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Abstract 14 

In silico models are used to predict toxicity and molecular properties in chemical safety assessment, 15 

gaining widespread regulatory use under a number of legislations globally. This study has rationalised 16 

previously published criteria to evaluate quantitative structure-activity relationships (QSARs) in terms 17 

of their uncertainty, variability and potential areas of bias,  into ten assessment components, or higher 18 

level groupings. The components have been mapped onto specific regulatory uses (i.e. data gap filling 19 

for risk assessment, classification and labelling, and screening and prioritisation) identifying different 20 

levels of uncertainty that may be acceptable for each. Twelve published QSARs were evaluated using 21 

the components, such that their potential use could be identified. High uncertainty was commonly 22 

observed with the presentation of data, mechanistic interpretability, incorporation of toxicokinetics 23 

and the relevance of the data for regulatory purposes. The assessment components help to guide 24 

strategies that can be implemented to improve acceptability of QSARs through the reduction of 25 

uncertainties. It is anticipated that model developers could apply the assessment components from 26 

the model design phase (e.g. through problem formulation) through to their documentation and use. 27 

The application of the components provides the possibility to assess QSARs in a meaningful manner 28 

and demonstrate their fitness-for-purpose against pre-defined criteria.   29 

 30 

Keywords: In silico models; QSAR; Toxicity prediction; Uncertainty; Regulatory use   31 



 3 
 

Graphical Abstract 32 

 33 

 34 

 35 

The three phases of QSAR development with related components associated with uncertainty, 36 

variability and bias.  37 



 4 
 

Highlights 38 

• Ten components, or  groups of assessment criteria, of QSARs are defined 39 

• The components were mapped onto three phases of QSAR development and use 40 

• QSARs assessed using the components with strategies to reduce uncertainty proposed 41 

• Different uses of QSARs require different types of models 42 

• The assessment components demonstrate fitness-for-purpose of QSARs  43 

  44 
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Abbreviations: log P, logarithm of the octanol-water partition coefficient; MLR, Multiple linear 45 

regression; N/A, not applicable; QMRF, QSAR Model Reporting Format; QPRF, QSAR Prediction 46 

Reporting Format; QSARs, quantitative structure-activity relationships; QSPR, quantitative structure-47 

property relationship; RBFNN, Radial Basis Function Neural Networks. 48 

 49 

 50 

  51 
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Introduction 52 

Computational approaches are at the heart of 21st century toxicology and, with the increase in data 53 

availability, they are becoming easier to create and utilise. They also offer the possibility of linking new 54 

“big” data resources to chemic 55 

al safety assessment and new methods of modelling, e.g. machine learning technologies (Worth, 56 

2020). Modelling data serves many purposes, and in chemical safety assessment much of the focus 57 

has been to predict hazard and exposure, with particular applications in product development and 58 

regulatory assessment. Other purposes include the interrogation of, and learning from, data, as well 59 

as evaluation of (structure-activity) hypotheses. For specific purposes, notably regulatory applications, 60 

there are varied uses such as data gap filling, classification and labelling, screening and prioritisation, 61 

amongst others. Whilst the number, type and application of models has steadily grown in the past few 62 

years, means of their evaluation has not developed at the same pace. At the current time models for 63 

chemical safety assessment are evaluated using the same criteria, such as the OECD Principles for the 64 

Validation of QSARs (2007), regardless of purpose. However, there is an opportunity to update our 65 

way of thinking by considering the purpose of a model, use of new approaches to understand what 66 

type of model is appropriate for a particular application and how best to assess model fitness-for-67 

purpose (Patterson and Whelan, 2017; Patterson et al., 2021).  68 

This article focusses on understanding the purpose of and evaluating quantitative structure-activity 69 

relationships (QSARs) that can be used to predict toxicity. Broadly speaking, QSAR models define the 70 

relationship between factors relating to chemical structure and/or molecular descriptors of a series of 71 

chemicals to their properties e.g. activity or toxicity. As such, they offer the possibility of making 72 

predictions of toxicity directly from chemical structure or using knowledge derived from similar 73 

chemical(s). Many such computational models have been developed; for ecotoxicological endpoints 74 

QSARs may be based upon well-established mechanisms of action (Cronin 2006; 2017; Cronin et al., 75 

2002) whilst for human health effects, mechanistically-interpretable models may be less feasible due 76 
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to the complexity of the endpoints (Madden et al., 2020). It is also noted that the approaches 77 

described in this paper could additionally be applied to quantitative structure-property relationships 78 

(QSPRs), although this was not the focus of this study. 79 

There are many potential roles for QSARs in toxicology. For the purposes of this investigation the 80 

applications are considered to be broadly related to “industrial” or “regulatory” use. Other uses of 81 

QSARs include data investigation such as in-house model development (e.g. for preliminary screening 82 

of inventories) and education, however, these do not require such rigorous model evaluation. Table 1 83 

summarises some of the main use case scenarios for in silico models to predict toxicity, focusing on 84 

industrial and regulatory use but also data investigation, knowledge creation and for education. It is 85 

acknowledged that this is not a comprehensive list of uses but is illustrative of the range of uses in in 86 

silico toxicology. In this context, industrial uses may be the development of new substances, as well 87 

as the evaluation of existing ones for potential use as ingredients. Regulatory uses of QSARs are in 88 

response to legislation and may be undertaken by the registrant, i.e. the manufacturer, as part of a 89 

dossier presented to a regulatory agency, or they may be utilised by the governmental (regulatory) 90 

agency itself for a variety of purposes. Whilst a complete description of all potential uses of QSARs is 91 

beyond the scope of this paper, it is true to say that in some cases broadly applicable models will 92 

suffice, whereas for others more localised or bespoke models for a given purpose are required. These 93 

differing requirements and applications contrast with the historical culture of a “one size fits all” for 94 

QSAR development, with the expectation that one model can serve multiple purposes. This 95 

contradiction has been exacerbated by the lack of clarity concerning the requirements to establish the 96 

validity of in silico model for specific purposes. 97 

  98 
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Table 1. Potential use case scenarios and characteristics of in silico models to predict toxicity 99 

Use Brief Description Desirable characteristics of 

the model 

Proposed level of 

uncertainty in a 

model and / or 

prediction 

considered 

acceptable 

Data Investigation 

Investigation of 

“small”, or “local” 

data sets  

E.g. analysis of 

congeneric series to 

determine mechanisms  

Transparent, with a small 

number of mechanistically 

relevant descriptors 

High 

Investigation of 

“big data” sets 

Investigation of 

chemical space, global 

QSAR models  

Rapid and suitable for 

machine learning 

approaches 

High 

Knowledge and 

hypothesis 

generation and 

testing 

Ability to use existing 

data resources to gain 

new insight from data 

e.g. mechanistic 

understanding 

Any model is appropriate up 

to the investigation of big 

data using Artificial 

Intelligence approaches 

High 

Education, training 

and capacity 

building 

Any type of modelling 

for educational and 

other purposes  

Any model is appropriate High 

Development of 

new approaches 

Investigation of data 

sets, in a comparative 

manner to illustrate the 

Wide range of models 

applicable  

High 
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performance of a new 

modelling approach, 

descriptors etc.  

