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Oxynet: a collective intelligence that detects ventilatory thresholds in cardiopulmonary 

exercise tests 

 

Abstract 

 

The problem of the automatic determination of the first and second ventilatory thresholds 

(VT1 and VT2) from cardiopulmonary exercise test (CPET) still leads to controversy. The 

reliability of the gold standard methodology (i.e. expert visual inspection) feeds into the debate and 

several authors call for more objective automatic methods to be used in the clinical practice. In this 

study, we present a framework based on a collaborative approach, where a web-application was 

used to crowd-source a large number (1245) of CPET data of individuals with different aerobic 

fitness. The resulting database was used to train and test a machine learning (i.e. a convolutional 

neural network) algorithm. This automatic classifier is currently implemented in another web-

application and was used to detect the ventilatory thresholds in CPET. A total of 206 CPET were 

used to evaluate the accuracy of the estimations against the expert opinions. The neural network 

was able to detect the ventilatory thresholds with an average mean absolute error of 178 (198) 

mlO2/min (11.1%, r=0.97) and 144 (149) mlO2/min (6.1%, r=0.99), for VT1 and VT2 respectively. 

The performance of the neural network in detecting VT1 deteriorated in case of individuals with 

poor aerobic fitness. Our results suggest the potential for a collective intelligence system to 

outperform isolated experts in ventilatory thresholds detection. However, the inclusion of a larger 

number of VT1 examples certified by a community of experts will be likely needed before the 

abilities of this collective intelligence can be translated into the clinical use of CPET. 

Keywords: automatic methods; artificial intelligence; machine learning; deep learning;  

 

Introduction 

 



 Cardiopulmonary exercising test (CPET) is used to evaluate an individual’s metabolic 

response to an increasing exercise intensity/workload that relies mainly on the provision of energy 

through aerobic metabolism. CPET therefore provides a global assessment of the systems involved 

in oxygen (O2) transport and utilisation and carbon dioxide (CO2) removal throughout the exercise 

intensity spectrum (Wasserman et al., 2005). These capacities are related to an individual’s fitness 

level and they are affected by any pathological condition causing circulatory, respiratory and/or 

metabolic impairments. CPET applications include aerobic capacity/level and athletic assessment 

for performance purposes, medical diagnosis and prognosis of several chronic diseases and the 

individual prescription of adequate/symptom-limited exercise intensities for optimal physical 

training/rehabilitation (Balady et al., 2010). 

 

 During CPET, the engagement of the cardiovascular and respiratory systems increases 

progressively. To estimate the body metabolic activity during exercise, a metabolic cart is used to 

measure gas exchange (i.e., in terms of volume and concentration of inspired and expired gases, O2 

and CO2, by means of amperometric and infrared gas-receptors) and ventilation (by means of a 

spiroceptor/flowmeter) at the airways. During the test, the following variables are usually 

considered: O2 consumption (   2), CO2 production (  C 2)  heart rate ( R)  ventilation (  E)  tidal 

volume (  T), end-tidal partial pressure of O2 (PetO2) and CO2 (PetCO2), as well as other derived 

variables reflecting ventilatory efficiency (i.e. ventilatory equivalents for O2 and CO2    E    2 and 

  E   C 2 or respiratory exchange ratio (RER   C 2    2)). Specific patterns of variations in 

cardiorespiratory variables identify important indexes of exercise capacity and parameters for 

exercise prescription, such as the first (VT1) and second ventilatory thresholds (VT2), which 

identify the boundaries between moderate- and heavy- and between heavy- and very-heavy-

intensity exercise domains, respectively (Jones et al., 2010; Meyer et al., 2005). Additionally, 

abnormal patterns of responses in cardiorespiratory variables are connected to specific 

pathophysiological states which can be detected via CPET (Meyer et al., 2005).  



 

 The accepted gold standard methodology to evaluate ventilatory thresholds involves a 

visual detection of breakpoints in the cardio-ventilatory variables conducted by multiple reviewers 

(Prud’ omme et al.  1984).  sually   T1 is defined as  1) the first disproportionate increase in   E  

with  )  a concomitant increase in   E    2 and no increase in   E   C 2 and with 3) a concurrent 

increase in PetO2 with no consequent fall in PetCO2.  T  is defined as  1) the second 

disproportionate increase in   E   )  the first systematic increase in   E   C 2 and 3) the first 

systematic decrease in PetCO2. However, other methods considering other variables (e.g. 

respiratory frequency (M. Jones & Doust, 1998) or HR variability (Merati et al., 2004)) and other 

relationships between variables (e.g.  excess   C 2 (Gaskill et al., 2001)  (  C 2)2     2 -   C 2 vs 

   2 or    2/HR (Gaskill et al., 2001)) have been proposed.  

