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Abstract 
With the growth of green chemistry initiatives, there is a demand for improved regulatory assessment of 

human exposure to exogenous factors. Proposed a decade ago, the adverse outcome pathway (AOP) 

framework serves as a knowledge assembly, evaluation, interpretation, and communication tool, designed 

to support pathway-oriented chemical risk assessment (CRA). The increasing number of resources and 

advances in machine learning (ML), artificial intelligence (AI), and the quantification of AOPs (qAOPs) has 

allowed for the integration of a variety of data streams including new approach methodologies (NAMs). 

These may predict causally inferred tipping points of the relationships that characterise a disease/adverse 

effect across multiple levels of biological organisation. This thesis aimed to provide an in-depth analysis of 

the qAOP concept and reinforces the types of efforts required to achieve validation, harmonisation and 

regulatory acceptance of qAOP models. The first part of this thesis assesses available qAOP models against a 

series of predefined common features, which enabled the challenges and opportunities for improving current 

practices to be identified. The second part of this thesis proposes improved methodologies for qAOPs, 

including the derivation of a network of linear AOPs that better depicts the complexity of biological effects 

and quantification of a simplified mechanistic AOP network based on domain knowledge and topology 

analysis. The thesis ends with a case study focused on the identification of empirical quantitative data 

associated with a linear AOP for quantification purposes. To apply the methodologies formulated, 

neurotoxicity, represented by neurodegenerative diseases such as impairment of cognitive function and 

Parkinsonian motor deficits, was studied. Lastly, the role of causality and reasons of why pattern-recognition 

is not sufficient to translate qualitative/mechanistic information into predictive models are discussed. 

Overall, the findings contribute to the advancement of the qAOP framework by expanding the knowledge, 

proposing recommendations and setting future directions towards the development and regulatory and 

scientific consensus of causal predictive qAOP models in toxicology. Other benefits to the field of study 

include how to combine information from linear AOPs into a more realistic representation of biological 

processes for the development of predictive models and the identification of which information (from 

alternatives) would be required for toxicological understanding. The work underlines knowledge gaps that 

need to be addressed, and exemplifies how to make use of, and integrate, the variety of available evidence 

for more informed predictions and improved decision making. 
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Chapter 1. Introduction 

The global production of chemicals is expected to double in the period 2015-2030 (UN 2015). Thus, we are 

exposed daily to chemical substances for most of which the underlying mechanisms of toxicity remain 

unknown and/or not sufficiently studied. As a result, a better human and/or environmental risk assessment 

(RA) for the continuously increasing number of chemical substances is required. 

Traditionally, methods of chemical risk assessment (CRA) are time-consuming, costly and animal intensive 

besides the associated ethical considerations and other drawbacks that the classical toxicology testing entails 

(Knight et al. 2021). For instance, the relevance to humans (and most environmental species) is questionable. 

Hence, there is a demand for new methods and ways to implement CRA for the many existing and new 

chemicals. 

Currently, CRA is anchored in legislation, which is clumsy and slow to change. The prescriptive and mandatory 

standard data requirements, stated in many regulations, are not well suited to adapt to the recent advances 

and rapidly evolving developments of alternative methods to animal testing such as new approach 

methodologies (NAMs) (Laroche et al. 2019; Punt et al. 2020). In addition, the data available for CRA are 

heterogeneous with an appreciation that it is challenging to analyse and interpret the diverse and complex 

streams of evidence (Krewski et al. 2020). Importantly, the progression of animal-free safety assessment is 

being hampered by the lack of emphasis on the qualitative and quantitative linkages between cellular 

chemical exposure and mechanistic toxicology, and a lack of integration of in silico and in vitro tools (Mahony 

et al. 2020). As such, the adverse effects of chemicals are, as yet, not fully understood, and initiatives aimed 

at strengthening knowledge of chemical hazards and chemical exposures are still urgently needed (EC 2019).  

The paradigm shift Toxicology in the 21st Century (Tox21) and efforts in what is known as the 3Rs (reduce, 

refine, and replace) in research and regulation sets out a framework towards pathway-oriented mechanistic 

research in predictive toxicology (National Research Council 2007; Roper and Tanguay 2020). This has 

stimulated and advocated for the development and implementation of the Adverse Outcome Pathway (AOP) 

concept along with the recent advances such as AOPs networks and quantitative AOPs (qAOPs) for 

hypothesis-driven toxicity assessment. The value of AOPs in identifying testing and data gaps and knowledge 

discovery, establishing consensus on the weight of evidence (WoE) to support mechanistic pathways, and 

defining the quantitative relationship between key events (KEs) for the prioritisation and refinement of test 

methods, to name a few, are gaining momentum worldwide (Garcia-Reyero and Murphy 2018). Thus, for 

many reasons, there is an overwhelming demand for improved methods to exploit existing data for a better 

understanding by utilising AOPs, to identify and prevent adverse effects, to optimise the current process of 

CRA, and to inform and support the CRA and decision-making processes of exposure to environmental and 

industrial compounds. 
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1.1. Chemical risk assessment 

CRA represents a discipline at the science-policy interface (Wittwehr et al. 2020). It is a scientific evaluation 

process that leads to an outcome, ideally quantitative on a risk scale, such that the risk from exposure to a 

chemical in a particular set of circumstances can be established. The potential risk can be communicated to 

policy- and safety decision-makers allowing for the formulation and implementation of an appropriate risk 

management strategy. The aim of the strategy is to ensure a very low probability of adverse effects following 

exposure to the chemical substances (Greim and Snyder 2018; van Leeuwen and Vermeire 2007). Risk is 

defined as a function of chemical hazard potency, which can be identified and described in toxicology studies, 

and of the degree of the magnitude, duration and frequency of chemical exposure. CRA involves four main 

steps: (1) problem formulation, (2) hazard identification and characterisation, (3) exposure assessment and 

(4) risk characterisation (Figure 1.1).  

 
Figure 1.1. An overview of the main steps currently followed in chemical risk assessment. 

Hazard assessment examines a chemical’s inherent potential to cause adverse effects on human health and 

the environment. It uses various tools and frameworks, combining information from in vivo, in vitro and in 

silico methods and epidemiological studies. This information includes non-standard (non-guideline) sources 

or non-target species, to aid with screening and ranking chemicals. Exposure assessment helps to facilitate 

the understanding of the potential for exposure in a human population of concern. It establishes the link 

from (intentional or unintentional) emissions of chemicals into the environment to exposure of biological 

targets: ecosystems, communities, populations, whole organisms, organs, tissues, and cells. Risk 

characterisation encompasses both hazard and exposure assessment and serves as the intermediary 

between RA and risk management. It is conducted to determine the difference between anticipated human 

exposure and a dose/concentration that is known not to cause adverse effects. It is commonly expressed as 
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the risk characterisation ratio (RCR), or margin of exposure (MoE), depending on whether assessment 

(uncertainty) factors are included or not. As such, risk should be identified, well characterised, assessed and 

estimated/quantified for further risk management. Risk management should also provide an answer as to 

how much risk is likely and which measures are required, if any, to reduce this risk so not to represent a 

threat to human health or the environment (Greim and Snyder 2018; van Leeuwen and Vermeire 2007). 

Today, CRA tends to be pragmatic and aims to be protective rather than objective. This is because CRA: (1) 

relies heavily on non-human data, the mechanistic relevance of which may not be directly attributable to 

humans; (2) is based on apical effects and not multifactorial disease aetiologies; (3) does not consider co-

exposures (mixtures and networks of pathways); (4) typically relies on the reference dose (RfD)/point of 

departure (PoD) derived from no observed adverse effect levels (NOAELs) that do not enable a quantification 

of the associated uncertainty (more recently the benchmark dose (BMD) has been applied, but its use in CRA 

is still in its infancy); (5) there is a lack of data accessibility and interoperability, which makes data integration 

difficult; (6) there is a lack of flexibility in data requirements by regulators, which limits the uptake of new 

scientific developments in a timely manner (Beronius et al. 2020; Hoffmann et al. 2017; Stephens et al. 2016). 

Despite, and possibly due to, all the limitations, there is an opportunity for the development of a quantitative 

framework appropriate to integrate the variety of streams of evidence derived from in vitro and in silico 

models. The aim is to go beyond the existing in vivo models towards a better-informed and improved 

assessment of human health and environment risks to chemical exposures. Thus, there is the momentum to 

bring CRA up to date with modern technologies and (computational) tools such as qAOPs.  
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1.2. The concept of adverse outcome pathway 

The adverse outcome pathway (AOP) framework, originally described with regard to ecotoxicology (Ankley 

et al. 2010), has been proposed as one method to aggregate and organise relevant information. It can assist 

in the definition of how measurable perturbations in response to stressors, i.e., chemicals, genetic or 

environmental factors, lead to an adverse outcome (AO), or an event of regulatory concern. AOPs have 

evolved rapidly from a conceptual paradigm into qualitative and quantitative models. They describe an initial 

exposure, resulting in a molecular initiating event (MIE), through a series of key events (KEs) and their 

relationships, i.e., key event relationships (KERs) to inducing the AO observed at different levels of biological 

organisations, e.g., cellular, tissue, organ, organism, population levels, as outlined in Figure 1.2 (OECD 2018b). 

 
Figure 1.2. An overview of an AOP construction and the types of in silico models that may be associated with a generic 

AOP adapted from Cronin and Richarz (2017). 

Since 2012, the Organisation for Economic Co-operation and Development (OECD) has been running the AOP 

Programme to promote the concept, to support the development of AOPs of regulatory relevance and to 

exploit AOP knowledge in, e.g., Integrated Approaches to Testing and Assessment (IATA) (OECD 2016). An 

AOP is structured and described according to a key set of principles and guidelines accepted by scientific and 

regulatory communities with the final goal of the endorsement of the AOP by the OECD (OECD 2016; OECD 

2018b; Villeneuve et al. 2014a). Through the AOP-Wiki Knowledge Base (KB), an open-source platform, the 

OECD aims to encourage the transparent development and recording of AOPs to allow for global input. At 

the time of writing, the OECD AOP-Wiki KB comprises a list of 325 linear AOPs1, of which 15 linear AOPs2 are 

endorsed. The AOP-Wiki KB represents the most prominent and well-developed module out of several 

 
1https://aopwiki.org/metrics, accessed on March 16, 2021. 
2https://www.oecd-ilibrary.org/environment/oecd-series-on-adverse-outcome-pathways_2415170x, accessed on 

March 16, 2021. 
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ongoing projects known as AOP-Wiki KB, e.g., Effectopedia, AOP Explorer and the Intermediate Effects Data 

Base, all of which are being co-ordinated under the auspices of the OECD (Carusi et al. 2018).  

AOPs may support various regulatory and scientific applications, including: compound prioritisation during 

testing and development of alternative methods to animal testing; increased collaboration across disciplines 

and sectors; identification of novel mechanisms and biomarkers; identification of data gaps and; increased 

ability to perform read-across; ultimately, contributing to the reduction of the reliance on animal models 

(Carusi et al. 2018; Coady et al. 2019). An example of an AOP with an application in RA is the AOP for skin 

sensitisation used to develop and refine chemical categories and integrated assessment and testing 

approaches of cosmetics ingredients (Gautier et al. 2020; Macmillan and Chilton 2019; OECD 2014a). 

However, there is a need for an increased international effort for the development and implementation of 

AOPs as a means to increase their regulatory and other scientific applications. The recent Global Chemicals 

Outlook II Report of the United Nations Environment Programme (UNEP) recommended that stakeholders 

“accelerate the development of the concept of Adverse Outcome Pathways (AOPs) to support hazard 

assessment” (UNEP 2019). A notable effort to support this is the initiatives of the European Union’s Reference 

Laboratory for the Validation of Alternative Methods (EURL ECVAM) that focusses attention on the validation 

and application of knowledge from AOPs to make better regulatory decisions. For instance, identification of 

common mechanisms and modes of action (MoA) of carcinogenicity, development of a battery of in vitro 

assays for developmental neurotoxicity, based on a network of AOPs, are a few of the ongoing projects 

(Zuang 2019). 
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1.3. Populating and assessing an AOP 

AOPs are very knowledge hungry. At the same time, CRA is built on data collection, hence, there is a need for 

data. Systematic review (SR) methods, e.g., academic research into standardised toxicity studies or other 

available knowledge, represent one way of obtaining data. SR is a protocol-driven approach where data are 

structured, each line of evidence is rigorously documented, and the quality of data is evaluated against a pre-

determined set of criteria. In addition, qualitative data analysis and quantitative meta-analysis, statistical 

evaluation and WoE of datasets are incorporated where possible, to answer a specific pre-defined research 

question (Beronius et al. 2020; Hoffmann et al. 2017). The steps in conducting SR include (1) problem 

formulation, (2) literature search, (3) selection of studies, (4) extraction of data, (5) quality assessment of 

individual studies and (6) integration of data (Hoffmann et al. 2017). Ideally, SR methods should focus on 

critical and controversial questions in CRA that are key to the safety decision or policy direction that needs 

to be set. These focused questions should, ideally, be identified as early as possible (Pease and Gentry 2016). 