Industrial Use 

Screening of lead 

compounds 

Identification of 

potential toxicity in 

candidate compounds 

through the screening of 

very large inventories  

Rapid / automated 

application. Broad coverage  

High 

Evaluation or 

optimisation of a 

lead compound or 

ingredient 

Assessment of the 

safety of an individual 

Ingredient or 

development of a new 

compound with 

improved safety profile 

Specific mechanistically 

based and justified models  

Low 

Safety/ hazard 

assessment of a 

compound in a 

product 

Assessment of the 

safety of an established 

or new compound in a 

product or formulation 

Specific mechanistically 

based and justified models  

Low 

Regulatory Use 

Prioritisation Prioritisation of 

compounds for testing 

according to legislative 

needs, e.g. Canadian 

Domestic Substance List 

Rapid / automated 

application. Broad coverage 

High 
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Classification and 

Labelling  

Identification of hazard 

to allow for 

classification, e.g. EU 

Classification, Labelling 

and Packaging (CLP) 

Regulation 

Broadly applicable. Capable 

of rapid hazard 

characterisation  

Moderate 

Hazard 

identification (e.g 

for risk 

assessment) 

Risk assessment of the 

safety of a substance, 

e.g. EU REACH 

Specific mechanistically 

based and justified models. 

Transparent and well 

documented 

Low 

 100 

In order to have confidence in the use of a QSAR model, its fitness for the purpose intended must be 101 

established. This is especially true where QSAR predictions are used to inform regulatory decisions. 102 

Generally speaking, there are three key regulatory uses for QSAR predictions: hazard identification 103 

informing risk assessment; classification and labelling; and prioritisation and screening (Cronin et al., 104 

2003). The exact definition and implication of each of these depends on the legislation under which 105 

they are implemented. In terms of assessing whether a model is “fit for purpose”, there is no method 106 

of assessment that is globally applicable, especially in terms of differentiating between the 107 

requirements of the different use cases. The most commonly applied approach to determine whether 108 

a QSAR can be used for regulatory applications, is to understand whether a model (and hence its 109 

predictions) can be considered valid. The OECD Principles for the Validation of (Q)SARs were 110 

established as a means to evaluate (Q)SARs (OECD 2007). These have been utilised for almost 15 years 111 

and, on the whole, have served the scientific community very well. They have provided a framework 112 

by which to evaluate QSAR models for toxicity according to their characterisation through 113 

documentation, performance, applicability domain and mechanistic interpretation. They have also 114 

formed the basis by which to record requisite information for QSAR models and predictions, such as 115 
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the QSAR Model Reporting Format (QMRF) and QSAR Prediction Reporting Format (QPRF) 116 

respectively, which may be used for regulatory submissions (Worth, 2010).  117 

Whilst the OECD Principles for the Validation of QSARs have been applied widely, various 118 

shortcomings have become apparent. The principles were not developed with new statistical 119 

methods, such as machine learning, in mind. They are often used to evaluate a QSAR for a specific 120 

purpose, rather than assisting in the assessment of the strengths and weaknesses of the model in a 121 

particular context. In addition, since their conception, the sciences of toxicology and risk assessment 122 

have developed greater appreciation of how uncertainties influence decision making (Thomas et al., 123 

2019). Specifically, the Principles do not assign a particular level of confidence, neither do they address 124 

the relevance for a particular purpose, such that may be required for a regulatory application, to 125 

demonstrate whether it is fit for a regulatory use. Patlewicz (2020) has raised this as a challenge, 126 

relating in part to how informatics will be applied to larger datasets; embracing this challenge we have 127 

considered a more holistic approach to evaluating the whole life of a QSAR from its conception to 128 

implementation. 129 

In addition, whilst useful, the implementation of the OECD QSAR Principles only provides a binary 130 

classification of whether they are met or not for a particular model, the judgement of which, in itself, 131 

can be subjective. As such, they are not entirely appropriate for consideration of whether a model is 132 

fit for a purpose or, indeed, relevant for a specific application. The situation is made more complex as 133 

there is no formal definition of fitness-for-purpose for an in silico model. However, a fit-for-purpose 134 

model can be taken as one that has been appropriately developed and is transparent, suitably 135 

documented and, as required, compliant with the OECD Principles (Cronin et al., 2019). Supplementing 136 

this there are proposals for Good Computer Modelling Practice (Judson et al., 2015), proposals for the 137 

use of Artificial Intelligence to assist in chemical risk assessment (Wittwehr et al., 2020), as well as 138 

protocols for the development of in silico models being developed for various toxicological endpoints 139 

(Myatt et al., 2018; Hasselgren et al., 2019; Johnson et al., 2020). As well as no formal definition, 140 



 12 
 

currently the concept of an in silico model being fit-for-purpose is poorly developed. However, it is 141 

acknowledged, if seldom explicitly stated, that different levels of confidence are required for different 142 

regulatory uses (Dent et al., 2018; Kulkarni et al., 2016; Taylor and Rego Alvarez, 2020). This is easier 143 

to consider in terms of the uncertainty associated with a model, for instance, risk assessment where 144 

a prediction may provide information to assist in the replacement of an in vivo animal test requires 145 

low uncertainty, whereas classification may accommodate moderate uncertainty; for screening and 146 

prioritisation higher levels of uncertainty may be tolerated. Thus, when considered in terms of relative 147 

uncertainty, a model and its predictions may be fit-for-purpose for one application (e.g. prioritisation), 148 

but not necessarily for another (e.g. risk assessment). 149 

With the need to better evaluate QSARs for potential regulatory, and other, uses, Cronin et al. (2019) 150 

developed a scheme to evaluate the uncertainty, variability and areas of bias of a QSAR model. The 151 

purpose of this scheme was not to provide a definitive conclusion as to whether the model was 152 

validated or not validated, rather it was to identify areas of uncertainty in a QSAR. Identifying areas of 153 

uncertainty enables them to be addressed, either by seeking additional information to reduce the 154 

uncertainty, hence increasing confidence (and regulatory applicability) of the model, or ensuring that 155 

any residual uncertainty is clearly communicated and use of the QSAR for a given purpose is 156 

appropriate. The scheme centred around 49 aspects of a model, broadly focusing on its creation, 157 

characterisation and application. The development of criteria for the evaluation of QSARs was 158 

informed by recent progress and guidance from IPCS (2014), EFSA (2018) and elsewhere (Sahlin 2013, 159 

Pestana et al., 2021). Whilst two exemplar QSAR studies were evaluated using the scheme (Cronin et 160 

al., 2019), its full applicability has not yet been demonstrated and this will be required if such an 161 

approach could have broad regulatory application. In addition, it may be considered that assessing 49 162 

criteria is both unwieldy and unlikely to provide a succinct evaluation of the key areas of uncertainty 163 

in a QSAR. These disadvantages mean that, in the format proposed by Cronin et al. (2019), the scheme 164 

is unlikely to provide insight into the characteristics of a QSAR that are required or desirable for a 165 

particular purpose.  166 
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The aim of this study was, therefore, to demonstrate how the scheme previously reported by Cronin 167 

et al. (2019) could be utilised to assess an in silico model, such as a QSAR, to determine whether it is 168 

fit for a specific purpose. To achieve this the 49 criteria were rationalised into higher level “assessment 169 

components” which were subsequently linked to one of the three phases of QSAR development. The 170 

assessment components were then mapped onto three potential regulatory uses to determine a) the 171 

levels of uncertainty that may be acceptable and b) the possible characteristics of a model for a 172 

particular purpose. Finally, 12 QSARs for (eco-)toxicological endpoints, recently published in the open 173 

scientific literature, were evaluated according to the assessment criteria to demonstrate the 174 

uncertainties within such models and provide strategies so that, in accordance with the assessment 175 

components, they could be improved and potential regulatory uses (if required) could be identified.  176 

