs and
SMPs) is stored into the vector ρ ∈ Rnt with ρj ∈ R as
the selected material for the jth (1 ≤ j ≤ nt) tetrahedron
(ρj = 0 for pure TPE and ρj = 1 for pure SMP). The total
strain energy function of the jth tetrahedron is

Wj
total = ρjWj

SMP +
(
1− ρj

)
Wj

TPE (20)

whereWj
SMP andWj

TPE are the strain energy of the SMP and
TPE materials in the tetrahedron respectively.

The components of vectors are indicated by superscripts.
For a force f ∈ R3nv , f i ∈ R3 is the ith (1 ≤ i ≤ nv) compo-
nent of f . For a deformation gradient F ∈ R9nt , its jth com-
ponent is written as Fj ∈ R3×3. The ith vertex normal within
the jth tetrahedron is nj,i ∈ R3; see the inset. Like nj,i, some
variables may have two superscripts: the first superscript
refers to the tetrahedron index and the second superscript
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refers to the vertex index. The vol-
ume of jth tetrahedron in the per-
manent shape Xperm is denoted by
V jperm. The gravity force is denoted
by fg and B is the set of indices of
boundary vertices in Xperm. The set
of indices of tetrahedrons adjacent
to the ith vertex is denoted as T (i),
and V (j) is the set of indices of the
jth tetrahedron’s vertices. The standard Euclidean norm is
denoted by ‖ · ‖ and the standard inner product is denoted
by 〈·, ·〉. By definition of the median shape and the frozen
deformation gradient Ff (see the supplementary material),
we have

(
Ff
)i

= Fimed.

5.2 Nonconvex Optimization Problem

Objective Function. We introduce the median shape Xmed
(see Fig. 3(d)) as an auxiliary variable and we formulate our
problem as an optimization:

arg min
{xfinal, xmed, ρ}

E = λpfinalEpfinal + λforceEforce + Eρ (21)

s.t. f imed + f ig = 0, ∀i /∈ B (22)

ffinal + fg = 0 (23)

where fmed and ffinal are the internal forces of Xmed and
Xfinal respectively, and λforce and λpfinal are the weights.
Equation (22) and (23) represent the equilibrium states of
Xmed and Xfinal respectively. For the computation of the
elastic forces fmed and ffinal, please refer to the supplementary
material.

Final Shape Objective. The final shape Xfinal must match
the input temporary shape X temp as close as possible. This
fitness objective is expressed by:

Epfinal =
∥∥∥B (xifinal − xitemp

)∥∥∥2 (24)

where xitemp (xifinal) is position of the ith vertex in the users-
specified (our resulting) temporary shape, and the entry of
the diagonal matrix B ∈ R3nv×3nv is 1 for all the boundary
vertices and 0 otherwise.

External Forces Objective. External forces can be applied
only on the boundary vertices of the median shape Xmed
(see Fig. 3(d)). More importantly, we seek a small set of
external forces to simplify realization of these forces in
physical experiments. Thus, we enforce the external forces to
be sparse with the following objective :

Eforce =
∑
i∈B

∥∥f imed + f ig
∥∥ 1
γ (25)

with γ ≥ 1 to ensure the sparsity. In particular, large
γ improves sparsity of the function, yet requires more
computational efforts and makes the whole algorithm un-
stable. We choose γ = 3 in our experiments as a tradeoff
between external force sparsity and computational cost [29].
Assuming that the median shape represents the mesh at

its equilibrium steady state, we do not impose the sparse
constraints on the external forces directly. The opposite forces

of external forces are f imed+f ig of the boundary voxels inXmed.
Thus, imposing sparsity on f imed + f ig is also effective.

Material Distribution Objective. The material distribution
objective Eρ is defined as a weighted linear combination of
three objective terms:

Eρ = λmatEmat + λsmoothEsmooth + λSMPESMP (26)

where λmat, λsmooth, and λSMP are the weights balancing the
importance of each term. The meaning of each energy term
is introduced below.

First, we enforce per-tetrahedron material ρj to converge
toward either 0 or 1 to reach a meaningful physical solution.

