
Scott, SN, Fontana, FY, Cocks, MS, Morton, JP, Jeukendrup, A, Dragulin, R, 
Wojtaszewski, JFP, Jensen, J, Castol, R, Riddell, MC, Stettler, C and study of 
Integrative Biology of Exercise in diabetes, 

 Post-exercise recovery for the endurance athlete with type 1 diabetes: a 
consensus statement.

http://researchonline.ljmu.ac.uk/id/eprint/14968/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Scott, SN, Fontana, FY, Cocks, MS, Morton, JP, Jeukendrup, A, Dragulin, R, 
Wojtaszewski, JFP, Jensen, J, Castol, R, Riddell, MC, Stettler, C and study of
Integrative Biology of Exercise in diabetes, (2021) Post-exercise recovery 
for the endurance athlete with type 1 diabetes: a consensus statement. The 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


http://researchonline.ljmu.ac.uk/



1 
 

Post-exercise recovery for the endurance athlete with type 1 diabetes: A review and 

consensus statement  

 

Sam N. Scott, PhD1,2, Federico Y. Fontana, PhD2, Matt Cocks, PhD3, Prof. James P. Morton, 

PhD3; Prof. Asker Jeukendrup4, Radu Dragulin, MD1, Prof. Jørgen F. P. Wojtaszewski, PhD5, 

Prof. Jørgen Jensen, PhD6, Rafael Castol, MD2, Prof. Michael C. Riddell, PhD7 & Prof. 

Christoph Stettler, MD1 for the working group for the study of Integrative Biology of Exercise in 

diabetes (IBEXd)   

 

1Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University 

Hospital, University of Bern, Switzerland 

2Team Novo Nordisk Professional Cycling Team, Atlanta, USA  

3Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, 

Liverpool, United Kingdom 

4School of Sport and Exercise Sciences, University of Birmingham, Birmingham, UK 

5Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of 

Copenhagen, Copenhagen, Denmark 

6 Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway 

7School of Kinesiology and Health Science. Muscle Health Research Centre, York University, 

Toronto, Canada 

 

 

Corresponding Author: 

Prof. Dr. med Christoph Stettler  

Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism  

Inselspital Bern  

3010 Bern 

Switzerland  

+41(0)316324070  

christoph.stettler@insel.ch 

 

Word count: 6478 

Number of Figures: 4 

Number of Tables: 0 

  



2 
 

Abstract 

In recent years, there has been substantial progress in our knowledge of exercise and type 1 

diabetes (T1D), with the development of guidelines for optimal glucose management. In 

addition, an increasing number of people living with T1D are pushing their physical limits in 

order to compete at the highest level of sport. However, the post-exercise recovery routine, 

particularly with a focus on sporting performance, has received little attention within the 

scientific literature, with most of the focus being placed on insulin or nutritional adaptations to 

manage glycaemia before and during the exercise bout. The post-exercise recovery period 

presents an opportunity for maximising training adaption and recovery, and the clinical 

management of glycaemia through the remainder of the day and overnight. The lack of clear 

guidance for the post-exercise period means that people with T1D must either develop their 

own recovery strategies based on individual trial and error or follow guidelines that have been 

developed for people without diabetes. This review provides an up-to-date consensus on post-

exercise recovery and glucose management for individuals living with T1D. We aim to: 1) 

outline the principles and time course of post-exercise recovery, highlighting the implications 

and challenges for the endurance athlete living with T1D; 2) provide an overview of potential 

post-exercise recovery strategies that could be used by athletes with T1D to optimise recovery 

and adaptation, alongside improved glycaemic monitoring and management; 3) highlight the 

potential for technology to ease the burden of managing glycaemia in the post-exercise 

recovery period. 

 

Search Strategy and Selection Criteria  

References for this review were identified through searches of PubMed and other relevant 

biomedical databases for articles containing the terms “type 1 diabetes” or “insulin-dependent 

diabetes” and “exercise”, “post-exercise”, or “physical activity”, published up until 23rd 

December 2020 and restricted to English language publications. Additional searches were 

done with the following terms for various subtopics within this review: “nutrition”, 

“carbohydrate”, “protein”, “fructose”, “caffeine”, “glycogen”, “active cool down”, “alcohol”, “cold 

water immersion”, “ice baths”, “dietary protein”, “glycaemic index”, “energy expenditure”, 

“glycaemic control”, “management”, “hypoglycaemia”, “hyperglycaemia”, “hydration” “sleep”, 

“technology”, “decision”, “decision-making”, or “prevention and control”.  
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1. Introduction 

In recent years, there has been substantial progress in our knowledge of managing blood 

glucose concentrations in the context of exercise and type 1 diabetes (T1D), with the 

development of exercise-specific guidelines 1. Many people living with T1D now live an active 

lifestyle and there are numerous examples of people achieving incredible feats of physical 

endurance while living with the condition 2,3, even reaching the highest level in their sport. 

However, in contrast to their counterparts without diabetes, research specifically examining 

the post-exercise recovery routine is scarce, with most of the focus being placed on insulin or 

nutritional strategies to manage glycaemia before and/or during the exercise bout. Although 

the guidelines by Riddell et al. 1 do contain advice regarding the post-exercise period, this 

section is rather brief, and places its focus on glycaemia rather than optimising recovery. This 

is unfortunate, because irrespective of an individual’s training or competition goals, the post-

exercise recovery period provides an opportunity for maximising training adaption and 

recovery 4.  

The aim of this review is to provide an up-to-date consensus on post-exercise recovery 

and glucose management for the endurance athlete living with T1D. First, we will outline the 

principles and time course of post-exercise recovery, highlighting the additional implications 

and challenges for the athlete living with T1D. Second, we will provide an overview of potential 

post-exercise recovery strategies that could be used by endurance athletes with T1D to 

optimise recovery and adaptation, alongside improved glycaemic monitoring and 

management. Third, we outline the ways in which rapid developments in technology can be 

used to ease the burden of managing glycaemia in the post-exercise period. The manuscript 

is aimed at anyone living with T1D that regularly undertakes endurance exercise for 

competition and/or health reasons.  