 

 Despite the fact that it is extensively and widely used in exercise physiology practices, 

visual inspection is time-consuming and is affected by intra- and inter-evaluator variability 

(Gladden et al., 1985). From our own experience, visual detection of the ventilatory thresholds can 

take several minutes to be properly determined. Furthermore, agreement between evaluators can 

range from 195 mlO2/min (expert) to 790 mlO2/min (novice) regarding VT1 inspection (Dolezal et 

al., 2017). Similar levels (100 mlO2/min for VT1 and 130 mlO2/min for VT2) between experts have 

been reported by others (Myers et al., 2010; Santos & Giannella-Neto, 2004). To aid experts in 

providing an objective and time-efficient determination of ventilatory thresholds, a considerable 

number of different computational algorithms have been proposed (Ekkekakis et al., 2008; Santos 

& Giannella-Neto, 2004). The currently available algorithms suffer from three main limitations: 1) 

they need pre-processing operations, 2) they are highly sensitive to the signal-to-noise ratio and 3) 

they cannot be refined even if new data is provided. To date, the general consensus is that the best 

methodology does not consist in using a unique algorithm, but rather combining different 

algorithms (Ekkekakis et al., 2008; Gaskill et al., 2001) or both visual and automatic methods 



(Pühringer et al., 2020).  

 

 The problem of determining the ventilatory thresholds from CPET data is characterised by 

ambiguity, contradiction and complexity (Hopker et al., 2011; Meyer et al., 2005). To tame this 

problem, we decided to act collaboratively, knowing that this hyper-connected world offers great 

opportunities (e.g. cloud computing, crowdsourcing and computer assisted techniques) to improve 

the effectiveness of cross-expert communication and collaboration. Therefore, instead of seeking 

the answer that eliminates all the issues, we recognized that this is an ongoing process, and further 

actions will always be needed. The aim of this paper is to present the Oxynet project, and therefore 

the potential of a collaborative approach to solve the problem of ventilatory thresholds detection in 

CPET. 

 

Methods 

 

The structure of the project  

 

In general, artificial intelligence in CPET interpretation is defined as the use of algorithms 

and software to approximate human cognition in the analysis of CPET data (Hearn et al., 2018; 

Myers et al., 2014; Zignoli, Fornasiero, Stella, et al., 2019). Deep learning technologies, such as 

deep neural networks, can be used for CPET data interpretation and, most importantly, their 

performance can be improved if new data is provided for supervised training (Zignoli, Fornasiero, 

Bertolazzi, et al., 2019). Particularly, ventilatory thresholds detection in CPET can be considered as 

a time-series classification problem, whereby an algorithm can be used to classify the domain of 

exercise intensity and then detect the time that corresponds with a change in the domain. One of the 

biggest limitations to the development of new artificial intelligence algorithms for CPET 

interpretation and analysis is data availability. Therefore, we created: 1) a crowdsourcing web-



application (oxynet.promfacility.eu), to collect data and then train and test new artificial intelligence 

algorithms and 2) a web application (research.promfacility.eu) that automatically detects the 

ventilatory thresholds in new uploaded CPET files (please feel free to test the web application with 

the xls files you can find at 

https://drive.google.com/drive/folders/1fhCcbn2G8u7yigP58YTOPawWW6_8IEwd?usp=sharing  

[please do NOT share the link, this is for reviewers’ eyes only]). Uploaded data are stored on a 

server (i.e. a dedicated virtual machine running Ubuntu 18.04) and they are not accessible from the 

web. The second application has been built to process the CPET data currently available on the 

server automatically. This application works side-by-side with the web-based application. The 

application has been developed in Python (ver. 3.8) and the neural network was implemented by 

means of Tensorflow (ver. 2.2.0). Finally, a website (oxynet.net) with a single landing-page has 

been created to redirect the users to the web applications and for advertising the project. New 

collaborators can join the project by sending an email to oxynetcpetinterpreter@gmail.com (see the 

attached pdf file “how to collaborate”). The neural network is scheduled to automatically train 

daily, using the data available on the server.  

