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Abstract 18 

Open-flow respirometry is a common method to measure oxygen-uptake as a proxy of energy 19 

expenditure of organisms in real-time. Although most often used in the laboratory it has seen 20 

increasing application under field conditions. Air is drawn or pushed through a metabolic 21 

chamber or the nest with the animal, and the O2 depletion and/or CO2 accumulation in the air 22 

is analysed to calculate metabolic rate and energy expenditure. Under field conditions, animals 23 

are often measured within the microclimate of their nest and in contrast to laboratory work, the 24 

temperature of the air entering the nest cannot be controlled. Thus, the aim of our study was to 25 

determine the explanatory power of respirometry in a set-up mimicking field conditions. We 26 

measured O2 consumption of 14 laboratory mice (Mus musculus) using three different flow 27 

rates [50 L*h-1 (834 mL*h-1), 60 L*h-1 (1000 mL*h-1) and 70 L*h-1 (1167 mL*h-1)] and two 28 

different temperatures of the inflowing air; either the same as the temperature inside the 29 

metabolic chamber (no temperature differential; 20 °C), or cooler (temperature differential of 30 

10 °C). Our results show that the energy expenditure of the mice did not change significantly 31 

in relation to a cooler airflow, nor was it affected by different flow rates, despite a slight, but 32 

significant decrease of about 1.5 °C in chamber temperature with the cooler airflow. Our study 33 

emphasises the validity of the results obtained by open-flow respirometry when investigating 34 

energy budgets and physiological responses of animals to ambient conditions. Nevertheless, 35 

subtle changes in chamber temperature in response to changes in the temperature and flow rate 36 

of the air pulled or pushed through the system were detectable. Thus, constant airflow during 37 

open-flow respirometry and consequent changes in nest/chamber temperature should be 38 

measured. 39 

 40 

Key words: microclimate; energy expenditure; metabolic rate; Mus musculus 41 
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1. Introduction 43 

Energy is one of the most essential currencies of life and features in virtually all life processes 44 

(Tomlinson et al. 2013). Aerobic metabolism, the motor of the energetic machinery, has thus 45 

aptly and famously been called “the fire of life” (Kleiber 1961). Measuring energy expenditure 46 

provides an understanding of how animals budget their energy flows and can provide insights 47 

into the proximate and ultimate reasons of animal behavior (Kleiber 1961). One of the most 48 

common methods to indirectly determine energy expenditure in aerobic organisms is open-49 

flow respirometry (also termed open-circuit, flow-through respirometry or indirect 50 

calorimetry), which allows quantifying oxygen consumption and/or carbon dioxide production 51 

of organisms as a proxy of metabolic rate (MR) in real time to yield information on dynamic 52 

patterns of MR. It is an indispensable tool in many areas of science (Lighton 2008). In this 53 

method the animal is placed in a metabolic chamber, which is connected to a gas analyser with 54 

airtight tubes and air is either pushed or pulled through the metabolic chamber.    55 

Open-flow respirometry is an accurate and non-invasive to minimal-invasive method 56 

and has been used in many studies on animal energetics (for a compilation of a small fraction 57 

of these see the bibliography of Lighton 2008; but for particalar examples see: marsupials: 58 

Nowack et al. 2016; birds: McNab and Weston, 2018; mammals: Geiser et al. 2019) and it can 59 

also be used for aquatic animals in (e.g. fish: Clark et al. 2013, Payne et al. 2015; aquatic turtles: 60 

Enstipp et al. 2011). With the advent of smaller electronic components, open-flow respirometry 61 

has also increasingly been taken to the field, to investigate energy budgets on free-ranging 62 

animals, often using natural sleeping sites (burrows, tree hollows, nest boxes) as metabolic 63 

chambers (Bartholomew and Lighton 1986; Arnold et al. 1991; Lighton 1996; Lighton and 64 

Duncan 2002; Dausmann et al. 2009; Pretzlaff et al. 2010; Rödel et al. 2012; Berg et al. 2017, 65 