Importantly, SR methods are acceptable for use in the European Union (EU) within the Registration, 

Evaluation, Authorisation and restriction of Chemicals (REACH) regulation. This is because SR methods have 

been leveraged successfully to increase transparency and rigour by introducing strategies that limit bias and 

random error while identifying the best available evidence relevant to a literature-based chemical 

assessment (Hoffmann et al. 2017; Whaley et al. 2016). However, the quality of a meta-analysis, i.e., synthesis 

of data from included studies, depends, to a large extent, on the quality of the individual studies. Even if the 

separate studies are of high quality, a meta-analysis may not be advisable if there is lack of compatibility 

among studies, e.g., differences in the study populations, doses, adverse effects, which may lead to the 

considerable heterogeneity in the results that challenge drawing robust conclusions (Beronius et al. 2020; 

Hoffmann et al. 2017). At the same time, studies published in peer-reviewed journals do not necessarily 

follow guidelines to ensure study quality, such as the OECD Test Guidelines (TGs), International Council for 

Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) TGs or Good Laboratory 

Practice (GLP) principles. As a result, these studies need to be evaluated additionally for relevance and 

reliability. Other studies that follow the national and/or international guidelines can be subject to 

confidentiality and, therefore, have limited availability. At the same time, SR methods usually rely on in vivo 

and in vitro studies, taking less account of in silico approaches. A reason might be that there is no distinct 

protocol for the development and application of in silico models even if there have been attempts to define 

this (Myatt et al. 2018). This is mainly due to the diversity of models in terms of the data used, their structure, 

statistical analysis including sensitivity analysis, sample size etc. SR has recently evolved into a pathway-

oriented framework to generate, or support, the hypothesis that is able to analyse causal relationships and 

assumptions that link multiple hypothesis and outcomes (Roth et al. 2020). Thus, making use of SR in an 

organised manner for better evidence-based and scientifically-informed decisions can help to map the 

available mechanistic knowledge while assessing quality and confidence of the lines of evidence with the 
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final goal to bring together exposure and multiscale modelling and discovery of potential hazards under a 

common scientific and regulatory umbrella. 

The evidence derived using SR methods and mapped to an AOP, helps ground KEs and KERs. This grounding 

is, ideally, in a chemical agnostic manner, since the existing information in the literature is captured in an 

unbiased way. Additionally, the information derived from an SR is evaluated for relevance and other criteria 

such as using Bradford Hill (BH) considerations (Hill 1965) or by recommendations from the OECD (OECD 

2018b) as presented in detail in Chapter 2. Similarly, information extracted during an SR could be used in 

data-driven approaches to computationally predict KEs and KERs, e.g., model parametrisation, or for 

designing in vitro experiments for quantification of the AOP as discussed in Chapter 5. Thus, the AOP 

approach is considered a useful knowledge management tool to direct the transition from apical endpoint 

driven toxicological hazard and RA towards mechanistic toxicology led by discovery and quantification of 

causal pathways (Bloomingdale et al. 2017; Hartung et al. 2017; Sturla et al. 2014). 
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1.4. Basis for quantitative AOPs 

Classic toxicology assumes that the effect of a toxicant is a function of the dose applied – toxicology’s most 

famous concept is the paraphrasing of Paracelsus that the “dose makes the poison”. In reality, most 

toxicological testing is performed at a series of doses either to ensure safety or to determine levels at which 

there are no effects, the lowest dose causing an effect or a pre-defined standard effect, such as 50% of a 

particular biological activity. These values, as well as the nature of the dose-response correlation itself, are 

critical factors in guiding the RA. Considered as a novel approach in quantitative RA, qAOPs use in silico 

computational techniques that translate molecular mechanistic understanding of toxicity into safety testing 

strategies including estimation of potential risks, i.e., the magnitude of exposure needed to elicit an adverse 

effect (Schultz and Watanabe 2018). Therefore, it gives scientific confidence and real-world applications to a 

qualitative AOP. In the context of the present thesis, a qAOP was defined as a mathematical description of 

specific biological processes of an AOP from the MIE to the AO. A quantitative understanding of an AOP 

requires an understanding of how much change in an upstream biological response, i.e., an early KE in an 

AOP, is needed to cause a level of downstream biological effect, e.g. eliciting a later KE in an AOP (Schultz 

and Watanabe 2018). By definition, KEs are measurable experimentally - from these data dose-responses can 

be derived, and/or estimated. This enables KERs to be described mathematically, to define the tipping points 

of the transitions between KEs, ideally from the MIE up to the AO (Schultz and Watanabe 2018). This is 

captured as a response-response relationship, the unique feature that distinguishes a qAOP from other 

biologically based mathematical models to predict KEs, that are part of the qualitative AOP (Figure 1.2). 

However, the development of qAOPs is in its infancy and efforts to describe the state-of-the-art and progress 

made to develop qAOPs including methodologies, applications, and examples to address challenges, such as 

heterogonous and/or limited quantitative evidence, are needed. 

The main advantage of qAOP models is the ability to use the pathway-derived data to extract further 

information and knowledge, especially when they can be formalised into computational models. When 

associated with chemical structure, i.e., Quantitative Structure-Activity Relationship (QSAR) models, and 

other approaches, e.g., Physiologically-Based Toxicokinetic (PBTK) and Quantitative In-Vitro-to-In-Vivo 

Extrapolation (QIVIVE) models, can provide a direct linkage between chemistry and adverse effect, leveraging 

the content of the AOP to support the meaning and interpretation of the model as shown in Figure 1.2. Thus, 

the potency of a chemical should be evaluated based on both the response-response in the earlier KEs (to 

anticipate the apical endpoint as informed by the qualitative description of the AOP) as well as by the QSAR 

and PBTK models, which account for the physico-chemical properties characteristic to the AO (hazard 

identification and assessment) and details about the exposure and kinetics (exposure assessment). Currently, 

most of the in silico models from AOPs are derived from the MIE (Allen et al. 2016; Cronin and Richarz 2017). 

Even though a qAOP model aims to be used primarily as a screening and prioritisation tool to allow for the 

evaluation of new compounds and understanding and/or predicting its toxicity, there is also a need to 

develop more qAOP models that would assess the impacts of multiple pathways and chemical mixtures. 
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Therefore, complex quantitative network modelling might be more adequate for RA purposes. Thus, the 

development of a qAOP model is a multiscale process which requires specification of chemicals while the 

exchange of information typically needs to occur in both directions across biological scales, e.g., feedback 

mechanisms and adaptation or acquired tolerance to a toxicant during long-term exposures. 

A qAOP model is data-dependent. At the same time, we are gaining new data streams, e.g., NAMs, that can 

be directed to provide information for qAOPs – preferably on a mechanistic basis. NAMs, such as high-

throughput omics technologies, in vitro tests and batteries of in vitro assays, organs-on-a-chip, deep learning 

(DL) and machine learning (ML) techniques, as well as protein binding 3D models have been developed, some 

extensively, and proposed to provide information relating to the potential of a compound to cause toxicity 

(Mahony et al. 2020). Hence, NAMs have the potential to populate qAOPs to derive some kind of cellular PoD 

in a chemical safety assessment. Collaborative projects such as the in3 project (refer to section 1.5) are ideal 

platforms to study and propose applications of data-derived models from NAMs. However, the main 

challenge remains - achieving regulatory acceptance of the novel methods and facilitating changes to the 

regulatory standard requirements. Ideally, RA should be based on well-understood toxicological mechanisms, 

and include studies carried out under controlled experimental conditions, with detailed recording of the data, 

model and supporting documentation. The long-term challenge is to update the regulatory requirements to 

accommodate the novel methods, rather than trying to match new methods with current information 

requirements. Thus, a qAOP model can serve as a bridge between NAMs and the current regulatory landscape 

that can help, eventually, to translate the new science into internationally accepted standard methods with 

a final utility in CRA (Figure 1.3).  

 
Figure 1.3. A representation of where an AOP and qAOP fit within the current landscape of novel methods to assess the 

safety of chemicals as well as their role in helping to reach an equilibrium between NAMs and a pathway-derived CRA 

much needed nowadays. (Non-)standardised methods, refers to methods accepted by a regulatory authority and used 

in practice for CRA that follows proposed templates and guidelines.  
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1.5. The in3 Project 

Given the needs identified above, i.e., data to populate qAOPs, guidance to model and structure qAOPs, 

demonstration of qAOPs being fit-for-purpose etc., more scientific initiatives are required as well as greater 

influence from key public and private players, such as the OECD, the European Commission Joint Research 

Centre (EC JRC) and the United States Environmental Protection Agency (US EPA), to name a few.  

The “An Integrated Interdisciplinary Approach to Animal-Free Chemical and Nanomaterial Safety 

Assessment” (in3) Project aimed to create a training network to drive the synergistic development and 

utilisation of in vitro and in silico tools for human chemical and nanomaterials safety assessment. The project 

focused on human induced pluripotent stem cell (hiPSC) derived tissues, including liver, kidney, brain, lung, 

and vasculature system, and utilised mechanistic toxicology, qAOPs, biokinetics, cheminformatics and 

modelling approaches to derive testable integrated prediction models (Figure 1.4). The project aimed to 

acquire a unique set of interdisciplinary knowledge and trained 15 PhD students from 11 beneficiaries, i.e., 

public institutions including universities and biotechnology companies while working towards the same goal, 

utilising the same chemicals, donor cells, assays, and software packages. The project ran between 1 January 

2017 – 30 June 2021. 

 
Figure 1.4. The graphical summary of the research carried by the in3 Project, adapted from the official website of the 

in3 Project (https://www.estiv.org/in3/about.html, accessed on March 16, 2021). 

 

One of the core scientific activities of the in3 consortium was to develop and optimise qAOP models. The 

present PhD work has been undertaken as part of the in3 Project contributing with innovative approaches 

and solutions by the exploitation of existing in vivo and in vitro data and mechanistic knowledge, and 

integration into computational models. This adds value to the scientific community’s efforts towards the 

utility of the AOP framework, enhancing the use of non-animal methods in human health RA. This additionally 

allows the strengthening of AOPs to achieve more efficient regulatory utility, aids the better understanding 
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of molecular mechanisms and provides concrete solutions and guidance on strategies and approaches for 

the development of qAOP models. This also underlines a new crowd-sourced way of research in predictive 

toxicology.   
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1.6. Research aims of this thesis 

At the current time, there is considerable interest in qAOPs, but few viable qAOPs have been developed. 

There is also a lack of understanding of how these qAOPs could be used for regulatory purposes and in RA 

specifically. Therefore, the overall aim of this PhD thesis was to formulate strategies and develop qAOP 

models by using mechanistic knowledge, in vitro data and computational modelling approaches for CRA 

decision-making. The specific objectives to achieve this aim were: 

I. To review the state-of-the-art of the qAOP concept. 

• This involved the collection of definitions proposed by the scientific community in the 

scientific literature as well as the assessment of available qAOP models against a series of 

pre-defined characteristics essential in the development and evaluation of qAOP models. 

The results are outlined in Chapter 2. 

II. To demonstrate the potential utility of the science of networks applied to qualitative linear AOPs 

available in the OECD AOP-Wiki KB in order to depict better the mechanistic pathways and help to 

inform prioritisation strategies for testing and development of alternative methods. 

• This involved collection and curation of linear AOPs and development of AOP networks. As a 

case study, the neurotoxicity in humans was chosen as the endpoint to showcase the 

formulated methodology. The results are described in Chapter 3. 

III. To design a framework for quantification of AOP networks. 

• This was applied to a simplified version of the AOP network following the results of Chapter 

3 with the focus on developmental neurotoxicity. This involved investigating available 

empirical data and the selection of an appropriate computational approach, as described in 

Chapter 4. 

IV. To investigate the application of information required for the review, endorsement and approval of 

a linear AOP by the OECD Extended Advisory Group on Molecular Screening and Toxicogenomics 

(EAGMST) available in the OECD AOP-Wiki KB for quantification purposes. 

• This involved formulation of a decision tree to select the references containing quantitative 

details, assessment of selected publications, data extraction, preparation and modelling. The 

case study was carried out for a compound known to induce Parkinsonian motor deficits. The 

results are outlined in Chapter 5. 

The PhD thesis ends with a Chapter where future directions and implications for advancing the concept of 

qAOPs are discussed. 
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Chapter 2.  Theoretical background of quantitative Adverse Outcome 

Pathways 

 

The work presented in this Chapter is based on a published review (Spinu et al. 2020) initiated during a 

secondment at the European Commission Joint Research Centre (EC JRC), Ispra, Italy (September 2018 – 

January 2019). The Chapter has been updated from the published paper with a dedicated section on semi-

quantitative/quantitative weight of evidence qAOP (semi-q/qWoE qAOP) models to provide a complete 

overview of the state-of-the-art of the qAOP concept. In addition, two qAOP models (Rowland et al. 2019; 

Song et al. 2020) that were published after the initial study was conducted have been included as part of the 

analysis. 