 

The datasets 

 

 A total of 1245 CPET files from both healthy subjects and patients and with different 

incremental protocols were crowd-sourced by a number of contributors (Tab. 1). Individual CPET 

were divided in subgroups by age (young (age<40), adult (40<age<60) and old (age>60)), fitness 

level (low, medium and high levels based on maximal oxygen consumption relative to body mass 

(American College of Sports Medicine (Indianapolis & Pescatello, 2014)) and gender (M/F) (Tab.2 

). Informed consents have been collected by the participants before every test. All the tests have 

been conducted in accordance with the Helsinki Declaration. CPET files were uploaded in a raw 

format (breath-by-breath basis) or alternatively with data averaged every 5 or 10 sec. This is 

https://drive.google.com/drive/folders/1fhCcbn2G8u7yigP58YTOPawWW6_8IEwd?usp=sharing
mailto:oxynetcpetinterpreter@gmail.com


because different laboratories use different metabolimeters with different exporting options. 

Irrespective of the time-basis, data were filtered with a rolling average (20 sec time-window) and 

interpolated at 1 sec (Robergs et al., 2010). Contributors also provided the values of the ventilatory 

thresholds for every CPET on a different file. Contributors were all experts, and detected the first 

and second ventilatory thresholds using the gold-standard methodology (Prud’ omme et al.  1984). 

In this case  with ‘experts’ we mean ‘people working with cardiorespiratory data and the detection 

of the ventilatory thresholds on an almost daily basis as part of their research work activities”. We 

also want to point out that the different contributors have particular expertise in detecting the 

ventilatory thresholds in the specific populations they tested (e.g. sedentary older adults vs. highly 

trained athletes). This has ensured that the data included in the manuscript (i.e. the dataset used to 

train the neural network algorithm) represent the highest standards of quality, and the accuracy 

obtained in VT detection by the algorithm is the highest attainable at the current stage of the 

project. At every time-sample  exercise intensity was labelled as follows  below  T1  “moderate”  

between VT1- T   “heavy” and above  T   “very-heavy”. Intensity categorical data were 

converted to binary vectors with one-hot encoding. The maximal and minimal values of the time-

series data were used to standardise the data between −1 and 1  to facilitate the convergence of the 

optimiser used during the training phase.  

 

<< Table 1 about here >> 

 

 The input to the neural network contained   time-series  i.e.     2    C 2    E    2  

  E   C 2    E  Pet 2 and PetCO2. The output of the neural network contained the probability of 

falling in the “moderate”  “heavy” or “very-heavy” exercise intensity domains. The entire dataset 

was randomly divided into a training set (~80% of the data, i.e. 996 tests) and the test set (~20% of 

the data, i.e. 249 tests). VT1 was set when the value of the second output neuron became greater 

than the value of the first output neuron, and VT2 was set when the value of the third output neuron 



became greater than the value of the second output neuron (Fig. 1).  

 

<< Figure 1 about here >> 

 

Statistics 

 

 The methodology presented in (Hanneman, 2008) was used to express the agreement 

between the visual inspection analysis and the ventilatory thresholds estimated by the neural 

network. 1) We computed model residuals and we checked if they approximated a Normal 

distribution with the Kolmogorov-Smirnov test, 2) a scatter diagram was created and the correlation 

coefficient calculated (Pearson’s or Spearman’s r if the residuals were or were not normally 

distributed, respectively), confidence interval (CI) of the regression coefficient and explained 

variance R2 have also been computed, 3) the method of the Bland-Altman plot was applied to 

compute the bias (with LA) and to detect any trend in the magnitude of the error, 4) the mean 

absolute and percentage error were calculated (i.e. MAE and MAE%), 5) the standardised 

difference of the means (Cohen’s d) was used to evaluate the magnitude of the differences between 

the methods (pooled SD were used). A multiple linear regression model with categorical covariates 

was used to test whether the MAE% was associated with individual age, gender or fitness level 

(Tab. 2). After fitting the linear regression model, an ANOVA was used to test the significance of 

the single categorical variable.  

 

 Statistical analyses were conducted for both  T1 and  T  in terms of time and    2. 