Emat =
nt∑
i=1

(
ρj
(
1− ρj

))2
(27)

Second, we incorporate a regularization term to enforce
the material distribution smoothness because a small number
of large material clusters is favored rather than a large
number of small clusters in the fabrication.

Esmooth = ρT L ρ (28)

where L ∈ Rnt×nt is the volumetric tetrahedral Laplacian
matrix.

Finally, to reduce the material cost, we add a penalty term
to minimize the usage of expensive SMP materials:

ESMP = ‖ρ‖2 (29)

The above optimization problem is highly nonconvex
and nonsmooth since the Neo-Hookean elastic model (see
Equation (1)) is intrinsically nonconvex, and our sparse
objective term (see Equation (25)) is nonsmooth. To the
best of our knowledge, a universal method and theory is
not available for such nonconvex nonsmooth optimization
problems. In optimization community, it is agreed that
algorithms used to solve such problems should depend on
the specific form of the objective function and constraints [30],
which typically is a challenging task. In Section 6, we will
explore the special structure in our problem and utilize it to
develop an efficient solver.

6 OUR OPTIMIZATION SOLVER

To solve the optimization problem in Section 5.2, we divide
the overall optimization process into three steps by exploiting
structure of the problem and introducing auxiliary variables.
By this, each step can be either optimized in parallel or admits
a closed-form solution, and thus the overall optimization can
be solved efficiently.

6.1 Overall Functional Design
The overall functional involves three types of variables:
the mesh coordinates x, the elastic force f and material
distribution parameters ρ. However, f depends on x and
ρ. We neglect ρ temporarily. Then the computation of the
elastic force f can be described as: x → F → f , where F is
the deformation gradient. Usually, the relationship between
F and x is linear. The complexity of the overall functional
lies in the fact that f and F are related according to the
hyperelastic model, which is highly non-linear. Unfortunately,
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our problem cannot be decomposed into small independent
problems by merely introducing variable F, because each
vertex-based force f i is affected by different tetrahedron-
based deformation gradient Fj , making elastic forces {f i}
coupled together. In the overall functional, a given force is
vertex-based and its components are linked to the deforma-
tion of adjacent tetrahedrons. Naturally, we are willing to
rely on the force of a tetrahedron instead of vertex-based
forces. Hence, we define the force f i of the ith vertex as:
f i =

∑
j∈T (i)

f j,i, where f j,i represents the contribution of the

jth tetrahedron to the ith vertex (see Fig. 5). Now, we use
f j,i instead of f i as variables. The couple relation between
Fj can be diverted to the couple relation of f j,i.

Fig. 5: Force Decomposi-
tion. We denote by f i the
force associated to the
ith vertex. Force f i con-
sists of two components
f j,i and fk,i induced by
the deformation of tetra-
hedron Tj and Tk re-
spectively.

6.2 Energy Terms Reformulation
We introduce the following auxiliary variables f j,ifinal, f

j,i
med,

Fjfinal, F
j
med, where f j,ifinal (f j,imed) represents the contribution

of jth tetrahedron in the force of the ith vertex in the final
(median) shape, and Fjfinal (Fjmed) represents the deformation
gradient of the jth tetrahedron in the final (median) shape.
In the following, f j,i (·) denotes the force as a function, and
f j,i denotes it as a variable. Then, we rewrite the external
force energy term as:

Eforce =
∑
i∈B

∥∥∥∥∥∥
∑

j∈T (i)

f j,imed + f ig

∥∥∥∥∥∥
1
γ

and reformulate the two constraints (i.e., Equation (22)
and (23)) on the internal forces in the median and final
shape as two new energy terms:

Einner =
∑
i/∈B

δ

 ∑
j∈T (i)

f j,imed + f ig


Effinal =

∑
i

δ

 ∑
j∈T (i)

f j,ifinal + f ig


where we represent the constraints with the following
indicator function

δ : R3 → R ∪ {+∞} and x→
{

0 if x = 0

+∞ else
(30)