 

Abstract 
The qAOP concept is gaining interest due to its potential regulatory applications in CRA. Even though an 

increasing number of qAOP models are being proposed as computational predictive tools, there is no 

framework to guide their development and assessment. As such, the objectives of this Chapter were to: (i) 

analyse the definitions of qAOPs published in the scientific literature, (ii) define a set of common features of 

existing qAOP models derived from the published definitions, and (iii) identify and assess the existing 

published qAOP models and associated software tools. As a result, six probabilistic qAOPs and eleven 

mechanistic qAOPs were evaluated against the common features. Additionally, three semi-q/qWoE type of 

qAOPs were discussed. The review offers an overview of how the qAOP concept has advanced and how it 

can aid toxicity assessment in the future. It proposes common features that a qAOP model can be evaluated 

against for regulatory applicability. Further efforts are required to achieve validation, harmonisation and 

regulatory acceptance of qAOP models.  
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2.1. Introduction 

From its establishment in 2010 (Ankley et al. 2010), the AOP framework aimed to enhance efficiency and 

transparency in CRA (OECD 2018b). In the context of the present thesis, the working definition of an AOP is 

that it represents a series of building blocks that describe biological events a chemical follows to induce an 

adverse event, i.e., AO at different levels of biological organisations as outlined in Chapter 1. Recent progress 

in the development of AOPs covers a spectrum of novel endpoints and chemicals/categories including 

nanoparticles and other classes of stressors, e.g., microplastics and radiation (Chauhan et al. 2019; Jeong and 

Choi 2019; Jeong et al. 2018). Furthermore, new ways of deriving AOPs have been proposed such as data 

mining, deep learning or a combination of ML techniques (Carvaillo et al. 2019; Jeong et al. 2019; Rugard et 

al. 2020).  

In addition to the increasing numbers of linear (qualitative) AOPs, AOP networks are being extensively applied 

and have considerable value. An AOP network is defined as a set of linear AOPs sharing common events and, 

therefore, representing a better depiction of biological processes (Knapen et al. 2018; Villeneuve et al. 

2018a). Examples of AOP network applications include: mapping chemicals to linear AOPs to identify 

common interactions (Aguayo-Orozco et al. 2019a); understanding the mechanistic pathways leading to 

mitochondrial dysfunction (Dreier et al. 2019); identification of common KEs for chemical screening and 

integrated testing strategy for developmental neurotoxicity (Li et al. 2019); chemical assessment using 

biologically-based testing batteries (Angrish et al. 2017); and the development of an exploratory AOP 

database to derive “putative” AOPs (Pittman et al. 2018). Moreover, progress has been made with regard to 

the use of topological features in the network, such as the degree to which the most common/highly 

connected paths within an AOP network can be identified (Pollesch et al. 2019). Additionally, many molecular 

initiating events (MIEs) have been thoroughly modelled in silico due to their ability to describe the interaction 

between the stressor and the biological receptor at the molecular level that induces adverse effects (Allen et 

al. 2016). In silico models of MIEs are represented by 2-D and 3-D structural alerts and QSARs (Allen et al. 

2020; Cronin and Richarz 2017; Mellor et al. 2016) and have been incorporated in mechanistically-based PBTK 

models that evaluate exposure-response relationships (Gao et al. 2019; MacKay et al. 2013). 

Formerly, various types of AOPs were distinguished from qualitative to semi-quantitative and quantitative 

AOPs (Perkins et al. 2015; Villeneuve et al. 2014a). While qualitative AOPs can be used to guide chemical 

decision-making during the development of novel compounds including the integration of diverse lines of 

evidence, prioritisation of testing strategies and screening of chemicals, design and development of fit-for-

purpose assays, qAOP models are seen as tools for quantitative risk assessment for both new and existing 

chemicals (Carusi et al. 2018; Coady et al. 2019; Villeneuve et al. 2014b). Hence, each type of AOP has 

potential utility in CRA (Hecker and LaLone 2019).  

The concept of a qAOP as a predictive computational model is gaining interest due to its ability to address 

the question of how much perturbation, at any of the upstream KEs, and under what conditions, the AO is 

likely to occur (Conolly et al. 2017; Patlewicz et al. 2015). CRA has long been based upon an understanding 
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and application of information from linear or threshold dose-response relationships. However, it is now 

recognised that linear and threshold relationships, i.e., NOAEL dose-response relationships are often not the 

norm and that non-linear dose-response modelling is more biologically plausible than low dose linear 

modelling. qAOP models are able to capture the dynamics underlying all kinds of a dose-response 

relationship, including (1) the common S-shaped (sigmoid) for toxicants having a threshold, (2) linear or non-

linear curves in the low dose range for toxicants assumed to be without a threshold, e.g., genotoxic 

substances, (3) non-linear and non-monotonic relationships, e.g., as claimed for endocrine disruptors. 

Therefore, the relationship between the endpoints may be captured as a regression equation or a more 

complicated mathematical model or a probabilistic function. For example, the response-response 

relationship in a qAOP model can be conceptually represented as the magnitude of change in an upstream 

biological event plotted on the x-axis and the magnitude or severity of a downstream biological effect plotted 

on the y-axis (Conolly et al. 2017). Thus, a qAOP helps to define the biological tipping point(s) along the 

pathway, and the probability or magnitude with which those tipping points are exceeded (Conolly et al. 2017; 

LaLone et al. 2017a).  

Several international workshops have identified critical aspects in developing a qAOP model including the 

quantification of KERs, data availability, defining the threshold for inducing an effect, incorporation of 

modulating factors, e.g., genetic predisposition, previous exposures, the establishment of mathematical rules 

for the KERs, parametrisation of non-linear models and validation and implementation, to name a few 

(Kleinstreuer et al. 2016; Leist et al. 2017; Wittwehr et al. 2017). However, the extent to which these 

challenges are addressed by available qAOP models is not covered by the scientific literature. On the other 

hand, whilst knowledge is being acquired and systematically captured, there is no official guidance providing 

a coherent and all-encompassing framework for the development and assessment of a qAOP model. The 

existing guidance, developed by the OECD, explains how to build evidence for an AOP and this highlights the 

importance of the quantitative understanding of the KER as a criterion in the assessment of the overall 

confidence of an AOP (OECD 2018b). In addition, the OECD guidance on the use of AOPs in the development 

of IATA states that a qAOP can help to target a KE and select the appropriate assays for TGs development or 

refinement to predict the AO (OECD 2016). 
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2.2. Aim of this chapter 

This Chapter aimed to evaluate the progress made in the qAOP concept in chemical safety assessment, to 

identify areas of strength and weakness, as well as opportunities for developments to support regulatory 

acceptance of qAOPs. The specific objectives were (i) to analyse published definitions of qAOPs in the 

scientific literature; (ii) to summarise the current status of the semi-q/qWoE qAOPs; (iii) to formulate a set of 

common features of a qAOP model; (iv) to assess the types of qAOP models based on the identified features 

that utilise probabilistic and mechanistic approaches, as well as methods and software tools used for the 

modelling of qAOPs. Relevant scientific literature in the Web of Science, Pubmed and Google Scholar 

databases published before October 2020 was screened, as described below. 

2.3. Computational modelling in the context of qAOPs 

The OECD Guidance document on the use of AOPs in IATA (OECD 2016) defines a qAOP as “an assembly of 

KEs supported by descriptions of how the KEs can be measured and the accuracy and precision with which the 

measurements are made along with KERs supported by a quantitative understanding of what magnitude 

and/or duration of change in the upstream KE is needed to evoke some magnitude of change in the 

downstream KE”. Despite this clear definition, the meaning of qAOPs has often been interpreted differently, 

with various definitions given and, as a result, varying expectations of the scientific community. Screening 

the scientific literature for the Medical Subject Headings (MeSH) term “quantitative Adverse Outcome 

Pathways”, 23 publications were found which referred to the concept of qAOP (Appendix I). The definitions 

identified that referred to the concept of qAOP were retrieved and analysed individually to understand and 

map a series of common features that the authors recognised as essential for the development of a qAOP 

model. Thus, a list of five common features for qAOP models was formulated encompassing the expectations 

of the scientific community (Table 2.1), mainly (I) problem formulation, (II) mechanistic knowledge and 

associated data, (III) quantitative approaches, (IV) regulatory applicability, (V) additional considerations. 

These features help to understand how the modelling of a qAOP has been approached as well as the 

opportunities for improving the modelling process. 
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Table 2.1. Common features of a qAOP model envisaged by the scientific community. The assessment criteria were used 

to characterise and evaluate available probabilistic and mechanistic qAOP models. 

Common 
feature 

Description Assessment criteria 

Problem 
formulation 

• A qAOP should answer a well-defined question relevant to the AO of 
interest.  

• The purpose of the model dictates how much mechanistic understanding 
is required, and the way a qAOP should be developed, validated and used.  

• The question addressed 
and/or purpose of 
modelling 

• AO studied 
Mechanistic 
knowledge and 
associated data 

• The OECD AOP-Wiki KB can support the development of a qAOP model to 
predict an endpoint of interest. Empirical data for model parametrisation, 
fitting and/or testing can be obtained from the description of KERs 
published in the OECD AOP-Wiki KB. 

• Whilst for quantification it is recommended to start with linear AOPs, it 
should not impede quantification of networks or highly connected 
KEs/KERs within an AOP network.  

• A qAOP model relies heavily on data: not only bioactivity of a 
compound/mixtures, but also measurements of effects at relevant 
doses/concentrations and appropriate timescales including physico-
chemical properties and molecular descriptors. Data may come from a 
range of in vivo and in vitro studies specifically designed to test an AOP as 
a hypothesis and/or retrieved from a variety of sources to assist with this 
process. 

• Both adjacent and non-adjacent KEs paired as upstream-downstream in a 
KER should be quantified even though each of them impacts differently 
on the modelling process, e.g., in the context of Bayesian network 
modelling. Adjacency refers to whether there are other KEs positioned in 
between linear construction of an AOP or not.  

• Different biological level of organisations should be quantified if this is 
relevant to the AO of interest and available data allowed. 

• Presence of the AOP in 
the OECD AOP-Wiki KB 

• Type of AOP: linear or 
network 

• Single 
chemical(s)/mixtures 

• Type of data: in vivo, in 
vitro, in silico and/or 
other variables 

• Dose/concentration-
responses  
(D/C-R) and time-
responses (T-R) 

• The adjacency of KERs: 
adjacency and non-
adjacency 

• Biological levels: 
cellular, tissue, organ, 
organism, population 

Quantitative 
approaches 

• The modelling approaches can vary from being probabilistic and logic-
based (Boolean) to deterministic, stochastic type of modelling. 

• The mathematical expression can take various forms including linear 
regressions and ordinary differential equations resulting in different 
graphical shapes, e.g., linear, sigmoidal, Gaussian-type plots. 

• Type of quantitative 
approach 

Regulatory 
applicability 

• A qAOP model should imply various applications to regulatory decision-
making and acceptance. 

• Human 
health/ecological risk 
assessment 

Additional 
considerations 

• These considerations can influence the regulatory approval, reduce the 
uncertainties and extend the applicability domain of the predictions of a 
qAOP model. 

• A qualitative AOP is not chemical-specific, therefore, neither should be a 
qAOP. However, the test data mostly come from experiments conducted 
with a particular interest in assessing a specific chemical or class of 
chemicals. Understanding this aspect allows for coupling with other in 
silico models including read-across. 

• It is not mandatory that the test methods used (models and measured 
endpoints) are adopted/validated following national/international 
guidelines. However, they should be performed in a quality-controlled 
environment where relevance of the model is proved based on scientific 
rationale and reproducibility of data. 

• Even though none of the definitions identified referred to uncertainty and 
sensitivity analysis, this aspect should be considered as well for its value 
in validating the predictions of a qAOP model while giving confidence in 
its further applications.  

• Cross species 
extrapolation 

• Modulating factors 
• Positive/negative 

feedback loops 
• Compensatory 

mechanisms 
• Test method 

adopted/validated 
• Kinetics 
• Chemically agnostic 
• Exposure assessment 
• Uncertainty evaluation 
• Sensitivity analysis 
• Availability: open 

access or not 
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Additionally, three conceptual classes of qAOPs have been suggested by Gust et al. (2016) and Perkins et al. 

(2019a):  

1) Semi-q/qWoE qAOPs. These utilise quantitative weighting and numerical assessments of multiple 

lines of evidence to rank the confidence in KERs for further quantification (Gust et al. 2016; Perkins 

et al. 2019b). For example, to calculate the quantitative confidence scoring of KERs of a linear AOP, 

BH considerations (biological plausibility, essentiality, dose-response, temporal and incidence 

concordance) were proposed as a conceptual method by Becker et al. (2017), while Collier et al. 

(2016) additionally used metrics related to data quality for the KEs as will be described in more detail 

in Section 2.4. 