Statistical significance for the p-value was set to 0.05. The following criteria were adopted to 

interpret the magnitude of the correlation r between the estimates: < 0.1 trivial, 0.1-0.3 small, 0.3-

0.5 moderate, 0.5-0.7 large, 0.7-0.9 very large, and 0.9-1.0 almost perfect. Threshold values for the 

description of Cohen’s d were: <0.2, trivial; 0.2–0.6, small; 0.6-1.2, moderate. Bias and precision 



estimates of ± 270 mlO2/min (110 s) and ± 120 mlO2/min (52 s), respectively, were established a 

priori as the maximum parameters that would indicate acceptable agreement between methods and 

precision of the difference in VT1 (Keir et al., 2014; Zignoli, Fornasiero, Stella, et al., 2019). 

Similarly, bias and precision of ±171 mlO2/min (71 s) and ±120 mlO2/min (47 s), respectively, were 

established for VT2 (Keir et al., 2014; Zignoli, Fornasiero, Stella, et al., 2019). All analyses were 

conducted with GraphPad software (ver. 6). 

 

The neural network 

 

 The neural network adopted in this study was constituted by two one-dimension (1D) 

convolutional layers (filters=64 and 32 respectively, kernel size = 2 and RELU activation), a batch 

normalization layer, a drop-out layer, a max-pooling 1D layer (pool size=2), a dense layer of 8 

neurons, a dense layer of 3 (output) neurons with softmax activation. The output neurons 

represented the probability of falling in the “moderate”  “high” or “very-heavy” domain  

respectively. An adam optimiser with categorical cross-entropy loss function was used to maximise 

the accuracy of the estimations. The training dataset entries were shuffled, and the whole dataset 

was crossed in epochs with 120 of batch size and 40 sec of data. Therefore, the input of the neural 

network had shape 120x40x5. The weights and biases of the neural network were initialised as 

random signed values. The learning rate was set to 0.001 and then it was progressively reduced by a 

factor of 10 every 20 epochs. We implemented the dropout and the class-imbalance restoration 

technique to prevent overfitting. The hyper-parameters of the neural network were set by trial and 

error by looking the evolution of the loss and accuracy metrics at different training epochs. A 

comparison between training and validation metrics was used to determine the number of epochs. 

The number of training epochs was increased if the training loss was lower than the validation loss 

and the validation loss trend suggested further improvements where possible. 

 



Results 

 

The ventilatory thresholds values obtained with the neural network were strongly associated 

with the VT values estimated with the visual inspection analysis (Tab. 3 and Fig. 2, Additional 

Material upper panels). The ability of the model to generalise on new samples is described by the 

confidence interval (CI) of the correlation coefficients, suggesting that when the neural network 

will be used on other tests in similar conditions, the strong association will be conserved (applicable 

in usual circumstances with multiple individuals). Residuals (i.e. differences between the estimates 

form the neural network and the visual methodology) were normally distributed for both VT1 and 

VT2 in terms of time (i.e. TVT1 and TVT2) (p<0.001) and in terms of    2 (i.e. VO2VT1 and 

VO2VT2) (p<0.001), indicating that the data could be subjected to a parametric analysis. Mean 

absolute and percentage error values suggested that the differences in the mean ventilatory 

thresholds values estimated with the neural network and the visual method were trivial (d<0.2). The 

comparisons between the a priori established biases suggested that these differences were not 

clinically meaningful for the great majority of the samples. However, the precision of the neural 

network might not be sufficient in some isolated cases. The mean absolute errors (MAE) of the 

estimates (in absolute and relative (%) values) and the values of the standardised difference of the 

means are reported in Tab. 3.  

 

The Bland-Altman plot (Fig. 2, Additional Material lower panels) revealed significant 

moderate and poor correlations between estimation errors and absolute values of VT1 and 

VO2VT1, respectively (Tab. 3). The multiple linear regression model and subsequent ANOVA 

revealed a significant association between 1) the MAE% in VT1 estimation and fitness level 

(p=0.015) and age (p=0.014); and 2) the MAE% in VO2VT1 estimation and fitness level 

(p=0.0057). There was no significant association between 1) the MAE% in VT1 estimation and 

gender (p=0.483); 2) the MAE% in VO2VT1 estimation and gender (p=0.231) and age (p=0.187); 



3) the MAE% in VT2 estimation and gender (p=0.687) and fitness level (p=0.439) and age 

(p=0.095); 4) the MAE% in VO2VT2 estimation and gender (p=0.349) and fitness level (p=0.162) 

and age (p=0.194). These results suggest that the accuracy in the estimation of VT1 and VO2VT1 

deteriorates for individuals with poor aerobic fitness.  