Langer et al. 2018; Reher et al. 2018). Free-ranging animals are usually exposed to a range of 66 

ambient temperatures; however, insulation of nests allows animals to establish a comparatively 67 
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stable microclimate that can deviate quite substantially from ambient conditions (e.g. 68 

Lovegrove et al. 1991, Schmid 1998). In the case of an endothermic animal, this would serve 69 

to reduce energy expenditure if this microclimate is closer to the thermal neutral zone (TNZ) 70 

of the species (reviewed in Gilbert et al. 2010).  71 

Flow rates through the metabolic chamber are usually maintained to constantly 72 

replenish the O2 depleted by the animal (usually maintaining less than a 1% O2 difference 73 

between incurrent and excurrent air). They thus vary according to the energy expenditure of 74 

the specific animal species (and individual) being investigated, but also accordingly to the size 75 

of the metabolic chamber, the equipment being used and the desired temporal resolution of the 76 

measurement (McNab, 2006; Lighton and Halsey, 2011). So far little attention has been paid 77 

to the effect of the constant airflow of potentially colder or warmer ambient air through such 78 

nests during respirometry on the microclimate within and ultimately the energy expenditure 79 

itself. This raises the question of whether results obtained with this method in the field might 80 

be skewed. This could be critical for endothermic species, which largely use endogenously 81 

generated heat to maintain the body at a metabolically favourable temperature and adapt MR 82 

accordingly, depending on the extent of the differential between ambient temperature and 83 

preferred body temperature.  84 

While this problem can be solved in the laboratory by having a larger coil of tubing of 85 

the incurrent air inside a temperature control cabinet to ensure that it is at cabinet temperature 86 

by the time it enters the chamber (e.g. see Cheviron et al. 2013), there are limited to no options 87 

of controlling the air temperature during measurements with open-flow respiratory in the field. 88 

The aim of our study was therefore to validate whether the results obtained by open-flow 89 

respirometry as a measure of energy expenditure are affected by a temperature differential 90 

between ambient (and thus incurrent) air and the immediate environment of an animal (e. g., 91 

in a nest). We thus evaluated the effects of flowrate (i.e., faster convective heat exchange and 92 
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a potential disturbance of the fur insulation of animals) and the temperature of air flow on the 93 

microclimate of the metabolic chamber or nest, and the energy expenditure of the animal 94 

measured in a laboratory set-up mimicking field conditions.  95 

 96 

2. Material and Methods 97 

2.1 Model species and housing conditions 98 

The experiments were conducted with 14 young adult (~ 6 weeks old) mice (Mus musculus; 8 99 

females, 6 males). Mice were chosen as a model for small mammalian species as they are easy 100 

to obtain and maintain. Throughout the study, the animals were housed individually at an 101 

ambient temperature of 22 °C under a L:D cycle of 12 h:12 h, provided with water and fed ad 102 

libitum using standard animal lab chow. The cages (260 x 260 x 140 mm) were equipped with 103 

wood shavings, nesting material and terracotta plant pots with a small entrance hole (diameter: 104 

90 mm) placed upside down to serve as a nest.  105 

 106 

2.2 Pre-experiment: Assessment of microclimate differentials 107 

To estimate naturally occurring nest temperatures and temperature differentials, the nest 108 

temperatures of a subset of eight of the fourteen mice were determined by mounting 109 

temperature loggers (Hygrochron iButtons/DS1923, Dallas Semiconductor, USA; 110 

programmed to log every 10 min, accuracy ± 0.0625 °C) inside the plant pots but above the 111 

animals to avoid any body contact. All temperature loggers were calibrated against a mercury 112 

thermometer in a water bath in steps of 3 °C ranging from 1 to 40 °C prior to measurements. 113 

Animals were then placed inside their usual cages (which included the plant pots) with 114 

commercially available hamster wool in a climate chamber (WK 21‘, Firma Weiss 115 

