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Highlights 

 Hazards influencing cycling safety are identified from previous literatures and accident reports. 

 A new conceptual risk analysis and prediction model based on a Bayesian network is developed 

to enable the analysis and prediction of cycling accident severity. 

 The influence of single hazard and the combination of multiple hazards on accident severity are 

evaluated. 

 Safety suggestions and an early-warning system are provided to both transport authorities and 

cyclists to help them reduce the severity of possible cycling accidents and ensure cycling safety. 
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Risk analysis of bicycle accidents: A Bayesian approach 

Abstract 

Cycling helps reduce traffic congestion and environmental pollution and promote a healthy lifestyle 

for the general public. However, it could also expose cyclists to dangerous environments, resulting in 

severe consequences and even death. Transport authorities are seeing growing accidents in city 

regions with increasing cycling population, requiring the development of new risk informed cycling 

safety policies. This paper aims to develop a new conceptual risk analysis approach based on a 

Bayesian network (BN) technique to enable the analysis and prediction of the severity of cycling 

accidents. To identify the risk factors influencing cycling accident severity, 2,000 cycling accident 

reports from the UK city region were manually collected, where primary data was extracted and 

analysed and an advanced data training method (i.e. Tree Augmented Naïve Bayes (TAN)) was 

applied to find their correlation and use a BN to investigate their individual and combined 

contributions to cycling accident severity. As a result, the risk factors influencing accident severity are 

prioritised in terms of their risk contribution. The risk levels of accident severity can be predicted and 

analysed in dynamic situations based on the data from simulated and/or real cycling environments. 

The findings can provide useful insights for making rational cycling safety policies in proportion to 

different risk levels.  

Keywords: Cycling safety, Bayesian network, accident severity, transport risk analysis 

 

1. Introduction 

Cycling (which was once a neglected and unvalued transportation mode) is  becoming a popular way 

for mobility, recreation, exercise and sports worldwide. The number of bicycles in use reached an 

estimation of 800 million in 2004, twice the number of cars (Peden et al., 2004) and 580 million 

bicycles were in private household ownership (Oke et al., 2015). According to the Walking and 

Cycling statistics published by Department for Transport of United Kingdom (UK), the average 

number of miles cycled per person in 2019 (54 miles) has generally increased over 40% since 2002 

(39 miles), and such trend is growing at a steady pace. Meanwhile, the cost spent on bicycles and 

bicycle equipment is around £35 million  in UK in 2019, while it was only £24 million  in 2013. 

Additionally, according to the world cycling index released by Eco Counter in 2019, the global 

bicycle traffic is experiencing a consecutive increase in recent years, 8% from 2013-14, 3% from 

2014-15, 0.5% from 2015-16, 0.2% from 2016-17, and 6% from 2017-18. In fact, it is not surprising 

to observe an increase in popularity of cycling as it has been treated as a way to reduce traffic 

congestion and environmental pollution, and promote a healthy lifestyle for the public (Anderson et 

al., 2000; Higgins, 2005; Heinen et al. 2010; Heydari et al., 2017). Other benefits cycling brings to 

individual users, includes the easiness of the burden of vehicle parking, exercise of the body and 

reduction of  travel cost. As a result, the growing popularity in transport cycling triggers the 

increasing interest of city councils in making urban transport infrastructure more bicycle friendly. For 

instance the pioneering cities such as Amsterdam and Copenhagen, are enjoying the benefits of their 

efforts, with 40% of trips being completed by bicycles (Pucher et al., 2010).  

Despite such benefits, the safety of cycling is under debate due to the vulnerable nature of cyclists and 

a broader age distribution from children to the elderly compared to the other types of road users. In 

many countries of mixed traffic systems, cyclists often have to use the same infrastructure as cars, 

buses and trucks but are not protected like  motorised road users (Reynolds et al., 2009). These 

adverse natures and conditions could expose cyclists in dangerous environments. Based on the official 

mode-by-mode fatality and travel statistics of the US Department of Transportation (National 
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Highway Traffic Safety Administration and Federal Highway Administration), bicyclists were 12 

times more likely than car occupants to be killed (72 vs 6 fatalities per billion kilometres (Pucher and 

Dijkstra, 2003). Once cycling accidents happen, they could result in severe consequences, including 

major injuries, deaths and economic loss due to the traffic blocks they cause. Therefore, how to 

reduce the risk and consequence of accidents that cyclists may encounter and improve cycling safety 

becomes an urgent research problem to be addressed. They are forming a major concern for many 

transportation authorities in large cities in the world,  leading to a substantial growth in cycling safety 

research. Although showing increasing concerns, scientific risk analysis and safety management using 

advanced uncertainty modelling technologies on cycling safety is still scanty in the literature, 

particularly compared to other transport modes. 

To fulfil this research gap, this paper aims to develop a new conceptual risk analysis approach based 

on a Bayesian network (BN) to enable the analysis and prediction of cycling accident severity using 

the data derived from 6-year (2012-2018) transport accident reports involving cycling in the Liverpool 

city region. To develop the BN-based risk model, a review on the related works on cycling safety is 

conducted to identify the risk factors influencing the severity of cycling accidents worldwide. The risk 

factors are classified into different categories, e.g. cyclist behaviour and personal factors, 

environmental conditions, road facility issue, interaction with other road users, hazardous road 

conditions and bike-related factors. The factors that are most frequently discussed and analysed are 

selected for further investigation in this research work.  

Next, all the road accident reports involving cycling in the Liverpool city region from 2012-2017 

were preliminarily analysed to derive the initial primary risk data. Such primary accident data are 

incorporated to verify the identified major cycling risk factors. Through statistical analysis, the 

interdependence of the risk factors and their joint effect on accident severity are obtained and used as 

the input to a risk analysis and prediction model for supporting cycling safety policy making. The BN 

model is able to analyse the key risk factors influencing cycling accident severity. In addition, 

empirical cases based on the new set of data collected from the accidents reported in 2018 are used to 

validate the BN model and its prediction accuracy in various hazardous situations and generate useful 

insights for accident prevention. Based on the findings, safety suggestions are provided to both 

transport authorities and cyclists to help them reduce the severity of possible cycling accidents.  

The novelty of this research lies in the following aspects: 1) The risk factors influencing cycling 

accident severity are identified from the combination of the related literatures and real historical 

accident statistics. 2) The big data are collected and processed for the development of a data-driven 

BN risk model, containing more 200,000 pieces of risk information with regards to over 100 different 

risk parameters. 3) It enriches the quantitative cycling risk analysis literature by incorporating 

advanced uncertainty modelling (e.g. BN). 4) The accuracy and robustness of the risk prediction 

model are tested using a new set of data collected from 2018. The model, capable of accurately 

predicting the risk severity in over 95% real cases, can provide useful insights for policy making.  

The remainder of this paper is organised as follows. Section 2 reviews the current literature relating to 

cycling accidents to identify related hazards and risks, as well as a discussion on the papers relating to 

cycling safety using risk assessment approaches. Section 3 describes the methodologies and 

techniques applied in this study, which is followed by the risk-based cycling model construction and 

verification in Section 4. In Section 5, the sensitivity analysis is conducted through a two-step 

approach for drawing useful findings in terms of the severity of cycling accidents based on a real case 

of the Liverpool city region. Finally, Section 6 concludes this study with reference to its contributions 

and implications.  
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2. Literature Review 

2.1 Hazards in cycling safety 

Previous studies on cycling safety focused on a wide range of hazards influencing the occurrence 

probability and/or consequence severity of accidents. A combination of keywords ‘cyclist’ and ‘risk 

analysis’ is used when searching in Web of Science, resulting in 250 related papers. Based on the 

following criteria, a relevant literature database was established. The first criterion is that any paper 

focusing on the analysis of crash and injury rates, medical care are excluded. Secondly, book chapters, 

papers written in other languages, and papers lacking basic information are excluded. 

As a result of these filters, 100 relevant papers from year 1990 to 2017 are systematically reviewed. 

These hazards are classified into six categories based on their features, including 1) Cyclist behaviour 

and personal characteristics; 2) Environmental conditions; 3) Road infrastructure issue; 4) Interaction 

with other road users; 5) Hazardous road conditions; 6) Bike-related factors 

The identified hazards and their appearance frequencies of each category in the literature can be found 

in Appendix 1. 

2.2 Risk assessment studies in cycling safety 

Since cycling safety has received increased attention from the public, researchers and transport 

authorities, there is a growing profile on the relevant studies in the literature (i.e. Osama & Sayed, 

2017). However, most of the previous studies are conducted to analyse and evaluate risks brought by 

a selected hazard leading to cycling accidents. In other words, little research investigates the risk 

assessment study of cycling involving multiple hazards, from a practical point of view. They focus 

more on risk analysis and diagnosis using traditional risk analysis methods than risk prediction using 

multiple risk influencing factors, from a methodological perspective.  

Using the data from Los Angeles, Behnood & Mannering (2017) applied a random parameters 

multinomial logit model to estimate the effects of a wide range of variables on accident consequence 

severity. A comprehensive analysis of the influence of multiple risk variables on accident severity was 

presented. Based on the ultrawideband (UWB) technology, Dardari et al. (2017) proposed an 

UBWlocalization system to improve the safety of cyclists. Combined with enhanced risk assessment 

units, the peculiarities of the system in terms of accuracy and cost enable a real-time warning function 

to road users. The system is proved efficient and safe to use for cyclists. Realising the potential of 

mental mapping in recording and analysing safety perceptions in cycling safety, Manton et al. (2016) 

developed a novel method to model the individual and structural determinants of perceived cycling 

risk through the derived qualitative and quantitative data. Through investigating a real case in Galway 

City, it was found that the proposed model is useful for assessing the perceptions of cycling risk with 

a strong visual aspect and improving public transportation safety significantly. Focusing on the 

Brussels-Capital region, Vandenbulcke et al. (2014) utilized a spatial Bayesian modelling approach to 

predict cycling accident risk of a whole transportation network, as well as identify how cycling safety 

is influenced by road infrastructure. Considering infrastructure, traffic and environmental 

characteristics, the research reveals several occasions of high cycling risks, such as bridges without 

cycling facility and complex intersections. Such findings are helpful for local transport authorities to 

predict the accident risk when making policies and for cyclists to choose the safest routes. It explores 

a new research direction on safe cycling by employing advanced uncertainty modelling like BNs, 

requiring the integration of more experimental work with rich data and more influencing factors 

before its wide applications in practice.  

Taking advance of casual inference, BN can be used to analyse the importance degree of risk factors 

and the relationships among them. Compared to pure Bayesian theory, BN is more visualized. 

Furthermore, compared to other graphic models, it has a foundation of mathematical knowledge. BN 
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is also widely used to evaluate and predict risks in various transportation mode because of its 

advantages in forward prediction analysis and backward risk diagnosis (e.g. Zhang et al., 2013),  Xie 

et al., 2007; Krause et al., 2016; Yang et al., 2017; Hänninen & Kujala, 2012; Li et al., 2014; Yang et 

al., 2018a; Serrano et al., 2018; Yang et al., 2018b). However, BN’s applications in cycling safety is 

scanty (e.g. Puchades al., 2018; Kondo et al., 2018; Chen, 2016) and its ability of forward prediction 

analysis and backward risk diagnosis is yet to be sufficiently explored in cycling safety. This is 

largely due to the lack of real accident data and complicated dependence among the involved risk 

factors. This study will pioneer the use of data-driven BNs to analyse the severity of cycling accidents 

for transport safety policy making.  