 

Discussion 

 

We set out to build: 1) a web-based application that facilitates the collection of large CPET 

datasets and 2) a web-based application that automatically detects ventilatory thresholds in new 

CPET files. The same approach has been successfully applied in many other fields of medicine, 

e.g.: LungNet (Mukherjee et al., 2020) and NiftyNet (Gibson et al., 2018) and additionally, in the 

previous few years, other projects based on crowd-sourced labelled data such as ImageNet (Deng et 

al., 2009) and WordNet (Miller, 1995), provided millions of annotated samples to the community of 

data scientists and model developers. It is certainly not beyond the realm of possibility that a similar 

framework can be replicated, in due proportions, with the Oxynet project. In fact, in the last few 

years, the number of extensive CPET databases used in the scientific literature is surprisingly 

increasing (e.g. while Beaver et al. (Beaver et al., 1986) in 1986 adopted only 10 CPET to validate 

their v-slope method, Myers et al. (Myers et al., 2010) in 2010 presented a reliability study where a 

total of 1679 CPET was used and Vainshelboim et al. (Vainshelboim et al., 2017) in 2017 compared 

different methods to detect the VT with a total of 328 CPET). There are nevertheless key 

differences between the dataset presented here and the other existing datasets: 1) the participation to 

this project and hence to this dataset is open to all the experts in the field of CPET, 2) data 

(including experts’ annotations) come from decentralised and delocalized research centres and 3) 

this dataset is available to researchers who wants to develop new algorithms for CPET 

interpretation (individual data will not be accessible, but features or normalised data can be 

provided to the interested researchers).  



 

With the rapid increase of data availability, several authors call for a more efficient use of 

CPET and ventilatory thresholds in clinical practice (Mezzani, 2017), therefore calling for more 

sophisticated data mining techniques. The solution offered by the Oxynet project is based on a 

collective intelligence, which is used to integrate the opinions and expertise of different centres and 

laboratories and improve their collaboration with a network. Specifically, a machine learning 

technology was used to compute a weighted estimation of the ventilatory thresholds, therefore 

aiming at the best possible solution for each individual. The technology refers to deep neural 

networks, already widely implemented in the process of CPET data (Hearn et al., 2018; Myers et 

al., 2014; Zignoli, Fornasiero, Stella, et al., 2019). There are a number of alternative methods for 

time series classification, such as: time warping, k-nearest neighbour and support vector machine 

(SVM). However, all these methods require some kind of feature engineering to be conducted 

before the actual classification is performed. Convolutional neural networks are able to extract 

features and automatically create informative representations of time series automatically in a single 

step. Unlike the conventional regression algorithms currently available, the accuracy of the neural 

networks improves with increased data availability. It is true that the absolute errors reported in the 

present manuscript are compatible with those reported by Zignoli et al. (Zignoli, Fornasiero, Stella, 

et al., 2019) (who adopted a recurrent neural network trained with 228 CPET to detect ventilatory 

thresholds in trained individuals). However, the heterogeneous nature of the CPET files adopted in 

this work come from different laboratories and cover a wider spectrum of aerobic fitness, testing 

protocols and exercise modalities. It seems, therefore, more generalizable. 

 

The use of artificial intelligence techniques in automatic ventilatory thresholds detection 

raises a number of ethical questions, particularly regarding how we report standards for automatic 

methods vs experts. The proposed approach works as a surrogate and as a support to human ability 

in detecting ventilatory thresholds, while providing a means to reduce variability of the estimates 



across different experts and centres. In addition, a neural network can perform the inference of the 

ventilatory thresholds in a few milliseconds for a single CPET (tested on a Mac Book Pro, Intel 

core 7, 2.8 GHz), while the visual inspection methodology often requires several minutes. 

Importantly, the neural network output is not the result of the application of a single algorithm; it 

can be seen as an average of the different opinions of the contributors.  