 

1.1. Principles and Time Course of Exercise Recovery 

An increasing number of individuals living with T1D are now aiming to compete at the top level 

of their chosen sport 5. This requires developing behaviours to optimise nutrition and insulin 

dosing during the periods before, during, and after exercise. The importance of post-exercise 

recovery practices have been well described for athletes without diabetes, with literally 

hundreds of studies investigating various ways to optimise training adaptations, rates of 

glycogen resynthesis and athlete safety, leading to multiple guideline papers and the 

incorporation of these strategies as an integral part of evidence-based training regimes 6,7. For 

the athlete with T1D, the challenge of managing glycaemia makes this more difficult as they 

must also consider the effects of altered insulin sensitivity, post-exercise hyperglycaemia, 

depleted glycogen stores, dehydration, impaired glucose counteregulatory responses, insulin 

dosing, abrupt changes in the rate of muscle glucose uptake due to halt in muscle contraction, 

and nutritional selection (for energy/macronutrient intake) on blood glucose concentration. The 

lack of clear guidance for athletes living with T1D means that they often either develop their 

own recovery strategies, based on individual trial and error, or follow guidelines that have been 

developed for athletes without diabetes.  

 

1.2. Defining the Post-Exercise Period  

The post-exercise period can be simply defined as the period of time after exercise until a new 

bout is initiated. A bout of exercise influences glycaemia both during and after, and this can 
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persist for up to at least 48 hours due to changes in insulin sensitivity and muscle glucose 

uptake 8. Therefore, technically speaking, the post-exercise period includes everything from 

immediately post exercise and the subsequent 48 hours (and potentially longer after 

exhaustive endurance exercise or if there is severe muscle damage). In reality, athletes 

compete or train much more regularly than every 48 hours, sometimes multiple times per day 

(Figure 1). Rest and recovery are important aspects of an athlete’s training regime for optimal 

performance and training adaptation 9. During situations of suboptimal recovery time, the 

athlete and/or sports coach must have a good understanding of which aspects of recovery they 

prioritise. The aim will be to ensure that glycaemia is stable within optimal ranges and energy 

substrates have recovered to as great a degree as possible to facilitate performance, while 

avoiding potentially dangerous glucose excursions and risk of complications.  

For the athlete with T1D, it would seem that managing post-exercise glycaemia and 

achieving adequate recovery (e.g. replenishing glycogen stores, ensuring adequate sleep, 

etc.) should go hand in hand. Post-exercise late-onset hypoglycaemia is a common occurrence 

for people living with T1D 10, suggesting that improving the post-exercise recovery routine 

could reduce this risk. On the other hand, high-intensity efforts (above lactate threshold) may 

be related to immediate post-exercise hyperglycaemia, which appears to be more common 

with fasted morning exercise as compared to exercise at other times of the day 11. Post-

exercise hyperglycaemia may also result after moderate-intensity aerobic exercise 12 due to a 

number of factors such as prolonged insulin pump suspension/removal 13, loss of insulin 

delivery (pump site failure), reduced basal insulin delivery prior to or during exercise, and 

poorly matched insulin administration to high rates of carbohydrate feeding. Prolonged post-

exercise hyperglycaemia with or without hypoinsulinaemia may impact optimal glycogen 

recovery and should be managed with insulin dosing adjustments in the immediate post-

exercise period to promote the complete restoration of liver and muscle glycogen stores. 

Excessive insulin administration in early recovery may however, increase the risk for late-onset 

hypoglycaemia 14. An understanding of the metabolic changes that occur during and after 

exercise, as well as the individual glycaemic responses with different types or intensities of 

exercise, may facilitate the development of nutrition and insulin dosing regimens to optimise 

rate of recovery.  
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Figure 1. Challenges experienced by the athlete living with type 1 diabetes during the 

post-exercise recovery period 

Unlike athletes without diabetes, for the athlete with T1D, the tasks of monitoring glucose, 

insulin dosing and carbohydrate intake for optimal glycaemia must always take priority. The 

athlete with T1D needs to individually balance the normal recovery requirements 

(replenishment of energy substrates, promotion of muscle remodelling and recovery of skeletal 

muscle damage), while preventing potentially life-threatening severe hypoglycaemia or 

ketoacidosis 15 that may also prolong recovery. This figure shows an example of the tasks and 

challenges that an athlete with T1D must manage when training more than once per day. Note, 

that the tasks of managing glycaemia are in addition to the other logistical and personal 

challenges such as travel, media demands, work, and family commitments. In the image, the 

red box represents the recovery period between the 1st and 2nd training sessions, during which 

the athlete must make sure they are prepared for the next exercise session. In this example, 

recovery time will be limited to just a couple of hours between sessions meaning the athlete 

with T1D must have a sound strategy in place to ensure recovery, fuel for the next training 

session, while simultaneously managing glycaemia.  

 

1.3. Changes in Post-Exercise Metabolism 

At rest, energy consumption is low, with a carbohydrate oxidation rate of ~0.1 g∙min-1 

depending on the diet and exercise prior to the measurements 16. During exercise there are 

considerable changes in fuel utilisation that are determined primarily by the intensity and 

duration of exercise 16. When exercising at intensities >70% of �̇�O2max, carbohydrate will be 

the main fuel source 16. These changes in metabolism also occur in people living with T1D 

whereby there is greater carbohydrate oxidation with higher exercise intensities 17.  

A handful of studies have investigated exercise-associated fuel metabolism in people 

with T1D and the impact of differing plasma glucose and insulin concentrations 19-23. 