2) Probabilistic qAOPs and qAOP networks are presented in depth in Section 2.5. These are 

computational models that incorporate statistical or probabilistic approaches such as Bayesian 

networks covering few events or an entire AOP to build predictive relationships between MIEs and/or 

KEs linked to apical outcomes (Gust et al. 2016; Perkins et al. 2019b). 

3) Mechanistic qAOPs and qAOP networks that are analysed in Section 2.6. These are computational 

models defined as deterministic models where mathematical functions of the MIE, KE and KER can 

be used to predict the likelihood that a later event or outcome would occur based on changes in an 

earlier event given specified initial conditions (Gust et al. 2016; Perkins et al. 2019b). 

The definitions of the qAOP concept as identified in the scientific literature support all these types of qAOP 

models, with only a small proportion (fewer than 10%) referring to semi-q/qWoE qAOPs, and approximately 

25% to probabilistic qAOPs while all papers referred to mechanistic qAOPs. Therefore, whilst the first type of 

qAOP can be regarded as an extension of a qualitative AOP with empirical data, the second and third types 

of qAOP are mathematical models, distinguished according to the type of modelling approach. Thus, the first 

type of qAOP is conceptually different to the second and third, and an opportunity exists to make use of 

semi-q/qWoE qAOPs to develop predictive models based on probabilistic or mechanistic approaches as 

presented graphically in Figure 2.1. 
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Figure 2.1. Conceptual representation of available types of qAOP models. Qualitative AOPs have an informative role for 

prioritisation and computational modelling of AO of interest and can additionally be quantified by a weight-of-evidence. 

A common approach to probabilistic modelling relies on the use of Bayes theorem as described below. Mechanistic 

qAOP models utilise mathematical functions, including linear regressions. 
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2.4. Overview of semi-quantitative/quantitative weight-of-evidence AOPs 

Weight of evidence (WoE) analysis has been proposed as a method to assess the level of maturity and 

confidence in an AOP (Becker et al. 2015). It can be defined as a process in which each line of evidence, i.e., 

a group of evidence of similar type, is evaluated and weighted against a set of considerations to support 

possible answers to a research question (Hardy et al. 2017). Today, WoE evaluation is a key element that the 

OECD guidance on the development and assessment of AOPs requires to support the postulated biological 

pathway/disease processes induced by stressors (OECD 2018b).  

The BH considerations were originally developed to examine the causality of associations observed in 

epidemiological studies (Hill 1965). Later, the evolved BH considerations were formulated to increase WoE 

determinations in the application of MoA/species concordance analysis (Meek et al. 2014a; Meek et al. 

2014b). Only recently, the evolved modified BH considerations were adopted for the assessment of the WoE 

for KEs including MIEs, KERs and overall linear AOPs (OECD 2018b). Therefore, BH considerations are now 

widely used to assess experimental/historical/epidemiological/mechanistic types of data for the following 

purposes: (i) to promote consistency between different streams of evidence, (ii) to support acceptance or 

rejection of a hypothesised AOP, (iii) to offer recommendations for additional targeted research, (iv) to 

prioritise substances for further testing, (v) to guide the development of more efficient testing strategies, (vi) 

to identify potential gaps and critical data needs for a complete CRA. In rank order, the evolved BH 

considerations include biological plausibility > essentiality > empirical support (dose-response, temporality, 

and incidence concordance). These can each be put in the context of the various aspects of qAOPs. The 

biological plausibility of KERs is defined as “an understanding of the fundamental biological processes 

involved and whether they are consistent with the causal relationship being proposed in an AOP” (OECD 

2018b). The essentiality of KEs refers to “experimental data for whether or not downstream KEs or the AO 

are prevented or modified if an upstream event is blocked” (OECD 2018b). The empirical support of KERs is 

characterised by the “toxicological data derived by one or more reference chemicals where dose-response 

and temporal concordance for the KE pair can be assessed” (OECD 2018b). Thus, the WoE analysis in support 

of an overall AOP can be summarised qualitatively or (semi)quantitatively.  

The term “semi-quantitative/quantitative qAOPs” has been promoted to increase certainty and strength of 

KERs that are of particular interest for the development of probabilistic and mechanistic qAOP models 

(Perkins et al. 2019b). It refers to the quantification of a WoE analysis by attributing metrics of weights to the 

available mechanistic knowledge of an AOP based on prescriptive guidelines or expert judgement for a 

systematic assessment of confidence levels, which also, expresses uncertainty in a given AOP (Perkins et al. 

2019b). This leads to an improved assessment of confidence in the estimation of the AO and supports 

decision-making transparently.  

Currently, three methodologies applied to linear AOPs are described with few modifications to the OECD 

guidance (Table 2.2). The frameworks (Becker et al. 2015; Becker et al. 2017; Collier et al. 2016) include three 

BH considerations and two additional BH criteria, which were consistency, e.g., between the levels of 
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biological organisations, and analogy, e.g., between chemical stressors that the OECD recommends being 

carried through the evaluation process and not as separate entities. Becker et al. (2015) used a prototype 

multi-criteria decision analysis (MCDA) model for qWoE of an AOP that describes aromatase inhibition 

leading to reproductive dysfunction in fish. Collier et al. (2016) proposed a mathematical approach to 

quantify the scientific evidence of two AOPs: (1) non-competitive ionotropic GABA receptor antagonism 

leading to epileptic seizures, and (2) antagonist-binding and stabilisation of a co-repressor to the peroxisome 

proliferator-activated receptor a (PPARa) signalling complex ultimately causing starvation-like-weight loss. 

Becker et al. (2017) formulated a mathematical approach to compare two modes of action, a mutagenic path 

vs activation of PPARa that were structured as KEs and KERs for clofibrate, a rodent liver carcinogen. Becker 

et al. (2015) conducted a sensitivity analysis, i.e., the weights associated with two of BH criteria were varied 

from 0% to 100%, while the weight of the other criterion was held constant to identify the most sensitive 

KER against weight alterations to each of the BH criteria. Collier et al. (2016) developed the qWoE based on 

BH criteria and in addition, evaluated data quality criteria, established by the US EPA known as General 

Assessment Factors (GAFs). Becker et al. (2017) advocated the need for a semi-qWoE, i.e., incorporation of 

narrative discussions besides the quantitative assessment. Thus, the biological plausibility criterion was not 

assessed numerically, and a narrative description was proposed instead. The (non)adjacency of KERs, i.e., the 

sequential order of the KEs, has been evaluated by Becker et al. (2015) and Becker et al. (2017). All the 

assessed AOPs are endorsed by the OECD. All the approaches are rank-based methods, with higher values 

representing greater importance of BH criteria for the specific AOP. A summary of the comparison of the 

technical aspects that differentiated the three methodologies, which mainly included the approach and 

scoring system applied and the investigated AOP, is presented in Table 2.3.  

There are several opportunities to improve the currently proposed frameworks for semi-q/qWoE qAOPs that 

can be underlined. Software such as the Science in Risk Assessment and Policy (SciRAP)1 tool might serve as 

a transparent reporting and evaluation resource. It allows for the increase/decrease of weights and for the 

inclusion of additional comments (narrative assessment) that leads to a personalised assessment of the 

selected lines of evidence and their quantification in a structured manner. However, SciRAP relies solely on 

two criteria: relevance, i.e., “the contribution a piece or line of evidence would make to answer a specified 

question if the information comprising the evidence were fully reliable”, and reliability, i.e., “the extent to 

which the information comprising of a piece or line of evidence is correct given by accuracy and precision” 

(Hardy et al. 2017). The inclusion into a semi-q/q WoE qAOP tool of BH considerations and data quality 

criteria following the characteristic building blocks of an AOP can align the requirements of all stakeholders 

towards a better-informed testing strategy. Also, an ideal qWoE tool should allow for the evaluation if not 

only in vivo and in vitro studies, but also in silico and epidemiological studies in addition to its being applicable 

to any type of stressors, e.g., chemicals, nanoparticles, genetic and environmental factors, in a structured 

 
1 www.scirap.org, accessed on March 16, 2021. 
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manner informed by an AOP. Furthermore, limitations and uncertainties should be quantified, for which 

probabilistic approaches seem most appropriate. For example, Jannicke Moe et al. (2020a) developed a 

Bayesian network to predict the acute toxicity of chemicals to juvenile fish based on a combination of 

information, mainly data from fish embryo toxicity, physico-chemical properties, chemical category and 

toxicity data for other species, with the goal of supporting the WoE to replace the OECD TG 203 on acute fish 

toxicity assay with non-animal methods. Another approach to assessing qAOPs was provided by Kleinstreuer 

et al. (2016) who proposed a decision formula to quantify the significance of a biological event by taking into 

account its position within an AOP. Expanding on the proposals of Kleinstreuer et al. (2016), Chapter 3 

illustrates how the position of a KE/KER in an AOP network can be quantified by applying a topology analysis 

and how the results can have an essential role in decision-making processes. An example of the application 

of these findings is provided in Chapter 4 through the quantification of a simplified AOP network following 

the available mechanistic knowledge. 
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Table 2.2.  An overview of the defining questions used in the assessment of an AOP in comparison to the OECD Guidance 

that follow the Bradford Hill modified considerations and consistency and analogy criteria by three published 

methodologies. 

Bradford Hill 
Criteria 

OECD Guidance (OECD 
2018b) 

Becker et al. (2015) Collier et al. (2016)1 Becker et al. (2017) 

Biological 
concordance / 
plausibility of 
KERs 

“Is there a mechanistic, 

i.e. structural or functional 

relationship, between KEup 

and KEdown consistent with 

established biological 

knowledge?” 

“Is there a mechanistic, 

i.e., structural or functional 

relationship between Key 

Eventupstream and Key 

Eventdownstream consistent 

with established biological 

knowledge?” 

“Does the hypothesised 

KER conflict with broader 

biological knowledge? How 

well established is the KER 

in the context of the AOP?” 

“Does the hypothesised 

MOA (AOP) conflict with 

broader biological 

knowledge? How well 

established is the MOA 

(AOP)?” 

Essentiality of 
KEs 

“What is the impact on 

downstream KEs and/or 

the AO if an upstream KE is 

modified or prevented?” 

“Are downstream Key 

Events and/or the Adverse 

Outcome prevented if an 

upstream Key Event is 

blocked?” 

“Is the sequence of events 

reversible if dosing is 

stopped or a key event is 

prevented?” 

“Is the sequence of events 

reversible if dosing is 

stopped or a KE 

prevented?” 

Empirical 
observations / 
evidence of 
KERs 

“Are there inconsistencies 

in empirical support 

across taxa, species and 

stressors that do not align 

with expected pattern for 

hypothesised AOP?” 

“Dose and temporal 

concordance: Does KEup 

occur at lower doses and 

earlier time points than 

KEdown?” 

“Incidence concordance: 

At the same dose of 

stressor, is the incidence of 

KEup greater than that for 

KEdown?”  

“Does the empirical 

evidence support that a 

change in Key Eventupstream 

leads to an appropriate 

change in Key 

Eventdownstream?” 

“Dose and temporal 

concordance: Does Key 

Eventupstream occur at lower 

doses and earlier time 

points than Key 

Eventdownstream?” 

“Incidence concordance: Is 

the incidence of Key 

Eventupstream greater than 

that for the Key 

Eventdownstream?” 

“Dose concordance: Is the 

upstream key event 

observed at doses below or 

similar to those associated 

with the downstream key 

event?” 

“Incidence concordance: Is 

the occurrence of the 

downstream key event 

effect less than that for the 

preceding key events?” 

“Temporal concordance: 

Are the key events observed 

in hypothesised order?” 

“Dose concordance: Are the 

KEs observed at doses 

below or similar to those 

associated with the adverse 

effects?” 

“Incidence concordance: Is 

the occurrence of the 

adverse effect less than 

that for the preceding 

KEs?” 

“Temporal concordance: 

Are the KEs observed in 

hypothesised order?” 

Additional considerations 

Consistency 
(among 
different 
biological 
contexts) 

NA “Are there inconsistencies 

and uncertainties in 

empirical support across 

taxa, species and stressors 

that do not align with an 

expected pattern for the 

hypothesised AOP?” 

“Is the pattern of 

observations across 

species/strains/organs/test 

systems what would be 

expected based on the 

hypothesised AOP?” 

“What is the pattern of 

observations across 

species/strains/organs/test 

systems? What would be 

expected based on the 

hypothesised MOA (AOP)?” 

Analogy 
(consistency 
across 
chemicals) 

NA “Is the MIE affected by a 

variety of chemicals or by a 

single/very limited number 

of chemicals?” 

“Would the AOP be 

anticipated based on 

broader chemical specific 

knowledge, e.g., the 

chemical is a member of a 

category for which related 

chemicals have known or 

strongly suspected AOP?” 

“Would the MOA (AOP) be 

anticipated based on 

broader chemical-specific 

knowledge, e.g., the 

chemical is a member of a 

category for which related 

chemicals have known or 

strongly suspected MOA 

(AOP)?” 