 

Concerning the state-of-the-art automatic methodologies, our neural network does not 

require pre-processing operations. This means that once the file is exported from the metabolic cart, 

the neural network can be directly used for inference (at the moment this is of course true for the 

metabolic cart models listed in Tab. 1). Algorithms for ventilatory detection that do not rely on a 

machine learning technology are progressively using more and more complex equations to detect 

the pattern of changes in the cardiorespiratory variables. A common argumentation against the 

implementation of machine learning models in exercise physiology is that these models do not have 

a physiological meaning (Zignoli, Fornasiero, Bertolazzi, et al., 2019). However, even the high-

degree polynomial regression models currently available in the literature do not underlie any 

physiological mechanism. The practice of using fixed polynomial equations to detect 

deflection/breaking points in the cardiorespiratory variables is only justifiable if researchers and 

clinicians were able to implement those equations easily in their own daily routine. However, high-

degree polynomial equations are hard to be handle by non-mathematics experts and require a 

number of pre-processing operations (e.g. selecting lower and upper limits of the ventilatory 

thresholds) that might have influence on the final outcome. Today, the complexity of applying 

machine learning algorithms is compatible to that required for high-degree polynomial equations. 

Conversely, the web-application we developed, can directly provide estimates for the ventilatory 

thresholds without any pre-processing effort. Whilst we do not suggest a whole-scale rejection of 

linear/polynomial regression methods, we strongly sustain the development of new algorithms 

based on collaborative approaches and collective intelligences. 



 

This study has potential limitations. In terms of    2, the differences between ventilatory 

thresholds estimated by the neural network and the visual inspection analysis (11.1% and 6.1% for 

VO2VT1 and VO2VT2, respectively) were slightly greater than the reliability of the visual 

inspection methodology (9.5% and 4.7% for VO2VT1 and VO2VT2, respectively) (Gladden et al., 

1985; Zignoli, Fornasiero, Stella, et al., 2019)  lower than the “natural variation” (19% for 

VO2VT1) in cardiorespiratory fitness (Rose et al., 2018) and lower than the typical variations 

observed following endurance training periods (Jones & Carter, 2000). Here, it is important to 

highlight the potentially low reliability of the visual inspection methodology in individuals with 

poor aerobic fitness, who constituted a large portion (~25%) of the entire sample of this study. Of 

particular concern is the association of the error in the estimations with the individual fitness level 

(VT1 and VO2VT1) and age (only VT1) highlighted by the multiple linear regression model and 

subsequent ANOVA analyses. However, we think that this is mostly due to the low reliability of the 

visual inspection methodology (Gladden et al.  1985  Prud’ omme  et al.  1984) (which is 

subjective and depends on experience and can negatively affect the training of the neural network) 

rather than to a limitation of the collective intelligence approach presented here. However, to the 

best of our knowledge, poorly is known about the association between the reliability of the visual 

inspection methodology and the individual fitness level. The fact that the ventilatory thresholds 

might be hard to be detected is common (Beaver et al., 1986) and, for our own experience, this is 

particularly true for individuals with poor aerobic fitness and for both visual and automatic 

methods. For example, the second ventilatory threshold can be only detected by linear-regression 

methods if there is a 15% increase in the   E vs   C 2 slope (Beaver et al., 1986). An important 

contribution to this project could come from a reliability study, where a large number of CPET are 

determined by different groups of experts for data validation. An “idiosyncratic” noise is likely 

associated with each individual evaluation but taking the average over a large number of 

evaluations will likely get us closer to the ground-truth. This process of course will take time to take 



place, but it will eventually cancel the effects of the noise (Yi et al., 2012). At the moment, the 

single inaccurate opinion of one expert might have a negative influence on what the neural network 

eventually learns. It would be impossible to evaluate the impact of an inaccurate evaluation on the 

whole algorithm performance, but this impact will be largely mitigated if more trusted collaborators 

will join the project in the future. Indeed  if a large number of “verified”  T1 examples on the same 

dataset of CPET will be provided, the output of the neural network output could be optimised to be 

valuable in many clinical situations, particularly when no clear breakpoints in the ventilatory 

variables can be detected (Myers et al., 2010). However, more specific research is needed to 

determine whether the estimations’ reliability can be potentially significant in prognostic 

applications, e.g., when the CPET is adopted for a preoperative assessment (Vainshelboim et al., 

2017). For example, the U.S. Food & Drug Administration proposed a regulatory framework (Food 

and Drug Administration, 2019) to deliver safe and effective artificial intelligence-based software 

as medical devices. The algorithms developed within the Oxynet project must therefore be further 

developed (especially in terms of reliability and accuracy in VT1 estimation) before they can be 

adopted in clinical practice.  

 

Furthermore, 43 CPET data files (i.e. 17% of our validation dataset) were not used to 

compute errors in the estimations. They were excluded from the validation dataset because one or 

both the ventilatory thresholds could not be visually detected. Other studies reported similar or even 

higher proportions of “indeterminate” cases following the adoption of automatic methods for 

ventilatory threshold detection (Ekkekakis et al., 2008). It is worth mentioning that the neural 

network does not report an “indeterminate” case because it always finds a solution to the problem. 