2.3 Data-driven approaches for BN structure learning 

The structure of BN risk models is often developed through human knowledge. Despite this, a 

common criticism is that such an approach is time consuming and heavy emphasis is placed on 

experts to provide both the local probability parameters and dependence among the parameters, which 

often introduces subjective bias into the model. An alternative method for BN construction is to 

induce the network structure from data, namely the data-driven approach.  

The search and score approach, (which is widely applied in this field) seeks to explore a search space 

of candidate BN structures for the one that best represents the causality and dependency relationships 

(Cooper et al. 1992). Cooper and Herskovits (1992) derived a K2 scoring metric based on Bayes 

theorem, starting with an empty network and iterating through each node to get the best structure. An 

order among the variables needs to be assumed in this algorithm, which makes it hard to determine. In 

contrast to Cooper and Herskovits, Buntine’s ‘B’ algorithm (1991) does not require a variable order. 

A link will be added at the end of each iteration if it can maximize the score and does not lead to a 

cycle, until the score no longer increases. However, once local optima occur, the algorithm could not 

give reasonable results.  

In recent years, Naïve Bayes (NBN) learning has been developed as a popular network construction 

algorithm. It can reduce the construction complexity given that the parameter learning in the model do 

not need complicated iteration process, as well as effectively avoid the subjectivity of expert judgment 

(Wang et al., 2018). However, the assumptions of building NBN is sometimes too strong to be 

realistic. In order to improve the performance of NBN, its structure is augmented with links among 

the attributes or factors. This type of structure that does not require independence among attributes is 

called augmented BN (ABN). Further, if the class variable has no parents, and each attribute has the 

class variable and at most one other attribute as parents, the ABN under this condition is called Tree 

augmented Naïve Bayes (TAN). Compared to other data-driven network construction approaches, like 

naive BN (Langley et al., 1992) and C4.5 (Quinlan, 1993), TAN is proven to be more competitive and 

accurate (Murphy et al. 1995). Due to such strengthens, its wide applications are spread across 

different risk studies in the transportation field (e.g. Yang et al., 2018; Wang and Yang, 2018).  

 

3. Methodology for model construction 

To develop the data-driven BN model for the analysis and prediction of cycling accident severity, a 

conceptual methodology consisting of four steps is developed in this section, including data 

acquisition, variable identification, structure learning, and model validation. Before the model 

construction, a basic assumption lies that all the variables in the model are conditionally independent 

given the value of the target node.  

3.1 Data acquisition  
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The data used to construct the BN comes from the STATS19 accident reports applied by the 

Department of Transport in the UK. It consists of a set of data that are collected by a police officer 

when a road accident is reported. The accident reports are used extensively for research work and for 

guidance in the improvement of road safety policies in relation to road, road users and vehicles. 

In this paper, 2258 STATS19 reports involving cycling accidents in Liverpool from 2012-2017 are 

collected from Merseyside Police as the case data to support the development of the proposed BN in 

the first round of model development. Each report includes a great variety of characteristics related to 

the cycling accident (e.g. day, time, road surface, weather, lighting) involving more than 100 

parameters influencing the accident severity, as seen in the official STATS19 form from UK DfT 

website (UK DfT STATS19 form, 2020). 

3.2 Variable identification  

Given the fact that many factors are irrelevant to any of the collected reports, a screening process is 

conducted to only retain the relevant parameters for the development of the BN based cycling risk 

model and to gather information on the definition of the grades of the employed variables. A simple 

flowchart is presented as follows to display this process – see Figure 1. 

Variable 

classification

Contributory 

factors
Other factors

Determined variables 

in BN

Data Acquisition

Variable Identification

Filtering rules for 

contributory 

factors

Filtering rules for 

other factors

Selected 

Contributory 

factors

Selected Other 

factors

 

Figure 1. Flowchart of variable determination process 

The description of the proposed variable identification and screening process is outlined in the 

following steps: 

Step 1. Data collection and acquisition 

Step 2. Variable identification from collected accident reports 



6 

 

Step 3. Variable classification based on the identified variables in step 2 in two groups: contributory 

factors and other factors 

Contributory factors  

In a STATS19 report, there is an important component called ‘contributory factors’, which reflects the 

reporting officer’s opinion at the time of reporting. The contributory factors are largely subjective and 

depend on the skill and experience of the investigation officer to reconstruct the events that directly 

lead to the accident. The identified factors for the accidents are clarified based on the evidence rather 

than subjective judgments of the officers on duty about what may have happened. It is an alternative 

form of expert judgment on the key actions taken by the involved driver(s) and cyclist(s) and the 

failures that directly lead to the accidents, presenting a valuable variable in predicting accident 

severity. These factors are defined from STATS20 handbook issued by Department for Transport of 

UK (UK DfT STATS20, 2020). 

In total, there are 78 contributory factors. Against the same factor, an accident is reported from two 

different types of involving users as suggested by the STATS20 handbook: victim and the 

encountering road users. Although the number of involving people in an accident varies, they all 

belong to these two types. Therefore, in our model construction, the selected contributory factors 

consist of two aspects: contributory factors of victim and contributory factors of other encountering 

road users.  

Step 4 Variable screening through corresponding filtering rules. 

Step 5 Determination of final selected variables used for model construction. 

The detailed information of the screening process is found in Appendix 2. 

3.3 BN structure learning through a TAN approach 

A BN structure is learnt by two means including through subjective expert knowledge and objective 

data training (i.e. data driven BN). The subjective approach is normally time consuming, and heavily 

relies on the domain experts to provide both the local parameters’ probabilities and global dependency 

among the parameters, causing the concerns on the model’s robustness and result’s accuracy. An 

alternative method for the BN construction is to induce the network structure from objective data, 

namely the data-driven approach, which can greatly reduce the subjective bias and increase the 

soundness of the model (Oteniya, 2008). 

Different data training approaches have been used to learn BN structures. In this study, TAN learning 

is adopted to learn the structure of the BN for cycling safety analysis. TAN learning is a semi-naïve 

Bayesian learning method. It relaxes the naive Bayes attribute independence assumption by 

employing a tree structure, in which each attribute only depends on the class and one other 

attribute. Compared to other approaches (e.g. naïve BN, C4.5), most of which have a local optimal 

problem when generating a BN structure, the TAN learning is more efficient and accurate. Based on 

the experiments carried out by University of California at Irvine (UCI), TAN learning has revealed 

significant improvement over other approaches in terms of model accuracy. TAN learning not only 

maintains the robustness and computational complexity of Naïve BN learning, but also displays better 

result accuracy (Friedman et al., 1997). Based on the risk variables identified in Appendix 1, the 

quantitative BN to represent the interactive dependencies can be constructed through the TAN 

learning as follows. 

3.3.1 TAN learning 

The essence of TAN learning is actually an optimization problem. Let 𝐴1, … , 𝐴𝑛 be the attribute 

variables (the influencing variables in Section 3.2 like ‘District’, ‘Time’, ‘Weather’, etc.) and C be the 
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class variable (target variable ‘Accident severity’) in the analysis of cycling accident severity. 𝛱𝐶  

represents the parent variables of C.  B is defined as a TAN model if 𝛱𝐶 =  Ø and there is a function 𝜋 

that defines a tree over 𝐴1, … , 𝐴𝑛 such that 𝛱𝐴𝑖
= {𝐶, 𝐴𝜋(𝑖)} if 𝜋(𝑖) > 0, and 𝛱𝐴𝑖

= {𝐶} if 𝜋(𝑖) = 0. 

The optimization problem consists of finding a tree defining function 𝜋 over 𝐴1, … , 𝐴𝑛 such that the 

log likelihood is maximized, and the TAN model under this function is used as the structure of the 

target BN model. One difference between a traditional BN model and the TAN model lies in class 

variables. Class variables in the BN model always have at least one parent node. However, since 

Bayesian inference will be used on the results, it is accepted for links to go in either direction to fit the 

result reflecting the reality. In other words, the directions of links in the TAN model can be changed 

appropriately to fit the demand of this study on cycling safety.  

The procedure entitled ‘Construct-TAN’ can solve the above optimization problem. This procedure 

follows the general outline proposed by Chow and Liu (1968), except that instead of using the mutual 

information between two attributes (i.e. any two of the factors in Appendix 2), it uses conditional 

mutual information between attributes given the class variable (i.e. accident severity). This function is 

defined in Equation 1. 

 
𝐼𝑃(𝑨𝒊; 𝑨𝒋|𝑪) =  ∑ 𝑃(𝒂𝒊𝒊, 𝒂𝒋𝒊, 𝒄𝒊)𝑙𝑜𝑔

𝑃(𝒂𝒊𝒊, 𝒂𝒋𝒊|𝒄𝒊)

𝑃(𝒂𝒊𝒊|𝒄𝒊)𝑃(𝒂𝒋𝒊|𝒄𝒊)
𝒂𝒊𝒊,𝒂𝒋𝒊,𝒄𝒊

 
( 1 ) 

where 𝐼𝑃 represents the conditional mutual information, 𝒂𝒊𝒊 is the ith state of the attribute variable 𝑨𝒊, 

𝒂𝒋𝒊 is the ith state of the attribute variable 𝑨𝒋, 𝒄𝒊 is the ith state of the class variable 𝑪𝒊. This function 

measures the information that both 𝑨𝒊 and  𝑨𝒋 have when the value of C becomes known.  

The Construct-TAN procedure for cycling accident severity analysis and prediction consists of five 

main steps: 

a) Compute 𝐼𝑃(𝐴𝑖 , 𝐴𝑗| 𝐶) between each pair of attribute variables in cycling safety, i ≠ j. 

Attribute variables in this research: all the influencing variables identified in Appendix 1.  

Class variables in this research: Accident severity. 

b) Build a complete undirected graph in which the vertices are the attributes 𝐴1, … , 𝐴𝑛. 

Annotate the weight of an edge connecting 𝐴𝑖 to 𝐴𝑗 by 𝐼𝑃(𝐴𝑖 , 𝐴𝑗| 𝐶).  

c) Build a maximum weighted spanning tree. 

A spanning tree is a connected subgraph containing no cycles. The maximum weight-

spanning tree is a spanning tree, compared to which no other spanning tree has a larger sum 

of weights on its edges. Therefore, the maximum weighted spanning tree in this paper is the 

tree that has a maximum sum of  𝐼𝑃(𝐴𝑖 , 𝐴𝑗| 𝐶). 

d) Transform the resulting undirected tree to a directed one by choosing a root variable from the 

attribute variables and setting the direction of all edges to be outward from it. 

e) Construct a TAN model by adding a vertex labelled by the class variable C and adding an arc 

from C to each 𝐴𝑖. 

f) Estimate the conditional probability of each variable/node through a gradient descent 

approach (Yang et al., 2018) 

3.4 Model verification 

To verify the proposed model, new accidents happened in the Liverpool region in 2018 are collected 

from Merseyside Police. If the estimated results delivered by the proposed BN model are keeping a 

high harmony with the real results of the new accidents, the model is proven robust; otherwise, the 

model fails.  