By this, we reformulate our optimization problem as:

min
V
Etotal := λpfinalEpfinal + λforceEforce + Eρ + Einner + Effinal

(31)
s.t. Ffinal = Dxfinal, Fmed = Dxmed

ffinal = ffinal(Fmed,Ffinal,ρ), fmed = fmed(Fmed,ρ)

Here, V consists of all the variables, i.e. , V =
{xmed,xfinal, f

j,i
med, f

j,i
final,F

j
med,F

j
final,ρ}, and D ∈ R9nt×3nv

maps all the mesh coordinates to the deformation gradient.
Note that the definition of these two force functions could
be found in the supplementary material. The augmented
Lagrangian function of problem in Equation (31) is stated as
follows:

L (V) = Etotal + 〈Ffinal −Dxfinal, βFfdFf〉

+
βFf

2
‖Ffinal −Dxfinal‖2

+ 〈Fmed −Dxmed, βFmdFm〉+
βFm

2
‖Fmed −Dxmed‖2

+ 〈ffinal − ffinal (Fmed,Ffinal,ρ) , βffdff〉

+
βff

2
‖ffinal − ffinal (Fmed,Ffinal,ρ)‖2

+ 〈fmed − fmed (Fmed,ρ) , βfmdfm〉

+
βfm

2
‖fmed − fmed (Fmed,ρ)‖2 (32)

where all the d with any subscript are the corresponding
dual variables and all the β with any subscript are the
corresponding penalty parameters; e.g., dFf (βFf) is the dual
variable (penalty parameter) corresponding to the constraint
Ffinal −Dxfinal = 0. During our experiments, we notice that
the Augmented Lagrangian Method (ALM) is very slow
compared with the ADMM [31]. Therefore, we use the
ADMM to solve this optimization problem. Rather than
using ordinary Newton method [3], we utilize speciality of
the variables and divided them into several groups to speed
up the ADMM as much as possible; see the optimization
solving strategy in Section 6.3.

6.3 Optimization Solving Strategy
We divide the set of variables V into three distinct groups,
and then in each step we optimize each group while fixing
the other groups:

1) The F-step:
{
Fjmed,F

j
final

}
2) The f -x-step:

{
xmed,xfinal, f

j,i
med, f

j,i
final

}
3) The ρ-step: {ρ}

To solve the overall optimization, we run the ρ-step and
the f -x step alternatively, and then we execute the F-step.
Finally, we update the dual variables. We repeat this process
until convergence. In the following, we briefly explain each
individual step. Please refer to the supplementary material
for more details.
The F-step. The deformation gradients in L (V) from
different tetrahedrons do not affect other variables when
they are fixed. Then, the F-step is decomposed into nt small
sub-problems. Each sub-problem can be carried out within
one tetrahedron in parallel. Then we use the well-known
L-BFGS method to solve these separated problems. Usually
it will converge within 10 steps.
The f -x-step. In this step, every f ,x can be split into small
sub-problems within each vertex. Moreover, all the iterations
in this step has a closed-form solution, which makes this step
extremely fast. Please refer to the supplementary material for
the derivation of the closed-form solution.
The ρ-step. The energy term involving ρ can be written as:

min
ρ

nt∑
j=1

f j
(
ρj
)

+ λsmooth ρ
T L ρ (33)
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Fig. 6: Undesired deformation from a median shape (in
purple) to the resulting temporary shape decreases when
more SMP materials (in cyan) are used. The given permanent
shape (in orange) is also shown for calculating the undesired
deformation measure Rr .

where f i (·) is a polynomial function of fourth-order. Then,
the task is to optimize a multi-variable polynomial. We use
ADMM instead of the Newton method which requires a large
linear system to be solved at each iteration. The inner ADMM
steps in the ρ-step can be decomposed into two substeps
as well, one of which can be solved in parallel and another
admits a closed-form solution.

7 EXPERIMENTAL RESULTS

We implemented our algorithm in C++ on a desktop com-
puter with an Intel Core i7-8700k 4.3GHZ CPU. We validate
the undesired deformation caused by material-mixing and
then demonstrate the effectiveness of our design approach
with various simulation results, real-world fabrications, and
evaluation experiments.