Chokkalingham et al. 21 compared the effects of differing insulin levels on whole-body and 

muscle metabolism in people with T1D during moderate-intensity exercise. Hyperinsulinemia 

caused an increase in blood glucose utilisation during exercise but with no sparing of 

intramyocellular glycogen. Subsequently, Chokkalingham and colleagues 22 compared hepatic 

glycogen utilisation during exercise in people with T1D and people without T1D. Despite the 

significantly higher systemic insulin and glucose levels in those with T1D, there were no major 

differences in substrate oxidation nor hepatic glycogen breakdown between the two groups. 

Jenni et al. 19 investigated the impact of different glucose levels at identical levels of low 
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insulinaemia on fuel metabolism during moderate-intensity exercise in people with T1D. They 

found that there was a higher rate of carbohydrate oxidation during exercise in hyperglycaemia 

than during euglycaemia with inverse findings for lipid oxidation. While these studies provide 

important insights into the potential effects of pharmacological insulin levels and varying 

glucose levels on fuel metabolism, the effects post exercise remain to be determined. 

Therefore, the following is drawn primarily from research conducted in individuals without 

diabetes.  

Carbohydrate oxidation is predominant during a bout of moderate- to high-intensity 

exercise 16, but lipid oxidation becomes the main fuel source post exercise 24, resulting in a 

decrease in respiratory exchange ratio (RER), even under conditions of high carbohydrate 

feeding 24. The decrease in RER following prolonged aerobic exercise has been shown to 

persist to the following morning in adults without diabetes 25. This shift in substrate metabolism 

demonstrates high metabolic priority for muscle glycogen resynthesis, whereby lipid oxidation 

from intra- and extra-muscular sources is elevated to meet fuel requirements 26. The 

importance of this is evidenced by the fact that there is a strong relationship between the 

replenishment of liver and skeletal muscle glycogen stores post-exercise and an individual’s 

subsequent exercise performance 27,28. Commencing a bout of exercise with reduced muscle 

glycogen content impairs exercise capabilities 29, meaning that restoration of muscle glycogen 

is vital if optimal performance is desired.  

 

1.4. Muscle Glycogen Resynthesis: Insulin Independent and Dependent Phases 

The process of muscle glycogen resynthesis begins immediately following exercise and is the 

most rapid during the first 5-6 hours of recovery 30. Glycogen resynthesis post exercise occurs 

in a biphasic pattern, whereby there is an initial rapid phase, lasting minutes to hours, that does 

not require the presence of insulin, followed by a more prolonged insulin-dependent phase 

lasting up to 72 hours 31,32. Following an exercise bout, muscle glycogen is typically restored 

to pre-exercise concentrations within 24-36 hours, provided sufficient carbohydrate is ingested 
33,34. For athletes involved in multiple training sessions or competitions on the same day or 

successive days, muscle glycogen stores need to be replenished more rapidly and this can be 

facilitated with certain carbohydrate feeding strategies, (for reviews detailing studies on people 

without T1D see 4,35,36). When rapid recovery from prolonged exercise is the key objective, and 

peak performance is required within 24 hours, people without diabetes are advised to consume 

1-1.3 g CHO∙kg-1∙h-1 for the first 4 hours of recovery, starting as soon as possible after exercise 

with frequent feeding intervals thereafter (i.e. every 30 minutes) 6,37,38. These carbohydrate 

requirements are likely to be similar for an endurance athlete living with T1D. For athletes with 

T1D, who manage their insulin via exogenous administration, greater understanding of the 

physiology of glycogen resynthesis, may help to reduce the risk of hypo/hyperglycaemia, with 

the appropriate adjustments in insulin delivery to facilitate a safe and effective recovery.  

 

1.4.1. Insulin-Independent Phase of Muscle Glycogen Resynthesis  

After exercise of sufficient intensity and duration to largely deplete muscle glycogen stores, 

glycogen synthase activity 31,39 and the permeability of the muscle cell membrane to glucose 

increases 40,41. This results in an initial rapid phase of glycogen resynthesis, which is 

independent of insulin signalling that typically lasts ~30-60 minutes according to studies 

conducted in humans without diabetes 32,39,42. Glucose is the primary substrate for muscle 

glycogen resynthesis; however, after predominantly anaerobic exercise, lactate also becomes 
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a significant contributor, accounting for ~20% of total muscle glycogen resynthesis 43. The 

initial rapid phase of glycogen resynthesis in the muscle appears to be due to contraction-

induced GLUT4 translocation to the cell membrane and augmented glycogen synthase activity 
39,44. The rate of resynthesis during this initial phase can rapidly decline in the absence of 

exogenous carbohydrate 31,42. Research conducted in people with T1D is very limited in this 

area, with the exception of a few studies conducted in the 1970s 31,45,46. However, it can be 

assumed that provided adequate carbohydrates are consumed, this initial phase of glycogen 

resynthesis would be normal in the athlete with T1D (Figure 2).  

 

1.4.2. Insulin-Dependent Phase of Muscle Glycogen Resynthesis  

The second phase of glycogen resynthesis has been defined as the insulin-dependent phase 
31,32,47, which potentially requires additional considerations in the athlete with T1D as insulin is 

administered exogenously. In individuals without diabetes, insulin release due to carbohydrate 

intake increases blood flow to the muscle, GLUT4 translocation to plasma membrane, 

hexokinase II and glycogen synthase activity 48-50, all of which contribute to increased glucose 

uptake by the muscle and glycogen synthesis. In the absence of carbohydrate intake, this 

second phase occurs at a rate approximately 7-10 fold slower than the initial rapid phase 47. 

Carbohydrate feeding immediately after exercise, along with the natural rise in insulin levels, 

has an important effect on the rate of glycogen synthesis during the slow phase. The 

effectiveness of the carbohydrate intake to speed muscle glycogen recovery during the second 

phase is directly related to the plasma insulin response 51.  

