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Technical note: Development of regression equations to reassociate upper limb bones from 

commingled contexts 

 

 

Abstract 

 

The major upper limb skeletal elements (scapulae, humeri, ulnae and radii) are frequently 

utilized for sex determination and stature estimation. Consequently, in forensic cases that 

involve commingled remains, it is crucial to reassociate the aforementioned bones and 

attribute them to the right individual. The aim of the present study is to develop simple and 

multiple regression equations for sorting commingled human skeletal elements of the upper 

limb. In that context, ten common anthropological linear measurements of the articular 

surfaces of scapulae, humeri, ulnae, and radii were performed on 222 adult skeletons from 

the Athens Collection. The functions developed for sorting adjoining bones presented a 

strong positive linear relationship (r=0.69–0.93, p<0.05). The values of the determination 

coefficient statistics (r2=0.47–0.86) were found to be high and those of the standard errors 

of the estimate were found to be low (SEE=0.88–1.61). Blind tests indicated that when 

metric and morphoscopic sorting techniques are combined, a reliable sorting of the skeletal 

elements of the upper limbs is possible. 
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1. Introduction 

 

Commingled remains are usually found in cases where multiple individuals are 

buried in a single grave or in surface deposition and scattering of remains due to mass 

disasters or crimes that cause multiple fatalities, such as terrorist attacks [1]. In such 

contexts, the role of the forensic anthropologist is to accurately assess which skeletal 

element belongs to each individual. This primary step is crucial as it is necessary for 

almost any other anthropological analysis aiming to reconstruct the biological profiles 

of the individuals and/or diagnose possible pathological conditions or other identifying 

features on bones. 

Nowadays, the most widely used sorting techniques are based on morphological 

criteria, such as texture and coloration similarity or size and robusticity compatibility 

between the skeletal elements examined [1–3]. These techniques are prone to 

subjectivity as it happens with all methods that rely on morphological traits. Moreover, 

they can be time-consuming as they require successive comparisons of similarity and 

compatibility of all possible matches of the available skeletal elements. In recent years, 

DNA analysis has been used to investigate commingling cases with accurate results. 

However, as previously argued [4,5] this analysis may not be possible for a number of 

reasons such as DNA fragmentation and/or contamination and the high financial cost 

involved in genetic analyses. These reasons highlight the necessity for new 

anthropological sorting methods. 

For this purpose, Anastopoulou et al. [4,5] developed a new metric method and 

combined it with the existing morphoscopic techniques in order to effectively 

reassociate the bones of the lower limb. According to that approach, the developed 

functions indicated a number of possible matches for each articular surface. 

Subsequently, the most probable match was selected on the basis of morphoscopic 

criteria. This particular methodology is reported to have accurate results. The blind tests 

performed on commingled samples of up to twenty individuals demonstrated the high 

applicability of the method. With regard to the hip, knee and subtalar joints, the 

examined elements were successfully reassociated in 88.9–100% of the cases. Only the 

ankle joint presented a significantly lower rate of correct classification. It was also 

demonstrated that this approach is applicable on both male and female skeletons and 

both anatomical sides [4,5]. 
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On this basis, the present study aims to extend the methodology described above to 

upper limb skeletal elements. Such an expansion of our approach would allow reliable 

sorting of commingled scapulae, humeri, ulnae and radii and provide an important 

contribution to the methods currently used for sorting upper limb bones, given that our 

previous studies reported high prediction rates under blind study conditions. 

 

 

2. Material and Methods 

 

For the present study, 222 individuals of both sexes (121 males and 101 females) were 

examined. The analyzed osteological sample belongs to the “Athens Collection”, a 

contemporary skeletal collection of individuals of known identity which is housed at the 

National and Kapodistrian University of Athens, Greece. The age-at-death of the 

individuals utilized for this study was between 20 and 99 years [6]. All specimens 

presenting pathologies that may have affected our analysis were excluded from the study. 

The ten standard anthropological linear measurements [7–12] utilized, along with 

their abbreviations are presented in Table 1. All measurements were taken with a 

Mitutoyo digital sliding caliper which provides an accuracy of ±0.01 mm. All data 

obtained were expressed in millimeters with a calibration of 0.01 mm. 

As far as the statistical analysis is concerned, a power calculation for all the regression 

models was conducted in order to estimate whether the available sample size was 

sufficient or not. We defined a medium effect size of 0.15 and an alpha level of 0.05. The 

power was set at 0.90 [13]. Furthermore, the intraobserver reliability was estimated with 

the calculation of the relative technical error of measurement (rTEM). More specifically, 

60 individuals from the initial sample were re-measured by the first author (IA). 

Data analysis was conducted using the SPSS statistical software platform (IBM 

SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.). Simple and 

multiple linear regression analyses were conducted in order to create mathematical 

equations which utilize one or multiple bone dimensions as predictors for another 

dimension of a corresponding skeletal element. Pearson’s correlation coefficient (r) was 

calculated in order to assess the degree of significant correlation among linear 

measurements. The standard error of the estimate (SEE) was calculated for estimating 

each equation’s overall accuracy. A Kolmogorov–Smirnov normality test was 

conducted in order to determine whether the variables are normally distributed. The 
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assumption of homoscedasticity was visually examined by creating scatter plots 

[14,15]. Cook’s distances were used in order to detect the possibly influential outliers 

[14]. The variance inflation factors (VIFs) were calculated for detecting multicollinearity 

in the multiple regression formulae [15]. 