Fig. 6 shows the undesired deformation with respect
to the SMP material ratio α, where α = 1 means the
material is pure SMP and α = 0 means the material is
pure TPE. In this experiment, we only change the α while
keeping other variables (e.g., permanent shape, external
forces, material parameters) the same across all the simulated
results. We normalize the undesired deformation Rr with the
deformation between the permanent shape Xperm and the
resulting temporary shape Xfinal, i.e., Rr = dist(Xfinal,Xmed)

dist(Xfinal,Xperm) ,
where dist() is the Hausdorff distance between two tetra-
hedral meshes. Ideally, Rr should be equal to 0 when
α = 1, meaning that the undesired deformation will not
happen for pure SMP materials. As shown in Fig. 6, Rr
is monotonically decreasing when ρ increases, indicating
that its limit could be 0 when α → 1. Another observation
is that Rr is larger when fewer SMP materials are used
(as we preferred), which confirms the need of predicting
the undesired deformation in our material modeling and
integrating it into our optimization.

Results. Fig. 7 shows three sets of virtual results gen-
erated by our approach, where the material distribution
and external forces are visualized. Comparing the material
distribution among the results, we find that TWIST BAR
requires the highest SMP material ratio, indicating that
twisting deformation might demand more SMP materials
than the others (e.g., bending) to realize the self-actuated
deformation behavior. The rightmost column visualizes the
undesired deformation, which can obviously be perceived.

Fig. 7: Results generated by our approach: TWIST BAR
(top), FISH (middle), and HUMAN (bottom). From left to
right: input permanent and temporary shapes, permanent
shape with material distribution, median shape, resulting
temporary shape where the median shape is colored in
purple to show undesired deformation.

The resulting temporary shape looks like an intermediate
frame between the permanent shape and the median shape
(e.g., see HUMAN). This can be illustrated as an interaction of
internal forces between the SMP and TPE materials, i.e., SMPs
keep the median shape while hyperelastic TPEs attempt for
the permanent shape.

We evaluated our optimized results (i.e., material distri-
bution and external forces) by simulation. In detail, we take
the user-specified permanent shape Xperm with optimized
material distribution ρ as inputs, and simulate the shape
programming process under the optimized external forces
{fext}. By this, we obtain a resulting temporary shape in our
simulation denoted as X ′temp. We compare the simulated
temporary shape with our optimized temporary shape by
computing the Hausdorff distance dist(X ′temp,Xfinal). The
distance values are 9.8 × 10−3, 4.7 × 10−4 and 2.2 × 10−3

for the three results (from top to bottom) in Fig. 7, which are
all relatively small. Note that the distance cannot be zero as
the simulation uses discrete material distribution and sparse
external forces, which are different from the optimization.
This experiment verifies that the accuracy of our optimized
results is sufficiently close to that of our simulation.

Fabrication. We fabricated some of our results using dual-
material additive manufacturing. Specifically, we employed
a conventional FDM 3D printer equipped with dual extruder
heads in conjunction with two material filaments made of
SMP 2 and TPE. To execute the computed external forces
accurately, we build an actuator rig that can fix the object
and apply controlled forces (both size and direction) on the
object; see Fig. 8. We validate our material modeling and
design algorithm by fabricating an EIFFEL TOWEL result
and deforming it by using the actuator rig to apply the
computed external force. In this experiment, we observe
that the permanent, median, and resulting temporary shapes
computed by our algorithm are closely identical with those of
the fabricated counterpart; compare Fig. 8 (top) and (middle).

2. Our experiments used SMP material (type: Ether MS5520) from
SMP Technologies Inc; see http://www2.smptechno.com/en/smp/
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Fig. 8: Validate a result generated by our algorithm (top) in a real-world thermomechanical experiment (middle), where the
corresponding temperature (in orange) and applied external force size (in red) are visualized over time (bottom). From left
to right: shape heating, deforming, fixing and cooling, undesired deformation after unloading, and recovery.

Fig. 9: Our fabricated results: EIFFEL TOWER 2 (top), HUMAN
(middle), and SMILEY FACE (bottom). From left to right: input
permanent and temporary shapes, fabricated permanent
shape, resulting temporary shape, and recovered shape.