During the mid to late post-exercise period (3-12 hours after exercise), the magnitude 

of increased insulin sensitivity can be extremely high, significantly increasing the risk of post-

exercise hypoglycaemia. Therefore, individuals with T1D must take this into account and 

typically reduce their bolus and/or basal insulin dose accordingly post exercise 52, based on 

frequent glucose monitoring and some trial and error, to help prevent hypoglycaemia. Due to 

the absence of studies quantifying insulin adaptations in the post-exercise period, we usually 

recommend that the bolus insulin dose can be reduced by ~20-50% at the first recovery meal, 

along with a similar reduction in the insulin basal delivery rate (for those on pump) for ~6-12 

hours or a reduction in the first basal insulin dose (multiple daily insulin injections) in the 

recovery period, although the precise amount will depend on the type, intensity and timing of 

the exercise performed. Other athletes with T1D may choose not to adjust their insulin delivery 

but simply consume carbohydrates at an elevated rate that preserves blood glucose 

concentrations.  

A handful of pioneering studies conducted in the 1970s used muscle biopsies to 

investigate post-exercise muscle glycogen synthesis in people with T1D 45,46,53,54. Maehlum et 

al. 53 compared glycogen resynthesis rates in 6 participants with and without T1D ingesting a 

carbohydrate rich diet during 12 hours of recovery after exhaustive cycling exercise. The group 

with T1D took a fixed insulin dose after the exercise, although not enough to maintain blood 

glucose concentration within the target range due to the additional carbohydrates consumed. 

During exercise, muscle glycogen utilisation was similar in the two groups. Following exercise, 

glycogen synthesis rate was most rapid in the first 4 hours of recovery in both the group with 

and without T1D (6.4 ± 0.6 mmol glucosyl units/kg ww/h vs. 7.2 ± 0.7 mmol glucosyl units/kg 

ww/h in the group with and without T1D, respectively). In a subsequent experiment, the same 

group 46 investigated the effect of insulin deprivation on muscle glycogen resynthesis during 

12 hours of recovery after exhaustive exercise. Using a similar protocol to the previous study, 
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5 participants with T1D were given a carbohydrate rich diet, but this time insulin was withheld 

during recovery. In the first 4 hours, they reported high rates of glycogen synthesis, similar to 

the previous study in which they gave insulin 31. In the subsequent 8 hours, there was no further 

increase in glycogen synthesis in the insulin deprivation condition despite the fact that plasma 

glucose concentration was 20-30 mmol/l and that glycogen synthase was activated 46. These 

observations provide clear support for the importance of insulin signalling in the second phase 

of glycogen resynthesis. However, it is important to note that these studies were not performed 

under physiological conditions given the likelihood of ketoacidosis with insulin deprivation and 

clearly lack control in terms of the exhaustive exercise bout, food consumption and blood 

glucose concentration. Since the completion of these studies 31,45,46 over 40 years ago, there 

have been substantial improvements in insulin formulations and delivery methods and our 

knowledge of the effects of exercise on glucose concentrations in T1D. Therefore, the post-

exercise period in the athlete with T1D should be the focus of renewed interest using rapid-

acting insulin analogues with much shorter half-lives. 

These studies illustrate the importance of post-exercise insulin adjustments for optimal 

glycogen resynthesis as well as individual basal insulin adjustments due to increased insulin 

sensitivity. For the athlete with T1D, the best strategies for insulin administration post exercise 

are likely to be highly individual and depend on particular circumstances. The priority after 

finishing a bout of exercise should be to first get his or her blood glucose concentration stable 

and within target range (4-10 mmol/l). This may be achieved by taking an insulin correction if 

required 14 and then adding additional bolus insulin to cover the carbohydrate and protein 

intake consumed in early recovery to stimulate glycogen resynthesis, and muscle protein 

synthesis. As always, it is important to re-emphasise, that while the rate of glycogen 

resynthesis is important, the athlete with T1D needs to balance this with the risk of 

hyperglycaemia and hypoglycaemia. Athletes with T1D must also be made aware that the 

greater muscle insulin sensitivity after exercise can persist for up to 48 hours (or even longer 

following extreme exercise bouts) and this means they must be aware of delayed onset of 

hypoglycaemia. In addition, they should adapt their insulin doses based on individual increases 

in insulin sensitivity experienced during periods of increased training or competition 2. Athletes 

and their coach/trainer/nutritionist should work on developing a regular routine of post-exercise 

nutrition and insulin administration based on individually defined parameters and requirements. 

Section 2 of this statement will outline potential strategies to help facilitate this.  

 

1.5. Liver Glycogen Metabolism During and After Exercise 

Skeletal muscle glycogen metabolism has received much attention over the last 6 decades 

since the development of the muscle biopsy technique 36,55. However, the role of hepatic 

glycogen during and after exercise has been less well studied, primarily due to the difficulty of 

accessing tissues samples compared to muscle biopsy samples. Development of 13C-

magnetic resonance spectroscopy (MRS) as a non-invasive measurement of human liver 

glycogen 56 has enabled repeated measurements of liver glycogen content to be made without 

inducing the catecholamine response that sometimes is induced by biopsy procedures. A 

handful of studies have used 13C-MRS to measure the effect of carbohydrate ingestion on the 

rate of post-exercise hepatic glycogen resynthesis in athletes without diabetes 27,57,58 (see 

Section 2.2). Although there are no data on hepatic glycogen metabolism during the post-

exercise period in athletes with T1D, Bally et al. 59 found comparable hepatic and 

intramyocellular glycogen stores between well-controlled adults living with T1D and a group of 
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matched individuals without T1D under standardised resting conditions. Future research 

should aim to use these techniques to investigate optimal strategies to maximise hepatic 

glycogen resynthesis after prolonged endurance exercise in athletes living with T1D. 