 177 

2. Methods 178 

2.1 Evaluation of the previously published scheme for its potential to assess the fitness-for-purpose of 179 

in silico models for regulatory use 180 

The 13 main areas of concern, made up of the 49 criteria in the scheme for the evaluation of QSARs 181 

proposed by Cronin et al. (2019), were consolidated into ten distinct assessment components that 182 

characterise in silico models. Each assessment component (referred to hereon as “components”) was 183 

aligned to one of the three phases in the development of a QSAR.  184 

2.2 Mapping of the QSAR components onto potential regulatory use 185 

The QSAR components were considered in terms of the acceptable levels of uncertainty, variability or 186 

bias that would be appropriate for different regulatory uses. This enabled the QSARs selected to be 187 

considered in terms of their potential regulatory applicability, both before and after application of 188 

strategies to reduce uncertainty, variability and bias (Sections 2.3 and 2.4). As part of this process, the 189 
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needs of regulatory uses were considered in the context of what may make the QSARs fit for this 190 

purpose. 191 

2.3 Selection and initial assessment of QSAR models to be analysed using the QSAR components 192 

From the outset, it should be appreciated that the purpose of the assessment of published QSARs was 193 

not to be critical or attempt to validate a particular model. All models had been published in the 194 

scientific literature, will have undergone peer review and it is, therefore, implicit that the models are 195 

sufficiently robust. The current investigation was undertaken in order to identify any areas associated 196 

with greater uncertainty, variability or potential bias and to propose strategies to reduce these, where 197 

appropriate, to ameliorate these issues, such that the models’ fitness-for-purpose for regulatory 198 

applications could be enhanced. QSAR models were selected for analysis based on the following 199 

criteria: 200 

- Available in a peer-reviewed publication published in 2018 or 2019 201 

- Relating to (eco-)toxicity 202 

- Representing a variety of approaches 203 

To identify suitable QSARs, publications were searched for in Web of Science using two keywords 204 

“QSAR” and “toxic*” as part of the “topic”. The publications for analysis were selected manually. In 205 

order to assist in the selection of QSARs, models were pre-screened initially to characterise them in 206 

terms of: 207 

- Species 208 

- Protocol (e.g., duration of study, endpoint, etc.) 209 

- Number and type of chemicals (multi-constituent substances were omitted) 210 

- Descriptors included in the QSAR 211 

- Statistical method applied in the QSAR 212 

- Potential mechanistic basis 213 
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Twelve publications were chosen to represent QSARs for (eco-)toxicological endpoints with a variety 214 

of modelling approaches, chemicals, data set sizes, descriptors and mechanisms of action.  215 

The criteria to evaluate QSARs, as defined by the scheme for the evaluation of uncertainty, variability 216 

and areas of bias (Cronin et al., 2019) and summarised in Supplementary Information Table S1, were 217 

applied to the QSAR models identified. This was performed by expert analysis of the information 218 

provided in the publications associated with the QSARs, as well as other relevant information, e.g. 219 

retrieval of source information. Expert analysis was undertaken by a lead researcher, with subsequent 220 

verification by another researcher. At the time of undertaking the analysis the developers of the 221 

QSARs were not contacted for further information or clarification; if this process is to be more widely 222 

applicable it is essential that analysis can be carried out without recourse to model developers 223 

The questions set out within the scheme defined within Cronin et al. (2019) were used to assess each 224 

of the QSARs. Responses were reported using a semi-quantitative scale of 1, 2 or 3, (representing low, 225 

moderate and high uncertainty respectively) or not applicable (N/A). All scores and associated 226 

comments were reported using the templates provided in Cronin et al. (2019).  227 

2.4 Recommendations for strategies to reduce uncertainty, variability and areas of bias of the selected 228 

QSARs and identification of possible regulatory use 229 

Potential strategies to reduce areas of significant uncertainty, variability and potential areas of bias of 230 

the selected QSARs were proposed. The purpose of the strategies was to provide a structured means 231 

to reduce the uncertainty associated with a QSAR.. In certain circumstances, the toxicological data 232 

used in the QSARs were re-evaluated from a mechanistic perspective to reduce uncertainty in this 233 

component e.g. the inclusion of mechanistically based descriptors, such as the logarithm of the 234 

octanol-water partition coefficient (log P) for acute ecotoxicological effects (Könemann, 1981). The 235 

levels of uncertainty associated with the components, as well as the characteristics, of the QSARs were 236 

compared against those proposed for regulatory purposes in an attempt to identify any regulatory 237 

use.   238 
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 239 

3. Results 240 

3.1 Scheme for “Components of QSARs” on the basis of criteria for reducing uncertainty, variability and 241 

bias. 242 

Evaluation of the scheme for assessing in silico models published by Cronin et al. (2019) allowed for 243 

the establishment of an overview of the types of uncertainty, variability and bias (summarised as 244 

“variability” herein) observed across QSAR models; the uncertainty criteria were grouped into 245 

components as shown in Figure 1. In this way the components summarise the original assessment 246 

criteria into logical groupings that can be used to identify the main characteristics of a QSAR. The ten 247 

components represent the main areas required for consideration of fitness-for-purpose of an in silico 248 

model for toxicity prediction. Each component is associated with one of the three phases of QSAR 249 

development - creation, characterisation and application. The components are described in Table 2, 250 

with details of the individual uncertainty criteria, represented within each component, being denoted 251 

in Supplementary Information Table S1. As well as being functional to evaluate QSARs, they can also 252 

be applied to help assess the qualities of a model that may be required for a particular purpose.  The 253 

components cover all aspects of the creation, characterisation and application of QSAR models, they 254 

are designed to be flexible and updateable as required. Certain criteria (Table S1) within the 255 

components may not be required for a particular model, depending on the purpose of the model/ 256 

endpoint under consideration.  257 

 258 
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 259 

Figure 1. Scheme summarising the ten “components” of QSAR models required to be considered for 260 

toxicity prediction purposes. The components, denoted in the rectangular boxes, are linked to the 261 

phases, denoted in the oval shapes and defined for each of the three broad areas of QSAR uncertainty, 262 

variability and bias. 263 

 264 

  265 
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Table 2. Key features of the proposed ten components for QSARs. 266 

Component Key Features Used to Assess the Components 

 

Model Creation 

 

1. Data Quality of individual studies within the data set and the data set overall (e.g. 

homogeneity of the protocols) that was used for modelling 

2. Structures Accuracy and/ or quality of the reported chemical structures in the training (and, 

if applicable, test) set used for modelling 

3. Descriptors Appropriate use and adequate definition of the descriptors used for modelling 

(including how and where sourced) 

 

Model Characterisation 

 

4. Modelling The appropriateness and / or adequacy of the modelling approach for the 

endpoint with regard to complexity of the endpoint and potential use of the 

model 

5. Performance Adequate statistical fit, predictivity and appropriate reporting 

6. Mechanisms Definition and interpretation of the mechanistic significance of the model to 

allow for the definition of appropriate domains 

7. Toxicokinetics Appropriate consideration of metabolism and toxicokinetics in the model 

 