3.5 Sensitivity Analysis 
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Sensitivity analysis is known as a way to determine how the uncertainty in the output of a model can 

be influenced by the different sources of uncertainty in its input. In this particular study, a two-step 

sensitivity analysis has been developed to determine the influence degree of risk variables in 

Appendix 1 on accident severity. The findings will provide useful insights for transport authorities for 

developing their cycling safety policies.   

3.5.1 Mutual information 

Mutual information (entropy reduction) is a quantity that measures how much one random variable 

tells about another. High mutual information indicates close connection; low mutual information 

indicates weak connection; zero mutual information indicates two variables are independent. To 

understand the nature of mutual information, entropy needs to be initially defined. The higher the 

entropy, the more uncertainty one is about a random variable.  Shannon (1949) indicated that the 

measure of uncertainty of a random variable should be a continuous function of its probability 

distribution and should satisfy some specific conditions: 

1) It should be maximal when its probability distribution is uniform, and in this case, it should 

increase with the number of possible values the variable can take; 

2) It should remain the same if we reorder the probabilities assigned to different values of the 

variable; 

3) The uncertainty about two independent random variables should be the sum of the uncertainties 

about each of them. 

Based on these conditions, the entropy is defined. Consider a discrete random variable 𝜶 with possible 

values {𝛼1, 𝛼2, … , 𝛼𝑖} and probability distribution function 𝑃𝛼(𝜶), then the entropy can be explicitly 

written as (Yang et al., 2018): 

𝐻(𝜶) = − ∑ 𝑃𝛼(𝛼𝑖)𝑙𝑜𝑔𝑏𝑃𝛼(𝛼𝑖)

𝑖

= −𝐸𝑃𝑙𝑜𝑔𝑏𝑃(𝛼) 

where b is the base of the logarithm used. Normally, the value of b is 2;  𝐸𝑃 is the expected value over 

the probability distribution. 

Further, the conditional entropy is the average uncertainty about one variable 𝜶′ after observing a 

second random variable 𝜶, and is given by: 

𝐻(𝜶′|𝜶) = ∑ 𝑃𝛼(𝛼𝑖)

𝑖

[− ∑ 𝑃𝛼′|𝛼(𝛼𝑖
′|𝛼𝑖)𝑙𝑜𝑔𝑏𝑃𝛼′|𝛼(𝛼𝑖

′|𝛼𝑖)

𝑖′

] = 𝐸𝑃𝜶
[−𝐸𝑃

𝛼′|𝛼
𝑙𝑜𝑔𝑏𝑃𝛼′|𝛼] 

Based on the definition of entropy, conditional entropy and mutual information, it is easily to find out 

that mutual information is the reduction in uncertainty about a variable. Assuming S represents 

‘accident severity’, 𝛽 represents a random risk variable, 𝛽𝑖 represents the ith state of 𝛽, 𝐼(𝑆, 𝛽) 

represents the mutual information between ‘accident severity’ and risk variables. 𝐼(𝑆, 𝛽) can be 

written  as in Equation 2 

𝐼(𝑆, 𝛽) = 𝐻(𝑆) − 𝐻(𝑆|𝛽) = − ∑ 𝑃(𝑠, 𝛽𝑖)𝑙𝑜𝑔𝑏
𝑃(𝑠,𝛽𝑖)

𝑃(𝑠)𝑃(𝛽𝑖)𝑑,𝑖                           (2) 

In this paper, the introduction of mutual information is to measure the mutual dependence of different 

risk variables influencing safe cycling. In other words, it is the information that two variables share. It 

is the value used to measure the strengths of the relationships between the target node (i.e. accident 

severity) and influencing nodes (i.e. day, time, weather, road surface). The larger the value of mutual 

information, the stronger relationship that exists between the risk variable ‘𝛽’ and ‘accident severity’. 

The factors having stronger relationships with ‘accident severity’ are viewed as significant variables 

in cycling safety. One of the advantages of mutual information is that it can be computed between the 
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variables at different layers. When a new observation of an influencing variable is obtained, the 

mutual information can help measure the uncertainty of the observation on target node (i.e. accident 

severity).  

3.5.2 Combined influence of multiple variables 

The value of mutual information can measure the significance and influence degree of individual 

variables. If the mutual information is low, this variable does not have strong relationship with the 

target node ‘accident severity’. However, sometimes these variables of insignificant impact on 

‘accident severity’ will generate a much higher effect in a combined way. Therefore, a further 

sensitivity analysis focusing on the combined influence of the investigated risk variables are 

conducted to find the combined sets of influencing variables that can generate significant impact on 

accident severity. 

 

4. Model construction, results & verification 

4.1 Description of nodes in the BN 

In this section, the risk variables influencing the accident severity after screening process are 

explained with a particular reference to their state definitions.  

4.1.1 Influencing variables 

1) District 

This refers to the region/location where cycling accidents happen. According to the STATS19 reports, 

there are five major districts in the investigated Liverpool city region: Knowsley, Sefton, City of 

Liverpool, St. Helens and Wirral. 

2) Day 

The statistics of cycling accidents reveals that the frequency of cycling accidents and their severity 

varies from days to day. For example, Sunday has the lowest number of accidents in total, while 

Tuesday has the most severe or fatal accidents. This node is therefore discretised into seven states: 

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday. 

3) Time 

This variable is classified into two states based on: rush hour or not. According to BBC News and 

Wikivoyage, rush hour in the UK is typically 7am-10am and 4pm-7pm every weekday; for weekends, 

there is no specific definition. In this study, '11am-7pm' is set as the rush hour on weekends in 

Liverpool region because the traffic volume during this period is significantly higher than other time 

in weekends. Two states are set as rush hour and non-rush hour. 

4) Encountering vehicle types 

Encountering vehicle is the other party colliding with a cyclist on the road. Different encountering 

vehicle types often result in different accident consequences. For example, it is undoubtedly that 

colliding with a heavy goods vehicle (HGV) is much more dangerous than the collision with a 

motorbike for a cyclist if other conditions are kept the same (i.e., speed, environment). Based on the 

information provided by the accident reports, this variable has six states: Cars, HGV, Public Service 

Vehicle (PSV), motorcycle, cyclist, and other/unknown.   

5) Weather 
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This variable refers to weather conditions at the time and location of a cycling accident. As stated in 

Section 2, bad weather conditions have a major impact on cycling safety and failure to recognize its 

impact may cause huge loss, injuries and even casualties. The effect of a bad weather condition on 

cycling safety is mainly because of the reduction in visibility and distraction of cyclists, as well as its 

impact (e.g. rain) on a hazardous road condition (Joon-Ki Kim et al., 2007). Therefore, this variable 

needs to be paid much attention, especially in regions where bad weather often occurs. The 

Department for Transport in the UK defines several states for this variable: fine with high winds, fine 

without high winds, rain with high winds, rain without high winds, and others. 

6) Road surface condition 

The road surface condition in this study refers to the surface condition at the time and the place of the 

cycling accident. According to STATS19 reports, there are five types of a road surface condition in 

the UK: dry, wet/damp, snow, frost/ice, and flood (where surface water is over 3cm deep). However, 

in the Liverpool region, the major road surface conditions are dry and wet/damp, as stated by 

Merseyside Police. Meanwhile, the cycling accident database also tells there are very few accidents 

occurring on snow/frost/ice/flood road surface and none of them causes fatal consequence. Hence, this 

variable is classified into three states: dry, wet/damp, and others (i.e. snow, frost, ice and flood). 

7) Street lighting 

Darkness is the most mentioned environmental hazard for cyclists, according to the literature. 

Previous researchers have already shown that cycling during late hours, especially at night, is more 

hazardous than daytime (Juhra et al., 2012). As a solution, the use of sufficient street lighting facilities 

can effectively tackle the darkness issue. However, in Liverpool, not all the places have the street 

lighting facilities, or some facilities are broken and not working well, generating an impact on the 

accident severity accordingly. Based on the STATS19 reports, ‘street lighting’ is categorized into 

three states in this study with respect to the darkness types: dark with no street light/unknown, dark 

with street lights present and lit, and daytime. 

8) Combined road class 

When a road accident happens at a junction, the police officer will record the main road class and the 

second road class in the STATS19 report. The main/first road is defined as the one with the highest 

class of all the roads entering the junction, and the second-class road is the second highest one. 

Different combinations of road classes represent different environments, which is an important factor 

affecting the accident severity, named as ‘combined road class’. It is denoted as the ‘1st road class - 

2nd road class’.  

Normally, there are five road classes in the UK: A, B, C, M, and other unclassified. In this research, C 

and M road classes are merged into 'Other Unclassified (U)', given there are rarely records of C and M 

road classes in the cycling accident database. Consequently, ‘Combined road class’ in this paper has 

the following states: A-A, A-B, A-U, B-U, B-B, U-U and same road (means not at the junction). 

9) Speed limit of a city road 

When driving on road, the driver must not drive faster than the speed limit for the type of road and 

type of vehicle. According to the Highway Code, road safety and vehicle rules of the UK, a speed 

limit of 30mph the most widely applied compared to other limits. (https://www.gov.uk/speed-limits). 

‘Speed Limit’ is therefore classified into three states: 30mph, above 30mph andbelow 30mph. 

10) Road type 

The road type associate with a cycling accident refers to the main carriageway on which the accident 

occurs. STATS19 lists six road types for cycling accidents: roundabout, one way street, dual 

https://www.gov.uk/speed-limits


11 

 

carriageway, single carriageway, slip road, and unknown road. Nevertheless, among all the collected 

accident reports, very few occurred on one-way street, slip road and unknown road and none of them 

caused fatal consequence and hence these three road types are merged into one state – ‘others’. This 

variable has four states: roundabout, single carriageway, dual carriageway and others. 

11) Junction detail 

Junction is defined as a place where two or more roads meet with various angles of the axes of the 

roads. If there are two or more junctions within 20 meters of an accident, the junction that is the 

closest to the accident is recorded in the report. The UK government classifies junctions into nine 

categories. Some of them are not relevant in this paper since no relevant accident data are associated 

with them appropriately. Consequently, the processed states for ‘junction detail’ are crossroads, 

roundabout, not at junction, T or staggered junction and ‘other’ junction. 

12) Junction control 

The existence of control measures at a junction is crucial for reducing the severity of accidents 

because they are effective in regularizing the behaviour of road users. Different control measures have 

different efficiency. This variable has four states: automatic traffic signal, give way, ‘other’ control 

measures and no control. 

13) Manoeuvre of cyclists 

The manoeuvre of a cyclist refers to the action(s) taken immediately before the occurrence of an 

accident. According to STATS19 reports, there are 18 types of possible manoeuvres. Based on the 

availability of the relevant data and the actions having similar nature, five states are presented for this 

variable: go ahead, overtaking vehicles, turning, waiting at junction, and ‘others’.  

14) Skidding, cyclist location and first point of impact (Cyclist) 

These variables’ meanings are self-explanatory while their states are set as recommended by the 

STATS19 reports as follows. 

Skidding – Yes, No 

Cyclist location – Main carriageway, Not 

First point of impact – Front, Back, Offside, Nearside, Not impact 

15) Age of cyclists 

Based on the information provided by United Nations Educational, Scientific and Cultural 

Organisation (UNESCO) and the National Statistics Office of the UK, persons are divided into four 

groups according to their age bands within the cycling safety context: Child (Under 15), Youth (15-

24), Working adult (24-65) and the elderly (Over 65).  

