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Abstract— In this paper we propose to use partial responses 
derived from an initial multilayer perceptron (MLP) to build an 
explanatory risk prediction model of in-hospital mortality in 
intensive care units (ICU). Traditionally, MLPs deliver higher 
performance than linear models such as multivariate logistic 
regression (MLR). However, MLPs interlink input variables in 
such a complex way that is not straightforward to explain how 
the outcome is influenced by inputs and/or input interactions. In 
this paper, we hypothesized that in some scenarios, such as when 
the data noise is significant or when the data is just marginally 
non-linear, we could find slightly more complex associations by 
obtaining MLP partial responses. That is, by letting change one 
variable at the time, while keeping constant the rest. Overall, we 
found that, although the MLR and MLP in-hospital mortality 
model performances were equivalent, the MLP could explain 
non-linear associations that otherwise the MLR had considered 
non-significant. We considered that, although deeming higher-
other interactions as disposable noise could be a strong 
assumption, building explanatory models based on the MLP 
partial responses could still be more informative than on MLR. 

Keywords— Interpretable machine learning, multilayer 
perceptron, neural networks, partial responses, MIMIC-III 
database. 

I. INTRODUCTION 
The Intensive Care Unit (ICU), which is where severely ill 

patients are treated in a hospital, is the unit with highest 
mortality rate in any hospital. Advances in clinical research is 
seeing an increased survival rate for patients in critical care 
and determining who is most at risk is at the core of this. 

Traditional machine learning (ML) methods such as 
logistic regression have proved successful for predicting 
mortality risk in ICU patients [1]. More recently, deep 
learning (DL) methods have also demonstrated their ability to 
predict mortality  in the field of critical care [2] outperforming 
more traditional ML methods. However, DL methods lack 
interpretability in that they cannot explain their predictions, 
otherwise known as the ‘black box’ problem [3]. This can be 
problematic when predicting mortality risk among ICU 
patients, as identifying the most significant risk factors is 
essential in saving lives. 

The aim of this paper is to produce an interpretable model 
for predicting mortality risk among ICU patients using data 
collected during the first 48 hours of ICU stay. A baseline 
model using logistic regression has been also produced to 

predict the outcome of mortality using numerous variables and 
vital sign measurements.  

An additional aim is to open the deep learning ‘black box’ 
by producing a model that can explain its predictions. We 
propose calculating the partial response of individual 
variables, using an initial multilayer perceptron to produce an 
interpretable model that reveals how each individual variable 
influences the outcome.  

The rest of the paper is structured as follows: the data 
source and final cohort used for the analysis is explained in 
the next section; followed by a section that explains the 
logistic and multilayer perceptron methods, along with the 
proposed partial responses formulation. Results of the 
experiments were collated in the Results section, which is 
followed by the discussion of the results and conclusions. 

II. DATASET 

A. Brief description of the data used 
The dataset used in this investigation has been extracted 

from the MIMIC-III (‘Medical Information Mart for Intensive 
Care’) clinical database [4]. MIMIC-III is a large, publicly 
available database of critically ill patients who stayed in the 
intensive care units of the Beth Israel Deaconess Medical 
Centre between 2001 and 2012.  

Data includes vital signs measurements, patient 
demographics, medications, laboratory measurements, 
procedure codes, diagnostic codes, imaging reports, hospital 
length of stay, survival data, among others [4]. The variables 
for our study have been chosen based on a previous 
publication [5]. 

B. Cohort selection 
Abnormal values detected during data exploration were 

removed, e.g. heart rate measurement below 0. We used one 
observation per time point (in hours since admission). As the 
aim of this investigation is to predict in-hospital mortality 
using information collected during the first 48 hours of ICU 
stay, any admissions with a length of stay less than 48 hours 
and recordings taken after 48 hours were removed. This 
resulted in 13% admissions, 11% subjects and 20% 
observations being removed. The time frame begins at 1 hour 
before admission to account for any prior information 
recorded in the ambulance.  



The Glasgow Coma Scale (GCS) scores, which relate to 
the level of consciousness of patients with acute brain injuries 
were recoded as per [6]. An additional variable, GCS total 
score was created by summing the individual scores for each 
admission per time point. 