 
1It used the United States Environmental Protection Agency (US EPA) General Assessment Factors for WoE evaluation of the KEs in 
addition to the BH criteria. 
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Table 2.3. A comparison of three published methodologies for modelling semi-q/qWoE qAOPs. 

Methodology Becker et al. (2015) Collier et al. (2016) Becker et al. (2017) 

Adverse 
Outcome 
Pathway(s) 

Aromatase inhibition leading to 
reproductive dysfunction in fish 
(AOP ID 252) 

Two AOPs: 
• AOP for ionotropic g-

aminobutyric acid (GABA) 
receptor antagonism induced by 
non-competitive channel blockers 
leading to epileptic seizures (AOP 
ID 103) 

• Antagonist-binding causing 
stabilisation of co-repressor 
(SMRT or N-CoR) to PPARa ligand 
binding domain causing 
downstream starvation-like body-
weight loss (AOP ID 64) 

Rodent hepatocarcinomas 
induced by clofibrate through 
two different MoAs, i.e., 
activation of PPARa (AOP ID 375) 
vs mutagenic path. 

Software DECERNS software6 Not mentioned Not mentioned 

Approach Multi Criteria Decision Analysis 
(MCDA) 

Assessment of data quality and 
causality 

Comparative analysis of two 
MoAs for a chemical 

Steps 

1. Define KERs as alternatives 
for which despite unknown 
relative confidence, need to 
be prioritised; 

2. Map out the criteria and 
metrics based on BH 
considerations and KERs as 
a value tree; 

3. Assign weights to indicate 
the importance of each of 
the considerations and 
metrics associated with 
each KER;  

4. Score each KER based on 
each metric; 

5. Integrate scores and 
weights for each KER to 
assess overall confidence 
level; 

6. Conduct sensitivity analysis. 

1. Prepare the AOP (assembling 
evidence); 

2. Prepare criteria weighting and 
scoring (weighting evidence); 

3. Aggregate lines of evidence 
(weighing the body of evidence). 

1. Identify postulated MOA(s) 
(AOPs); 

2. Qualitatively evaluate the 
evidence in 
support/inconsistent with 
the KE/KER; 

3. Quantitatively rate each 
KE/KER using the BH 
considerations; 

4. Assign weights to each of 
the BH considerations; 

5. Derive the composite score 
for each KE and KER; 

6. Integrate the evidence of 
causality for the MOA 
(AOP); 

7. Compare the quantitative 
scores for the hypothesised 
MOA (AOP). 

Scoring 
system 
(assigned 
weight) 

Low/Weak (1) 
Moderate (2) 
High/Strong (3) 
 

The criterion does not apply (0) 
The criterion applies very weakly (1) 
The criterion applies weakly (2) 
The criterion applies moderately (3) 
The criterion applies strongly (4) 
The criterion applies very strongly (5) 

Strong Evidence (3) 
Moderate Evidence (2) 
Weak Evidence (1) 
No evidence (0) 
Weak Counter Evidence (-1) 
Moderate Counter Evidence (-2) 
Strong Counter Evidence (-3) 

 
2 https://aopwiki.org/aops/25, accessed on March 16, 2021.  
3 https://aopwiki.org/aops/6, accessed on March 16, 2021.  
4 https://aopwiki.org/aops/10, accessed on March 16, 2021.  
5 https://aopwiki.org/aops/37, accessed on March 16, 2021. 
6 http://www.decerns.com/, accessed on March 16, 2021. 
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2.5. Overview of probabilistic quantitative linear AOPs and AOP networks 

Another type of qAOP model, to maximise existing resources and facilitate toxicity assessment, is 

represented by the probabilistic approaches. Bayesian networks use a directed acyclic graph (DAG) to form 

conditional probability relationships. Each node in the network corresponds to a KE or additional variable, 

e.g., physico-chemical properties, while edges show the conditional dependencies between two KEs that 

form a KER. In other words, the Bayesian network uses conditional probability tables (CPTs) for each KE 

(node) to determine the probability of activity for parent and child nodes, i.e., an upstream KE leading to a 

downstream KE based on the Bayes’ rule, which is the unique mathematical equation for this type of 

modelling. Whilst the choice of KEs in the DAG is informed by the structure of the AOP, a Bayesian network 

can be entirely data-driven and may, or may not, be consistent with the topology of the AOP. Therefore, the 

Bayesian network approach has other applications in predictive toxicology in addition to qAOP development. 

These include: identification of the best biomarkers to characterise chemical exposure using the dose-

response analysis to determine the PoDs (Hack et al. 2010); development of an efficient testing strategy 

(Jaworska et al. 2015); classification of chemicals based on a MoA (Carriger et al. 2016); classification of the 

cellular effects of nanoparticles (Furxhi et al. 2019); and prediction of the severity level of drug-induced liver 

injury (Williams et al. 2020). Currently, six qAOP models have been identified that follow the Bayesian 

approach and were assessed for the common features: (I) problem formulation, (II) mechanistic knowledge 

and associated data, (III) quantitative approaches, (IV) regulatory applicability, (V) additional considerations. 

They are described in turn below and listed in Tables 2.4 and 2.6. A further qAOP model represents a 

combination of both probabilistic and mechanistic approaches (Zgheib et al. 2019), and it is discussed in 

Section 2.6. 

2.5.1. Problem formulation 

A variety of purposes can be recognised across the available probabilistic qAOPs models. The AOs covered 

by these models include organ failure or ecotoxicological population level endpoints. 

2.5.2. Mechanistic knowledge and associated data 

Seven probabilistic qAOPs are available in the AOP-Wiki KB (AOPs IDs 7, 23, 25, 30, 207, 245, 284). Two 

probabilistic qAOPs utilised AOP networks (Burgoon et al. 2020; Chu 2018). One probabilistic qAOP 

represented a curated version of a series of linear AOPs (AOPs IDs 7, 23, 25, 30) (Rowland et al. 2019). The 

qAOP of Jannicke Moe et al. (2020b) included a linear AOP with KEs represented by multiple measurements, 

e.g., oxidative phosphorylation and formation of reactive oxygen species (ROS) to describe the first KE. All 

probabilistic qAOP models incorporated various types of data, including experimentally and/or judgement 

based derived results. Jannicke Moe et al. (2020b), Jeong et al. (2018) and Rowland et al. (2019) quantified 

AOPs of interest using experimental data, while Chu (2018) conducted specific experiments and Perkins et 

al. (2019a) used a combination of in vitro data and expert judgment. Importantly, probabilistic approaches 

are flexible and can estimate predictions for both single chemicals and mixtures more easily than mechanistic 
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approaches, e.g., binary assumption of a state of a KER, while taking into account the randomness given by 

the chosen type of distribution. As a result, Perkins et al. (2019a) quantified liver steatosis caused by both 

individual, and a mixture of, chemicals. In addition, a qAOP model can predict many other endpoints for 

which data may be available, while these endpoints may not necessarily be identified as KEs. For example, 

Burgoon et al. (2020) quantified genes potentially considered as biomarkers for liver steatosis. Likewise, Chu 

(2018) analysed the exposure to single organophosphate pesticides and binary and tertiary mixtures (a 

synergistic effect). However, not all of the probabilistic qAOPs assessed this aspect, i.e., mixture vs individual 

chemicals. For example, Jannicke Moe et al. (2020b) quantified the linkage between exposure to 3,5-

dichlorophenol to a reduced number of fronds in the aquatic plant Lemna minor. The data included in the 

model of Rowland et al. (2019) were represented by a series of single chemicals tested at various 

concentrations, collected from the literature known to have an impact on the reproduction function in 

fathead minnow. Interestingly, nanoparticles were assessed in addition to single (small) organic compounds. 

As such, Jeong et al. (2018) quantified the reproductive toxicity of silver nanoparticles induced via oxidative 

stress in the nematode Caenorhabditis elegans. All probabilistic qAOPs made an attempt to link 

molecular/cellular effects to organ effects through adjacent KERs, and thus, to model biological processes at 

a multiscale level. However, not all probabilistic qAOP models accounted for dose and time responses. Whilst 

all included dose-responses, the models developed by Chu (2018), Jeong et al. (2018), Perkins et al. (2019a), 

Zgheib et al. (2019) and Rowland et al. (2019) made predictions related to time.  

2.5.3. Quantitative approaches 

Jannicke Moe et al. (2020b) formulated CPTs based on the count of observations and statistical analysis. 

Comparing these two CPTs, those based on the count of observations gave more accurate predictions at high 

and low stressor concentrations, while CPTs based on statistical models gave better predictions at 

intermediate stressor concentrations. When no information is available, the probability of activation can be 

set at 50%, for example, the qAOP model developed by Perkins et al. (2019a). Another important aspect is 

the type of variables used to define the nodes, in discrete or continuous forms. Most qAOP models defined 

the nodes as discrete states: intervals (Jannicke Moe et al. 2020b), yes/no and decrease/stable/increase 

(Jeong et al. 2018), active/inactive (Perkins et al. 2019a) and categories/groups of intervals or periods of time 

(Chu 2018). Depending on its scope, the Bayesian network can have different outputs: the probability of a 

compound being active at a given concentration (Perkins et al. 2019a); the prediction of responses of each 

KE at different concentrations (Jannicke Moe et al. 2020b); the calculation of relative risk (Chu 2018); or the 

analysis of causal relationships between KEs (Jeong et al. 2018). Importantly, Rowland et al. (2019) 

formulated a data-driven methodology in order to capture the variability of the experimental data utilised 

assuming a linear relationship between the experimental input, e.g., tested doses, fold-changes and the 

measurable output, e.g., responses. The parameters values were estimated from a Gaussian distribution 

given by the mean and standard deviation from the confidence intervals. A sigmoidal function was used to 

fit the dose-response and bootstrapping was applied to capture the noise, e.g., given by measurement errors. 
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Thus, the algorithm developed by Rowland et al. (2019) suits sparse datasets perfectly allowing for the 

calculation of thresholds of the activity comparing the response of each sample population to the response 

of each activity at the lowest and highest levels. 

2.5.4. Regulatory applicability 

The regulatory applicability was defined as any relevant potential use in CRA that the authors of the qAOP 

models have proposed. Thus, it does not necessarily follow a specific regulation. Two of the qAOP models 

(Burgoon et al. 2020; Zgheib et al. 2019) are applicable in human health risk assessment, three qAOP models 

(Chu 2018; Jannicke Moe et al. 2020b; Rowland et al. 2019) in ecological risk assessment and a single qAOP 

model (Jeong et al. 2018) in nanoparticle risk assessment. The qAOP by Rowland et al. (2019) can be used for 

hazard assessment and prioritisation. 

2.5.5. Additional considerations 

None of the qAOP models included kinetic considerations, non-adjacent KERs, details about compensatory 

mechanisms or feedback loops. However, the qAOP model developed by Chu (2018) considered modulating 

factors such as environmental stressors. Furthermore, this qAOP integrated probability, risk, and exposure 

responses to assess the population size of Chinook salmon. In addition, for experimentally derived data, none 

of the tests or assays are formally validated or nationally/internationally adopted. However, Jannicke Moe et 

al. (2020b) performed tests using the aquatic plant Lemna minor, which is widely accepted in guidance for 

toxicity testing (OECD 2006). Nevertheless, as the authors pointed out, Lemna minor is used for the analysis 

of an endpoint, which is an AO in an AOP rather than an entire AOP. Sources of uncertainty were listed by 

Chu (2018), Jannicke Moe et al. (2020b), Zgheib et al. (2019) and Rowland et al. (2019), while sensitivity 

analysis was conducted for all the qAOPs. These types of qAOPs have been modelled using existing software 

and/or coded in programming languages, i.e., R1.

 
1https://www.R-project.org/, accessed on March 16, 2021.   
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Table 2.4. Characterisation of six probabilistic models that use the Bayesian network approach and an AOP construct based on directed acyclic graphs. 