16) Gender of cyclist 

Two states for this variable are male and female. 

17) Contributory factors (see Table 1).  

All the contributory factors in the BN model has two states: Yes, No. 

4.1.2 Influenced/Target variable 

With regard to the influenced variable ‘accident severity’, a cycling accident can lead to a fatal, 

serious, or slight consequence (STATS19 report). Fatal accidents include only those cases where a 

death occurs in less than 30 days as a result of the accidents. Serious accidents contain the cases of 
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broken necks or backs, severe head/chest injuries, internal injuries, loss of arms/legs, deep penetrating 

wounds, crushing, concussion, and others. Slight accidents refer to those accidents causing neck pain, 

bruising, sprains and strains, etc. The detailed information and the full list of injury for three severity 

types are found in a STATS19 report. Given the above description, Table 1 presents the full list of 

risk variables influencing the severity of cycling accidents in the BN, and their defined states. 

Table 1. Identified risk factors and their states 

VARIABLE STATE 

District Knowsley, Sefton, Liverpool, St.Helens, Wirral 
Day Mon, Tues, Wed, Thur, Fri, Sat, Sun 

Time Rush hour, Non-Rush hour 
Encountering vessel types Cars, HGV, PSV, Motorcycle, Cyclist, Other/unknown 

Weather Fine with high winds, Fine without high winds, Rain with high winds, 
Rain without high winds, Other 

Road surface Dry, Wet/Damp, Other 
Street lighting Dark (no street light or unknown), Dark (street lights present and lit), 

Daytime 
Combined road class A-A, A-B, A-U, B-B, B-U, U-U, Same road 

Speed limit Below 30km/h, 30km/h, Above 30km/h 
Road type Single Carriageway, Dual carriageway, Roundabout, Other 

Junction detail Crossroads, T or staggered, Not at junction, Roundabout, Other 
Junction control Automatic traffic signal, Give way/Uncontrolled, Other way, None 

Manoeuvre of Cyclist Go ahead other, Overtake vehicles, Turning, Waiting at junction, Other 
Skidding Yes, No 

Cyclist location Main carriageway, Other 
First point of impact Front, Back, Offside, Nearside, Not impact 

Age of cyclist Child, Youth, Working adults, Elderly 
Gender of cyclist Male, Female 
Accident severity Slight, Severe, Fatal 

Contributory factor of 
Victim 

Yes, No 

Contributory factor of 
Other road users 

Yes, No 

 

4.2 Structure of BN Model 

Through the process of TAN learning, the structure of BN model for the analysis of cycling accident 

severity is developed and shown in Figure 2. 

The ‘V’ nodes in the network represent the contributory factors caused by victim (cyclist), while ‘O’ 

nodes represent the contributory factors caused by the encountering road users in an accident. Each of 

‘V’ and ‘O’ has 16 possible contributory factors as explained in Appendix 2, numbered from 1 to 16 

(i.e. V1-V16 and O1-O16). The definition of each contributory factor is presented in Table A3.1. 

In the process of data-driven structure learning in BN, the network structure is purely learnt from a 

mathematical perspective, which results in the existence of some links that only have statistical 

dependence but could not reflect the reality and needs to use expert knowledge to conduct adjustment 

for a fine-tuned network (Wang & Yang, 2018). Through investigating the opinions and judgments 

from domain experts (i.e. police officer, staff in transport department and cycling communities), as 

well as the prior knowledge learnt from the previous work to verify the initial network generated 

purely by data, the following links and arcs in the initial TAN model are not consistent with the actual 

situation and hence removed. 
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Figure 2. TAN structure for cycling accident severity 

 ‘Day-Weather’, ‘Road Surface-Street lighting’, ‘Street lighting-Time’, ‘Street lighting-V10’, 

‘Combined road class-Day’, ‘Day-Sex’, ‘Day-O9’, ‘Day-O2’, ‘Day-V15’, ‘First point of impact-

Skidding’, ‘Age-V2’, ‘Road type-District’, ‘Junction detail-O13’, ‘Combined road class-O10’, 

‘O12-V8’, and ‘Encountering vessel type-First pint of impact’. 

Consequently, after the adjustment, the fine-tuned structure (based on Figure 2) is improved and 

presented in Figure 3.  

 

Figure 3. Fine-tuned BN structure for cycling accident severity 
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4.3 Model results 

After the structure of the BN, the conditional probabilities of the involved nodes are obtained via a 

gradient descent approach (Yang et al., 2018b). Based on the calculated conditional probability table 

(CPT) of each node, the result of the TAN model is presented in Figure 4. It indicates that the 

probability of a slight accident is 76.3%, a serious accident is 23.2% and a fatal accident is 0.48%. 

When calculating these values directly from the accident report database, it was found that the 

similarity between the two are very high. For instance, the direct statistical analysis reveals that the 

probability of having a slight accident is 75.76% (by dividing the total number of slight accidents by 

the total number of the accident reports), the probability of serious accident 23.75%, and the 

probability of fatal accident 0.49%. This proves the accuracy of the results that the model delivers 

based on the historical data. 

Based on the proposed model, the unobserved situations associated with the cycling accidents can be 

predicted through the generated posterior probabilities when observable evidence is provided. 

Therefore, the BN model is served as a dynamic prediction tool to foreseen the accident severity 

degree under different situations. Before that, the model prediction ability is tested using newly 

collected accident data collected from 2018. 
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Figure 4. BN model result (marginal probability) based on 2258 historical reports   
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4.4 Model verification 

The verification process focuses on two aspects: one is the prediction performance of the model, the 

other is consistency test of the model. To verify the proposed model, 235 new accident cases in the 

Liverpool region within 2018 were collected from Merseyside Police. Among these reports, a few of 

them contains incomplete important information related to the defined risk variables (in Table 1), i.e. 

contributory factors, cyclist gender, and manoeuvre details. They are excluded and as a result, 213 

accident reports are finally used for model verification.  

4.4.1 Prediction performance 

Relevant information of the 213 cycling accidents is used individually to test the proposed model 

(Figure 4), the state of accident severity with the highest probability is used as the result delivered by 

the proposed model. The following table reveals the accuracy rate of the BN risk model in predicting 

different severity types of cycling accidents by comparing the model results with the ones in real 

accident reports. 

Table 2. Model accuracy 

Model delivery 

Real severity 
Slight Serious Fatal Total number Accuracy 

Slight 168 8 0 176 95.45% 

Serious 2 34 0 36 94.44% 

Fatal 0 0 1 1 100% 

General 170 42 1 213 95.31% 

 

To explain Table 2, an example of ‘slight severity’ is used. Among the 213 cycling accidents, 176 

have a slight severity consequence. When incorporating the information (against each of the risk 

variables in Table 1) of each cycling accident into proposed model, in 168 accidents the model 

suggests a slight consequence, while 8 receive a serious consequence. Therefore, the accuracy rate for 

‘slight severity’ is calculated as 95.45% (168/176). The same goes to ‘serious severity’ and ‘fatal 

severity’. From Table 2, the accuracy rates of ‘slight severity’, ‘serious severity’ and ‘fatal severity’ is 

95.45%, 94.44% and 100% respectively, indicating the model is reliable in terms of providing 

accurate and consistent forecasting results. Additionally, its overall accuracy rate is 95.31% 

(203/213).  

Furthermore, when we calculate the training accuracy of the proposed model, it is 97.18% 

(2205/2269). The similarity between training accuracy and validation accuracy indicates our model 

shows a good fit. Specifically, a plot learning curve could be resorted to consolidate this conclusion.  

A learning curve is a plot of model learning performance over experience or time. Learning curves 

(LCs) are deemed effective tools for monitoring the performance of models exposed to new evidence. 

It is widely used in machine learning for algorithms that learn (optimize their internal parameters) 

incrementally over time (Michel et al., 2011). A LC consists of two parts: one is a train learning 

curve, the other is a validation learning curve. The x-axis in the curve represents number of sample 

inputs, while the y-axis in the curve represents the accuracy of the model. 

In this research, to draw the learning curve of the proposed model, the same number of samples in 

training data is randomly selected to match the validation data. The process is repeated for three 

times, and the learning curves are presented in Figure 5 as follows. 
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Figure 5 Plot learning curves of the proposed model 

It is observed from Figure 5 that the model is of good fit and does not exist overfitting or underfitting 

problems because of  

 The curves maintain at a point of stability with the sample number increases. 

 There is only a subtle gap between two curves, which means the training accuracy and the 

validation accuracy is consistent. 

Therefore, the proposed cycling model could be used as a reliable prediction tool. 

 

4.4.2 Kappa statistic for model consistency test 

In this research, the consequence severity levels are unbalanced with the majority being slight 

injuries. In this case, using the percent calculation along for the model accuracy prediction and 

validation are arguably insufficient. Kappa statistic, as an alternative statistical approach, is used to 

test the model consistency. Since there are two raters in this research (predicted results and real 

results), Cohen’s kappa coefficient is selected for the model validation. 

The calculation process is shown as follows: 

𝑝𝑒 =
1 × 1 + 42 × 36 + 170 × 176

213 × 213
= 0.6897, 𝑝0 = 0.9531 

𝒌 =
0.9531 − 0.6897

1 − 0.6897
= 0.8488 

The Cohen’s kappa (k) is 0.8488. Based on the guidelines from Altman (1999), a kappa (k) of 0.8488 

represents a strong strength of agreement, which means the model is strongly consistent with the real 

accident consequences. 
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The detailed information and calculations for the comparison between real consequences and the 

model predicted results are found in Appendix 3. 

 

5. Sensitivity analysis 

5.1 Mutual information analysis 

According to Equation (2), the mutual information between ‘accident severity’ and other risk 

variables is obtained and demonstrated in Table 3. The ‘percentage’ column in the table represents the 

extent to which the shared information between the ‘accident severity’ and other variables belongs. In 

other words, the percentage value of each variable indicates its individual impact on ‘accident 

severity’. The mutual information values in the table are independent and irrelevant to others. 