Model Application  
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8. Description Appropriate documentation, reporting including applicability domain and 

transparency of the model and predictions 

9. Usability Implementation of the model; accessibility of required software (e.g. 

commercial, freely available, sustainable sources)  

10. Relevance Relevance of the model to its intended purpose and use 

 267 

 268 

3.2 Mapping components of QSARs to define fitness-for-purpose for specific regulatory uses 269 

In silico models for toxicity prediction have a number of potential industrial and regulatory uses. Whilst 270 

it is acknowledged that certain types of in silico model are more suited for some purposes than others, 271 

it has not yet been established how the suitability can be qualified in terms of the acceptable level of 272 

uncertainty. Using the components of QSARs as an investigative tool provides an opportunity to 273 

identify areas of uncertainty, variability or bias that, if reduced, would lead to greater acceptability of 274 

the models for a given regulatory purpose. 275 

It is also important to consider which components of an in silico model may be associated with higher 276 

or differing levels of uncertainty depending on the purpose of the model. In terms of regulatory use, 277 

an attempt can be made to identify the different levels of uncertainty in the different components 278 

that may be associated with models for different uses. Figure 2 summarises the possible levels of 279 

uncertainty that may be associated with different regulatory uses of QSARs to predict toxicity – 280 

acceptable levels of uncertainty require discussion and debate before being implemented. Whatever 281 

the exact levels of uncertainty required, the lowest would be expected for hazard identification 282 

informing risk assessment, with all components expected to show low uncertainty. This would 283 

inevitably restrict the use of many types of QSARs for risk assessment and favour those local models 284 

based on a clear mechanistic basis with transparency a key factor in the model. As other regulatory 285 

uses are considered, going from classification and labelling to screening and prioritisation, greater 286 
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uncertainty maybe acceptable in terms of being able to develop models that are usable for the 287 

purpose intended, i.e. models that can be rapidly applied to large numbers of molecules. In particular, 288 

models are likely to be automated for rapid use and have broad chemical coverage across various 289 

chemical and mechanistic domains i.e. they are global in nature. As such, it would be unrealistic to 290 

expect that the characteristics of these models would all have low uncertainty, e.g. to have a full 291 

mechanistic basis due to their inherent difficulty in definition, although mechanisms of action 292 

underpinning the model could be proposed. Likewise, less appreciation of toxicokinetics would be 293 

expected and greater flexibility in the modelling approach acceptable. It would be expected, however, 294 

that the performance of the model would be reported and that it is appropriate for the quality of the 295 

data set, regardless of the approach taken for modelling. With regard to the components associated 296 

with the application of the model, certain aspects such as description of the model, may be associated 297 

with moderate uncertainty for screening and prioritisation i.e. the full definition of a model based on 298 

machine learning may not be possible.  299 

 300 

 301 

Figure 2. Levels of uncertainty of models and predictions considered acceptable for QSAR components 302 

associated with different regulatory uses; green indicates low uncertainty; yellow indicates moderate 303 

uncertainty and blue indicates high uncertainty.  304 

 305 

3.3 Application of the components and criteria for assessment of published QSARs to assess their 306 

fitness-for-purpose 307 
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The literature search identified a large number of papers in Web of Science published in 2018-2019 308 

that contained the words “QSAR” and “toxic*” as part of the topic. This represents the full diversity of 309 

papers now published in this area, emphasising the importance for proper evaluation. The scope of 310 

the papers included a wide spectrum of environmental and human health endpoints as well as 311 

methodological papers and opinions. The papers were screened manually using expert judgement to 312 

identify twelve publications for analysis in this study. The data sets and modelling techniques from the 313 

twelve selected recent publications are summarised in Table 3. They were chosen on the basis of 314 

representing a range of both environmental and human-health endpoints. In addition, they were 315 

chosen to include representative dataset sizes and methodological variety of QSARs. No inference, 316 

positive or negative should be implied by the inclusion or exclusion of QSAR studies in this 317 

investigation. Several of the studies implied they were compliant with the OECD QSAR Principles, but 318 

no studies stated which specific regulatory, or other, uses they could address. The datasets represent 319 

the results of toxicity tests to a variety of aquatic species including an alga, an invertebrate, an 320 

amphibian, fish and endpoints relevant to human health. Two publications (#3. de Morais e Silva et 321 

al., (2018) and #4. Toropova and Toropov (2018)) analysed the same data set, or parts of it, using 322 

different approaches and methods. The data sets generally contained fewer than 100 compounds and 323 

were made up of small molecules representative of industrial chemicals, however, some larger 324 

datasets were available for human health endpoints comprising drug-like molecules; one dataset was 325 

for nanoparticles. Descriptors utilised were mainly calculated directly from molecular structure by the 326 

authors of the publications predominantly representing hydrophobicity and electronic properties, as 327 

well as topological and steric parameters to a lesser extent. The statistical analyses published ranged 328 

from multiple linear regression to partial least squares and neural networks.   329 
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Table 3. Summary of QSAR data sets assessed in this study. 330 

 331 

Study Endpoint Species Number and type 

of chemicals 

Descriptors included in 

the QSAR 

Statistical method applied in the 

QSAR 

Reference 

1 40 hour 

inhibition of 

growth 

Ciliated protozoan 

(Tetrahymena 

pyriformis) 

160 substituted 

aromatic 

compounds  

Various calculated 

properties, e.g. log P and 

molecular descriptors 

Multiple linear regressions (MLR) 

in comparison to Radial Basis 

Function Neural Networks (RBFNN) 

Luan et al., 2018 

2 96 hour LC50 Fathead minnow 

(Pimephales 

promelas) 

15 substituted 

benzenes 

Log P and electrophilicity 

index and squared terms 

Linear regression Pal et al., 2018 

3 Acute aquatic 

toxicity 

Fish (species not 

defined) 

61 compounds 

associated with 

non-polar narcosis 

Theoretical Volsurf 

molecular descriptors 

Partial Least Squares de Morais e Silva et 

al., 2018 
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4 Acute aquatic 

toxicity 

Fish (species not 

defined) 

111 compounds CORAL descriptors Monte Carlo optimisation of target 

functions 

Toropova and 

Toropov, 2018 

5 Inhibition of 

growth 

Tadpoles (Rana 

temporaria) 

110 “small” 

organic molecules 

Theoretical molecular 

descriptors 

Multiple linear regression, partial 

least squares, support vector 

regression 

Wang et al., 2019 

6 96-h 20% and 

50% inhibitory 

concentrations, 

Lowest and No 

Observed 

Effect 

Concentration 

(LOEC and 

NOEC) 

Alga (Chlorella 

vulgaris) 

67 substituted 

phenols and 

anilines 

Theoretical / molecular 

orbital descriptors 

Multiple linear regression Yan et al., 2019 
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7 Hepatotoxicity Not stated 1,254 “unique” 

compounds 

Topological geometry and 

physicochemical 

descriptors 

Naïve Bayes, k-nearest neighbour, 

Kstar, AdaBoostM1, Bagging, 

decision tree, random forest, and 

Deeplearning4j 

He et al., 2019 

8 Reproductive 

toxicity 

Not stated 1,823 organic 

compounds 

Molecular fingerprints Artificial neural network, C4.5 

decision tree, k‐nearest neighbour, 

naïve Bayes, support vector 

machine, and random forest 

Jiang et al., 2018 

9 Activity, 

activity score, 

potency, and 

efficacy 

Androgen receptor 10,273 drug 

molecules 

Various properties 

calculated with PaDEL 

Random forest, decision tree, 

neural network, and linear model 

Gupta and Rana, 

2019 
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10 50% inhibitory 

concentration 

Oestrogen receptor 55 persistent 

organic 

compounds 

2D topological based 

descriptors 

Genetic function algorithm Ibrahim et al., 2019 

11 Mutagenic 

potency 

logTA100 

Salmonella 

typhimurium TA100 

strain 

48 nitroaromatic 

compounds 

Theoretical and 

molecular orbital 

descriptors 

Genetic algorithm and multiple 

linear regression 

Hao et al., 2019  

12 Cytotoxicity, 

cell viability (%) 