Umwelttechnik GmbH, Germany) set at 10 °C (temperature climate chamber: Ta) and with the 116 

regular photoperiod (12 h:12 h) for 22 h. This temperature was chosen to thermally challenge 117 
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the mice, without jeopardizing their survival. One mouse did not use the plant pot as a nest and 118 

was excluded from the analyses, reducing the sample size to N=7. To estimate the temperature 119 

differential between Ta and the temperature an individual was experiencing in the nest, we used 120 

the 20 highest nest temperature measurements to ensure that only data with mice present in the 121 

nest were used in the analysis. 122 

We found that the average nest temperature at a Ta of 10 °C varied between 16.9 °C 123 

and 20.6 °C for the seven mice and mean nest temperature was 18.6 ± 1.4 °C (N = 7). Thus, 124 

mice established a differential of almost 10 °C between nest temperature and Ta. The 125 

information about the naturally established temperature differential between ambient and nest 126 

temperature was used as the basis of our main study.   127 

 128 

2.3 Experiment: Energy expenditure at differing flow rates and temperature differentials   129 

During the experiments, all fourteen individuals were transferred into individual airtight 130 

polythene boxes of 1.5 L volume (170 mm x 170 mm x 83 mm), with an air-inlet and outlet, to 131 

serve as metabolic chambers. The polythene containers were equipped with wood shavings, 132 

but no nesting material or nest structure (i.e. also no terracotta pot) to prevent nest constructions 133 

and allow unimpaired airflow through the box, as the nest temperature conditions were already 134 

mimicked by the relevant temperature (see above) in the temperature cabinet. A slice of apple 135 

(~ 15 g fresh mass) was also provided in the chamber. 136 

All experiments were conducted separately, i.e. with one animal at a time, during the 137 

resting period of the mice (1000 h - 1400 h) to keep effects of activity to a minimum. 138 

Measurements were performed in a randomized order to counteract any potential circadian 139 

effects. Animals were weighed to an accuracy of 0.5 g (Cubis Precision Balance, Satorius, 140 

Göttingen, Germany) and placed in individual polythene boxes inside a climate cabinet (WTB, 141 

Binder Labortechnik GmbH, Germany; Fig. 1) maintained at a constant temperature reflecting 142 
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the conditions in the nest when the temperature is 10 °C [mean temperature in the climate 143 

cabinet (Tc): 20.7 ± 0.5 °C]. It has to be noted that this temperature was below the TNZ of 144 

mice, which has a lower critical temperature of 26 to 28 °C for mice >25 g (Speakman and 145 

Keijer 2013). The climate cabinet was positioned within a large climate chamber (Fig. 1), 146 

which was either maintained at Ta of about 20 °C (19.4 ± 0.5 °C) or 10 °C (10.7 ± 0.3 °C), 147 

enabling the temperature of the airflow (a) at the same temperature as in the metabolic chamber 148 

(Fig. 1a) and (b) with a 10 °C differential (Fig. 1b). Flow rate was either 50 L*h-1 (830 ml min-149 

1), 60 L*h-1 (1000 ml min-1) or 70 L*h-1 (1170 ml min-1), to reflect flowrates routinely used for 150 

small mammals to keep depletion of O2 concentration in the metabolic chamber below 1%, and 151 

monitored continuously. Oxygen consumption of each individual was thus measured under six 152 

different conditions: with three different flow rates and two different air flow temperatures 153 

(Tflow) in random order. Measurements lasted for 4 h at each of the two temperatures. The first 154 

hour was not used for analyses and served to ensure that the mice were accustomed to the 155 

experimental procedures. In the following three hours, flow rate was set to one of the three 156 

predetermined rates for one hour each. 157 

Energy expenditure was determined by measuring the rate of O2 consumption as a 158 

proxy of MR using a portable O2 analyser (FoxBoxC, Sable Systems International, USA). The 159 

metabolic chamber was connected to the O2 analyser (inbuilt pump and flow meter; pull mode; 160 

order: metabolic chamber, pump, needle valve, flow meter, oxygen analyser) with airtight tubes 161 