The mean and standard deviation were calculated for each 
continuous variable. GCS scores are treated as continuous as 
they follow an order (ranging from deep coma to fully 
conscious). For true categorical variables the mode and 
standard deviation were calculated. Constant variables were 
used, one value per admission. 

Missing values is a common challenge faced when 
analyzing ICU data as the priority during the first few hours 
of the stay is stabilizing the patient, hence not all variables are 
measured during that time. Due to this, another proportion of 
observations were discarded.  

A mortality rate of 11.3% has been observed. It is common 
to observe a class imbalance in ICU data as the number of 
patients who die in hospital is relatively less in comparison to 
those that survive. 

The final dataset contains 7529 observations, 25 predictor 
variables and one binary response (1 = death before discharge, 
0 = survival until discharge). The data was split in order to 
evaluate the performance of the models using multiple 
techniques and performance metrics – 80% of data was used 
for training the models and 20% for test. 

III. METHODS 

A. Multivariate Logistic Regression 
Multivariate (multiple) logistic regression (MLR) uses the 
logistic function to model the risk probability of an outcome 
as a linear combination of its input variables [7]. MLR has 
the following general formulation: 

log � p(X)
1−p(X)� =  β0 + β1X1 + ⋯ . +βpXp (1) 

where βi are the coefficients. MLR has become the gold 
standard approach to multivariate explanatory modelling as 
associations between inputs and output variables can be 
easily explained from its coefficients.  

B. Multilayer Perceptron  
Multilayer perceptron (MLP) is a general-purpose type of 
feedforward neural network. In an MLP, inputs are densely 
connected via processor units called neurons, each of them 
applies a (usually) non-linear activation function to linearly 
combined inputs. An MLP neuron is formulated as follows: 

yj = ψ(∑ wixi + w0i )  (2) 

where ψ is the activation function and wi the connection 
weights. Neuron outputs can, subsequently, become the 
inputs of other neurons. Ultimately, an MLP uses layers of 
neurons to build non-linear, interlinked, associations between 
input and output variables. Recently, it was shown that by 
stacking several layers, MLPs had the ability of learning 
highly accurate models by finding complex representations 
of the data. This is what is known as Deep Learning (DL) [8]. 
However, as a tradeoff, DL models cannot easily explain 

associations between inputs and outputs, making them less 
suitable for explanatory modelling.   

C. Partial Responses 
Partial responses are calculated by feeding one input at a 

time through the MLP derived above, so that it is possible to 
determine the contribution of each variable to the log of the 
response. 

In order to model the contribution to the logit using 
univariate terms, the model is defined as follows: 

log(Y) = φ(0) + ∑ φi(xi)i + ε  (3) 

Where φ(0) is the error that is calculated when all inputs 
are equal to 0, and φi(xi) represents the partial responses of 
variable i (individually) and ε represents the higher order 
terms. 

The partial responses will be calculated and visualised to 
assess the contribution on the logit function for each of the 
predictor variables [9], [10]. The logit function represents 
mortality risk. A positive contribution indicates increased risk 
while a negative contribution indicates a decreased risk. The 
closer the contribution is to 0, the less influence the variable 
has on the outcome. 

IV. RESULTS 

A. MLR and MLP results 
The multivariate logistic regression model is shown in 

table 1, including the corresponding 95% confidence 
intervals. This model was created using the whole dataset, 
allowing further comparisons. The ROC AUC obtained on the 
test set was 0.803. 