 

1.6. Influence of Sex Hormones and Menstrual Cycle Phase on Fuel Metabolism and 

Glycogen Resynthesis 
Within the T1D and exercise literature, the majority of published work has only included young 

healthy males, and those that have included females tend not to recognise the potential sex-

related impact on their outcomes. As was highlighted previously, 5,60,61, this is an important 

issue, as there are likely to be important sex-related differences in metabolic and 

neuroendocrine responses during and after exercise that will influence glycaemia, 

carbohydrate requirements, and glycogen resynthesis. Female athletes with T1D may 

experience important changes in glycaemia that are linked to the menstrual cycle phase. These 

changes are likely to influence insulin and carbohydrate needs before, during and after an 

exercise bout.  

 

 

Figure 2. Muscle glycogen recovery and blood glucose concentrations after prolonged 

exercise. Adapted from 31,46 

Panel A shows the glycogen content in individuals with T1D with insulin administration and 

individuals without T1D. Panel B shows the effects of insulin deprivation in individuals with 

T1D, where the changes are apparent in the second (insulin-dependent phase). The dark grey 

shading illustrates the exercise period and light grey is the recovery period up to 12 hours post 

exercise. Panels C and D, are the corresponding blood glucose profiles to graphs A and B 
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above, demonstrating the importance of prioritising blood glucose concentration during 

recovery. 

 

2. Strategies to Maximise/Facilitate Post-Exercise Glycogen Synthesis in Athletes 

Living with Type 1 Diabetes 

Athletes without diabetes do not need to consider their blood glucose concentration in the 

same way as those living with T1D since their β-cell response is intact and insulin is produced 

endogenously. For those without T1D, following a bout of exhaustive exercise, replenishment 

of glycogen stores is the primary aim, with rate of carbohydrate absorption in the gut and 

glucose uptake in the muscle being the main limitation, with little concern of hyper- or 

hypoglycaemia 39. For the athlete with T1D, maintaining blood glucose concentration within 

target range (4-10 mmol/l) adds an additional level of complexity that requires vigilance, 

frequent glucose monitoring, preferably by CGM, and often insulin dose titration. Nutritional 

strategies to maximise rate of glycogen resynthesis and muscle protein synthesis after 

exercise have been well studied in athletic populations without diabetes. Muscle damage repair 

and skeletal muscle reconditioning are also important determinants of recovery 7. A positive 

muscle protein balance is needed to facilitate repair of exercise induced muscle damage 62 

and in the long-term for muscle hypertrophy for improved athletic performance, depending on 

the event. In this section, we outline the potential impact of timing, quantity, and type of nutrition 

as well as post-exercise recovery practices (cool down, ice baths, sleep) and how they could 

be used to simultaneously manage glycaemia and rate of recovery (see Figure 3 for a 

summary).  

 

2.1. Post-Exercise Carbohydrate Intake 

The quantity of post-exercise carbohydrate intake will depend on the type, duration and 

intensity of the exercise performed as well as blood glucose concentration and the circulating 

level of insulin. If maximising the rate of muscle glycogen resynthesis is the primary aim (which 

is common for endurance/ultra-endurance athletes that compete multiple times within a short 

timespan), post-exercise carbohydrate ingestion represents the most important factor 

determining the rate of muscle glycogen synthesis 34,39. During situations in which speedy 

recovery of glycogen is required (<8 hours recovery between two fuel demanding sessions) 

athletes without T1D are recommended to consume 1-1.3 g CHO∙kg-1∙h-1 for the first 4 hours 

and then resume regular meal patterns to meet daily fuel needs 6. During such situations, 

athletes may choose carbohydrate-rich foods that are low in fibre and easily consumed (e.g. 

white rice or pasta). For the athlete with T1D, there is limited research in this area. However, 

it is likely that requirements are similar, provided insulin is taken in the correct amount to 

manage glycaemia. In recent years, low-carbohydrate or carbohydrate-restricted diets have 

received much attention due to suggested benefits for health, glycaemic management and 

sports performance. As this is a topic of debate beyond the scope of this this review, interested 

readers are referred to a recent review by Scott et al. (2019) 63. 

The athlete with T1D should also be aware that addition of fat, protein and/or fibre will 

alter glycaemic profile of a meal 64,65. The use of a hybrid closed-loop insulin delivery system 

that automatically changes basal insulin delivery based on unique settings customised to the 

individual's insulin sensitivity, real-time glucose measurements and other variables may 

facilitate glycaemic management during the recovery period, particularly when sleeping 66.  
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2.2. Effects of the Type and Form of Carbohydrates on Post-Exercise Recovery and 

Glycaemia 

The form in which carbohydrates are ingested (i.e. solid vs. liquid) does not appear to make a 

difference to the rate of glycogen resynthesis 67. However, the type of carbohydrate is 

important, due to differing rates of digestion, intestinal absorption and hepatic metabolism, 

which are key determinants of their glycaemic impact and rate of delivery to skeletal muscle 
39,58,68. A handful of studies have directly compared ingestion of glucose-fructose mixtures vs. 

glucose alone on the post-exercise muscle glycogen repletion in individuals without diabetes 
27,57,69,70. Based on the evidence from these studies, post-exercise ingestion of glucose-

fructose mixtures does not appear to accelerate muscle glycogen repletion compared to 

glucose alone. A few studies have used 13C-MRS to non-invasively compare the effects of 

glucose and fructose co-ingestion with glucose alone on post-exercise liver glycogen 

resynthesis in people without diabetes 27,57,58. When fructose is co-ingested with glucose (either 

as free glucose and free fructose or sucrose) the rate of liver glycogen repletion is 

approximately double the rate seen when ingesting glucose alone and this effect is clearest 

when carbohydrate ingestion rate exceeds 0.9 g CHO∙kg-1∙h-1. The greater liver glycogen 

repletion seen with glucose and fructose is likely due to preferential hepatic metabolism of 

fructose and/or faster digestion and independent absorption kinetics. For a general overview 

in this area, interested readers are referred to other detailed reviews 71,72.  