Fig. 9 (top) shows another EIFFEL TOWER result, which is
deformed into a bent shape by two external forces applied
using the actuator rig. Fig. 9 also shows HUMAN and SMILEY
FACE results, where the external force configurations are
too complex to be applied using the actuator rig. Thus, we
manually deform the objects following by the computed
forces. Note that building a device that can apply arbitrary
controlled forces is beyond the scope of this work. After
reheating, all objects recovered to its original shape; see the
supplementary video for the demo.

Evaluation. We performed two physical experiments to
evaluate our optimization approach and to verify our as-
sumption, respectively. To evaluate our optimization (mainly
on the material distribution), we compare it with a baseline

Fig. 10: Given (a&b) the same input, we compare (c&d) our
optimization approach with (e&f) a baseline approach that
distributes the same amount of SMP materials randomly
across the whole shape. (c&e) We obtain the same median
shape by applying different external forces on the two results.
(d) The resulting temporary shape of our optimized result is
close to (b) the target than (f) that of the baseline result.

approach that randomly distributes clusters of SMP materials
over the whole object. By clustering the SMP tetrahedrons,
the baseline approach avoids isolated SMP tetrahedrons
that cannot be precisely fabricated due to the limited 3D
printing resolution. We use the baseline approach to generate
another EIFFEL TOWER, 3D print it, and compare it with
our optimized result in Fig. 8. During the experiment, we
applied different external forces to deform the two results
such that they have the same median shape; see Fig. 10(c&e).
Fig. 10(d&f) shows that the resulting temporary shape of
our optimized result is closer to the target one than that of
the baseline result; see also the supplementary video. This
experiment verifies the effectiveness of our modeling on the
undesired deformation and optimization on the material
distribution.

The second experiment is to verify Assumption 2. We fab-
ricated a cylinder with pure SMP material and let the cylinder
undergo multiple (i.e., 20 in our experiment) iterations of
shape programming and recovery. After this process, we
found that the cylinder could still return to its original shape;
see the supplementary video. This simple experiment verifies
that the plastic deformation in SMP material is sufficiently
small to be neglected.
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Models #Fig #tri #vert #tets λforce λpfinal λmat λsmooth λSMP α #force Runtime

Flower Fig. 2 19442 2619 8520 40 100 15 1 3.4 0.53 21 2h59min
Twist Bar Fig. 7 4176 768 1705 10 100 10 0.6 0.5 0.69 2 1h1min

Fish Fig. 7 25463 3309 11397 10 100 10 0.6 0.5 0.08 1 5h8min
Human 1 Fig. 7 7926 1092 3515 10 100 10 0.6 0.5 0.18 3 4h37min

Eiffel Tower 1 Fig. 8 5919 872 2564 40 100 15 0.8 0.8 0.29 1 1h5min
Eiffel Tower 2 Fig. 9 5919 872 2564 40 96 0.4 0.027 0.026 0.59 2 1h21min

Human 2 Fig. 9 7926 1092 3515 10 100 10 0.6 0.5 0.30 3 4h16min
Smiley Face Fig. 9 28324 3638 12736 10 60 10 1.8 5e-5 0.09 5 5h26min

Grasper Fig. 11 6180 845 6180 40 90 15 1 2.6 0.14 14 4h12min
Key-lock Fig 11 8951 1139 4045 40 100 10 1.5 3.1 0.16 2 2h8min

Snake Fig. 11 38800 3025 14400 40 800 15 2.4 1.0 0.40 5 5h36min

TABLE 1: Statistics of our results. From left to right: model name, corresponding Figure ID, number of triangles (#tri),
number of vertices (#vert), number of tetrahedrons elements (#tets), values for the optimization weights (λforce, λpfinal,
λmat, λsmooth, λSMP), SMP material ratio (α), number of external forces (#force), and the overall running time. Note that the
different orders of magnitude for λSMP is caused by resolutions and shapes of input tetrahedral meshes.