TABLE I.  RESULTS OF THE LOGISTIC REGRESSION MODEL 

 Estima
te 

Std 
error 

Z 
value 

P 
value 

Lower 
95% 
CI 

Upper 
95% 
CI 

Intercept 35.284 3.564 9.901 <1e-4 28.321 42.294 

Diastolic BP 
(Mean) 

-0.012 0.010 -1.156 0.248 -0.032 0.008 

Diastolic BP 
(St Dev) 

0.038 0.019 1.945 0.052 0.000 0.076 

Mean BP 
(Mean) 

-0.021 0.013 -1.651 0.099 -0.045 0.005 

Mean BP 
(St Dev) 

-0.031 0.022 -1.424 0.154 -0.075 0.011 

Systolic BP 
(Mean) 

0.001 0.004 0.207 0.836 -0.008 0.009 

Systolic BP 
(St Dev) 

0.016 0.010 1.589 0.112 -0.004 0.036 

GCS Eye 
(Mean) 

-4.691 7.517 -0.624 0.533 -18.083 5.466 

GCS Eye 
(St Dev) 

0.283 0.243 1.165 0.244 -0.195 0.758 

GCS Motor 
(Mean) 

-4.093 7.518 -0.544 0.586 -17.489 6.065 

GCS Motor 
(St Dev) 

0.084 0.222 0.378 0.706 -0.355 0.517 

GCS Verbal 
(Mean) 

-4.097 7.519 -0.545 0.586 -17.493 6.060 

GCS Verbal 
(St Dev) 

0.367 0.208 1.762 0.078 -0.049 0.772 

GCS Total 
(Mean) 

3.920 7.518 0.521 0.602 -6.236 17.314 

GCS Total 
(St Dev) 

-0.514 0.215 -2.396 0.017 -0.932 -0.090 



 Estima
te 

Std 
error 

Z 
value 

P 
value 

Lower 
95% 
CI 

Upper 
95% 
CI 

Glucose 
(Mean) 

-0.001 0.001 -0.880 0.379 -0.003 0.001 

Glucose 
(St Dev) 

0.003 0.002 1.840 0.066 0.000 0.006 

Heart Rate 
(Mean) 

0.017 0.003 5.833 <1e-4 0.011 0.023 

Heart Rate 
(St Dev) 

-0.011 0.009 -1.196 0.232 -0.029 0.007 

O2 
Saturation 
(Mean) 

-0.108 0.024 -4.490 <1e-4 -0.155 -0.061 

O2 
Saturation 
(St Dev) 

0.052 0.025 2.103 0.035 0.003 0.100 

Respiratory 
Rate (Mean) 

0.083 0.011 7.859 <1e-4 0.063 0.104 

Respiratory 
Rate (St 
Dev) 

0.023 0.024 0.951 0.342 -0.024 0.069 

Temperature 
(Mean) 

-0.632 0.071 -8.874 <1e-4 -0.773 -0.493 

Temperature 
(St Dev) 

0.223 0.162 1.375 0.169 -0.096 0.541 

Weight -0.010 0.002 -5.272 <1e-4 -0.014 -0.006 

 
The MLP trained on the same data attained a ROC AUC 

of 0.8102 and a loss of 0.315. The fully connected neural 
network performed slightly better than the logistic regression 
model shown in table 1. 

B. Partial Responses 
Figures 1-4 are histograms of the frequency distribution 

for each variable, the red line represents the mortality risk 
function. All plots and partial responses are calculated using 
the full dataset for appropriate comparisons with the logistic 
regression model in table 1. 

  
Fig. 1. Blood pressure risk functions 

In Fig. 1 we can see there are decreasing risk trends for 
larger mean values of diastolic (Fig. 1A) and mean (Fig. 1C) 
BP, the risk increases slightly for diastolic BP values between 
80 and 100mmHg. Although the idea that lower BP being 
associated with higher risk is counterintuitive, it may lead to 
long term illnesses such as heart failure and cardiac 

decomposition [11], rather than short term mortality risk. 
Increased risk trends exist for mean systolic BP (fig 1E) up to 
100mmHg where the risk steadily decreases for values above 
125 mmHg. Normal systolic BP is between 90 and 140mmHg, 
suggesting no risk for patients with normal systolic BP as the 
risk function plateaus at 0. 

 
Fig. 2. GCS risk functions 

From Fig. 2 there are decreasing risk trends for mean GCS 
motor (Fig. 2C) and total (Fig. 2G), with GCS total scores 
below 10 being associated with mortality risk above 0. This 
supports the findings in [12] as low GCS scores are highly 
correlated with mortality risk, with patients with GCS total 
scores below 10 having poor chance of a favorable outcome.  