(Tygon R-3606, Saint-Gobain, Paris, France). Water vapour was removed from the air prior to 162 

entering the analyser and the flow meter using silica gel. The O2 analyser was calibrated 163 

immediately before the experiment (single-point calibration as recommended by the 164 

manufacturer). To account for any drift of the O2 sensor, we used a gas switch (RM8 165 

Multiplexer, Sable Systems International, US) to switch between reference air (baseline: 5 min) 166 

and measured sample air for 55 min (sampling frequency every 60 sec). Energy expenditure of 167 
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mice was calculated in Watt using the data acquisition program Expedata (Sable Systems 168 

International, USA) by using the Weir ‘RQ-free’ method proposed by Kaiyala et al. (2019), 169 

following the equation MR (Watt) = 0.3 * FR * ΔO2 * 1.162; where FR is flowrate in mL*min-170 

1 and ΔO2 is delta O2 expressed as a fractional concentration. Multiplying by 1.162 converts 171 

the output from Kcal*hr-1 to Watt. For each of the six experimental conditions, the mean energy 172 

expenditure was calculated for each individual from the lowest consecutive 20 % of the 173 

readings within this cycle to exclude periods of activity.  174 

 During measurements temperature was recorded every 5 min with calibrated iButtons 175 

(see above) inside the climate chamber, the climate cabinet, the metabolic chamber (glued to 176 

the top of the chamber), and the tubes leading from the climate chamber into the metabolic 177 

chamber (Tflow). The average body mass of the individuals did not differ between the 178 

temperature treatments (t-test: t13 = 1.04, P = 0.32). Mean average body mass of the mice was 179 

34.8 ± 10.3 g (N = 14).  180 

 181 

2.4 Data analysis  182 

Statistical analyses were performed with R (version 3.1-117, R Development Core Team, 183 

2014). All values are reported as means ± SD. Data were tested for normality using Shapiro 184 

tests. Differences in temperatures between the metabolic chambers and climate cabinet in each 185 

treatment were tested with paired t-tests for dependent samples. To analyse potential 186 

differences in whole-organism energy expenditure caused by different flow rates or Tflow we 187 

performed a linear mixed-effects model, in which energy expenditure in Watts was used as the 188 

response variable and interaction between flow rate and the Tflow was tested (package ‘nlme’; 189 

Pinheiro et al. 2014) followed by a type 3 ANOVA; we also included animal identity as random 190 

factor and controlled for body mass by using body mass as a covariate. Mass-specific metabolic 191 

rates were only calculated for presentation in the text. Normal distribution and homogeneity of 192 
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variance of model residuals were tested using Shapiro-Wilk tests and Levene’s tests 193 

(leveneTest in library ‘car’, Fox and Weisberg 2011), respectively. 194 

 195 

The study was carried out under permit 37/13 from the Amt für Verbraucherschutz, Hamburg. 196 

 197 

3. Results 198 

Despite the same mean temperature in the climate chamber between treatments (Ta: 20.7 °C ± 199 

0.5 °C; t-test: t13 = 0.10, P = 0.92; N = 14), the mean temperature in the metabolic chamber 200 

was slightly, but significantly colder during the measurements with Tflow = 10 °C than during 201 

the measurements with Tflow = 19 °C (on average 1.5 °C; mean: 21.2 ± 0.4 °C vs. 22.7 ± 0.6 202 

°C; t-test: t11 = 6.73, P < 0.0001; N = 12). We did not find a statistical difference in energy 203 

expenditure between different flow rates (χ2= 0.506, df= 1, P= 0.479), or for the interaction 204 

term (χ2=1.024 = 2.49, df= 1, P = 0.312). Interestingly, the 1.5°C difference in the metabolic 205 

chambers was not significantly reflected in energy expenditure (mean for all flow rates: 10°C: 206 