Human breast 

cancer cell line 

MCF-7, human 

fibrosarcoma cell 

line HT-1080, 

human liver 

carcinoma cell line 

HepG2, human 

colon carcinoma 

8 metal oxide 

nanoparticles 

CORAL descriptors Monte Carlo optimisation of target 

functions 

Ahmadi, 2020 
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cells HT-29, and rat 

adrenal 

pheochromocytoma 

cell line PC-12 

  332 
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3.4 Strategies to reduce uncertainty, variability and areas of bias of the selected QSARs and 333 

identification of possible regulatory use 334 

The evaluation of each model, by application of the assessment criteria, highlights which of the 335 

components are associated with higher uncertainty and therefore reduce the suitability of the model 336 

for regulatory purposes associated with the most stringent criteria. The results of this analysis are 337 

summarised in Figure 3 and described in detail in Supplementary Information Table S2. The overall 338 

levels of uncertainty for the 12 QSAR studies provided in Figure 3 are intended to be illustrative, rather 339 

than definitive and, as such, they highlight key areas of uncertainty for the different models. Clear 340 

areas of high uncertainty can be established across all QSARs, regardless of the endpoint and type of 341 

model. For instance, Figure 3 shows that aspects of the biological data, or their description, are 342 

associated with high uncertainty. This is a useful finding as it would suggest that no model with high 343 

uncertainty for these characteristics would be suitable for any regulatory use (as defined in Figure 2). 344 

Further areas routinely associated with high uncertainty are the mechanistic interpretation of the 345 

models, incorporation or appreciation of the toxicokinetic properties required to correctly predict 346 

toxicity and their relevance for regulatory endpoints. Other criteria associated with higher uncertainty 347 

included the unambiguous identification of chemical structures in the model, the overall description 348 

of the model such that it could be repeated and its potential usability. Areas where models showed 349 

low uncertainty typically were with regard to the description and/ or the availability of descriptors in 350 

the model and the stated performance of the model.  351 
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 352 

 353 

Figure 3. A summary of the levels of uncertainty associated with QSAR components for the 12 QSAR 354 

studies evaluated; green indicates low uncertainty for that component, yellow moderate uncertainty 355 

and blue high uncertainty. This figure is for illustration only and indicates the median level of 356 

uncertainty for these 12 QSAR studies. A full breakdown on the uncertainty associated with each 357 

component is provided in Supplementary Information Table S3. 358 

 359 

As previously noted, the purpose of the evaluation of uncertainties is not to suggest that a specific 360 

model could not be used, but to understand its potential limitations allowing the developer and/ or 361 

user to reduce uncertainties. For instance, the uncertainty of many of the areas of QSARs identified as 362 

high by the assessment components could be rapidly reduced through the provision of extra 363 

information. A summary of the possibilities to enhance the suitability of the models is given in Table 364 

4. Thus, where the description of the biological data was a significant uncertainty, this could be 365 

addressed by better reporting in the methods, etc. Likewise, for the incorporation of mechanistic and 366 

toxicokinetic information, uncertainty could often be reduced by appropriate discussion and 367 
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evaluation of the model. In addition, areas of good practice within model development can be 368 

highlighted through components with low uncertainty.  369 

Table 4 also describes the potential regulatory use for the QSAR once the uncertainties have been 370 

reduced. In order to illustrate this concept, QSAR Study #2 was assessed here as having higher 371 

uncertainties in relation to chemical structures description of the data and mechanistic interpretability 372 

and usability (component analysis summarised in Table 4). The uncertainty in the published model 373 

makes it unsuitable for regulatory use in its current form. However, regulatory suitability could be 374 

enhanced by reducing the uncertainty associated with these aspects as described in Supplementary 375 

Information Table S4. In terms of the biological data, these are from a well-established data resource, 376 

i.e. for the fathead minnow (Russom et al., 2007). The chemical structures can be defined definitively 377 

and a full mechanistic interpretation can be applied, i.e. the role of non-polar narcosis. Thus, one 378 

possibility is to provide a mechanistic interpretation of the QSAR in terms of how the descriptors relate 379 

to the underlying molecular initiating event and, for a well-studied mechanism such as non-polar 380 

narcosis, place this model in the context of existing knowledge, e.g. the role of hydrophobicity 381 

(Könemann, 1981).  382 

 383 
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Table 4. The potential suitability for regulatory use before and after implementation of strategies to reduce uncertainties as identified by the components 384 

for the 12 QSARs evaluated in this study. 385 

 386 

Study Scope of 

Model: 

Local vs 

Global 

Potential 

Mechanistic 

Interpretability  

Summary of Key 

Uncertainties in Publication 

Key elements of strategy to reduce 

uncertainty to enhance acceptability 

Potential regulatory use of 

QSAR following 

enhancements 

1 Global Low Biological data not described / 

evaluated. Descriptors not 

provided. Complex models. 

Lack of mechanistic 

interpretation. 

Provide details on biological data and 

descriptor set. Apply mechanistic 

interpretation (if possible). 

Screening 
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2 Local High Biological data not described / 

evaluated. Descriptors not 

provided. Complex models. 

Lack of mechanistic 

interpretation. 

Provide details on biological data. 

Ensure mechanistic interpretation and 

context of model reported. 

Hazard identification 

3 Local High Biological data not described / 

evaluated. Descriptors not 

provided. Replicate values 

present in both training and 

test sets.  

Provide details on biological data and 

descriptor set. Remove duplicates 

from the training and test sets. 

Classification and Labelling 

4 Global Low Biological data not described / 

evaluated. Descriptors not 

provided. Replicate values 

present in both training and 

Provide details on biological data and 

descriptor set. Remove duplicates 

from the training and test sets. Apply 

Screening 
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test sets. Lack of mechanistic 

interpretation. 

mechanistic interpretation (if 

possible). 

5 Global Low Chemical structures not 

defined. Biological data not 

described / evaluated. 

Descriptors not provided. Lack 

of mechanistic interpretation. 

Supplementation of unambiguous 

chemical structures. Provide details 

on biological data and descriptor set. 

Apply mechanistic interpretation. 

Screening 

6 Local High Chemical structures not 

defined. Biological data not 

described / evaluated. Lack of 

mechanistic interpretation. 

Supplementation of unambiguous 

chemical structures. Provide details 

on biological data. Apply mechanistic 

interpretation. 

Hazard Assessment 

7 Global Low Biological data not described / 

evaluated. Descriptors not 

provided. Models are not 

Provide details on biological data and 

descriptor set. Inclusion of each 

Screening 
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transparent. Lack of 

mechanistic interpretation.  

models’ algorithms. Apply mechanistic 

interpretation. 