There is an overall decrease in risk as GCS Eye (Fig. 2A) 
score increases; however, risk increases sharply for scores 
between 2 and 3. For verbal response (Fig. 2E) there is an 
overall increase in risk as GCS score increases plateauing at 3 
with a slight decrease for a score of 5. The results for GCS 
Eye (P=0.533) and verbal (P=0.586) mean scores are not 
significant in the logistic model in table 1 as it cannot identify 
these increases and decreases in risk. From Fig. 2, these results 
have non-linear relationships with the outcome, as a change in 
the predictor variable does not lead to a constant change in the 
outcome, the MLP can model these non-linear relationships 
well. The 95% CI’s for mean GCS eye and verbal response 
both crossed the line of no effect in table 1, this indicates that 
the risk increases and decreases for different GCS scores as 
shown in Fig. 2.  

The changes over all GCS scores for patients during the 
first 48 hours is represented by the standard deviations in the 
right-hand panel of Fig. 2. This change could indicate 
improvements in a patient’s condition rather than decline, that 
would increase the patient’s chance of survival. Overall, a 
larger change in GCS motor score has no effect on mortality 
risk (Fig. 2D), decreasing for scores above 2.5 although there 

 

 

 



is not enough data for scores above 2.5 to give reliable results. 
The logistic regression model shows the result for GCS total 
standard deviation is slightly significant (P=0.017), showing a 
clear negative correlation between score and risk (Fig. 2H).  

For GCS Eye opening and verbal response standard 
deviations, there is a non-linear relationship between variable 
and outcome. For GCS eye standard deviation (Fig. 2B) the 
risk increases to 0 for scores of 0.3 where it plateaus at 0.7, 
decreasing sharply to 1 and steadily to 1.7 where it slightly 
increases. Results for GCS eye standard deviations above 1.5 
are not reliable due to the lack of data. For GCS verbal 
response standard deviation (Fig. 2F), the risk increases to 0 
for score of 0.2 where it plateaus to a score of 1 and decreases. 
All GCS standard deviation scores have little to no impact at 
increasing mortality risk as the contribution to logit does not 
exceed 0. 

 
Fig. 3. Glucose, Heart rate and O2 Saturation risk functions 

Normal glucose levels are between 80 and 130mg/dL, 
from Fig. 3 there is a slight increase in risk from 0 to 80mg/dL. 
Higher mean glucose levels (Fig. 3A) indicate lower mortality 
risk. There is no risk for patients with normal glucose levels 
as the contribution to the logit plateaus at 0. The risk decreases 
after 150mg/dL, although there is not enough data for glucose 
levels over 200mg/dL to provide reliable results, this supports 
the evidence in [13] indicating that glucose has little impact 
on mortality. 

The logistic model shows mean glucose decreases 
mortality risk but not significantly (P=0.379), as it is a linear 
model it cannot identify the increase in risk from 0 to 80mgdL. 
The information shown in the plot is more informative as the 
MLP is very good at modelling non-linear relationships such 
as this. 

Increased heart rate increases mortality risk (Fig. 3C). 
Heart rate measurements are taken when patients are at rest; 
therefore, a low resting heart rate may suggest a patient is 
more physically active and has better cardiovascular health, 
lowering their risk of mortality. Furthermore, a high resting 
heart rate may indicate heart failure increasing mortality risk. 
There is a slight decrease in risk from 100 to 120bpm, this is 
where the amount of data starts to decrease. Overall, the graph 
shows some evidence that agrees with the research carried out 

by Kara, 2016 in section 2.8 that higher heart rate increases 
mortality risk.  

Higher change in heart rate decreases mortality risk (Fig. 
3D) after a standard deviation of 15, this could show heart rate 
increasing or decreasing significantly over 48 hours. Although 
this result is unreliable as there is a lack of data for standard 
deviations above 15. Patients with a heart rate standard 
deviation of less than 15 are at no risk of mortality, as the risk 
function plateaus at 0.  