This might be due to the fact that that the neural network is exceptionally able to detect changing 

patterns in the cardio-respiratory variables, but we do not have the data that can support this notion. 

Regardless, the neural network provided an estimation for the ventilatory threshold in every test, 

which might not be always a positive characteristic.  



 

Another potential limitation is that we adopted the crowdsourcing strategy to collect data for 

this study. This strategy aims at engaging a large number of experts to find the best possible 

solution for everyone. A disadvantage of this approach is that achieving a shared understanding and 

commitment is a time-consuming process. In fact, different contributors might have slightly 

different approaches to the ventilatory thresholds identification and might export the data in 

different formats.  

 

In light of the aforementioned strengths and limitations, we can consider Oxynet the first 

working example of a collective intelligence created to automatically process a CPET. The constant 

increase of the internet usage worldwide is evident, and CPET data availability will likely increase 

in parallel (Reeves et al., 2018). These trends suggest that initiatives like Oxynet will find fertile 

ground where to grow, and that collaborative efforts will be needed to develop the new generation 

of automatic CPET interpreters.   

 

Conclusion 

 

Our findings suggest that a convolutional neural network can be used to estimate ventilatory 

thresholds from CPET with appropriate accuracy, especially in individuals with medium to high 

aerobic fitness levels. Likely, the reliability of the method proposed here is affected by the 

reliability of the gold standard methodology, especially when the first ventilatory threshold is 

concerned. Therefore, we suggest being cautious when using this neural network instead of the 

visual inspection methods to determine essential fitness parameters from CPET in clinical settings. 

This algorithm should be rather used in parallel with the visual inspection methodology carried out 

by two independent experts. However, the potential of a collaborative approach based on a 



collective intelligence to tame the problem of ventilatory thresholds detection in CPET is clearly 

acknowledged in the current study.  

 

Additional material 

 

Please download the sample files in the Google Drive directory at [do NOT share the link]:  

https://drive.google.com/drive/folders/1fhCcbn2G8u7yigP58YTOPawWW6_8IEwd?usp=sharing 

After that, visit research.promfacility.eu (laptop only please) and upload and test one file at time. A 

pdf file has been attached to those who might want to collaborate with the Oxynet project in the 

future. 
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Tables 

 

      

 References Characteristics of the 

participants 

Test type Metabolimeter n 

1 Zignoli et al. 2019 

(Zignoli, 

Fornasiero, Stella, 

et al., 2019)  

Healthy active and trained 

males and females 

Running, XC 

skiing, cycling; 

both ramp and 

graded tests  

Quark PFT Ergo CPET, Cosmed, 

Italy 

253 

2 Fornasiero et al. 

(Fornasiero et al., 

2019; Fornasiero, 

Savoldelli, Fruet, et 

al., 2018; 

Fornasiero, 

Healthy active and trained 

males and females 

Running, XC 

skiing, cycling; 

both ramp and 

graded tests 

Quark PFT Ergo CPET, Cosmed, 

Italy 

128 



Savoldelli, 

Skafidas, et al., 

2018) 

3 Kleinnibbelink et al. 

(Kleinnibbelink et 

al., n.d.) 

Healthy active males and 

females 

Running ramp test 

(speed and grade 

increments) 

Oxycon Pro, Carefusion, Germany 21 

4 Muollo et al. 2019 

(Muollo et al., 

2019) 

Sedentary males and females, 

aged 50–80, BMI >27 kg/m2 

Cycling ramp test 

(15 W/min and 10 

W/min for males 

and females, 

respectively) 

Quark PFT, Cosmed, Italy 81 

5 F.Y.F. laboratory 

data 

Healthy active males and 

females 

Cycling ramp test 

(15 W/min and 10 

W/min for males 

and females, 

respectively) 

MetaMax 3R-B2, Cortex, 

Biophysics, Germany  

74 

6 Da Rosa et al., 2019 

(da Rosa et al., 

2019) 

Endurance male runners, aged 

18-40 

Running ramp test 

[(0.3 km/h)/25s] 

K5, Cosmed, Italy 41 

7 Masiero, 2019 

(Masiero, 2019) 

Distance male runners, aged 

20-50. 