Model purpose Adverse 
outcome 

Mechanistic knowledge and associated data 

Quantitative 
approach 

Regulatory 
applicability Reference 

OECD 
AOP-
Wiki 
KB1 

Type 
of 

AOP2 

Single 
chemical(s)/ 

Mixtures 
Data type Adjacent 

KERs 
Biological 

level(s) D/C-R3 T-R4 

The risk posed by 
pesticides and 
environmental 
stressors to 
population size of 
Chinook salmon 

 

Alteration of 
population 
dynamics 

No5 AOPN Mixtures In vitro experimental 
data, literature data, 
AOP construction, 
environmental 
factors, population 
characteristics 

√ Molecular, 
cellular, 
organ, 
organism, 
population 

√ √ Bayesian 
Network-Relative 
Risk type of model 

Ecological 
risk 
assessment 

Chu (2018) 

Effects on 
reproduction of 
Lemna minor 
(duckweed) 

Reduced 
number of 
fronds 

AOP 
ID 245 

LAOP Single 
chemical 

In vitro experimental 
data, AOP 
construction 

√ Molecular, 
cellular, 
organism 

√ - Bayesian network 
type of model 
(discrete states as 
three intervals) 

 

Ecological 
risk 
assessment 

Jannicke 
Moe et al. 
(2020b) 

Toxicity of silver 
nanoparticles, 
linking MIE to the 
AO 

Reproduction 
failure 

AOP 
ID 207 

LAOP Nanoparticles In vitro experimental 
data, literature data, 
AOP construction 

√ Molecular, 
cellular, 
organ, 
organism 

√ √ Bayesian network 
type of model 
(discrete states as 
yes/no, and 
decrease/stable/ 
increase), 
Bootstrapping 

Ecological 
risk 
assessment 

Jeong et 
al. (2018) 

To be continued 

 

 

  

 
1Model follows an AOP structure, the MIE (ID 12) can be found in the AOP-Wiki KB, however, the AOP itself is not yet published. 
2Linear AOP (LAOP), AOP Network (AOPN). 
3Dose/Concentration-Responses (D/C-R). 
4Time-Responses (T-R). 
5Numbers represent the indices (XXX) of the AOP in the AOP-Wiki KB available at https://aopwiki.org/events/XXX.   
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Table 2.4. Continued 

Model purpose Adverse 
outcome 

Mechanistic knowledge and associated data 

Quantitative 
approach 

Regulatory 
applicability Reference 

OECD 
AOP-
Wiki 
KB6 

Type 
of 

AOP7 

Single 
chemical(s)/ 

Mixtures 
Data type Adjacent 

KERs 
Biological 

level(s) 
D/C-

R8 T-R9 

Occurrence of 
steatosis under 
different chemical 
exposures 

Hepatic 
steatosis 

No10 AOPN Mixtures Expert judgement, 
literature data, AOP 
construction 

 

√ Molecular, 
cellular, 
tissue, 
organ 

√ - Bayesian 
network type 
of model 
(discrete states 
as active or 
inactive) 

 

Human health 
risk 
assessment 

Burgoon et 
al. (2020); 
Perkins et al. 
(2019a) 

 

Comparison 
between 
probabilistic and 
mechanistic 
approaches 

Nephron 
attrition 
leading to 
chronic kidney 
disease  

AOP ID 
284 

LAOP Single 
chemical 

In vitro 
experimental data 
on human 
RPTEC/TERT1 cells, 
AOP construction 

√ Molecular, 
cellular, 
tissue, 
organ 

 

√ √ Dynamic 
Bayesian 
network model 

Human health 
risk 
assessment 

Zgheib et al. 
(2019)11 

Data-driven 
approach to predict 
the level of 
reproduction of a 
network of AOPs  

Decrease in 
population 
trajectory of 
fathead 
minnow 

AOP 
IDs 7, 
23, 25, 
30 

AOPN Single 
chemicals 

Empirical data √ Molecular, 
cellular, 
organism, 
population 

√ √ Stochastic 
modelling, 
Bootstrapping 

Hazard 
assessment 
and 
prioritisation 

Rowland et 
al. (2019) 

 
6Model follows an AOP structure, the MIE (ID 12) can be found in the AOP-Wiki KB, however, the AOP itself is not yet published. 
7Linear AOP (LAOP), AOP Network (AOPN). 
8Dose/Concentration-Responses (D/C-R). 
9Time-Responses (T-R). 
10Model is included in the AOPXplorer tool (http://apps.cytoscape.org/apps/aopxplorer, accessed on March 16, 2021) as it follows the structure of an AOP network. 
11Model represents a combination of both probabilistic and mechanistic approaches. 
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2.6. Overview of mechanistic quantitative linear AOPs and AOP networks 

A mechanistic qAOP model is driven by hypothesis testing and utilises a series of deterministic and stochastic 

techniques that are discussed briefly below. Eleven qAOP models were identified that follow a mechanistic 

approach, which were assessed for the common features: (I) problem formulation, (II) mechanistic 

knowledge and associated data, (III) quantitative approaches, (IV) regulatory applicability, (V) additional 

considerations. They are described below and summarised in Tables 2.5 and 2.6. 

2.6.1. Problem formulation 

The focus of this type of qAOP relies mainly on understanding the mechanism of toxicity and associated 

relevant taxonomic domain. The AOs are represented by effects at the ecotoxicological population level and 

organ toxicity, e.g., chronic kidney disease, neurodegenerative diseases.  

2.6.2. Mechanistic knowledge and associated data 

Eleven mechanistic AOPs currently available in the AOP-Wiki KB were quantified, five being endorsed (AOPs 

IDs 25, 42, 48, 150, 284). These models were developed using a variety of types of data, including 

experimental/empirical dose- and time-responses. qAOP models derived empirically utilise expert judgement 

for their development. For instance, Foran et al. (2019) proposed a modular approach for qAOPs with limited 

mechanistic data and extensive time required for modelling. The approach focused on making use of the 

existing data while informing where further tests are needed to provide information for the quantification of 

all KERs. Conversely, qAOP models derived purely experimentally have the advantage of verifying the 

feasibility of the development of AOP-based assays, e.g., a battery of in vitro tests. For example, to quantify 

the AOP for developmental neurotoxicity following the inhibition of acetylcholinesterase, Yozzo et al. (2013) 

studied different levels of biological organisation during zebrafish embryogenesis. Importantly, if data are 

not available or inappropriate to compute the KER that links the final KE to an AO at an organ level, but a 

series of KERs can be quantified at cellular and tissue levels, the endpoint can become a KE that occurs earlier 

than an AO. For example, in vitro data were employed by the computational model of Zgheib et al. (2019) 

that quantified chronic kidney injury in a dose- and time-response manner with the endpoint represented by 

oxidative stress, a cellular effect. qAOP models derived from a combination of both empirical and 

experimental data will often predict the outcome better and increase the overall confidence in the 

applicability of the qAOP model. For instance, Muller et al. (2015) described the impact of engineered 

nanoparticles on hatching of zebrafish eggs using high-throughput data at different time points. Model 

performance showing the experimental differences between the data sources has also been evaluated, e.g., 

Margiotta-Casaluci et al. (2016) investigated in vivo fish egg production following exposure to a chemical 

class of interest at various concentrations. The final model included data from other studies, and the results 

were compared with human data. At the same time, empirical data are suitable for the optimisation and 

validation of the predicted response-response relationships as illustrated by Hassan et al. (2017) who 

optimised the quantification of a classic thyroid hormone (TH) synthesis inhibitor in developmental 
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neurotoxicity in a rodent model using data from the literature. Likewise, Doering et al. (2018) investigated 

the activation of the aryl hydrocarbon receptor leading to early life stage mortality and validated the resultant 

qAOP model with empirical evidence. Integration of in silico, in vitro and in vivo data was employed to model 

the teratogenicity of single and mixture azole fungicides by Battistoni et al. (2019). Integration of data mining 

and quantitative assessment was used by Song et al. (2020) to investigate an AOP network that describes the 

impact of Ultraviolet B (UVB) radiation on crustaceans. At the same time, not all quantified AOPs accounted 

for both dose- and time-scales. Foran et al. (2019) and Doering et al. (2018) focused primarily on predictions 

based on the tested concentrations. Importantly, most of the published qAOP models utilised linear AOPs, 

with the exception of Margiotta-Casaluci et al. (2016) who described chronic exposure to synthetic 

glucocorticoids leading to perturbation in egg production linking three AOPs in a network: disruption of 

glucose homeostasis, effects on the immune system and androgenic effects. This integration of evidence 

shows the complexity of different pathways and their different sensitivities to chemicals.  

2.6.3. Quantitative approaches 

Several quantitative approaches were applied for the development of the existing qAOP models. The qAOPs 

of Muller et al. (2015), Hassan et al. (2017), and Foran et al. (2019) were quantified using purely mathematical 

equations. Battistoni et al. (2019) developed a multistage dose-response model applying Bayesian statistical 

analysis. Besides empirical dose-response, systems biology models were used as a quantitative approach by 

Battistoni et al. (2019) and Zgheib et al. (2019). Importantly, not all quantified AOPs follow every level of 

biological organisation. For example, the qAOP formulated by Zgheib et al. (2019) focused on the cellular 

level due to limited data for the other potential downstream KEs. However, full quantification was 

undertaken by Muller et al. (2015), Margiotta-Casaluci et al. (2016), Doering et al. (2018), Hassan et al. (2017), 

Battistoni et al. (2019) who conducted experiments to fill the gaps beyond the available empirical evidence. 

The qAOP model developed by Conolly et al. (2017) linked multiple models to create a mechanistic qAOP 

model for aromatase inhibition leading to reproductive dysfunction: a mechanistic hypothalamus-pituitary-

gonad model, a vitellogenin liver compartment model, a statistical model relating vitellogenin levels to 

fecundity and a density-dependent population matrix model. It was later extended from fathead minnow 

(Pimephales promelas) to two other species (female zebrafish (Danio rerio) and female Japanese medaka 

(Oryzias latipes)) to broaden the taxonomic domain of applicability and therefore, its potential regulatory 

applications (Doering et al. 2019). Thus, AOP ID 25 has three associated qAOP models (Conolly et al. 2017; 

Doering et al. 2019; Foran et al. 2019).  

Regarding the mathematical expressions, linear regression was used by Doering et al. (2018) and Foran et al. 

(2019), while exponential equations were used by Foran et al. (2019) and by Hassan et al. (2017) for the 

computational prediction of TH disruption on the developing brain in rats as described. Elsewhere, Battistoni 

et al. (2019) used kinetic equations adapted from a published systems mathematical biology model to 

simulate the kinetics of single chemicals and mixtures to simulate the perturbation which may lead the co-

exposure of chemicals. A systems biology model was also employed by Zgheib et al. (2019) that used over 50 
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differential equations and, as a result, showed the need for extensive parametrisation (335 parameters). A 

combination of linear models, kinetic equations and statistical analysis was considered by Muller et al. (2015) 

in a study of copper nanoparticles. The qAOP models of Margiotta-Casaluci et al. (2016) and Yozzo et al. 

(2013) applied statistical analysis, i.e., one-way analysis of variance (ANOVA) to the experiments conducted 

to evaluate the pathway of interest quantitatively. Quantitative KERs of the model of Song et al. (2020) were 

developed based on the experimental data using the maximum likelihood estimation (MLE) functions in the 

Benchmark Dose Analysis (BMDS) Software of the US EPA. The experimental data were fitted to five types of 

frequentist inference models, Exponential, Hill, Linear, Polynomial and Power, selected based on a 

combination of visual inspection of model fit, goodness-of-fit and Akaike information criterion (AIC). 

2.6.4. Regulatory applicability 

The regulatory applicability in regard to a potential CRA has been analysed following the suggestions of the 

authors of the qAOP models. All qAOPs have applications in ecological risk assessment, while the qAOP model 

developed by Foran et al. (2019) is intended for screening and/or prioritisation purposes and that developed 

by Zgheib et al. (2019) is proposed for human health risk assessment. The qAOP of Conolly et al. (2017) 

showed additional potential applications: comparing the qAOP simulations to empirical data, how a 

response-response function can be derived and how to estimate the BMD for an untested chemical using 

toxicity equivalent factor (TEF). 

2.6.5. Additional considerations 

The adjacency and non-adjacency of KERs were considered by Hassan et al. (2017), Doering et al. (2018) and 

Foran et al. (2019). Hassan et al. (2017) developed the non-adjacent KER using literature data to model the 

gaps. Doering et al. (2018) used non-adjacent KERs to check and verify the linkage between KEs and the AO. 

Foran et al. (2019) proposed a modular approach as a feasible solution to the AOPs lacking empirical dose- 

and time-response data. Zgheib et al. (2019) used a mathematical inversion by reversing the exponential 

equation based on the initially given function for a pair of KEs (an upstream KE leading to a downstream KE) 

to describe dose-time-response relationships ensuring the qAOP model was not chemical-specific. Four 

qAOPs also incorporated kinetics: Battistoni et al. (2019); Hassan et al. (2017); Margiotta-Casaluci et al. 

(2016); Muller et al. (2015). Furthermore, Battistoni et al. (2019) included a modulating factor, i.e., identifying 

that ethanol can also inhibit retinoic acid synthesis, and a negative feedback loop, i.e., regulation of retinoic 

acid resulting from increased synthesis of CYP26A1. Doering et al. (2019); Doering et al. (2018) developed a 

qAOP that is applicable across species. Uncertainty of the model was considered by Hassan et al. (2017), 

Doering et al. (2018), Battistoni et al. (2019) and Foran et al. (2019). Sensitivity analysis was performed by 

Margiotta-Casaluci et al. (2016) and Zgheib et al. (2019). The mathematical equations and/or the code of the 

qAOP models of Hassan et al. (2017), Doering et al. (2018), Zgheib et al. (2019), Muller et al. (2015) are 

available in the supplementary information of the publications. 
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Table 2.5. Characterisation of the existing eleven mechanistic qAOPs. 