Normal O2 saturation is between 94 and 98%. Patients 
with normal O2 saturation are at no risk, the risk decreases for 
saturations above 98% (Fig. 3E). This result disagrees with 
[14], suggesting that increased O2 concentrations can lead to 
oxygen toxicity.   

Change in O2 saturation does not significantly increase 
risk as the contribution does not exceed 0, patients with less 
change in O2 saturation are at lower risk (Fig. 3F). This result 
is not reliable as there is limited data for standard deviations 
more than 5%. 

 
Fig. 4. Respiratory Rate, Temperature and weight risk functions 

The results in Fig. 4A show no risk for patients with 
normal mean respiratory rates between 12 and 25 breaths per 
minute as the risk function plateaus at 0. Risk increases for 
respiratory rates exceeding 25 breaths per minute, although 
this result is unreliable due to the lack of data for respiratory 
rates above 35.  

Overall, larger change in respiratory rate decreases 
mortality risk. There is limited data for standard deviations 
above 10 meaning the curve representing an increase and 
decrease in risk after this point is unreliable (Fig. 4B). 

Higher temperature is correlated with lower mortality risk 
(Fig. 4C), supporting evidence given by [15] that lower 
temperature increases mortality risk. The result for mean 
temperature in the logistic model is highly significant 
(P<0.0001) as there is a clear decrease in risk as temperature 
increases, the 95% CI in table 1 supports this as it does not 
cross the line of no effect, containing only negative values.  

More change in temperature increases mortality risk (Fig. 
4D). It is normal for body temperature to change up to 0.5 

 

 



degrees throughout the day, anything more than this can 
indicate other problems. The line plateaus at 0 for standard 
deviation between 0 and 0.5 showing no risk, peaking at the 
highest risk of 0.09 for a standard deviation of 0.7 where the 
risk sharply declines up to standard deviation 1, increasing and 
plateauing at 0.08 for standard deviations above 1.2. This 
result appears significant; however, the logistic model result 
was not significant (P = 0.169) as the risk increases and 
decreases as temperature changes. The MLP is non-linear and 
can detect changes in risk for different temperature standard 
deviation values, showing more informative results.  

Lower weight shows the highest risk (Fig. 4E). From low 
to average weight it is observed that the risk rises slightly, this 
is where most data is concentrated. The risk is at its lowest for 
obese patients, the pattern for average to high weight agrees 
with the ‘obesity paradox’ explained in section 2.8. The results 
suggest that low weight increases mortality risk, supporting 
the evidence given by [16] that mortality rate is significantly 
higher in underweight patients. 

V. DISCUSSION AND CONCLUSIONS 
The aim of this paper was to produce an interpretable 

model for predicting mortality risk among ICU patients using 
data collected during the first 48 hours of ICU stay. We used 
multivariate logistic regression and multilayer perceptrons. In 
one hand, the implementation of MLR models are 
straightforward, however, it was shown that they sometimes 
cannot capture all the possible associations between inputs 
and outputs. This is due to the fact that the MLR output is a 
linear combination of the inputs. Therefore, if there was a non-
linear link, MLR simply would not be able to properly identify 
it. On the other hand, MLPs have the ability to build non-linear 
maps, but its downside is interpretability. Hence, explaining 
associations is not as straightforward as with MLR.  

We hypothesized that in some scenarios, such as when the 
data noise is significant or when the data is just marginally 
non-linear, we could find slightly more complex associations 
by obtaining MLP partial responses. That is, by letting change 
one variable at the time, whilst keeping constant the rest. If the 
data is not too complex, we could assume that higher order 
interactions between input variables could be disregarded as 
noise.  

We applied our approach to find in-hospital mortality risk 
factors in UCI patients. Overall, we found that, although MLR 
and MLP model performances were equivalent, the MLP 
could explain non-linear associations that otherwise the MLR 
had considered non-significant. We considered that, although 
deeming higher-other interactions as disposable noise could 
be a strong assumption, building explanatory models based on 
the MLP partial responses could still be more informative than 
on MLR. 

Although this paper should be seen as preliminary 
research, we considered we are in the right path towards 
developing proper interpretable neural networks. Immediate 
future work will concentrate on allowing for higher-order 
interactions. 
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