Table 3. Mutual information of ‘Accident severity’ and other variables 

Variable/Node Mutual Info Percentage 

Age 0.01122 1.36 
District 0.00818 0.995 

Day 0.00778 0.945 
Encountering vessel type 0.00654 0.795 

First point of impact 0.00595 0.724 
Combined Road Class 0.00438 0.532 

Junction control 0.00406 0.493 
Junction detail 0.00376 0.457 

Maneuver of Cyclist 0.00354 0.43 
V4 0.00234 0.284 
V8 0.00224 0.2727 
O4 0.00189 0.229 

Road Type 0.00188 0.229 
V9 0.0017 0.207 

Speed limit 0.00166 0.202 
Weather 0.00164 0.199 

V5 0.0016 0.194 
V10 0.00143 0.174 
V12 0.00142 0.173 
V3 0.0014 0.171 

O16 0.00132 0.161 
O10 0.00126 0.154 
O9 0.0012 0.146 
V1 0.00114 0.138 
V7 0.00087 0.106 
V11 0.00075 0.091 
O14 0.00073 0.0887 

Cyclist location when accident happens 0.00067 0.08110 
Street lighting 0.00066 0.0804 

O5 0.00054 0.0655 
O3 0.00045 0.0548 

O11 0.00041 0.0495 
Time 0.00038 0.046 
O8 0.00038 0.0458 

Road Surface 0.00029 0.0357 
V13 0.00029 0.0354 
V2 0.00025 0.0307 
V6 0.00025 0.0298 
O7 0.00022 0.0273 

O15 0.0002 0.0245 
V14 0.00018 0.0216 

Skidding 0.00017 0.0205 

O13 0.00015 0.0183 
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O1 0.00011 0.013 
O12 0.00009 0.0114 
V16 0.00005 0.00662 
Sex 0.00005 0.00577 
V15 0.00005 0.00563 
O6 0.00001 0.00149 
O2 0.00001 0.0013 

 

To understand the role of variables more clearly, data clustering is necessary. As a statistical 

classification technique for discovering whether the individuals of a population fall into different 

groups (Merriam-Webster Online Dictionary, 2008), data clustering is useful for our research to gain 

insight into risk variables, as well as identify the degree of similarity among them. As a powerful 

approach, the K-means clustering algorithm is selected for data clustering.  

It is a method of vector quantization, originally from signal processing, that aims 

to partition n observations into k clusters. In the clusters, each observation belongs to the cluster with 

the nearest mean (cluster centres or cluster centroid). In other words, to find a partition such that the 

squared error between the empirical mean of a cluster and the points in the cluster is minimized (Anil, 

2010). Although the K-means clustering algorithm was first proposed over 50 years ago, it is still one 

of the most widely used clustering algorithms because of its easiness of implementation, simplicity, 

efficiency and empirical success. The goal of K-means clustering algorithm in our research is to 

discover the natural grouping of the influencing variables in the model. 

Following the main steps of this algorithm are as follows (Jain & Dubes, 1988): 

1. Select an initial partition with K clusters; repeat steps 2 and 3 until the cluster membership 

stabilizes. 

2. Generate a new partition by assigning each pattern to its closest cluster centre. 

3. Compute new cluster centres.  

In this research, the number of clusters (k) is three according to the Elbow method. The idea of the 

Elbow method is to run k-means clustering on the dataset for a range of values of k (say, k from 1 to 

10 in our research), and for each value of k to calculate the sum of squared errors (SSE). Then, the 

next step is to plot a line chart of the SSE for each value of k. The elbow of the curve is the value 

of k that is the best (Robert, 1953). The results of K-means clustering are shown in Table 4.  

Table 4. K-means clustering results 

Class 1 2 3 

Objects 5 18 27 

Sum of weights 5 18 27 

Within-class variance 0.061 0.016 0.001 

Minimum distance to centroid 0.019 0.011 0.004 

Average distance to centroid 0.171 0.100 0.028 

Maximum distance to centroid 0.396 0.270 0.096 

Once the k is determined, the variables can be classified based on the results obtained from K-means 

clustering results. Specifically, the variable assignment is based on the ‘sum of weight’ information in 

https://en.wikipedia.org/wiki/Vector_quantization
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Cluster_(statistics)
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Centroid
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the table. For example, ‘sum of weight’ of ‘class 1’ is 5, which means there should be 5 variables in 

class 1. Hence, there are 5 variables in class 1, 18 variables in class 2, and 27 variables in class 3.  

Next step is to assign the variables to the three defined classes according to the mutual information. 

The results of k-means clustering suggest the influencing degree from class 1 to class 3 is decreasing, 

indicating the variables having top 5 mutual information values should be assigned to class 1, which is 

also named as first priority variables. The same mechanism is used to assign the variables to the 

classification of class 2 (2nd priority variable) and class 3 (low priority variable). 

Table 5 presents the variables included in each class from the K-means clustering results, which is 

also denoted as ‘1st priority variables’, ‘2nd priority variables’, and ‘low priority variables’.  

Table 5. Variable classification 

Class 1 (1st priority 

variables) 

Age, District, Day, Encountering vessel type, 

First point of impact 

Class 2 (2nd priority 

variables) 

Combined Road Class, Junction control, Junction detail, Manoeuvre of Cyclist, 

V4, V8, O4, Road Type, V9, Speed limit, Weather, V5, V10, V12, V3, O16, O10, 

O9 

Class 3 (low priority 

variables) 

V1, V7, V11, O14, Cyclist location when accident happens, Street lighting, O5, 

O3, O11, Time, O8, Road Surface, V13, V2, V6, O7, O15, V14, Skidding, O13, 

O1, O12, V16, Sex, V15, O6, O2 

 

The variable classification provides important insights for the risk informed policy making and 

implementation from both cyclists and transport authorities perspectives. These priorities are listed 

here: 

1) 1st priority variables have the highest-level influence on the accident severity. Transport authorities 

should pay the highest attention when formulating relevant policies, as well as inform cyclists for 

their implementation and accident prevention. Financial resources should be allocated to address them 

with the highest priority.  

2) 2nd priority variables are less influential compared to those from the first category. However, they 

will also threaten the cycling safety and the sequence of addressing such factors can refer to the cost 

benefit analysis of their associated risk control measures and policies. 

3) Low priority variables have little influence on cyclist safety. Their risk contribution should be more 

considered when combined with the factors from the first two categories in Section 5.2. 

5.2 Influence of multiple variables 

In this section, the influence of multiple variables in a combined way on ‘accident severity’ is 

evaluated. As shown in Section 5.1, the influence of single variables on ‘accident severity’ is not 

obvious because the values of mutual information are relatively small. However, the occurrence of a 

cycling accident normally results from the simultaneous presentation of multiple risk variables, which 

means some specific combination of risk variables will generate a much greater impact on ‘accident 

severity’ compared to the simple numerical aggregation of their individual influence values. 

Additionally, from a policy making perspective, it may sometimes be financially infeasible to control 

some high-prioritised influence variables, or impossible to control them (i.e. age, district). On this 

occasion, understanding how the combined sets involving the high-prioritised variables which leads to 

major or fatal consequence can help transport authorities make realistic and effective safety policies.  

As there are 50 variables in the model, it is too complicated to enumerate all the combinations, hence 

in this paper the combinations of two variables is selected to test the influence of multiple risk 

variables on accident severity. Based on the classification of variables in the last section, the analysis 
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on the two-variable combinations is conducted via the following aspects: ‘1st priority-1st priority’ 

combination, ‘1st priority-2nd priority’ combination, ‘1st priority-low priority’ combination, ‘2nd 

priority-2nd priority’ combination, ‘2nd priority-low priority’ combination’ and ‘low priority-low 

priority’ combination. 

It is noteworthy that only the worst case is considered when analysing the influence brought by each 

category, as the worst case often provides the most valuable information for safety policy making. 

1) 1st priority variable – 1st priority variable 

Two variables selected in this section are ‘cyclist age’ and ‘encountering vessel type’. Table 6 

illustrates the occurrence probability of different accident severity when the worst case happens. 

Table 6. Combination of 1st and 1st priority variables 

Cases Cyclist age EVT Fatal Serious Slight 

General case / / 0.48 23.1 76.4 

Worst-Cyclist age Elderly / 3.49 (+627%) 44.1(+91%) 52.5 

Worst-EVT / Motorcycle 6.89 (+1335%) 37.9 (+64%) 55.2 

Worst combination Elderly Motorcycle 30.2 (+6192%) 45.8 (+98%) 24.1 

(The number in the brackets is the rate of change, ‘+’ means increase, ‘-‘means decrease) 

2) 1st priority variable – 2nd priority variable 

Two variables selected are ‘cyclist age’ and ‘road type’. The estimated results delivered by the BN are 

presented in Table 7. 

Table 7. Combination of 1st and 2nd priority variables 

Cases 
Cyclist 

age 
Road type Fatal Serious Slight 

General case / / 0.48 23.1 76.4 

Worst-Cyclist age Elderly / 3.49 (+627%) 44.1(+91%) 52.5 

Worst-Road type / 
Dual 

carriageway 
1.08 (+125%) 25.3 (+10%) 73.6 

Worst combination Elderly 
Dual 

carriageway 
7.21 (+1402%) 45.2 (+96%) 47.6 

 

3) 1st priority variable – low priority variable 

‘Cyclist location when accident happens’ and ‘Encountering vessel type’ are chosen as the target 

variables, and the results are presented in Table 8. 

Table 8. Combination of 1st and insignificant priority variables 

Cases EVT 
Cyclist 

location 
Fatal Serious Slight 

General case / / 0.48 23.1 76.4 

Worst-EVT Motorcycle / 6.89 (+1335%) 37.9 (+64%) 55.2 

Worst-Cyclist 

location 
/ Other 2.28 (+375%) 27.2 (+18%) 73.6 

Worst combination HGV Other 13.7 (+2754%) 40 (+73%) 46.3 

 

4) 2nd priority variable – 2nd priority variable 

Selected variables are ‘Road type’ and ‘V4’ and the result is shown in Table 9.  
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Table 9 Combination of 2nd and 2nd priority variables 

Cases Road type V4 Fatal Serious Slight 

General case / / 0.48 23.1 76.4 

Worst-Road type 
Dual 

carriageway 
/ 1.08 (+125%) 25.3 (+10%) 73.6 

Worst-V4 / Yes 1.20 (+150%) 28.8 (+24.7%) 70.0 

Worst combination 
Dual 

carriageway 
Yes 2.56 (+433%) 31.2 (+35.1%) 66.2 

 

5) 2nd priority variable – low priority variable 

Selected variables are ‘Road type’ and ‘Cyclist location when accident happens’ and the result is 

shown in Table 10. 

Table 10. Combination of 2nd and low priority variables 

Cases Road type 
Cyclist 

location 
Fatal Serious Slight 

General case / / 0.48 23.1 76.4 

Worst-Road type 
Dual 

carriageway 
/ 1.08 (+125%) 25.3 (+10%) 73.6 

Worst-Cyclist 

location 
/ Other 2.28 (+375%) 27.2 (+18%) 73.6 

Worst combination 
Dual 

carriageway 
Other 6.28 (+413%) 25.3 (-25%) 68.4 

 

6) Low priority variable – low priority variable 

Selected variables are ‘Sex’ and ‘Cyclist location when accident happens’ and the result is shown in 

Table 11.  

Table 11. Combination of low priority and low priority variables 

Cases Sex 
Cyclist 

location 
Fatal Serious Slight 

General case / / 0.48 23.1 76.4 

Worst-Sex Male / 0.5 (+4%) 23.1 (/) 76.4 

Worst-Cyclist 

location 
/ Other 2.28 (+375%) 27.2 (+18%) 73.6 

Worst combination 
Dual 

carriageway 
Other 2.18 (+354%) 21.2 (-8%) 70.6 

 

It is evident that from the analysis in Tables 6-11 that the following remarks can be made for possible 

implications in Section 5.3: 

 It is obvious to find that the combination of risk variables has much greater influence on the 

accident severity than individually, regardless of the variable categories. 

 The higher priorities the risk variables have, the greater influence they will have on accident 

severity when grouping together. 