Model purpose Adverse 
outcome 

Mechanistic knowledge and associated data 

Quantitative 
approach 

Regulatory 
applicability Reference 

OECD 
AOP-
Wiki 
KB1 

Type 
of 

AOP2 

Single 
chemical(s)/ 

mixtures 
Data type Adjacent 

KERs 
Biological 

level(s) D/C-R3 T-R4 

Association of 
MIE to AO at 
higher level of 
biological 
organisations 

Increased 
frequency of 
spontaneous 
tail 
contractions 

No 

  

LAOP Single 
chemical 

In vivo 
experimental 
data 

√ Molecular, 
tissue, organ 

√ √ Statistical analysis Ecological risk 
assessment 

Yozzo et 
al. (2013) 

Mechanism of 
CuO engineered 
nanoparticles 
toxicity   

Mortality No LAOP Nanoparticles In vitro 
experimental 
data 

√ Molecular, 
cellular, 
organ, 
organism 

√ √ Linear regression, 
one-compartment 
toxicokinetic model 

 

Ecological risk 
assessment 

Muller et 
al. (2015) 

Development of a 
qAOP network 

 

Egg 
production 

No AOPN Single 
chemical 

In vitro and in 
vivo 
experimental 
data  

√ Molecular, 
cellular, 
tissue, organ, 
individual 

 

√ √ Statistical analysis Ecological risk 
assessment 

Margiotta-
Casaluci et 
al. (2016) 

Development of a 
qAOP and 
potential 
applications 

Population 
declining 
trajectory 
(reproductive 
dysfunction) 

 

AOP 
ID 25 

LAOP Single 
chemical 

Empirical 
data 

√ Molecular, 
cellular, 
tissue, organ, 
individual, 
population 

  

√ √ A mechanistic 
model, a 
compartment 
model, a statistical 
model, a density-
dependent 
population matrix 
model 

 

Ecological risk 
assessment 

Conolly et 
al. (2017) 

Development of a 
qAOP on 
developmental 
neurotoxicity 

Brain 
malformation 

AOP 
ID 42 

LAOP Single 
chemical 

In vivo 
experimental 
data 

√* Molecular, 
cellular, 
tissue, organ 

√ √ Mathematical 
equations 
(exponential 
regression) 

Human risk 
assessment 

Hassan et 
al. (2017) 

To be continued 
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Table 2.5. Continued 

Model purpose Adverse 
outcome 

Mechanistic knowledge and associated data 

Quantitative 
approach 

Regulatory 
applicability Reference 

OECD 
AOP-
Wiki 
KB1 

Type 
of 

AOP2 

Single 
chemical(s)/ 

mixtures 
Data type Adjacent 

KERs 
Biological 

level(s) D/C-R3 T-R4 

Development of a 
cross-species 
qAOP 
 

Mortality 
increase, 
population 
declining 
trajectory 
 

AOP 
ID 150 

LAOP Mixtures In vitro 
experimental 
data on COS-7 
cells  
 

√* Molecular, 
organism, 
population 

√ - Linear regression, 
statistical analysis 

Ecological risk 
assessment 
 

Doering et 
al. (2018) 
 

Simulation of the 
mechanism of 
toxicity 

Abnormalities 
at facial 
primordia 
branchial 
arches 
 

No LAOP Single 
chemicals 

In vitro 
experimental 
data, in vivo 
and in silico 
data 
 

√ Molecular, 
cellular, 
tissue, organ 

√ √ Multistage dose-
response model, 
Bayesian analysis 
 

Ecological risk 
assessment 

Battistoni 
et al. 
(2019) 
 

Define the 
taxonomic 
domain of 
applicability of an 
existing qAOP 

Decreased 
fecundity 

AOP 
ID 25 

LAOP Single 
chemical 

In vivo 
experimental 
data 

√ Cellular, 
tissue, organ, 
individual 

√ √ Regression, 
statistical analysis 

Ecological risk 
assessment 
 

Doering et 
al. (2019) 

Quantification of 
KERs with 
available data in a 
modular manner 

Decrease in 
population; 
Impairment 
of memory 
and learning 
 

AOPs 
IDs 25 
and 
48 

LAOP Single 
chemicals 

Empirical 
data 

√*  √ - Linear regression 
(response-response 
function) 

Screening or 
prioritisation  

Foran et 
al. (2019) 
 

Toxicity pathway 
assembly using 
data mining and 
quantification of 
KERs 

Increased 
mortality 

AOPs 
IDs 
327-
330 

AOPN Ultraviolet B 
(UVB) 
radiation 

In vitro 
experimental 
data on 
Daphnia 
magna 
 

√ Cellular, 
tissue, organ, 
individual 

√ √ Maximum 
Likelihood 
Estimation (MLE) 

Ecological risk 
assessment 
 

Song et al. 
(2020) 
 

To be continued 
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Table 2.5. Continued 

Model purpose Adverse 
outcome 

Mechanistic knowledge and associated data 

Quantitative 
approach 

Regulatory 
applicability Reference 

OECD 
AOP-
Wiki 
KB1 

Type 
of 

AOP2 

Single 
chemical(s)/ 

mixtures 
Data type Adjacent 

KERs 
Biological 

level(s) D/C-R3 T-R4 

Comparison 
between 
probabilistic and 
mechanistic 
approaches 

Nephron 
attrition 
leading to 
chronic 
kidney 
disease  

AOP 
ID 284  
 

LAOP Single 
chemicals 

In vitro 
experimental 
data on 
human 
RPTEC/TERT1 
cells, AOP 
construction 

√ Molecular, 
cellular, 
tissue, organ 

√ √ Empirical dose-
response model, 
systems biology 
model 

Human health 
risk assessment 

Zgheib et 
al. (2019)5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_____________________________________________________ 

1Numbers represent the indices (XXX) of the AOP in the AOP-Wiki KB available at https://aopwiki.org/events/XXX.   
2Linear AOP (LAOP), AOP Network (AOPN). 
 3Dose/Concentration-Responses (D/C-R). 
4Time-Responses (T-R). 
5Model represents a combination of both probabilistic and mechanistic approaches. 
*Non-adjacent KERs were modelled as well. 
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Table 2.6. Characterisation of the available qAOP models based on the additional considerations listed in Table 2.1. 

Reference Cross species 
extrapolation 

Modulating 
factors 

Feedback 
loops 

Compensatory 
mechanisms 

Test 
method 

adopted/ 
validated 

Kinetics Chemical 
agnostic 

Exposure 
assessment 

Uncertainty 
evaluated 

Sensitivity 
analysis 

Publicly 
available 

Probabilistic qAOP models 
Chu (2018) - √ - - - - - √ √ √ √ 
Jannicke Moe et al. 
(2020b) - - - - √1 - - - √ √ √ 

Jeong et al. (2018) - - - - - √ - - - √ √ 
Burgoon et al. (2020); 
Perkins et al. (2019a) - - - - - - - - - √ √ 

Rowland et al. (2019) - - - - - - - - √ √ - 
Zgheib et al. (2019) - - - - - - √ - √ √ √ 
Mechanistic qAOP models 
Yozzo et al. (2013) - - - - - - - - - - - 
Muller et al. (2015) - - - - - √ - - - - √ 
Margiotta-Casaluci et al. 
(2016) - - √ - - √ - - - √ - 

Conolly et al. (2017) - - √ √ - √ √ - √ - - 
Hassan et al. (2017) - - √ √ - √ - √ √ - √ 
Doering et al. (2018) √ - - - - - - - √ - √ 
Battistoni et al. (2019) - √ √ - - - - √ √ - - 
Doering et al. (2019) √ - - - - √ √ - √ √ - 
Foran et al. (2019) - - - - - - - - - - - 
Song et al. (2020) √ - - - - - NA √ √ - √2 
Zgheib et al. (2019) - - - - - - √ - √ √ √ 

 
 

 
1The in vitro measurements were conducted on a plant recognised by the OECD TGs for toxicity testing of the endpoint. 
2https://www.niva.no/en/projectweb/radb, accessed on March 16, 2021.  



46 

2.7. Software tools 

A variety of software tools used for the development of the qAOPs analysed were identified in this study 

(Table 2.7). In total, 21 tools were distinguished, with twelve of them being publicly available. The range of 

software tools can be classified into tools used for (i) data analysis, (ii) modelling, simulation and calibration 

and (iii) model storage. The most common tools used were Microsoft Excel, the drc R package for writing the 

mathematical functions of dose-responses, MC Sim for statistical analysis and BayesiaLab for probabilistic 

modelling. A unique tool is the Bayesian Inference for Substance and Chemical Toxicity (BISCT) software 

developed specifically to help to predict quantitative estimates based on the toxicological evidence. Another 

important tool used is Effectopedia, an open platform that allows qAOP models to be stored in a central 

location. This compilation of software shows the vast potential in the development of appropriate tools to 

help advance and apply the qAOP concept. 
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Table 2.7. List of software used for modelling probabilistic and/or mechanistic qAOPs. 

Tool Name Functionality URL1 Use Rights Example of qAOPs 

BayesiaLab Model generation, analysis, simulation, and 
optimisation 

https://www.bayesialab.com/  Restricted by licence Carriger et al. (2016); 
Jaworska et al. 

(2015)  

BISCT Prediction of an adverse event likely to occur 
given the evidence 

https://github.com/DataSciBurgoon/bisct  Open access Perkins et al. (2019a) 

bootstrap R package Bootstrap, cross-validation, jackknife https://cran.r-project.org/web/packages/bootstrap/  Open access Jeong et al. (2018) 

brms R package Bayesian generalised nonlinear multivariate 

multilevel models 

https://cran.r-project.org/web/packages/brms/  Open access Jannicke Moe et al. 

(2020b) 

drc R package Analysis of dose-response data https://cran.r-

project.org/web/packages/drc/index.html  

Open access Chu (2018); Jannicke 

Moe et al. (2020b) 

Effectopedia2 Storage of a qAOP model https://sourceforge.net/p/effectopedia/wiki/Home/  Open access Zgheib et al. (2019) 

GraphPad Prism Analysis and plotting the data https://www.graphpad.com/scientific-
software/prism/  

Restricted by licence Doering et al. (2018) 

Lmtest A collection of tests, data sets, and examples for 

diagnostic checking in linear regression models 

https://cran.r-

project.org/web/packages/lmtest/index.html  

Open access Chu (2018) 

Matlab Analysis and design processes https://www.mathworks.com/products/matlab.html  Restricted by licence Hassan et al. (2017) 

MC Sim Bayesian statistical inference https://www.gnu.org/software/mcsim/  Open access Battistoni et al. 

(2019); Hack et al. 

(2010); Zgheib et al. 
(2019) 

MC Stan Model generation, simulation, calibration https://mc-stan.org/  Open access Zgheib et al. (2019) 

To be continued 

 

  

 
1Last accessed on March 16, 2021.  
2Planned for release at: https://effectopedia.org/.  
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Table 2.7. Continued 

Tool Name Functionality URL3 Use Rights Example of qAOPs 

Microsoft Excel Statistical analysis https://products.office.com/en-us/excel  Restricted by licence Foran et al. (2019); 
Hack et al. (2010); 

Hassan et al. (2017) 

Netica Model construction, optimisation https://www.norsys.com/download.html  Restricted by licence Chu (2018); Jannicke 
Moe et al. (2020b) 

PerformanceAnalytics R package Correlation analysis https://cran.r-

project.org/web/packages/PerformanceAnalytics/inde
x.html  

Open access Jeong et al. (2018) 

Samiam BN modelling and reasoning http://reasoning.cs.ucla.edu/samiam/  Open access Jeong et al. (2018) 

SAS software Statistical analyses https://www.sas.com/en_us/software/sas9.html  Restricted by licence Hassan et al. (2017) 

SigmaPlot Graphs plotting http://sigmaplot.co.uk/products/sigmaplot/ Restricted by licence Jeong et al. (2018) 

SigmaStat software Statistical analyses https://systatsoftware.com/products/sigmastat/  Restricted by licence Margiotta-Casaluci 
et al. (2016) 

SPSS Statistical analysis https://www.ibm.com/uk-en/products/spss-statistics  Restricted by licence Jeong et al. (2018); 

Yozzo et al. (2013) 

WEKA Collection of machine learning algorithms for 
data mining tasks 

https://www.cs.waikato.ac.nz/~ml/weka/index.html  Open access Furxhi et al. (2019) 

US EPA Benchmark Dose  
(BMDS) Software 

Analysis of dichotomous (quantal) data, 

continuous data, nested developmental 
toxicology data, and multiple tumour analysis 

https://www.epa.gov/bmds/benchmark-dose-

software-bmds-version-311-download  

Open access Furxhi et al. (2019); 

Song et al. (2020) 

 
3Last accessed on March 16, 2021.  
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2.8. Conclusions 

This Chapter has summarised the recent progress made in the development of qAOP models. Additionally, a 

list of common features essential for developing qAOP models has been outlined, i.e., problem formulation, 

mechanistic knowledge and associated data, quantitative approaches, regulatory applicability and additional 

considerations derived from published definitions in the scientific literature. These features still need to be 

harmonised and gain general acceptance. Hence, following the conceptual classes of qAOP models as 

proposed by Gust et al. (2016) and Perkins et al. (2019b), existing probabilistic and mechanistic qAOPs were 

identified and characterised according to the predefined common features. Additionally, the semi-q/qWoE 

AOPs were reviewed for their applicability to increase confidence in qualitative AOPs besides the assessment 

of AOPs required by the OECD. The qAOPs discussed herein illustrate a range of computational techniques 

and software tools applicable to such modelling. Importantly, these examples highlight the powerful 

capability of a qAOP model to integrate diverse types of data (physico-chemical, in silico, in vitro, in vivo) for 

different stressors including chemicals, nanoparticles and radiations.  