Focusing on the athlete with T1D, these alternative, multiple transportable 

carbohydrates such as fructose, isomaltulose and galactose (although there is currently only 

data on the former) may also be beneficial for reducing the risk of exercise-associated 

hypoglycaemia due to the lower amount of insulin required to cover their intake 73,74. 

Unfortunately, no studies have yet investigated glycaemic effects of fructose ingestion post 

exercise in people with T1D or the possible impact on glycogen resynthesis (liver or muscle). 

  

2.3. Fluid Management  

To preserve homeostasis, optimal body function and well-being, athletes should aim to have 

fluid management strategies for before, during and after exercise to maintain euhydration, 

depending on the type and duration of exercise, as well as the environment. The athlete with 

T1D will have to consider what they drink (i.e. if it contains carbohydrates) in addition to how 

much they consume to manage glycaemia and hydration. Most athletes finish a bout of 

exercise with a fluid deficit so will need to restore euhydration during recovery 75. In addition to 

water, sweat contains substantial but variable amounts of sodium, potassium, calcium and 

magnesium. Therefore, athletes should not be advised to restrict sodium post exercise, 

particularly when large sodium losses have occurred 6.  

Concerns that thermoregulation may be impaired in people living with T1D during 

exercise, particularly under hot and humid conditions, have previously been raised 76. Data is 

quite limited in this area, but studies have shown that young individuals with T1D without 

diabetes-related complications have no differences in sweat rates during low- to moderate-

intensity exercise compared to individuals without diabetes matched for age, sex, body surface 

area, body composition, and physical fitness 77,78. However, Carter et al. 77 found that when 

exercising at higher workloads (≥250 W∙m-2) in the heat (35°C at 20% humidity), local sweating 

response in individuals with T1D was lower and core body temperature was higher compared 
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to participants without T1D. These findings suggest that the reduced sweat rate may lead to 

reduced ability to dissipate heat at higher workloads.  

Whether those living with T1D experience differences in thirst perception vs. those 

without diabetes (i.e. thirst depending on changes in blood osmolality) has not been fully 

defined, although high blood glucose concentrations increasing blood osmolality are likely to 

signal for increased thirst sensation 79. This is supported by Buoite Stella et al. 80, who found 

using a questionnaire that self-reported fluid intake during exercise was higher in a group of 

individuals with T1D compared with a group of age and sport-matched individuals without T1D. 

Hyperglycaemia influences the hydration status in individuals with diabetes because it alters 

the fluid resorption in the kidneys and causes a shift in free water from cells into the circulation. 

When blood glucose concentration is <9-10 mmol/l, almost all glucose in filtrate is reabsorbed 

in the proximal tubule and the amount of glucose in the urine is negligible. When blood glucose 

concentration goes >9-10 mmol/l, glucose in the filtrate can escape and glucose can be found 

in the urine (glucosuria) 81. The amount of glucose reabsorbed increases linearly with rising 

plasma glucose concentration until a maximum value is reached. Any further increase in 

filtered glucose load is excreted in urine 81. Because glucose needs to be dissolved in water, 

whenever glucose is lost in urine, water must follow. This osmotic drive increases the risk of 

dehydration if fluid losses are not compensated.  

 

2.4. Co-ingestion of Additional Nutrients: Protein, Caffeine, Alcohol 

Rates of glycogen resynthesis and blood glucose concentration can be affected (both 

positively and negatively) by the co-ingestion of other nutrients with carbohydrate 4,82. Such 

information is useful when glycogen resynthesis is required in a short time frame.  

2.4.1. Protein 

In addition to carbohydrates, insulin secretion is induced through intravenous infusion or oral 

ingestion of certain amino acids in individuals without diabetes 83,84. Studies have also shown 

that there is a synergistic effect of combined amino acids and/or protein and carbohydrate 

ingestion on insulin secretion 84,85. This evidence led to the commonly used strategy in athletes 

without diabetes of co-ingesting carbohydrate and protein with the aim of accelerating post-

exercise muscle glycogen resynthesis and taking advantage of the anabolic effects of insulin 
4,6,7. Indeed, there is evidence that when amino acids and/or protein are co-ingested with 

carbohydrate, postprandial insulin levels are augmented, leading to an increase in glycogen 

synthase activity, when carbohydrate intake is below the threshold for glycogen storage (e.g. 

0.5-0.8 g CHO∙kg-1∙h-1) 82,86-88. However, when carbohydrate intake is adequate (e.g. >1 g 

CHO∙kg-1∙h-1), the co-ingestion of protein has no additional effect on glycogen synthesis 37,89, 

although there will still be effects of protein on anabolism.  

 The beneficial effects of protein intake in the recovery period is well described for 

athletes who do not have T1D. Studies have shown that performance was better in a second 

exercise bout 18 hours after exhaustive exercise with intake of 0.8 g CHO∙kg-1∙h-1 + 0.4 g 

protein∙kg-1∙h-1 compared to 1.2 g CHO∙kg-1∙h-1 during the first two hours of recovery 90,91. 

Although muscle glycogen was not measured in these studies, metabolic data suggested the 

glycogen stores did not limit performance after carbohydrate only intake during the first two 

hours of recovery 90,91. Importantly, muscle glycogen synthesis was similar during the 5-hour 

recovery period with intake of 0.8 g CHO∙kg-1∙h-1 + 0.4 g protein∙kg-1∙h-1 compared to 1.2 g 

CHO∙kg-1∙h-1 during the first two hours after exhaustive exercise 37 but performance was better 
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when protein was added to the recovery drink. Clearly protein intake will not influence 

endogenous insulin production in the athlete with T1D, but it may increase insulin dose 

requirements. The addition of protein post exercise is recommended, provided insulin is taken, 

as the protein is likely to contribute to glycogen resynthesis and increase muscle protein 

synthesis.  