 According to the probabilities of fatal and serious consequence in these tables, the combination 

of two ‘1st priority variables’ can increase the likelihood of fatal consequence for dozens of 

times, which is more life threatening than other types of combinations for cyclists. 
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 When grouping together with specific 1st priority variables, an insignificant variable can also play 

an important role in affecting accident severity, even double the likelihood of fatal consequence 

of that from 1st priority variable individually. 

 Compared with fatal consequence, the change rates of serious consequence are not remarkable 

under various situations.  

 

5.3 Discussion on the outcomes – Features in Liverpool city region 

The following results from the model reveal the new findings of useful insights for improving cycling 

safety in the case city region and related suggestions derived from previous studies for risk reduction. 

The findings of this papers have been separated into these two sections accordingly.  

5.3.1 Findings  

In this subsection, the findings derived from the model are explained in detail with regard to the 

analysis and corresponding suggestions. 

1) Collisions with motorcycles are the most dangerous situation for cyclists, which has much higher 

probability of causing a fatal consequence and serious consequence than encountering with other road 

users, i.e. cars, PSV, or HGV, according to Table 12. For example, the probability of being caught in 

a fatal/serious consequence with a motorcycle is 2.6times/1.4times respectively higher than 

encountering with HGV, which is the second highest vehicle types. 

Table 12. Probability encountering different vessel types 

Situation Probability (Fatal/Serious/Slight) 

General case 0.48/23.2/76.3 

Encountering Cars 0.26/22/7/77.1 

Encountering Cyclists 1.85/22.2/75.9 

Encountering HGV 2.7/27/70.3 

Encountering PSV 2.5/20/77.5 

Encountering Motorcycle 6.91/37.9/55.2 

Encountering Other 0.59/26.9/72.5 

 

Based on a careful analysis on the collected accident data, motorcyclists in the Liverpool region are 

more likely to be in a state of emotional riding, for example, riding in an aggressive or dangerous 

manner, behaved in a negligent or thoughtless manner, or in a hurry mode.  Through the investigation 

and interview on these motorcyclists according to the accident report, it shows that lack of concern 

about the possible consequences of their actions (careless), acts in spite of the likely consequences 

(reckless), or fails to consider the consequences of their actions as a result of being in a hurry are the 

main reasons for their behaviours, which eventually leads to serious consequences. 

On the other hand, in many cases, the speed of motorcycles is as high as other motor vehicles (i.e. 

cars, HGV, PSV). However, motorcyclists are more vulnerable to crashes and accidents as they are 

exposed and have limited safety equipment available to protect them as compared with other vehicle 

users, which have seat belts, airbags and other safety features – this also applies to cyclists. Therefore, 

the consequences brought to both cyclists and motorcyclists if an accident happened between them 

would be more serious. 

Several suggestions could be put forward to help reduce the risk in this perspective: 

 Bicycle-related equipment 
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Use of rear or pedal reflectors; Improve bicycle security; Cyclists need to wear reflective clothing; 

Visibility aids (fluorescent vests, flashing lights on clothing, fluorescent clothes, reflectors or 

reflective strips); Promotion of the use of safety gears (bicycle lights, reflector, helmet). 

 Traffic rules & policy regulation 

Formulating traffic laws which give special consideration to vulnerable road users, especially cyclists. 

2) The study found that injury severity of cyclists involved in traffic crashes increased with road 

speed limits (see Table 13). 

Table 13 Probability under different speed limit 

Situation Probability (Fatal/Serious/Slight) 

Above 30 MPH 1.00/27.7/71.3 

30MPH 0.73/27.07/7/72.20 

Below 30MPH 0.40/22.50/77.10 

 

It is not surprised to reach this conclusion. As cyclists are vulnerable to risks compared with other 

road users, high speed limit roads will amplify their exposure to high cycling risks. Previous studies 

also found high speed limits could increase the risk of cyclist crashes as well as serious injury and 

fatality (Bíl et al., 2010).  

Possible countermeasures with regards to this finding from the implication perspectives include: 

 Separating bicyclists from high-speed traffic, for example separate bicycle paths on roadways 

that have a high-speed limit 

 Low speed limit in residential neighbourhoods with significant bicycle traffic (Kim et al., 2007). 

3) The elderly and the child are more likely to be severely injured as a result of a crash than the other 

age group. 

Table 14 Probability of different age group 

Situation Probability (Fatal/Serious/Slight) 

Elderly 3.49/44.21/52.3 

Child 0.67/24.03/7/75.30 

Working adult 0.36/20.13/79.51 

Youth 0.20/19.30/80.50 

 

It is found the injury severity of the elderly is much higher than the other age groups as seen in Table 

14. Meanwhile, child is also more likely to be involved in severe accidents compared with working 

adults and the youth. This is because older cyclists are particularly vulnerable to severe injury mainly 

due their overall physical and mental fragility (i.e., slow reaction to unexpected situations, little 

cycling experience and physical illness) often compounded by pre-existing conditions (Anstey et al., 

2005).  

Suggestions for possible improvements in terms of this finding include:  

 Traffic laws which give special consideration to the vulnerable road users. 

 More attention paid to youngest (under 20) and oldest cyclists (over 65) when formulating traffic 

rules. 

 

 Training education for all road users. 

 Promotion of the use of safety gears (bicycle lights, reflector, helmet). 
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4) When a cycling accident happens at a junction in the Liverpool city region, the probability of 

having a fatal consequence is much lower than the one relating to the other locations, which are 

demonstrated in Table 15.  

Table 15. Probability at different junction types 

Situation Probability (Fatal/Serious/Slight) 

Crossroads 0.3/27.2/72.5 

Roundabouts 0.002/22.8/7/77.198 

T or staggered junction 0.2/22.5/77.3 

Not at junction 1.04/23.46/75.5 

 

 The relevant research suggests that at junction, cyclists would be more careful and their safety 

awareness is high. Through an investigation at some major junctions in the Liverpool city region for a 

certain period, it was found that many cyclists will reduce their speed when approaching junctions to 

ensure there are no other vehicles driving towards/passing through them. Meanwhile, normally there 

will be different traffic control facilities at junctions, for example: 1) a police officer, traffic warden in 

uniform or school crossing patrol who is in control of the traffic; 2) automatic traffic signal; 3) stop 

sign; and 4) give way. These facilities will help protect the safety of cyclists and reduce the 

probability of being caught in some severe accidents. No traffic control will make the case worse, 

which is proved by our model as shown in Table 16. 

 Table 16. Probability of different junction control measures 

Situation Probability (Fatal/Serious/Slight) 

Automatic traffic signal 0.69/28.4/70.9 

Other (authorized 

person/stop sign) 

0.01/12.1/7/87.8 

Give way 0.22/22.3/77.5 

None 1.1/23.4/75.5 

 

The suggestions to improve this perspective should focus on the traffic control measures, including: 

separation of different user types in the areas with high traffic volume; improvement of road 

signalling and repression of traffic law infringement through more intensive policing. 

5) Road surface condition has little impact on safe cycling in Liverpool. In fact, the research finding 

shows dry road surface even leads to more fatal accidents than that on a wet/damp road surface 

condition.  

Table 17. Probability of male and female 

Situation Probability (Fatal/Serious/Slight) 

Dray surface condition 0.6/23.4/76 

Wet surface condition 0.4/22.8/7/76.8 

 

The explanation is that  in rainy days the speed of both cyclists and vehicles in the case area are found 

much slower. Among 1762 cases happened on dry surface condition reported in Liverpool, exceeding 

speed limitation is one of the major reasons, occupying 14.9%. On the other side, the number of over 

speeding in wet road is only 8.3%. This phenomenon well reflects the mentality of drivers and cyclists 

under different environments. When driving/riding on wet road surfaces, the road users are more 

gingerly and do not act recklessly. 
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Previous studies are also supportive to this finding. Rämä (2001) stated that the average speeds on a 

slippery road surface is lower than that in a good road surface conditions which are roughly 14 

km/hour. 

To reduce the effect of road surface condition on cycling safety, several suggestions related to road 

infrastructure are put forward: scheduled maintenance of bicycle-related infrastructures; keep cycling 

surfaces clean and decrease the number of obstacles on bicycle infrastructure. 

6) Liverpool female cyclists have a lower chance of being caught in fatal/serious cycling accidents 

than males . From Table 18, in Liverpool, the probability of female cyclists being caught in a fatal 

accident is 70% less than of a male cyclist. In addition, the probability of a female cyclist being 

involved in a serious accident is 17.5%, which is 6% lower than a male cyclist. 

Table 18. Probability of male and female 

Situation Probability (Fatal/Serious/Slight) 

Male cyclists 0.5/23.2/76.3 

Female cyclists 0.15/17.5/7/82.35 

 

In fact, it is not surprising to find that the chance of female cyclists being caught in severe conditions 

is lower than male cyclists. Similar to the car insurance charge, male cyclists are more likely to be 

caught in dangerous situations due to the fact that: 

 Male cyclists tend to cycle faster and are less likely to wear safe equipment 

 A large proportion of male cyclists are young cyclists, which means they have a relatively low 

safety consciousness 

 Male cyclists are more likely to participate in reckless activities than female, according to the 

accident reports 

 The statistics also shows that male cyclists are more likely to ride after drinking, hence being 

more likely to be involved in fatal crashes 

Suggestions to reduce this type of risk include: 

 Publicity & Education 

Training education for all road users; Improving poor cyclist behaviours by education and 

enforcement 

 Promotion of the use of safety gears (bicycle lights, reflector, helmet) 

7) In terms of the contributory factors, their occurrence from the encountering road user perspective 

will usually produce more dangerous consequences than that from the cyclists.  

This is because cyclists are more vulnerable in accidents compared with the encountering road users 

in normal cases. According to the accident data collected in this research, almost all the victims (2250 

of 2269, 99.2%) in these accidents are cyclists, hence more safety attention should be paid to more 

effectively engage other road users in cycling safety policy making. 

Statistically, the contributory factors requiring extra attention are O16 (Other factors of other road 

users), O9 (Other road users’ reaction to unexpected cases), O4 (Injudicious action of other road users 

on road), V12 (Emotional riding of cyclist), and V10 (Physical/mental illness or impairment of cyclist), 

as these five factors are top 5 factors that put cyclists under severe situations than other contributory 

factors: 

O16 includes special situations such as Stolen vehicles, Vehicles in course of crime, Vehicle door 

opened or closed negligently. 
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O9 includes sudden brake, swerved and loss of control of the encountering vehicles. 

O4 includes injudicious actions of encountering road users like illegal turn, exceeding speed limit, 

following too close. 

V12 includes emotional riding of cyclist such as aggressive riding, careless/reckless/in a hurry, and 

nervous/panic of the cyclists 

V10 includes physical/mental illness of cyclists like impaired by alcohol/drugs/illicit medicine, 

fatigue, visual deficiencies and disability of the cyclists. 

5.3.2 Findings to be further explored 

Despite the fact that many findings from this study provide useful insights to guide the transport 

authorities to develop rational safety policies, there are still some findings requiring further 

exploration in future.  They include 

1) Cycling on Tuesday is more likely to engage in a risky and dangerous situation than other days in 

a week. Specifically, the probability of being caught in the fatal situation on Tuesday is at least 

twice higher than any other days.  

2) Most cyclist crashes occurred during daytime, and the model results found that in Liverpool, 

riding at daytime or night with street lights, has a similar probability with dark without light, 

which are different with the findings from previous studies in the field. 