8 Global Low Biological data not described / 

evaluated. Calculated 

parameters not completely 

described. Models are not 

transparent. Lack of 

mechanistic interpretation. 

Provide details on biological data and 

calculated parameters. Inclusion of 

each models’ algorithms. Apply 

mechanistic interpretation. 

Classification and Labelling 

9 Global High Chemical structures not 

defined. Biological data not 

described / evaluated. 

Physicochemical properties 

not provided. Highly 

Supplementation of unambiguous 

chemical structures. Provide details 

on biological data and 

physicochemical properties. Balance 

actives vs inactives in data set. Apply 

mechanistic interpretation. 

Classification and Labelling 
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imbalanced data set. Lack of 

mechanistic interpretation. 

10 Global High Biological data not described / 

evaluated. Descriptors not 

provided. Descriptor 

calculation methodology not 

complete. Lack of mechanistic 

interpretation. 

Provide details on biological data and 

descriptor set. Fully describe all 

process employed throughout 

development. Apply mechanistic 

interpretation. 

Classification and Labelling 

11 Local High Biological data not described / 

evaluated. Descriptors not 

provided. Lack of 

pharmacokinetic 

interpretation. 

Provide details on biological data and 

descriptor set. Apply pharmacokinetic 

interpretation. 

Hazard identification and 

possible support of risk 

assessment 
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12 Local Low Chemical structures not 

defined. Biological data not 

described / evaluated. 

Descriptors not provided. Lack 

of mechanistic interpretation. 

Describe nanoparticles following 

ECHA guidance (ECHA 2017). Assess 

usage of various cell lines for single 

model. Provide details on biological 

data and descriptor set. Apply 

mechanistic interpretation. 

Possible Classification and 

Labelling 

387 
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4. Discussion 388 

As computational modelling becomes commonplace in toxicology, there is a strong and increasing 389 

need to demonstrate the quality, usefulness and fitness for particular purpose of any model. This is 390 

amplified by the breadth of models in terms of complexity, endpoints, numbers of compounds and 391 

modelling technique. The aim of this study was to gain a greater understanding of fitness-for-purpose 392 

of in silico models for regulatory adoption, and how this could be assessed. The scheme, described 393 

herein, was evaluated for its applicability to models for ecotoxicity and human health effects – 394 

although it is noted from the outset that these models did not claim any specific regulatory use. The 395 

analysis showed that the scheme was widely applicable, flexible and could be applied to different 396 

types of models, species, endpoints and chemical space coverage. Using the criteria noted above, it 397 

was possible to determine which aspects of the models were associated with the greatest 398 

uncertainties, variability and potential for bias and how all of these could be reduced. This does not 399 

constitute a formal validation process, but does provide information on how to assess the applicability, 400 

utility and potential for constructive modification of a particular model.  401 

4.1 “Components” of QSARs as the means to assess and reduce uncertainty, variability and bias. 402 

Analysis of the criteria in the scheme for the evaluation of QSARs proposed by Cronin et al. (2019) 403 

allowed for the identification of ten components as summarised in Figure 1 and summarised in Table 404 

2. The components have rationalised the 49 original criteria into fundamental properties of an in silico 405 

model that will allow (semi-)quantification of uncertainty. The components are designed to be flexible 406 

and, as such, applicable to any type of model from a simple QSAR with a small number of components 407 

up to machine learning approaches based on large datasets. The components address all aspects of 408 

the three phases - creation, characterisation and application of an in silico model and allowed for 409 

uncertainty to be assigned to them.  410 

The consolidation of the original 49 criteria described by Cronin et al. (2019) into the general ten 411 

assessment components provides a much clearer and comprehensible overview of the uncertainty in 412 
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an individual QSAR (as shown in Figure 1). It is anticipated that this type of analysis will have at least 413 

two clear uses, as described below: a better understanding of the characteristics of a model for a 414 

particular purpose (here illustrated with reference to regulatory application); and for the assessment 415 

of an individual model from the problem formulation statement through to its application.  416 

4.2 Understanding fitness-for-purpose of QSARs for specific regulatory uses with the components 417 

The rationale behind of the creation of the components was to enable identification of areas of 418 

uncertainty such that uncertainty could be reduced to a level that would allow a model to be 419 

considered “fit-for-purpose”. One of the most demanding and pressing uses of a model is for 420 

regulatory application, thus fitness-for-purpose was evaluated for different regulatory uses. Figure 2 421 

gives an indication of the levels of uncertainty that may be associated with a particular regulatory use. 422 

In addition to these, unspecified applications could also be assessed in the same manner through 423 

considered adjustment of the uncertainty requirements in particular areas. For instance, using a QSAR 424 

to investigate a data set to generate hypothesis or gain mechanistic insight may allow for higher 425 

uncertainty in many areas e.g. performance may indeed not require any consideration of the 426 

Application-characteristics of the QSAR, as it would not be used for a particular predictive or 427 

regulatory purpose.  428 

Analysis of Figure 2 demonstrates the levels of uncertainty, variability and bias that may be acceptable 429 

for a particular regulatory purpose. From the trichrome components of screening and prioritisation 430 

through the dichrome components of classification and labelling to the monochrome components of 431 

risk assessment, several aspects become apparent. Firstly, both the Creation and Application phases 432 

allow no high uncertainty, whilst only moderate uncertainty is permitted with regard to the 433 

descriptors used, documentation, transparency etc. of the model. To accomplish this, there should be 434 

a defined data set of high quality in terms of the description of chemical structures, biological data 435 

and descriptors, all of which must be unambiguous in any model, even if not completely transparent, 436 

regardless of the purpose (Young et al., 2008; Piir et al., 2018). Often, the uncertainty associated with 437 
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these two components can be reduced with additional clarification although the relevance of the 438 

endpoint to the stated purpose is definitive. Secondly, the greatest acceptability of variability and bias 439 

is associated with the Characterisation phase of a QSAR. Flexibility, and an increase in uncertainty, is 440 

likely in the characterisation stage of modelling, most notably mechanistic interpretation which relates 441 

to all types of in silico models. While the performance component requires low uncertainty regardless 442 

of the purpose, the acceptable uncertainty of the other three Characteristics-related components are 443 

fit-for-purpose dependent. In the case of Mechanisms, Modelling and/or Toxicokinetics it is typically 444 

not possible to move to a more demanding fit-for-purpose application, i.e. reduce the uncertainty, 445 

without reverting to the Creation phase – essentially starting the development of a model again. 446 

Fundamentally, uses for in silico toxicology range from the need for the rapid screening of large 447 

inventories of chemical structures to detailed hazard identification of a single substance. Screening 448 

may require assessing structurally diverse inventories in the 10-100,000s or millions of compounds; in 449 

contrast, a detailed analysis of a single compound may only require assessing 10 or fewer highly similar 450 

substances. It is intuitive that the needs for the different types of applications will be different and 451 

thus, should be considered. When screening a large chemical inventory, a rapid automated approach 452 

is ideal and approaches using machine learning, with automated data entry, prediction and analyses 453 

being required. More detailed risk assessment of a single substance will require a detailed and 454 

mechanistically derived model, such as a local, transparent QSAR based on a small number of 455 

mechanistically interpretable descriptors. The use of highly localised models also explains the high 456 

level of use for read-across for risk assessment (ECHA, 2020), whereas it finds little application for 457 

screening and prioritisation.  458 

In terms of acceptable uncertainties, it can be proposed that there are different levels of uncertainties 459 

that might be considered as being acceptable, dependent on the potential consequence of an 460 

inaccurate prediction. For instance, it could be possible that a model based around a machine learning 461 

method, optimised to identify toxic molecules, could be acceptable with a relatively high false positive 462 
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rate if it were to be used in the screening of chemical inventories for lead identification. Such a 463 

scenario may allow for relatively high uncertainty to be associated with a model, on the proviso that 464 

it is fit for its stated purpose. At the other end of the regulatory use spectrum, risk assessment requires 465 

demonstrably low uncertainty in the in silico approach, which is likely to be characterised only by 466 

mechanistic models based on limited chemical domains, e.g. a defined chemical class or mechanism 467 

of action, and is thus associated with the relatively high uptake and success of using read-across for 468 

toxicity prediction (ECHA, 2020).  469 

Figure 4 demonstrates how a data resource could be utilised according to the needs of regulatory use. 470 