0.57 ± 0.16 Watt/0.016 ± 0.005 Watt g-1  vs 19°C: 0.58  ± 0.19 Watt/0.016 ± 0.006 Watt g-1; 207 

Fig. 2; linear mixed model, energy expenditure corrected for body mass; χ2= 1.114, df= 1,P = 208 

0.291). Furthermore, mean energy expenditure of all individuals at all treatments was 0.57 ± 209 

0.17 Watt.   210 

 211 

4. Discussion 212 

Our results support the validity of data obtained by open-flow respirometry even when the 213 

temperature in the immediate environment of the animal differs from the ambient temperature 214 

(and thus of the incoming air), e.g., when animals retreat into burrows or built nests. Although 215 

the microclimate in the metabolic chamber was slightly altered when the constant airflow was 216 

at a lower temperature this did not discernibly influence energy expenditure of the animals. 217 
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Furthermore, different flow rates did not significantly change estimates of energy expenditure, 218 

underlining the robustness of the results of this method to potentially varying parameters. The 219 

three flow rates used in our study [50 L*h-1 (834 mL*h-1), 60 L*h-1 (1000 mL*h-1) and 70 L*h-220 

1 (1167 mL*h-1)] are within the range routinely used for small mammals in studies measuring 221 

oxygen uptake (e.g. 50L*h-1 for rodents, see Wilz and Heldmaier 2000; 50-60 L*h-1 for 222 

primates, see Schmid and Speakman 2000). If we calculate the wind speed the animals would 223 

have been exposed to in their metabolic chambers, we get wind speeds between 0.06 and 0.08 224 

m*s-1 that should not disturb the insulation properties of the fur. This presumably allows 225 

animals to change their conductance in response to the slight drop in chamber temperature 226 

caused by the cooler air stream thus requiring no additional endogenous heat production. The 227 

laboratory mice that we used as a model for small mammals in our study are assumingly more 228 

thermally sensitive than wild species, never having been exposed to fluctuating temperatures 229 

in their lives (Gibbs & Gefen, 2009). For comparison, a study looking into the effect of wind 230 

speed on metabolic heat production of the small desert rodent, Spermophilus tereticaudus, has 231 

found that thermal conductance does not change in ground squirrels when using wind speeds 232 

between 0.25 and 1 m*s-1 (Wooden & Walsberg 2000). This suggests that our data are indeed 233 

transferable to other small mammal species. Thus, as long as flow rates are precisely monitored 234 

and recorded for inclusion in later analyses, the specific airflow is less critical. Generally, lower 235 

flow rates are preferable, as long as the CO2 content remains below critical values (≤1 % CO2 236 

accumulation) and diffusion is not a problem, because differentials in gas concentration 237 

become more pronounced, whereas one may face the problem of dealing with gas 238 

concentrations that are too low to give a clear signal when using high flow rates (Lighton 2008).  239 

In the laboratory it may be possible to regulate the temperature of the air drawn through 240 

the metabolic chamber by adjusting the room temperature accordingly. However, the 241 

temperature in animal facilities is often routinely kept constant at about 20 °C, although it has 242 
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been shown that this temperature below thermoneutrality (Speakman and Keijer 2013) 243 

influences the phenotype and physiological responses of mice (Maloney et al. 2014), and few 244 

laboratories use a heat exchanger or similar equipment to regulate incurrent air during 245 

respirometry accordingly. In general, we would not expect a temperature differential between 246 

Tc and Tflow of more than 10 °C in the laboratory, even if no heat exchanger is used and air is 247 

pulled from outside of a building. In the field, on the other hand, when natural nesting sites of 248 

animals are used as metabolic chambers (e. g., Dausmann et al. 2009; Pretzlaff et al. 2010), 249 

this differential is influenced by the climatic conditions of the habitat and the structure of the 250 

nest. For both parameters, manipulations of the temperature of the incoming air might not be 251 

desired or possible in a study aiming for natural conditions, and thus microclimatic differentials 252 

can be substantial. Underground refuges are generally comparatively well buffered against cold 253 