5.4 Practical contributions 

In this section, we emphasise the findings which help explain how the proposed model and research 

implications can aid risk informed safety policy making and control measure development. 

5.4.1 Policy making 

It is the responsibility of transport authorities to develop feasible safety policies to ensure cycling 

safety at national and regional levels. For example, the Department for Transport proposed an 

instruction (STATS20) in 2011 for police forces and local transport authorities around UK to guide 

them regulating the behaviour of road users, including cyclists. The findings from our research guide 

the Liverpool city region to develop its cycling safety measures. When formulating relevant policies, 

1st priority variables (age, district, day, encountering vehicle type, first point of impact) and some 2nd 

priority variables (according to city conditions and costs) are taken into account in their policy making 

process. Education lessons become compulsory for personnel engaging in dangerous cycling and 

driving and more separate lanes and traffic lights near junctions are built in the Liverpool city region.  

Furthermore, the transport systems in different cities vary, indicating the cycling safety policymaking 

in different cities should be developed with respect to the unique features of their local conditions. 

The methodology can be used to develop BN risk models for different cities to find distinct features 

for city specific safety policies. For instance, according to the analysis result in Section 5.3, 

motorcyclist behaviour should be better regulated and their safety education should be enhanced in 

the Liverpool city region. 

5.5 Limitations and further improvements 

Although the research provides some valuable insights to improve cycling safety, limitations still 

exist. Further studies are needed to improve the research from the following aspects: 

1) The proposed model is not universal– The accident data collected and trained in this research is 

from the Liverpool region. It means the obtained outputs this study need to be verified before 

their direct applications in other regions. However, the research methodology proposed in this 
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research is generic and can be used widely In fact, more applications of the proposed 

methodology could help generalise the findings that currently fits the Liverpool region only.  

2) The state definition of risk variables in the proposed model could be adjusted to be more specific 

when a large scale accident dataset becomes available. For instance,  

 the location will be specifically expressed by roads or postcodes. 

 The states of ‘time’ can be changed from the current rush/non-rush hours into hourly grades.  

Obviously, such investigation needs the support of big data. It involves data mining, training, and 

high-level computation, requiring a large number of accident reports as raw data.  

3) Some observations and findings (i.e. those discussed in Section 5.3.2 such as high risk on 

Tuesday), need to be further investigation.   

6. Conclusions 

To address the possible emerging risks introduced by increasing cycling traffic in cities, a new BN 

cycling risk model is developed to analyse severity of cycling accidents in this paper. Based on 5-year 

full road accident reports by Merseyside Police, the risk factors influencing the accident severity are 

first identified and classified. Through TAN learning, the data-driven BN model is developed to aid 

the analysis and prediction of cycling accident severity. The model and results are validated using real 

accident data from 2018 in the Liverpool city region and sensitivity analysis. The proposed 

methodology can be generalized for its applications in other regions when and where the accident data 

are available to improve cycling safety in a large scope.  

The findings include that the risk factors are categorised into three types: 1st priority variables (i.e. 

cyclist age, district, day, encountering vessel type), 2nd priority variables (i.e. road type, V4, O4), and 

low priority variables (i.e. street lighting, road surface). Some specific features of the severity of 

cycling accidents in the Liverpool region are relating to high risk when accidents occur with 

motorcycles and on Tuesday and low risk when they happen at junctions, with dry road surface and 

involve female cyclists.   

Such findings help transport authorities to rationalise their safety policy making in cycling practice. In 

the case study in this paper, the results have been used for policy making in Liverpool. For instance, 

education lessons are required for personnel engaging in dangerous cycling and driving and separate 

cycling lanes and traffic lights near junctions are built in the Liverpool city region.  

Further effort will be needed to improve the conceptual risk prediction model by considering more 

specific state definition of risk variables, the combined impact of multiple variables/hazards (three or 

more), and the development of cost-effective measures to control cycling risks.  
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Appendix 1 Hazards in cycling safety in literature 

1) Cyclist behaviour and personal characteristics 

Many bicycle-related crashes and accidents nowadays are caused by inappropriate behaviours of 

cyclists. As human factor is one of the main causes of road accidents, cyclist behaviours also play an 

important role in bicycle crashes (Schepers et al., 2014; Behnood & Mannering, 2017).  Figure A1.1 

lists the identified hazards in this category with respect to their appearance frequencies in previous 

studies. 
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Figure A1.1. Hazards in cyclist behaviour and personal characteristics 

2) Environmental conditions 

The environment is known to be one of the influencing aspects to cycling safety (Davison & Lawson, 

2006). The hazards generated by environmental conditions are critical factors (see Figure A1.2) 

influencing cycling safety (Ghekiere et al., 2014). 
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Figure A1.2 Hazards in ‘Environmental conditions’ 

3) Road infrastructure issue 

Transport for London (2008) pointed out that cyclists tend to report fear of injury from lack of 

specialized cycling infrastructure, e.g. the segregated cycling routes. From the identified hazards in 

this category in Figure A1.3, it is not surprising to see that one of the key approaches to reducing the 

fear and risk of injury for cyclists is through engineering means and, in particular, through designated 

cycling transport infrastructure (Rodgers, 1997). 
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Figure A1.3. Hazards in ‘Road Infrastructure Issue’ 

4) Interaction with other road users 

The hazard of ‘collisions with vehicles’ is a major concern, which has been evidenced in the findings 

from many studies (Olkkonen et al., 1990; Rodgers, 1995). According to a conceptual framework 

proposed for road and mobility safety (Schepers et al., 2014), interactions and collisions with other 

road users are risks resulting from travel characteristics (see Figure A1.4). 
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Figure A1.4. Hazards in ‘Interaction with other road users’ 

5) Hazardous road conditions 

Generally, hazardous road conditions refer to the physical and traffic conditions of a road that can 

cause harm to cyclists. Therefore, the hazards in this category are analysed from two aspects: the 

physical hazardous road condition (e.g. road surface condition) and road traffic management (e.g. 

traffic congestion) in Figure A1.5. 
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Figure A1.5. Hazards in ‘Hazardous Road Condition’ 

6) Bike-related factors 

Failures of a bicycle also affect the safety of cyclists. For example, in Pelotas, a southern city in 

Brazil, almost 30% of bicycles lack of effective brakes, causing high-frequent cycling 

incidents/accidents (Bacchieri et al., 2010). Meanwhile, poor conditioned bicycles such as poorly 

lubricated, lacked gears, poorly maintained, and unlikely to reach high speeds cause safety concerns 

in cycling (e.g. Wood et al., 2009; Bacchieri et al., 2010; Tin et al., 2009; Dubbeldam et al., 2017). 
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Appendix 2 Variable identification and screening process 

1) Selected contributory factors for model construction 

The classification of the contributory factors is conducted to eliminate the trivial factors from the BN 

model by the following filtering rules. As a result, the contributory factors are classified into 16 

categories, as shown in Table A2.1. 

 The factors that appear in over 10% of the accident reports are remain individually. 

 Other remained factors are classified and merged into different categories according to the 

classification defined in the STATS20 handbook when causing cycling accidents. 

 

Table A2.1 Classification of contributory factors 

 Appearance 
(V) 

Slight 
C 

Serious 
C 

Fatal 
C 

Appearance 
(O) 

Slight 
C 

Serious 
C 

Fatal 
C 

1.Road Environment issue (101-
110) 

23 15 8 0 35 28 7 0 

2.Non-motor vehicle defects 
(201-206) 

45 32 13 0 9 7 2 0 

3.Disobeying the traffic 
facilities & rules (301-304) 

49 31 18 0 80 57 22 1 

4.Injudicious action of 
cyclist/driver on road (305-310) 

264 185 75 4 85 54 28 3 

5.Failed to judge other person's 
path/speed (406) 

131 88 42 1 310 243 66 1 

6.Other Judgment failures/errors 
(401, 402, 404, 407) 

41 30 11 0 230 176 53 1 

7.Poor turn maneuver (403) 60 41 18 1 224 170 52 2 

8.Failed to look properly (405) 412 303 109 0 974 744 227 3 

9.Reaction to unexpected cases 
(408-410) 

52 31 21 0 31 20 10 1 

10.Physical/mental illness or 
impairment (501-505) 

38 24 13 1 18 10 8 0 

11.Distraction/Misleading event 
(506-510) 

106 71 35 0 33 28 5 0 

12.Emotional driving/riding 
(601-603) 

89 63 25 1 170 133 36 1 

13.Inexperience of driver/rider 
(605-607) 

15 10 5 0 13 9 4 0 

14.Obscured vision (701-710) 41 33 8 0 163 132 30 1 

15.Pedestrian related factors 
(801-810) 

26 18 8 0 29 24 5 0 

16.Other factors (901-904, 999) 8 5 3 0 71 54 15 2 

*The numbers behind each category are the code number of original contributory factors in STATS19. For example, ‘Road 

environment issue’ consists of original factors from 101 to 110. 

** ‘V’ represents victim, ‘O’ represents other road users, ‘C’ represents the consequence 

2) Removal of insignificant other factors 

Besides contributory factors, the STATS19 accident reports contain other factors, some of which are 

less relevant to this study (given the report is designed to record all types of road accidents with no 

specific reference to cycling). These factors are viewed as insignificant variables. In this section, the 

insignificant variables in STATS19 reports are shown as follows and the reasons for excluding them 

as the nodes in the BN are presented accordingly when it is necessary. 

 Police officer attendance 

It means whether a police officer attended the scene of the accident and obtained the details for this 

report. It has little relevance and impact to the accident severity as a typical post-accident activity.  
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 Occurrence date  

According to the statistical analysis, there is insignificant difference in terms of the frequency of 

different types of accident severity between different months and years. Furthermore, the impact of 

the occurrence date on accident severity is generated indirectly through other date related factors such 

as weather and daytime/darkness. Since these ‘date-related’ factors have been included in BN 

construction separately, ‘occurrence date’ is excluded from the model. 

 Other factors that have been addressed in full or part by the included contributory factors include 

Pedestrian crossing with Human control & Physical facilities, Special site conditions, Object in 

carriageway, Hit objective, Breath test. 

Pedestrian crossing with Human control & Physical facilities – Contributory factor 15 ‘Pedestrian 

related factors’: this factor refers to whether there exist crossing facilities at the location of accident, 

i.e. zebra crossing, footbridge or subway, central refuge. 

Object in carriageway & Hit Objective – Contributory factor 1 ‘Road environmental issue': this factor 

refers to those objects that are not expected to be found on the road 

Special conditions at site– Contributory factor 1 ‘Road environmental issue': this factor refers to 

whether there were special conditions at the accident site, i.e., Automatic traffic signal out, 

roadworks, mud. 

Breath test – Contributory factor 10 ‘Physical/mental illness or impairment’: this factor refers to the 

test used to check whether the driver is drunk 

Junction location at impact – Junction details of accident: compared with ‘Junction location at 

impact’, ‘Junction details of accident’ is a more comprehensive factor. It not only describes the 

location of an accident, but also clarify the junction type of which the accident happens. 