Parameters and Statistics. In our fabrication, the transition
temperature of the SMP material we used is θT = 328K
and the temperature offset ∆θ = 15K. The shear modulus
and bulk modulus of the SMP material are µ = 1.86e9Pa
and κ = 1.13e9Pa in the glassy phase, and µ = 1.18e7Pa
and κ = 7.15e7Pa in the rubbery phase. The shear modulus
and bulk modulus of the TPE material are µ = 1.00e8Pa
and κ = 6.07e8Pa. All the material parameters are offered
by the manufacturer. In Fig. 7, the shear modulus and bulk
modulus of the SMP material in the glassy phase are set to
µ = 1.00e8Pa and κ = 6.07e8Pa, while all the rest param-
eters remain unchanged. Our optimization is not sensitive
to the penalty parameters β, so we set βFf = βFm = 1e5 and
βff = βfm = 0.1 for all the results. We enlarge the penalty
parameters if the combined residual [31] does not decline for
certain number of iterations. The optimization terminates if
the combined residual is lower than 1e− 6.

We report statistics of our generated results in Table 1, in
particular, weights in Equation 21 and 26. We adjusted the
weights based on the observation that we expect the SMP
material ratio α to be as low as possible to reduce the total
fabrication cost, on the condition that the optimized design is
fabricatable. Initially, we use a relatively small SMP penalty
weight λSMP while adjusting all the other weights to generate
results. We check whether each optimized result is acceptable
based on two criteria: 1) the optimized result should have
less than 0.1% tetrahedrons whose material distribution ρj

is within [0.05, 0.95] as it is difficult to decide whether SMP
or TPE material should be assigned to these tetrahedrons;
2) the optimized result should have less than 30% isolated
SMP tetrahedrons among all SMP tetrahedrons as clustered
rather than isolated SMP tetrahedrons can be more precisely
fabricated due to the limited 3D printing resolution. Once
we find an acceptable result, we could further increase the
SMP penalty weight λSMP by using the bisection method.

Applications. We showcase three applications of our
designed deformable objects, for which the printed shapes
are empowered with functionalities by the materials’ shape
recovery effect rather than relying on special mechanisms.
The first application is a self-actuated grasper, inspired
by [32]; see Fig. 11 (top). The deformed grasper is used
to grab a ball-shaped object in the water. When heated, the
grasper executes the grasping task by closing its fingers.
Another application is a smart key-lock; see Fig. 11 (middle).
The key and lock are separated at the beginning. After being

deformed, the key can be inserted into the lock. To lock
the system, we simply need to heat it. The last application
is a self-deployable assembly with 17 deformable parts;
see Fig. 11 (bottom). Each deformable part is programmed
independently, which could be compactly packed for storage
and transportation. After assembled and heated, the shape
recovery effect of the parts will deform the overall shape to a
snake. Please watch the supplementary video for the demo.

8 CONCLUSION

In this paper, we propose an approach to design and fabricate
self-actuated deformable solids with dual materials, thermo-
responsive SMPs and elastic TPEs. When analyzing their
shape programming behavior, we observe undesired shape
deformation that needs to be considered and modeled for
accurate predication of the resulting programmed shape. Our
material modeling then expresses the shape programming
process of thermo-responsive SMPs as two elastic models
linked by a median shape, leading to a new simplified
constitutive model that is feasible to be integrated into a com-
putational framework. This new constitutive model provides
the key insight to formulate our challenging design problem
as an optimization over the SMP material distribution and the
median shape. Our experiments show how this optimization
allows creating self-actuated deformable solids of a wide
variety of shapes and deformation behaviors, and how the
shape recovery effect of these solids can be creatively used
in a number of applications.

Limitations and Future Work. Our work has several limitations
that open up interesting directions for future research. First,
our method does not take into consideration of avoiding
collisions, including object self-collisions and collisions be-
tween the object and cables, in the shape programming
process. Involving these collision constraints will result in an
extensive collection of variables and more complex solvers
in the optimization.

Second, when the computed external forces are too
complex (i.e., not co-planar) to be executed with the device
in Fig. 9(top), we realize the forces manually with hands
(Fig. 9(middle) and (bottom)), resulting in a loss of accuracy
in the shape programming. To alleviate this issue, one
possible solution is to add a co-planar constraint in our
optimization such that the computed forces always can be
executed by our device. However, if such co-planar forces do
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Fig. 11: Three example applications of our designed deformable solids: self-actuated grasper (top), smart key-lock system
(middle), and self-deployable assembly (bottom).

not exist, a more complex device needs to be developed to
realize the forces.