2.4.2. Caffeine  

Caffeine is naturally found in many foods and is frequently added to sports supplements due 

to its ergogenic effects in a range of sporting events. Caffeine has numerous physiological 

effects including increased lipolysis in adipose tissues and hepatic glucose production 

alongside a decrease in glucose uptake in skeletal muscle 92,93. In people without diabetes, 

caffeine intake prior to exercise increases plasma glucose concentration (0.5 mmol/l) during 

moderate-intensity endurance exercise 94,95, and slightly more (1.0-1.5 mmol/l) after maximal 

effort time-trials 95,96. These responses have led to the suggestion that acute caffeine intake 

may attenuate exercise-associated hypoglycaemia in people with T1D 97. Ingestion of modest 

amounts of caffeine (200-250 mg, equivalent to 3-4 cups of coffee) has been shown to 

augment the symptomatic (i.e. increased hypoglycaemia awareness) and hormonal responses 

(e.g. greater catecholamine release) to hypoglycaemia in participants with 98,99 and without 100 

T1D. Regular caffeine ingestion has also been shown to reduce the frequency of moderate 

episodes of hypoglycaemia occurring overnight in individuals with long-standing T1D 101.  

Just one study has investigated the effects of caffeine on exercise-associated 

hypoglycaemia in individuals with T1D 102. However, there are currently no data to support the 

use of caffeine during the recovery period in athletes living with T1D. If caffeine is found to be 

useful for post-exercise recovery, future research should aim to define the lowest caffeine 

intake required to reduce the risk for hypoglycaemia because of the need to consider the 

possible disadvantages e.g. impaired sleep quality. The paucity of data on caffeine and 

exercise in individuals with T1D in conjunction with caffeine’s popularity both socially and as a 

sports supplement, suggests that this deserves further attention. 

2.4.3. Alcohol 

Alcohol is an important factor to consider, as anecdotal evidence suggests that some athletes 

regularly consume large amounts in the post-exercise period, particularly in team sports 

following competition. Alcohol intake has significant effects on carbohydrate metabolism in the 

liver and muscle as well as negative effects on fluid balance 103 with important implications for 

post-exercise recovery 104. Alcohol has been shown to inhibit glucose uptake into skeletal 

muscle 105, decrease the stimulating effect of exercise on muscle glucose uptake 106 and impair 

glucose utilisation 107. There is increased risk of hypoglycaemia when consuming alcohol  108,109 

due to inhibition of hepatic gluconeogenesis 110 and this is aggravated by  blunted symptoms 

of hypoglycaemia 111 and impairment of cognitive function 112. Therefore, athletes with T1D 

need to be particularly careful when consuming alcohol in the context of an exercise bout, due 

to the potentially additive risk of severe hypoglycaemia 113.  

2.5. Non-Nutritional Recovery Modalities 

Aside from the nutritional and insulin adjustment strategies, the most commonly performed 

recovery strategies are an active cool down (usually consisting of light aerobic activity) 114, cold 

water immersion 115 and massage. Here we provide a brief overview of their potential role 

(excluding massage) in the post-exercise routine of an athlete living with T1D.  
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2.5.1. Active Cool Down 

Many people regularly perform an active cool down, consisting of 5-15 minutes of low- to 

moderate-intensity exercise, after training or competition with the aim of facilitating recovery 
114. Although there are a number of proposed benefits, such as faster recovery of heart rate, 

reduced muscle soreness and more rapid reduction of metabolic by-products 116,117, only a few 

benefits are actually supported by research (reviewed by Van Hooren and Peake 114. Despite 

uncertainty surrounding the potential benefits in terms of recovery for those without diabetes, 

for those living with T1D, an active cool down should be considered, as this short active phase 

has the potential to influence blood glucose concentration and therefore may be used to help 

manage post-exercise glycaemia. For example, if blood glucose is only slightly elevated (i.e. 

8-12 mmol/l) at the end of an exercise bout (e.g. after high-intensity exercise, or following 

ingestion of carbohydrates during exercise), it may be appropriate to perform a low-intensity 

aerobic cool down with the aim of gradually reducing glucose concentration without the need 

to apply insulin (which may otherwise result in hypoglycaemia). On the other hand, if blood 

glucose is on the low side and/or trending down, the cool down can be reduced or eliminated 

and additional carbohydrates need to be consumed.  

2.5.2. Ice Baths 

Cold water immersion (CWI) in an ice water bath (also known as cryotherapy) is a common 

recovery practice 118. It is used by athletes involved in a variety of sports, with the aim of 

reducing muscle fatigue and potentially accelerating recovery between exercise sessions. 

However, there is still much debate about the potential beneficial effects of CWI, with 

contradictive evidence regarding the effects, with some studies showing even potential 

deleterious ones 119,120. Although research has shown that CWI does not impair glycogen 

resynthesis rates after exercise 121, the potential impact on glycaemia during post-exercise 

recovery in athletes with T1D has not been investigated. Therefore, there is no evidence to 

support routine recommendation of CWI in the endurance athlete with T1D. 

2.6. Optimising Sleep and Avoiding Nocturnal Hypoglycaemia 

People with T1D tend to experience higher rates of sleep disturbances than those without 

diabetes 122. Poor sleep has particular negative implications for those with T1D as it has been 

linked with reduced insulin sensitivity 123 and is associated with poorer glycaemic management 
124,125. Sleep is also critical for optimal athletic performance and for the regenerative processes 

and adaptations that take place during training and competition 126.  

In people living with T1D, physical activity, especially aerobic exercise, has been shown 

to increase the risk of nocturnal hypoglycaemia due to an increase in insulin sensitivity 127-129. 