[e.g., for arctic ground squirrels Spermophilus parryii or marmots Marmota marmota (Barnes 254 

1989; Arnold et al. 1991)] or heat [e. g., for fennecs Vulpes zerda (Maloiy et al. 1982)]. 255 

However, nests above ground will be more influenced by ambient conditions. Lovegrove et al. 256 

(1991) found that the large stick nests of black-tailed tree rats (Thallomys paedulcus) living in 257 

eastern and southern Africa buffer minimum daily ambient temperature and the temperature in 258 

the nest was on average 2.7 °C higher than the minimum air temperature and 6.3 °C lower than 259 

the maximum air temperature. Tree holes used by grey mouse lemurs (Microcebus murinus) 260 

buffered outside ambient temperature on average by 0.6 to 2.5 °C (Schmid 1998). We could 261 

not find data describing the preferred nest temperature of M. musculus in the wild, however, a 262 

study on nesting behaviour on different strains of laboratory mice showed a preferred nest 263 

temperature of between 26 °C and 29 °C at a ambient temperature of 20 °C, therefore 264 

maintaining a differential of between 6 °C and 9 °C (Gaskill et al. 2012). This result is 265 

comparable to the differential between 7 °C and 11 °C that we observed in this study and might 266 

reflect the limitations of nest building capacities in M. musculus. We measured the mice at their 267 
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usual housing temperature of 20 °C, which, as stated above, is below their TNZ and our values 268 

therefore do not represent basal MR. However, as we aimed to address potential pitfalls of 269 

respirometry in field studies, we chose this more realistic temperature range. Similar to our 270 

experimental scenario nest temperatures of free-ranging animals will –at least in winter- often 271 

be below the TNZ and thus large changes in temperature should affect energy expenditure as 272 

animals have to compensate for the increased Ta-Tb differential. If we had kept our mice within 273 

the TNZ and would have used a 10°C lower airflow temperature, it would have been unlikely 274 

to see the real effect that flow temperature has on thermoregulation and MR, as within the TNZ 275 

small changes of temperature should even less require changes in energy expenditure due to 276 

the characteristic plateau of MR within this thermal range. Nevertheless, low temperature of 277 

the airflow and the resulting slight drop in nest temperature could potentially compromise the 278 

data if through this temperature shift the threshold of the lower critical temperature of the TNZ 279 

is crossed, initiating active heat production. Although, a change of 1-2°C is unlikely to have a 280 

large effect on energy expenditure, the effect is likely to be larger in a field setting as our setup 281 

included a climate cabinet that would have counteracted larger temperature variations that 282 

might accumulate over an extended period of time. 283 

Our study emphasises the appropriateness and importance of the use of open-flow 284 

respirometry when investigating energy budgets and physiological responses of animal species 285 

to ambient conditions in the laboratory, as well as in the field. Nevertheless, subtle changes in 286 

nest temperature caused by this method are detectable and may influence behaviour and 287 

physiology of the animals. Thus, the constant airflow during open-flow respirometry and the 288 

possible change in nest temperature should be kept in mind (and measured). 289 
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Figure Legends 

 

Figure 1  Experimental setup with airflow at either a) the same temperature as the 

metabolic chamber or b) colder than the metabolic chamber (~10 °C differential); 

Temperature of the climate chamber had been set at 20 °C, but was measured as about 19 °C. 

Ta: temperature in the climate chamber; Tc: temperature in the climate cabinet; Tflow: 

temperature of the airflow.  

 

Figure 2  Energy expenditure of mice at three different flow rates with airflow at either the 

same temperature as the metabolic chamber [temperature of airflow (19 °C) ≈ temperature of 

metabolic chamber (20 °C); white boxplots] or colder than in the metabolic chamber 

[temperature of airflow (10 °C) < temperature of metabolic chamber (20 °C); grey boxplots]. 

N = 14 for each treatment. There were no statistical differences between any of the 

treatments. 
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