 Journey purpose 

According to the collected accident reports, the journey purposes of over 70% cycling accidents 

remain unclear, hence it has not been set as a node in the BN. Furthermore, from our literature search, 

it indicates that there is no strong correlation between journey purpose and cycling accident severity.  
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Appendix 3 Comparison between the real results and theoretical results (based on Year 2018) 

 

No 
Severity 

Model 

delivery P(slight) P(Serious) P(Fatal) No 
Severity 

Model 

delivery P(slight) P(Serious) P(Fatal) 

1800153 Fatal Fatal 5.2 1.7 93.1 1801204 Slight Slight 73.2 26.8 0 

1801099 Serious Serious 15.5 84.5 0 1801205 Slight Slight 76.6 23.4 0 

1800215 Serious Serious 20.2 79.8 0 1801223 Slight Slight 83.9 16.1 0 

1800277 Serious Serious 36.5 63.5 0 1801238 Slight Slight 75.8 24.2 0 

1800547 Serious Serious 43.4 56.6 0 1801241 Slight Slight 98.6 1.4 0 

1800568 Serious Serious 19 81 0 1801260 Slight Slight 76.6 23.4 0 

1800750 Serious Serious 46.3 53.7 0 1801261 Slight Slight 100 0 0 

1800866 Serious Serious 39 61 0 1801279 Slight Slight 69.2 30.8 0 

1800894 Serious Serious 19.1 80.9 0 1801283 Slight Slight 89.7 10.3 0 

1801130 Serious Serious 36.1 63.9 0 1801295 Slight Slight 87.1 12.9 0 

1801176 Serious Serious 45.8 54.2 0 1801313 Slight Slight 71.5 28.5 0 

1801203 Serious Serious 46.6 53.4 0 1801325 Slight Slight 84.9 15.1 0 

1801212 Serious Serious 33.6 66.4 0 1801327 Slight Slight 95.6 4.4 0 

1801342 Serious Serious 46.5 53.5 0 1801328 Slight Slight 57.9 42.1 0 

1801436 Serious Serious 0.1 99.9 0 1801334 Slight Slight 99.9 0.1 0 

1801479 Serious Serious 24 76 0 1801370 Slight Slight 83.7 16.3 0 

1801511 Serious Serious 20.3 79.7 0 1801377 Slight Slight 88.5 11.5 0 

1801587 Serious Serious 42.6 57.4 0 1801380 Slight Slight 99.5 0.5 0 

1801699 Serious Serious 46 54 0 1801393 Slight Slight 92 8 0 

1801778 Serious Serious 0.9 99.1 0 1801396 Slight Slight 55.8 44.2 0 

1801985 Serious Serious 35.1 64.9 0 1801413 Slight Slight 90.2 9.8 0 

1801896 Serious Serious 37.6 62.4 0 1801420 Slight slight 55.6 44 0.4 

1802001 Serious Serious 47 53 0 1801440 Slight slight 86.8 13.2 0 

1802055 Serious Serious 43.2 56.8 0 1801457 Slight slight 90.4 9.6 0 

1802103 Serious Serious 1.2 98.8 0 1801461 Slight slight 89.6 10.4 0 

1802220 Serious Serious 37.6 62.4 0 1801466 Slight slight 82.6 17.4 0 

1802244 Serious Serious 46.8 53.2 0 1801473 Slight slight 76.1 23.9 0 

1802290 Serious Serious 49.7 50.3 0 1801483 Slight slight 80.8 19.2 0 

1802351 Serious Serious 44.4 55.6 0 1801497 Slight slight 69 31 0 

1800478 Serious Serious 31.4 68.6 0 1801499 Slight slight 60.8 39.2 0 

1800980 Serious Serious 44.1 55.9 0 1801504 Slight slight 91.4 8.6 0 

1801102 Serious Serious 45.6 54.4 0 1801510 Slight slight 68.1 31.9 0 

1801256 Serious Serious 17.6 82.4 0 1801514 Slight slight 76.3 23.7 0 

1800936 Serious Slight 99.7 0.3 0 1801527 Slight slight 99.3 0.7 0 

1801001 Serious Slight 75.7 24.3 0 1801530 Slight slight 56.5 43.5 0 

1801759 Serious Slight 82.8 17.2 0 1801534 Slight slight 89.8 10.2 0 

1802374 Serious Slight 91.6 8.4 0 1801544 Slight slight 66.9 33.1 0 

1800549 Slight Serious 32 68 0 1801552 Slight slight 61.9 36.9 1.2 

1800574 Slight Serious 39.4 60.6 0 1801555 Slight slight 83.9 16.1 0 

1800643 Slight Serious 38.2 61.8 0 1801564 Slight slight 79.2 20.8 0 
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1801018 Slight Serious 43.4 56.6 0 1801576 Slight slight 86.4 13.6 0 

1801047 Slight Serious 33 67 0 1801584 Slight slight 96 4 0 

1801418 Slight Serious 45.7 54.3 0 1801590 Slight slight 84.6 15.4 0 

1801472 Slight Serious 34.7 65.3 0 1801596 Slight slight 74.3 25.7 0 

1801875 Slight Serious 46.4 53.6 0 1801618 Slight slight 89.7 10.3 0 

1801900 Slight Serious 11.4 88.6 0 1801621 Slight slight 83.6 16.4 0 

1802296 Slight Serious 33.5 66.5 0 1801625 Slight slight 83.7 16.3 0 

1802335 Slight Serious 1.6 98.4 0 1801629 Slight slight 70.4 29.6 0 

1800029 Slight Slight 99.7 0.28 0.02 1801675 Slight Slight 83.2 16.8 0 

1800079 Slight Slight 93.2 6.85 -0.05 1801710 Slight Slight 78.7 21.3 0 

1800113 Slight Slight 88.2 11.8 0 1801713 Slight Slight 67.2 32.8 0 

1800130 Slight Slight 100 0 0 1801714 Slight Slight 69.9 30.1 0 

1800176 Slight Slight 89.6 10.4 0 1801723 Slight Slight 96.2 3.8 0 

1800179 Slight Slight 72.2 27.8 0 1801731 Slight Slight 71 29 0 

1800185 Slight Slight 65 35 0 1801732 Slight Slight 93.7 3.8 0 

1800186 Slight Slight 65.1 34.9 0 1801783 Slight Slight 78.8 21.2 0 

1800187 Slight Slight 95.4 4.6 0 1801794 Slight Slight 87.1 12.9 0 

1800191 Slight Slight 90.97 9.03 0 1801800 Slight Slight 90.7 9.3 0 

1800197 Slight Slight 100 0 0 1801804 Slight Slight 68.5 31.5 0 

1800218 Slight Slight 63.3 36.7 0 1801809 Slight Slight 86.7 13.3 0 

1800219 Slight Slight 88.7 11.3 0 1801872 Slight Slight 100 0 0 

1800221 Slight Slight 76.6 23.4 0 1801876 Slight Slight 97.4 2.6 0 

1800252 Slight Slight 88.4 11.6 0 1801887 Slight Slight 83.5 16.5 0 

1800263 Slight Slight 81.9 18.1 0 1801888 Slight Slight 69.6 30.4 0 

1800327 Slight Slight 65.9 34.1 0 1801890 Slight Slight 86.4 13.6 0 

1800334 Slight Slight 93.5 6.5 0 1801905 Slight Slight 84 16 0 

1800375 Slight Slight 93.9 6.1 0 1801911 Slight Slight 75.3 24.7 0 

1800386 Slight Slight 92.1 7.9 0 1801912 Slight Slight 100 0 0 

1800401 Slight Slight 68 32 0 1801923 Slight Slight 100 0 0 

1800487 Slight Slight 74.2 25.8 0 1801925 Slight Slight 79.2 20.8 0 

1800509 Slight Slight 91.8 8.2 0 1801943 Slight Slight 100 0 0 

1800529 Slight Slight 88.2 11.8 0 1801956 Slight Slight 55.1 44.9 0 

1800536 Slight Slight 99.9 0.1 0 1801974 Slight Slight 75.4 24.6 0 

1800544 Slight Slight 100 0 0 1801997 Slight Slight 88.6 11.4 0 

1800545 Slight Slight 100 0 0 1802006 Slight Slight 69.7 30.3 0 

1800594 Slight Slight 66.9 33.1 0 1802008 Slight Slight 55.2 44.8 0 

1800623 Slight Slight 82.9 17.1 0 1802015 Slight Slight 52.5 47.5 0 

1800627 Slight Slight 92.5 7.5 0 1802020 Slight Slight 91.7 8.3 0 

1800630 Slight Slight 88.1 11.9 0 1802034 Slight Slight 54.3 45.7 0 

1800642 Slight Slight 63.4 36.6 0 1802043 Slight Slight 86.9 13.1 0 

1800679 Slight slight 99.6 0.4 0 1802059 Slight Slight 79.5 20.5 0 

1800696 Slight slight 99.8 0.2 0 1802069 Slight Slight 99.2 0.8 0 

1800719 Slight slight 71.7 28.3 0 1802113 Slight Slight 78 22 0 

1800745 Slight slight 51.5 48.5 0 1802128 Slight Slight 100 0 0 
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1800769 Slight slight 87.8 12.2 0 1802145 Slight Slight 80.2 19.8 0 

1800850 Slight slight 83.3 16.7 0 1802154 Slight Slight 64.4 35.6 0 

1800855 Slight slight 97.5 2.5 0 1802156 Slight Slight 99.8 0.2 0 

1800874 Slight slight 76.9 23.1 0 1802160 Slight Slight 88.1 11.9 0 

1800895 Slight slight 63.2 36.8 0 1802180 Slight Slight 60.1 39.9 0 

1800943 Slight slight 98.6 1.4 0 1802204 Slight Slight 78.2 21.8 0 

1800944 Slight slight 41.1 58.9 0 1802207 Slight Slight 99.3 0.7 0 

1800947 Slight slight 93.7 5.85 0.42 1802208 Slight Slight 93.7 6.3 0 

1800953 Slight slight 100 0 0 1802213 Slight Slight 64.6 35.4 0 

1800961 Slight slight 88.2 11.8 0 1802216 Slight Slight 78.9 21.1 0 

1800973 Slight slight 99.4 0.6 0 1802276 Slight Slight 100 0 0 

1800985 Slight slight 70.5 29.5 0 1802281 Slight Slight 83.2 16.8 0 

1801023 Slight Slight 83.5 16.5 0 1802302 Slight Slight 78.1 21.9 0 

1801025 Slight Slight 82.2 17.8 0 1802307 Slight Slight 100 0 0 

1801029 Slight Slight 81.8 18.2 0 1802314 Slight Slight 75.2 24.8 0 

1801062 Slight Slight 76.3 23.7 0 1802320 Slight Slight 96.2 3.8 0 

1801104 Slight Slight 94.2 5.8 0 1802325 Slight Slight 69.9 30.1 0 

1801106 Slight Slight 83.9 16.1 0 1802329 Slight Slight 99.9 0.1 0 

1801139 Slight Slight 75.3 24.7 0 1802337 Slight Slight 89.9 10.1 0 

1801152 Slight Slight 53.4 46.6 0 1802349 Slight Slight 79.6 20.4 0 

1801169 Slight Slight 95.2 4.8 0 1802367 Slight Slight 85.9 14.1 0 

1801184 Slight Slight 79 21 0 1802371 Slight Slight 70.5 29.5 0 

1801199 Slight Slight 81.2 18.8 0       

 