Taking as an example a relatively large data source, such as may be extracted from a regulatory 471 

inventory or the ChEMBL database (https://www.ebi.ac.uk/chembl/), it is assumed that there would 472 

be a process of data curation to ensure the quality of chemical structures and biological data is high, 473 

i.e. low uncertainty. Following this, it is probable that initial analyses would be rapid and use machine 474 

learning approaches, possibly with many descriptors. The machine learning approaches should 475 

provide an indication of the feasibility of modelling the data and any inconsistencies in the data matrix, 476 

if they have not already been identified through the data curation. It is likely that there will be high 477 

uncertainties at this stage, especially in aspects such as mechanistic understanding and interpretation. 478 

Such models would be global in nature and thus, suited only to screening and prioritisation. 479 
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 480 

Figure 4. Potential regulatory use of different types of QSARs and in silico models that could be derived 481 

from a “big” data set. Models range from global machine learning to read-across from close analogues.  482 

 483 

Subsequent analysis of the complete data set would allow for consideration of chemical space and 484 

identification of structurally-limited areas, or chemical classes, that are well populated. Therefore 485 

enabling the construction of models with reduced uncertainty in the components of Descriptors, 486 

Mechanisms and Description (see Figure 2) that are suitable for the purpose of classification and 487 

labelling. Continuous development may also lead to models deemed sufficient for hazard assessment, 488 

potentially informing risk assessment. Even within these class- or mechanism-based QSARs further 489 

refinement could be achieved to identify one, or a small number, of analogues that may be suitable 490 

for read-across or trend analysis (Date et al., 2020). Such high quality, mechanistically derived 491 

analogues can be considered to be of low uncertainty and thus useful for risk assessment. 492 

4.3 Application of the components and criteria for assessment of published QSARs to assess their 493 

fitness-for-purpose 494 
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The assessment of the 12 QSARs selected using the components demonstrated that the criteria can 495 

be applied to a wide variety of models. The full analysis of individual QSARs (Table S2) is overwhelming, 496 

such that the use of the components to gain an overview is valuable. Also illustrative is the summary 497 

of the uncertainties across all the QSARs analysed (Figure 3). This shows consistently high levels of 498 

uncertainty associated with four of the components, namely Data, Mechanisms, Toxicokinetics and 499 

Relevance. Whilst it is recognised that the QSARs assessed may not have been developed for purpose 500 

of regulatory use, it is informative to consider them in more detail to investigate to which purpose 501 

they could be applied (Table 4) and what measures may be required to achieve this (Section 4.3 and 502 

Table S4). Comparison of the summary of results in Table 3 with the suggested levels of acceptable 503 

uncertainty for different purposes clearly shows that none would be acceptable for these purposes as 504 

they are currently presented.  505 

As noted above, full data curation is likely to be a pre-requisite for any regulatory use of a model. 506 

Without knowledge of the data, transparency of the model cannot be demonstrated and, more 507 

importantly, the domain of a model cannot be defined. More difficult to define is the mechanistic 508 

basis. There is a long-appreciated spectrum of models from purely mechanistic to statistical based, i.e. 509 

localised QSARs to machine learning (Enoch et al., 2008). As models become global in their 510 

applicability, this will require larger datasets with more and varied compounds. Accompanying this 511 

complexity in chemistry is the increased likelihood of multiplicity of probable and plausible 512 

mechanisms of action. The types of approaches capable of modelling such datasets often use many 513 

descriptors, typically without direct mechanistic interpretation. The compromise between the need 514 

for mechanistic interpretability and practical tools for largescale screening of compounds means that 515 

higher uncertainty, in terms of defining mechanisms, will need to be acceptable. There will also be 516 

greater uncertainty associated with assignment of mechanisms of action to chemicals, and this will 517 

need to be accepted. Taking acute environmental toxicity as an example, in reality it is very difficult to 518 

associate a mechanism of action definitively with a chemical. Historical attempts were made for a 519 

relatively small number of chemicals (approximately 40) using Fish Acute Toxicity Syndromes (McKim 520 
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et al., 1987). These learnings have been extrapolated up to the full spectrum of industrial chemicals 521 

and, along with a variety of other evidence, are routinely used to categorise chemicals, for instance 522 

for the application of QSARs (Cronin, 2017). Until omics responses to support grouping are robust and 523 

understood, there is likely to be on-going uncertainty in the assignment of mechanisms of action for 524 

environmental effects. Mechanisms relating to human health effects also vary widely in their level of 525 

fundamental understanding, assignment to specific chemicals and relationship to chemistry. Whilst it 526 

is a gross oversimplification, it is true to say that regulatory endpoints such as skin sensitisation have 527 

a higher degree of mechanistic understanding than, for instance, chronic toxicity. Thus, with regard to 528 

modelling and QSARs in particular, we are better able to assign a compound to a mechanistic domain 529 

associated with skin sensitisation than we are able to define many mechanisms of organ level toxicity 530 

associated with chronic toxicity. Again, until we have a better grasp of using omics data and applying 531 

knowledge from Adverse Outcome Pathways, this uncertainty at the mechanistic level is likely to 532 

remain (Brockmeier et al., 2017; Cronin et al., 2017). 533 

Toxicokinetics, in other words the appreciation of ADME properties affecting bioavailablity, is also very 534 

difficult to address in in silico modelling of toxicity. The toxicokinetics are normally part of the 535 

experimental data and would be provided as such, for instance whether there is significant 536 

metabolism of a compound, if this is consistent across the training set and if it is defined e.g. such that 537 

it can be assumed in an untested molecule for which a prediction is made. Toxicokinetics have also 538 

been shown to be an area of uncertainty in read-across (Schultz and Cronin, 2017). There is no easy 539 

solution to this issue, other than to acknowledge it as a significant area of uncertainty.  540 

Relevance of an endpoint, and hence prediction, although often overlooked by modellers, is vital for 541 

regulatory application. In order for a prediction from a model to be relevant it must address the 542 

endpoint of interest. From the outset it would be good practice for the modeller to identify the 543 

purpose of the model and undergo a suitable process of the problem formulation. As part of the 544 

problem formulation, an objective assessment of the level of acceptable uncertainty should be set 545 
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out. For instance, if the purpose of the model was to provide predictions for a particular legislation, 546 

then the model should be capable of predicting a relevant endpoint. It should be noted that most 547 

relevant endpoints for regulatory use, with the exception of creating a Weight of Evidence, are OECD 548 