For the application of the functions, the numerical value of each linear measurement 

taken should be multiplied by the coefficient given by each function and the result 

should be added to the constant. Each calculation’s result corresponds to a skeletal 

element’s predicted value. For every equation an acceptable predicted value range of 

90% is presented in Tables 2 and 3. In cases where this range includes more than one 

possible match, the final match should be determined by the application of additional 

morphoscopic methods, as presented in Anastopoulou et al. [4,5]. 

The functions presented were developed based on the skeletal elements of the right 

anatomical side. As far as the influence of bilateral asymmetry is concerned, dependent 

t-tests were performed in order to determine whether there is a statistically significant 

difference between the predicted scores of the right anatomical side and the 

measurements of the left side. The influence of sex was assessed by the calculation of 

a separate SEE for male and female individuals for every function. Additionally, an 

independent t-test was performed in order to compare the means of the residuals of each 

sex for every regression. 

For evaluating the equations’ applicability in actual forensic cases, a blind test was 

performed by compiling a commingled ten-individual skeletal assemblage of 40 upper 

limb bones (scapulae, humeri, ulnae, and radii). All 10 individuals of the assemblage 

were of known identity. Their measurements were obtained, and the presented 

equations were utilized to predict each skeletal element’s dimensions using 

measurements of its adjoining articular surface. The predicted values calculated led to 

a number of possible matches (i.e., those within the prediction error range; c.f., 

Introduction). These matches were further examined visually based on standard 

morphoscoric criteria in order to confirm the final match. For this purpose, adjoining 

articular surfaces compatibility and skeletal element similarities such as coloration and 

density were evaluated. Finally, a “correct classification rate” was calculated for every 

joint, defined as the sum of correct predictions divided by the sum of all the 

commingled individuals of the assemblage. 
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3. Results and Discussion 

 

The descriptive statistics for the metric variables of the present study are summarized 

in Table 4. The rTEM results are presented in Table 5. For all measurements, the 

precision error was less than 1.5% [16], verifying the high measurement repeatability 

of our approach. The application of simple and multiple linear regression analyses led 

to the creation of eleven functions (i.e., seven simple and four multiple regression 

equations) for predicting a dimension of a skeletal element using one or more 

measurements of another skeletal element. The statistical models produced, as well as 

the numerical data of r, r2, and SEE, are presented in Tables 2 and 3. The calculated 

Pearson’s correlation coefficients ranged between 0.69 and 0.93 and the P-values were 

below the threshold of 0.05 indicating that the measurements utilized as variables were 

strongly and positively intercorrelated. The coefficients of determination (r2) were 

estimated to be higher in multiple regression models (0.71–0.86) compared to the simple 

ones (0.47–0.83). The range of SEE was estimated between 0.88 and 1.59 mm for the 

simple regression formulae, and 1.41–1.61 mm for the multiple regression formulae. 

As far as assumptions are concerned, the Kolmogorov–Smirnov test indicated that 

all variables presented an approximately normal distribution. In all regression analyses 

performed, the presence of homoscedasticity was confirmed through scatter plots [14]. 

No multicollinearity issues were assessed among variables in any of the multiple 

regression formulae presented (VIFs=1.805–4.103) [15]. Cook’s distances for all 

measurements were found to be lower than 1.00, indicating the absence of significantly 

influential points in the developed models [14]. 

The influence of sex was not statistically significant for the accuracy of the 

methodology, as we calculated similar SEE in both male and female individuals for all 

statistical models generated. The SEE difference ranged between 0.05 and 0.27. 

Moreover, the p-values of the independent-samples t-test of the residuals of both sexes 

were found to be over the alpha value of 0.05. The influence of anatomical side was 

found to be statistically insignificant as well, given that all p-values of the dependent t-

tests (c.f., Materials and Methods) were over the threshold of 0.05. 

Most importantly, the results of the blind test demonstrated that combining the use 

of our metric methodology with morphoscopic assessment [4,5] is a highly reliable 

avenue for sorting bones at the elbow and radioulnar joints (10/10 cases correctly 
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sorted), while bones at the shoulder joint presented a slightly lower accuracy rate (8/10 

cases correctly sorted). 