Third, theoretical analysis of our optimization, including
global and local convergence analysis, needs to be conducted
to understand its performance and convergence guarantee.
Although there are research works investigating the conver-
gence analysis of nonsmooth nonconvex ADMM [33], [34],
they are inapplicable to our problem because of the existence
of non-linear constraints. As a future work, we are interested
in assumptions on the objective function and constraints
that can ensure the convergence of our proposed solver. In
addition, a theoretical study on weighting parameters in the
optimization could be helpful for guiding their setting.

Lastly, we would like to study the potential of our
method for being used in practical applications, including
self-actuated graspers that can grab objects with irregular
shape [35] and reconfigurable assemblies that can change
their form automatically by heating.
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[6] J. Pérez, M. A. Otaduy, and B. Thomaszewski, “Computational
design and automated fabrication of kirchhoff-plateau surfaces,”
ACM Trans. on Graph. (SIGGRAPH), vol. 36, no. 4, pp. 62:1–62:12,
2017.

[7] S. Tibbits, “4D printing: Multi-material shape change,” Architectural
Design, vol. 84, no. 1, pp. 116–121, 2014.

[8] Q. Ge, C. K. Dunn, H. J. Qi, and M. L. Dunn, “Active origami by
4D printing,” Smart Materials and Structures, vol. 23, no. 9, 2014.
Paper No. 094007.

[9] B. An, Y. Tao, J. Gu, T. Cheng, X. A. Chen, X. Zhang, W. Zhao,
Y. Do, S. Takahashi, H.-Y. Wu, T. Zhang, and L. Yao, “Thermorph:
Democratizing 4D printing of self-folding materials and interfaces,”
in the 2018 CHI Conference on Human Factors in Computing Systems,
pp. 260:1–260:12, 2018.

[10] G. Wang, H. Yang, Z. Yan, N. G. Ulu, Y. Tao, J. Gu, L. B. Kara, and
L. Yao, “4DMesh: 4d printing morphing non-developable mesh
surfaces,” in the 31st Annual ACM Symposium on User Interface
Software and Technology, pp. 623–635, 2018.

[11] J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shape-
memory polymers: Structure, mechanism, functionality, modeling
and applications,” Progress in Polymer Science, vol. 37, no. 12,
pp. 1720–1763, 2012.

[12] E. Boatti, G. Scalet, and F. Auricchio, “A three-dimensional finite-
strain phenomenological model for shape-memory polymers:
Formulation, numerical simulations, and comparison with experi-
mental data,” International Journal of Plasticity, vol. 83, no. C, pp. 153–
177, 2016.

[13] J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, and
D. Zorin, “Elastic textures for additive fabrication,” ACM Trans. on
Graph. (SIGGRAPH), vol. 34, no. 4, pp. 135:1–135:12, 2015.

[14] C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, and
M. Gross, “Microstructures to control elasticity in 3d printing,”
ACM Trans. on Graph. (SIGGRAPH), vol. 34, no. 4, pp. 136:1–136:13,
2015.

[15] J. Martı́nez, J. Dumas, and S. Lefebvre, “Procedural voronoi foams
for additive manufacturing,” ACM Trans. on Graph. (SIGGRAPH),
vol. 35, no. 4, pp. 44:1–44:12, 2016.

[16] J. Martı́nez, S. Hornus, H. Song, and S. Lefebvre, “Polyhedral
voronoi diagrams for additive manufacturing,” ACM Trans. on
Graph. (SIGGRAPH), vol. 37, no. 4, pp. 129:1–129:15, 2018.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2019 12

[17] J. Martı́nez, H. Song, J. Dumas, and S. Lefebvre, “Orthotropic k-
nearest foams for additive manufacturing,” ACM Trans. on Graph.
(SIGGRAPH), vol. 36, no. 4, pp. 121:1–121:12, 2018.
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