Test Guideline studies. Thus, a model would be fully relevant (and have low certainty) if it made a 549 

direct prediction of the relevant OECD Test Guideline Study. In terms of the QSARs investigated in this 550 

study, QSAR #7 (hepatotoxicity) may provide support to an overall decision on chronic toxicity, but is 551 

not a direct prediction of that endpoint and further information would be required e.g. for other organ 552 

level effects; QSAR #8 (reproductive toxicity) would not be sufficient to fill a data gap as it is not 553 

defined sufficiently; QSARs #9 and #10 (androgen and oestrogen receptor binding respectively) may 554 

support a decision on reproductive toxicity and / or endocrine disruption etc., but they do not replace 555 

the need for further information on this endpoint. QSAR #11 is for a regulatory endpoint (Salmonella 556 

typhimurium TA100), however as only a single strain it would not meet the requirements for in vitro 557 

mutagenicity which require, usually, five strains to be considered.  558 

4.4 Reducing uncertainty of QSARs using the assessment components 559 

Assessment of QSAR models in the described manner above provides an interesting insight into areas 560 

where model developers may wish to concentrate their efforts. For all of the QSARs considered, 561 

uncertainty could be reduced by easy to implement strategies (Table S4). For instance, there were a 562 

number of issues with the provenance of biological data utilised in the QSARs including: 1) a lack of 563 

clarity over the exact description of the data (i.e. protocols) that were utilised, 2) selection of small 564 

data sets from larger data compilations without full explanation, 3) a lack of assessment of the quality 565 

of the toxicity data utilised, 4) not assessing the relevance of data for regulatory purpose, as well as 566 

other related issues. All of these issues can be addressed easily in the QSARs assessed to an 567 

appropriate level to improve possible acceptance of the models.  568 

The scheme also highlighted issues relating to the component “Mechanisms”. While the correct 569 

identification of mechanism of action of a chemical and its associated applicability domain is the aim 570 
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of this component, the reality is QSARs often deal with, at best, probable or plausible toxic mechanistic 571 

information. The level of mechanistic understanding needed to attain low uncertainty is often 572 

endpoint-specific and may vary with the experience, and even opinion, of the model developer. As 573 

noted above, there is also the current lack of knowledge of many mechanisms of toxic action – across 574 

species and effects – so pragmatism in model development and evaluation may be required in order 575 

to reduce the uncertainty associated with this component.   576 

It proves more difficult to reduce uncertainty relating to the toxicokinetics component. However, 577 

strategies could be put in place to determine whether metabolism is relevant – a good example, for 578 

instance, being with the metabolic component of the Ames Test model (QSAR #11). Relevance to 579 

regulatory endpoints is intrinsic to the endpoint and, obviously, cannot be changed. The analysis also 580 

highlighted the complexity of some models in comparison to the data being modelled, e.g. the use of 581 

highly multivariate statistical analysis to model relatively simple mechanisms of action. Thus models 582 

could, in theory at least, be simplified to reduce this uncertainty (as demonstrated in Table S4).  583 

Many issues with uncertainty will be overcome through adequate problem formulation in the 584 

development of a QSAR. The statement of problem formulation could be based around defined 585 

uncertainty criteria for the QSAR components, such that good modelling can be achieved from the 586 

outset. This will allow models to be designed, through the proper problem formulation, to be fit-for-587 

purpose even before they are created. For instance, a modeller can apply the QSAR components to 588 

understand the characteristics of the model to be built e.g. the relevance and quality of the data, 589 

mechanistic understanding, coverage of descriptors etc. This should not be an onerous process, 590 

however, it is one that can be completed before model creation. In this regard, the QSAR developer 591 

could incorporate this information easily into the documentation associated with the model. In this 592 

way, the model will be assured of appropriate levels of uncertainty relating to purpose for these 593 

components. For existing QSARs, models would need to be assessed against the criteria, whether by 594 

the developer or user to demonstrate fitness-for-purpose. Overall, the opportunity is for the modeller 595 
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and user to investigate and hence define the relevance of a particular model for regulatory use as part 596 

of the development process.  597 

4.5 Using the components to improve acceptability of QSARs 598 

A fundamental aim of a QSAR is to provide a meaningful, relevant and robust in silico model that is fit-599 

for-purpose. Table 1 indicates some of the uses of models, ranging from data investigation and 600 

knowledge generation, demonstration of new techniques or descriptors to specific use in industry or 601 

regulation. The use of a model could be considered against the requirements of a model to meet a 602 

particular purpose. As the spectrum of models increases, from the analogue approach to high level, 603 

multidimensional representations of big data, it is important to appreciate that few models are 604 

suitable for more than one purpose. Thus, there is a place for all types of models and a means is 605 

required to determine whether it is suitable for the purpose proposed (Richarz, 2020).  606 

If the purpose is for regulatory use, the QSAR must provide predictions that are acceptable according 607 

to predefined (often legislative rather than scientific) criteria. With regard to data gap filling, the most 608 

stringent criteria for the acceptable replacement of an animal test are likely to be required (shown as 609 

Risk Assessment in Figure 2). Due to the many uncertainties that may be present in a QSAR – as 610 

demonstrated in the analyses in this study – it has been increasingly difficult to gain acceptance of 611 

QSAR predictions and more fundamental and justifiable approaches, such as read-across, have been 612 

applied more commonly (ECHA, 2020).  613 

The application of the component scheme described in the study allowed for a better understanding 614 

of the requirements for different types of regulatory use of QSAR, demonstrated a realistic assessment 615 

of QSAR models, provided strategies for their improvement, and is a means of providing evidence to 616 

the user of good model development. Future use of such components is foreseen from the very first 617 

stages of model design and data harvesting, through to the documentation of the final model.  618 
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It is foreseen that the application of such criteria will not replace the use of OECD Principles, but will 619 

supplement the information and should be used hand-in-hand with reporting formats such as the 620 

QMRF and QPRF.   621 

 622 

5. Conclusions 623 

Ten assessment components have been described in this study which are designed to assess 624 

uncertainties, but also variabilities and areas of bias of QSARs. These components rationalise and 625 

organise the larger number of criteria on which they are based. The ten components summarise the 626 

three key phases of in silico modelling – creation, characterisation and application. These components 627 

have been used to demonstrate and, to a certain extent, semi-quantify the key characteristics of 628 

uncertainty that are required for different regulatory purposes, and that different types of models 629 

should be applied for different purposes.  630 

As a proof of concept, the components were applied to twelve recently published QSAR studies for 631 

various (eco-)toxicological endpoints. The purpose was to identify areas of potential uncertainty, 632 

variability or bias that may reduce a QSAR’s applicability in a regulatory context. For the QSARs 633 

considered, most uncertainties centred around four factors: 1) the quality and / or reproducibility of 634 

the toxicity data modelled, 2) transparency of the descriptors and the model, 3) the consideration of 635 

mechanisms of action and toxicokinetics and 4) relevance for regulatory use. The analysis of the 12 636 

QSARs demonstrated that they provide a means to assess uncertainty, identifying areas where 637 

strategies can be implemented to reduce uncertainty to an acceptable level. It is anticipated that this 638 

form of assessment could be initiated at the problem formulation stage of QSAR development to 639 

ensure the model is fit-for-purpose. In this way, the scheme provided a usable, practical and flexible 640 

means of evaluating a QSAR that extends the OECD Principles. .   641 

 642 
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