Nocturnal hypoglycaemia is often particularly challenging for people with T1D, and is 

associated with significant risk, with over 50% of severe hypoglycaemia episodes occurring 

overnight 109,130. In a 3-week crossover trial by Reddy et al. 131, actigraphy was used to assess 

sleep in individuals with T1D during periods in which they undertook no exercise, resistance 

training or aerobic exercise. The authors found that participants slept less on nights following 

aerobic exercise and there was a trend towards decreased sleep in the resistance training 

condition compared to a control week with no exercise.  

For general information relating to napping, sleep extension and sleep hygiene 

practices, interested readers are referred to a review by Fullagar et al. (2015) 132. Specifically 

for the athlete living with T1D, it seems that improving time in target glycaemic range is a key 

component of getting a good night’s sleep. A number of studies have investigated the effects 

of a pre-bedtime snack on reducing the risk of nocturnal hypoglycaemia 133-135, but with mixed 
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results as to the effectiveness. More recently, technology for diabetes management, including 

advances in closed loop systems, have demonstrated improvements in glycaemic variability 

and time in range overnight 66,136,137.  
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Figure 3. Summary of Considerations to Maximise/Facilitate Post-Exercise Glycogen 

Synthesis in Endurance Athletes Living with Type 1 Diabetes 

References to support each of the statements are provided within the figure where data are 

available. The rates of carbohydrate, protein and fluid intake suggested here are based on 

research conducted on individuals without type 1 diabetes (T1D). Where published evidence 

is lacking due to a limited number of studies in the post-exercise period in individuals living 

with T1D statements are based on the authors’ opinion and experience. In such cases, this is 

denoted within the figure using AO (Author Opinion). For each of these considerations, 

glycaemia, insulin dose (type and whether on multiple daily injections or pump) will have to be 

taken into account and monitored. More detailed information relating to each topic are provided 

in the text. CGM = continuous glucose monitoring. 

3. Potential for Technology to Aid Post-Exercise Recovery  

Wide variation in training and nutrition plans, insulin requirements and diabetes experience, 

strongly suggest that there will never be a “one size fits all” set of guidelines that can be applied 

to every athlete living with T1D. What is consistent between individuals, however, is the large 

number of decisions that can influence glucose management and general health. Following 

diagnosis of T1D, the individual is launched into a process of decision-making that becomes 

part of his or her daily life. Indeed, it has been estimated that people with T1D must make as 

many as 600 decisions per day to manage their diabetes 138. Self-adjusted insulin dosing is 

complex as it involves recalling the time and amount of a dose while the insulin is still active, 

as per the pharmacokinetics of insulin and the temporal relationship of these doses to any 

recently ingested food. Physical activity presents additional challenges, with the majority of 

decision-making based on personal trial and error rather than input from medical professionals 
139. Therefore, developing adaptable, easy to follow decision support tools that can be adjusted 

according to each individual’s needs are likely to be extremely useful for improving not only 

performance but also blood glucose management and exercise participation.  

Rapid developments in technologies such as continuous glucose monitoring (CGM) 

sensors, smart devices/wearables, and closed-loop systems all contribute to the possibility of 

increased time in range around exercise with less input by the user (Figure 4). The use of 

increasingly accurate and reliable CGM technology in particular has greatly improved our 

knowledge of the glycaemic responses to exercise, even during the nocturnal period 140-143, 

thereby positively affecting post-exercise recovery. CGM technology has also been essential 

in the ongoing development of artificial pancreas systems using closed-loop automated insulin 

delivery 142. These systems combine sensor glucose measurement with insulin pumps using 

an algorithm to direct insulin delivery 66,144-146. Next generation closed-loop systems currently 

under investigation integrate other signals such as such as heart rate, skin conductance, 

ventilation rate and near body temperature, and add other hormones such as glucagon to help 

improve glucose and time in target range during and after exercise 144-147. Hybrid closed-loop 

systems are offering benefits for improved time in range and benefits in maintaining glycaemia 

within target range over night and under demanding environmental and even unplanned 

conditions 66,145,146,148. In the future, innovative algorithmic and machine learning (artificial 

intelligence) approaches are likely to further facilitate decision support 144. Such technology 

may also help to reduce some of the psychological toll and cognitive burden that T1D can have 

on the individual due to constantly having to calculate meal or correction boluses and account 

for differences in insulin sensitivity during or after exercise 149. Therefore, appropriate guidance 
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and support should be given to individuals interested in using these technologies so that they 

are used to their maximum potential.  

 

 

 

Figure 4. Proposed example of a connected virtual ecosystem to aid the decision-

making processes for optimised post-exercise glycaemia and recovery in people living 

with type 1 diabetes. Researchers, clinicians, sports coaches, and athletes living with T1D 

are increasingly integrating different data sources to facilitate decision-making behaviours 

related to glycaemia, training, and nutrition to meet energy requirements. Rapid development 

of hybrid-closed loop systems are also helping to make this much more automated 141,142,150. It 

is important to note that athletes without diabetes are also using similar data tools (e.g. glucose 

monitoring, food logging apps, wearables) to make decisions about their training and nutrition 

practices.  

 

4. Conclusions 

The post-exercise recovery phase is an extremely important, yet somewhat unexplored topic, 

for the athlete with T1D. Regardless of the athlete’s sport or competition level, it is clear that 

numerous behaviours will have an impact on short- and long-term recovery, and therefore 

subsequent performance, training adaptation, and time in target glycaemic range. The athlete 

with T1D must always prioritise blood glucose management, which is essential for overall 

health and to optimise aspects of recovery. On the other hand, the unique ability of people 
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living with T1D to influence their insulin concentration through exogenous administration, 

suggests that greater planning and attention is needed to optimise nutrition and insulin strategy 

for glycogen resynthesis.  
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