As previously discussed [4,5], other statistical approaches have been proposed for 

sorting commingled human remains. Byrd and Adams [17], Byrd [18] and Byrd and 

LeGarde [19] proposed several regression models for sorting based on the conversion 

of the numerical values of linear measurements into natural logarithms. Additionally, 

they proposed a method of sorting bones that articulate by implicating t-tests to the data 

obtained by linear measurements. Nevertheless, the bone matches determined based on 

their methods do not necessarily belong to the same individual, but may possibly 

correspond to a number of individuals with a similar body size. Our study takes this 

limitation of metric techniques into account by testing the accuracy of combining metric 

and morphoscopic features of adjoining bone articular surfaces. Lynch [20] proposed 

an automated ordination method that can be used to generate new models relying on 

the comparative sample available in each laboratory for each joint. However, the use of 

this method is better-suited for large-scale commingling cases, while that previous 

research did not yet investigate whether this approach is equally accurate for all joints 

of the human skeleton (e.g., see our results on the ankle joints compared to the hip and 

knee joints, in Anastopoulou et al., 2018, 2019). It should be noted that accuracy might 

vary in different populations [3]. For a more detailed discussion on these techniques, 

see the Discussion sections in Anastopoulou et al. [4,5]. 

In the future, our project aims to expand to the joins of other anatomical areas, with 

the ultimate purpose of putting forth a methodological system that allows re-association 

of most human skeletal elements. Moreover, our research group is actively working on 

the implementation of a novel three-dimensional geometric morphometric approach for 

the same purpose. Using such avenues, the use of landmarks and semilandmarks on the 

articular surfaces of two adjoining bones could extract shape information that would 

possibly lead to a new, semi-automated method of sorting. 

 

 

4. Conclusions 

 

The use of eleven univariate and multivariate regression equations developed in this 

study offer a substantial and necessary expansion to the toolkit developed in our 

previous studies for sorting the lower limb skeletal elements [4,5]. This methodology 
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involves standard linear measurements and simple, readily applicable, mathematical 

calculations. The same formulae can be applied in commingled skeletal assemblages, 

irrespective of the sex of the individuals or the anatomical side of the specimens. We 

should also note that it is not necessary for the examined bones to be intact as the only 

requirement is the integrity of the articular surface lengths and widths utilized. The 

results of our ongoing project confirm that by combining this osteometric methodology 

and the traditional morphoscopic techniques, a reliable reassociation of commingled 

human remains is possible and reliable in moderately sized contexts. Future research 

can further address the applicability of these techniques in other population groups. 
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Table 1 Linear measurements utilized. 

 

Measurement Abbreviation 

Maximum height of the glenoid fossa  GFH 

Maximum breadth of the glenoid fossa GFB 

Maximum vertical head diameter of the humerus HHD 

Maximum anterior-posterior head breadth of the humerus HHB 

Capitulum-trochlea breadth  CTB 

Maximum olecranon breadth  OMA 

Minimum olecranon breadth  OMI 

Ulnar radial notch height URH 

Maximum head diameter of the radius  RHD 

Vertical radial head height  RHH 
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Table 2 Simple linear regression models. 

 

  PI 90% SEE r r2 

Regression 1  GFH=0.729*HHD+4.908 ±2.18 1.5 0.89 0.79 

Regression 2 GFB=0.698*HHB–1.635 ±2.32 1.51 0.85 0.73 

Regression 3 OMA=O.583*CTB–0.726 ±2.01 1.36 0.85 0.72 

Regression 4 OMI=0.398*CTB+1.971 ±2.09 1.59 0.69 0.47 

Regression 5 RHD=0.519*CTB–0.044 ±2.09 0.88 0.91 0.83 

Regression 6 RHD=0.694*OMA+5.190 ±1.74 1.22 0.83 0.69 

Regression 7 RHH=0.634*URH+2.830 ±1.80 0.98 0.71 0.50 
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Table 3 Multiple linear regression models. 

 

  PI 90% SEE r r2 

Regression 1 HHD=0.689*GFH+0.481*GFB+5.728 ±2.33 1.61 0.91 0.83 

Regression 2 HHB=0.479*GFH+0.568*GFB+7.828 ±2.30 1.58 0.89 0.79 

Regression 3 
CTB=0.374*OMA+0.141*OMI+1.088*RH 

+0.233*RHH–0.095*URH+5.488 
±1.99 1.42 0.93 0.86 

Regression 4 OMA=0.353*RHH+0.836*RHD+1.933 ±2.06 1.41 0.84 0.71 
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Table 4 Descriptive statistics. 

 
   

Mean 
 

Measurement N Range Statistic SE SD 

GFH 209 15.6 37.56 0.23 3.30 

GFB 206 13.28 27.20 0.20 2.92 

HHD 206 20.99 44.73 0.28 4.01 

HHB 206 18.36 41.36 0.26 3.78 

CTB 212 17.02 41.57 0.26 3.76 

OMA 209 12.28 23.53 0.18 2.60 

OMI 213 11.06 18.53 0.16 2.29 

URH 214 7.02 11.62 0.11 1.56 

RHH 212 6.87 10.21 0.10 1.39 

RHD 206 11.15 21.58 0.15 2.21 
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Table 5 Intraobserver error results. 

 

Measurement  rTEM 

GFH 0.46 

GFB 0.16 

HHD 0.39 

HHB 0.39 

CTB 0.36 

OMA 0.60 

OMI 0.71 

URH 1.42 

RHH 1.24 

RHD 0.46 

 