Running ramp test 

[(1 km/h)/min] 

K5, Cosmed, Italy 16 

8 Lanferdini et al., 

2020 (Lanferdini et 

al., n.d.) 

Distance male runners, aged 

22-48. 

Running ramp test 

[(1 km/h)/min] 

K5, Cosmed, Italy 19 

9 L.M. laboratory 

data 

Coronary male and female 

patients, aged 50-83, BMI 21-

30 

Cycling ramp test 

(10 W/min) 

k4b2, Cosmed, Italy 16 

10 L.M. laboratory 

data 

Chronic heart failure female 

and male patients; aged 50-75; 

BMI 22-30 

Cycling ramp test 

(10 W/min) 

k4b2, Cosmed, Italy 178 

11 Pühringer et al. 

(Pühringer et al., 

2020) 

Healthy untrained males and 

females, aged 50-60 

Graded test on a 

cycle ergometer 

Master Screen CPX, 

Jaeger, CareFusion, Germany 

100 

12 L.M. laboratory 

data 

Coronary and heart failure 

male patients, aged 29-75, BMI 

22-30 

Cycling ramp test 

(10 W/min) 

SensorMedics Corporation, 

Yorba Linda, California 

318 

Tot.     1245  

 



Table 1: Characteristics of the database used to train and test the neural network. 

 

 Complete dataset (n=1245) 

Gende

r 

F (n=251) M (n=994) 

Aerob

ic 

fitness 

Low (n=94) Medium (n=4) High (n=154) Low (n=228) Medium (n=326) High (n=440) 

Age Youn

g 

Adu

lt 

Ol

d 

Youn

g 

Adu

lt 

Ol

d 

Youn

g 

Adu

lt 

Ol

d 

Youn

g 

Adu

lt 

Ol

d 

Youn

g 

Adu

lt 

Ol

d 

Youn

g 

Adu

lt 

Ol

d 

Sampl

e size 

3 24 66 2 1 1 151 1 2 16 76 13

6 

10 302 14 370 37 33 

 

Table 2: Sample size of the different subgroups of the complete dataset.  

 

 

 Regression Bland-Altman Mean absolute error Standardised 

difference 

Var. r [CI] R2 Bias (LA) r [CI] MAE (SD) MAE% 

(SD) 

Cohen’s d 

TVT1 0.9 [0.87-0.93] ** 81% -14 (223) 0.47 [0.36-0.57] ** 77 (85) 21.3 (37) 0.045 

TVT2 0.97 [0.96-0.98] ** 94% -28 (157) 0.21 [0.08-0.34] * 61 (60) 9.2 (10.7) 0.03 

VO2V

T1 

0.97 [0.96-0.97] ** 94% -42 (516) 0.1 [-0.04-0.23] 178 (98) 11.1 (18) 0.06 

VO2V

T2 

0.99 [0.98-0.99] ** 98% -75 (378) -0.09 [-0.22-0.05] 144 (149) 6.1 (7.1) 0.05 

 

Table 3: Results of the statistical analysis  comparisons between time (T) and oxygen consumption 

(   2) values in correspondence of the first and second ventilatory thresholds (i.e. VT1 and VT2). 

**p<0.001 *p<0.05  

 

 



Figure captions 

 

Figure 1: Input and output of the convolutional neural network for a representative subject (data 

from the current study). From top to bottom: normalised values of O2 consumption (   2), CO2 

production (  C 2), ventilatory equivalents for O2 and CO2 (i.e.   E    2 and   E   C 2) and 

minute ventilation (  E)  end-tidal partial pressure of O2 (PetO2) and CO2 (PetCO2). The outputs of 

the three output neurons are provided in green, yellow and red, and represent the probability to be in 

the “moderate”  “heavy” and “very-heavy” exercise intensity domain. First and second ventilatory 

thresholds (i.e. VT1 and VT2) are detected when the probabilities move from an intensity domain 

the other. On an additional axis, the VT1 and VT2 detected by 7 couples of experts are also 

reported (expert evaluations kindly provided by Zignoli et al.).   

 

Figure 2 (this is now part of the Appendix or the additional on-line material): Scatter diagrams 

(upper graphs) and Bland-Altman plots (lower graphs) for the first (VT1) and second (VT2) 

ventilatory threshold estimations from visual inspection analysis and the convolutional neural 

network (CNN). Individual results are classified between men (squares) and women (triangles).  

 

 



 



 



 