As mentioned above, there is currently no regulatory guidance on how to develop and evaluate a qAOP 

model. As more examples of qAOPs become available, there will be an increasing need to provide a coherent 

framework to support the evaluation and purpose-specific application of qAOPs in a regulatory context. 

While it is beyond the scope of this Chapter to outline such a framework, a number of elements (principles) 

can be identified, some of which may be essential, and others desirable, depending on the application. 

On the basis of what has been determined in this Chapter, an ideal qAOP should: 

• Predict a defined AO (defined endpoint). 

• Address a specified regulatory question and context of use (problem formulation). 

• Be consistent with the qualitative description of the AOP of interest. 

• Have a clear domain of applicability (including species, taxa, modulating factors). 

• Be characterised in terms of its predictive performance and robustness (uncertainty and sensitivity 

analysis). 

• Be transparent and traceable, to allow independent evaluation and verification of the qAOP model 

(including input data, simulated outputs, and correct implementation of the mathematical 

equations). 

• Be understandable and user-friendly, to ease its interpretability and application. 

• Be flexible, to allow the analysis of both existing and new molecules. 

• Be updateable, to readily incorporate new data from diverse sources once it becomes available. 

• Be reproducible, to enhance the confidence in the consistency and accuracy of the qAOP model 

output. 

• Be portable, so that the qAOP model can be integrated with other mathematical models, such as 

kinetic models. 



50 
 

• Be publicly available, either in the form of a working platform, or availability of code. 

Although current efforts in qAOP modelling are limited, the field is gaining momentum. This Chapter can 

therefore serve as a starting point to formulate formal guidance on the development, assessment and 

application of probabilistic and mechanistic qAOPs following, or not, the assessment of qualitative AOPs 

informed by semi-q/qWoE qAOPs together with the OECD assessment in CRA. In the context of the present 

thesis, this points the way for future research to investigate networks of linear AOPs and the usefulness of 

probabilistic modelling to evaluate pathway-driven and chemically-induced toxicological effects.  
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Chapter 3.  Development and analysis of an Adverse Outcome Pathway 

network for human neurotoxicity 

 

As Chapter 2 showed, a network of linear AOPs can depict the complexity of biological effects better than 

single linear AOPs. Notably, a network can serve as the grounds for quantitative modelling of chemically-

induced adverse events. The work presented in this Chapter is based on a methodology published as part of 

the doctoral work (Spinu et al. 2019). The Chapter was enriched with details regarding the topology 

parameters and a dedicated description on the potential use of the ToxCastTM data for modelling quantitative 

KERs of the AOs of the AOP network for neurotoxicity. 

 

Abstract 
An AOP network is an attempt to represent the complexity of systems toxicology. This Chapter illustrates 

how an AOP network can be derived and analysed in terms of its topological features to guide research and 

support regulatory assessment. A four-step workflow describing general and applied design principles was 

established and implemented. An AOP network linking nine linear AOPs describing neurotoxicity was mapped 

and made available in AOPXplorer. The resultant AOP network was modelled and analysed in terms of its 

topological features, including level of degree, eccentricity and betweenness centrality. Several well-

connected KEs were identified, and cell injury/death was established as the most hyperlinked KE across the 

network. The derived network expands the utility of linear AOPs to better understand signalling pathways 

involved in developmental and adult/ageing neurotoxicity. The results provide a solid basis to guide the 

development of in vitro test method batteries, as well as further quantitative modelling of KEs and KERs in 

the AOP network, with an eventual aim to support hazard characterisation and CRA. 
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3.1. Introduction 

The science of networks is defined as the collection, management, analysis, interpretation and presentation 

of relational data (Brandes et al. 2013). The investigation of networks is spread widely throughout all 

branches of biology and chemistry, from neurobiology (Bassett and Sporns 2017) to genomics (Li et al. 2017). 

For example, in biology, the application of networks has made advances towards uncovering the organising 

principles of various complex systems, e.g., protein-protein interactions, metabolomics, signalling and 

transcription-regulatory networks (Barabasi and Oltvai 2004). On the other hand, systems toxicology, 

considered as an application of systems biology, aims to describe the perturbation by toxicants and the 

resilience of the essential defence and adaptive mechanisms across multiple levels of biological organisations 

(Hartung et al. 2017; Sturla et al. 2014). In other words, systems toxicology helps to identify meaningful 

disease-specific biomarkers as opposed to systems biology, where the purpose is to discover the underlying 

molecular and cellular mechanisms (Aguayo-Orozco et al. 2019b). Systems biology captures interactions 

between biological entities, while systems toxicology focuses on the temporal/spatial relationships between 

processes/events, triggered by exposure to a stressor(s), particularly chemicals. 

Although AOPs are linear constructs and thus a simplification of complex physiological and toxicological 

processes (Vinken et al. 2017), it is well appreciated that AOPs are interconnected and potentially share the 

same processes or KEs (Knapen et al. 2018). As such, network science provides an appealing framework to 

better represent the complexity of biological processes by studying relationships among interconnected 

linear AOPs. The term “AOP network” can be defined as a set of individual AOPs sharing at least one common 

element represented by a KE, including an MIE and an AO (Villeneuve et al. 2014a). Different AOPs diverging 

from a single MIE, or converging to a single AO, also form AOP networks, even if they do not have any other 

KE in common (Knapen et al. 2018). An individual AOP can be considered as a pragmatic unit of development 

and evaluation, while an AOP network can be seen as the functional unit of prediction (Villeneuve et al. 

2014a; Villeneuve et al. 2014b). Hence, an individual AOP should be treated as a building block within a larger 

AOP network that more comprehensively describes the biological processes involved in real-world scenarios. 

This does, however, imply that it will become increasingly important to move away from viewing single linear 

AOPs in isolation and to consider instead non-linear and branched AOPs within the broader context of AOP 

networks, as acknowledged in recent guidance (OECD 2017). The challenge is to integrate individual AOPs 

into a network for a predefined application and to characterise the network in quantifiable terms.  

The OECD AOP project, especially the AOP-Wiki KB module1, brings together the scientific community to 

develop, share and discuss AOP-related knowledge while accelerating and facilitating AOP development in a 

central location, allowing the connectivity of AOPs to be explored  (Villeneuve et al. 2014a). By developing 

an AOP network, all the possible AOPs in the AOP-Wiki KB that are relevant to the specific question may be 

examined. As AOPs are living documents (Villeneuve et al. 2014a), capable of accommodating updates to the 

 
1https://aopwiki.org/, accessed on March 16, 2021.   
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description of KERs and the addition of new KEs, AOP networks should also be regarded as living documents. 

The AOP-Wiki KB module is designed to automatically generate AOP networks through the identification of 

common KEs involved in multiple AOPs. This allows information that has been curated for one AOP to be 

reused in another, avoiding duplication of effort. Recently, a “global” AOP network was developed in order 

to evaluate the overall connectivity and structural features of existing linear AOPs in the AOP-Wiki KB module 

(Pollesch et al. 2019). This illustrated the possibility of deriving AOP networks for toxicological applications. 

However, the development and use of AOP networks are still in its infancy, and further proof-of-concept 

examples are needed, including approaches for characterising the underlying uncertainties and limitations 

(Edwards et al. 2016).  

To describe and analyse an AOP network, a range of network analytics can be used to identify and investigate 

specific network properties, such as topological features or interactions between linear AOPs (Knapen et al. 

2018). Although the visual examination of the AOP network graph is compelling, the use of techniques from 

graph theory facilitates the interpretation of a network in terms of its quantitative topological characteristics. 

To analyse the topology of an AOP network, many metrics can be calculated to describe the overall shape 

and structure of the network. Several parameters were identified and described by Villeneuve et al. (2018a), 

such as level of degree (also known as valency, here the number of KERs linked to a KE), betweenness 

centrality, path occurrence, eccentricity, topological sorting, connectivity, contraction and matching index 

(defined in section 3.3.4). Using these kinds of metrics helps to identify the upstream or downstream KEs, 

points of convergence and divergence, positive and negative feedback loops, etc. The topological parameters 

allow not only the characterisation of AOP networks but also the identification of the most common/highly 

connected KEs. In the absence of empirical information on the toxicological relevance of individual KEs, it 

seems reasonable to prioritise the most highly connected KEs for testing and quantification. These 

topological parameters can be grouped further depending on the question of interest and network size so 

that not all of them need to be measured at once. For example, an AOP network can be tested for the degree, 

path occurrence, betweenness centrality and eccentricity in order to identify points of convergence and/or 

divergence. Thus, a key challenge is how to establish which parameters are most relevant for the specific 

question and context of use.  

Developmental and adult/ageing neurotoxicity are important endpoints in CRA and are emerging fields for 

method development and use in regulatory decision-making (Bal-Price et al. 2018a; Fritsche et al. 2018). Early 

life exposures to certain chemicals, such as pesticides, may have long-term adverse health consequences for 

the developing brain. In addition, adult/ageing neurotoxicity, e.g., Alzheimer’s and Parkinson’s diseases, pose 

significant challenges for societies with rapidly ageing populations. Various test systems are used to evaluate 

the neurotoxicity of a chemical, including cell lines, primary rodent cells, hiPSC-derived mixed neuronal/glial 

cultures in 2-D and 3-D cultures etc. (Bal-Price et al. 2015; Schmidt et al. 2017). While none of these are 

currently validated for regulatory use (e.g., as OECD TGs), they provide relevant information for AOP 

development (Bal-Price et al. 2015). Furthermore, evaluating and mapping available linear AOPs for 
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neurotoxicity into a network helps to understand the causative linkages between KEs in terms of mechanistic 

knowledge supported by empirical evidence while identifying knowledge gaps, limitations and opportunities 

related to pathophysiological pathways involved.  

3.2. Aim of this chapter 

The main objective of this Chapter was to develop an AOP network for human neurotoxicity and characterise 

the network by using the analytics proposed by Knapen et al. (2018) and Villeneuve et al. (2018a). A workflow 

to guide scientists interested in the development of AOP networks was formulated and utilised. In addition, 

a further aim was to analyse the neurotoxicity AOP network to identify the most common/highly connected 

KEs and KERs as the basis for quantitative modelling.  
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3.3. Methodology 

3.3.1. Data Set 

Linear AOPs from the OECD AOP-Wiki 2.0 were investigated manually to develop the derived AOP network 

following the criteria described in Section 3.3.3. The following information about the status of individual AOPs 

was extracted and collected in an Excel spreadsheet available as supplementary information in the GitHub 

repository: progress through the OECD review and endorsement processes (e.g., under development, 

endorsement by the Working Party on Hazard Assessment (WPHA)/Working Group of the National 

Coordinators of the Test Guidelines Programme (WNT), approval of the EAGMST), KE title, KE type (i.e., MIE, 

KE, AO), KER (i.e., linkage between upstream and downstream KEs), adjacency of the relationship between a 

pair of KEs, and qualitative WoE. The linear AOPs were collected in December 2018. 

3.3.2. Stressors 

The OECD AOP-Wiki 2.0 was also used to extract the stressors (chemical initiators and/or non-chemical 

stressors) triggering KEs, including MIEs and AOs of the collected linear AOPs, together with the available 

unique identifier number used in PubMed (PMIDs) listed in the stressor’s description page. The data for the 

stressors (in this case, all chemicals) were compiled in an Excel spreadsheet included in the GitHub repository. 

In addition, the Chemical Abstracts Service Registry Number (CAS RN), Simplified Molecular Input Line Entry 

System (SMILES) strings, and details on the industrial and therapeutic uses were retrieved from the PubChem 

database2 to understand the nature of the chemical stressor responsible for the initiation of the linear AOPs. 

At the same time, the ToxCastTM Dashboard3 was investigated for relevant data relating to assays that may 

be associated with the KEs, including MIEs and AOs of the collected linear AOPs.  

3.3.3. Network construction 

The process of developing a so-called “derived” AOP network (i.e., derived from existing AOPs) followed the 

four steps that are illustrated in Figure 3.1. Initially, the “General Design Principles” were formulated. These 

principles are intended to be generic in nature and can be applied to any other question of interest. The 

“Applied Design Principles” are an illustrated version of the General Design Principles followed for the 

development of an organ-specific AOP network – in Figure 3.1, this is shown for neurotoxicity. The 

methodology of each part of the four-step process is described below. 

 
2https://pubchem.ncbi.nlm.nih.gov/, accessed on March 16, 2021. 
3https://comptox.epa.gov/dashboard/chemical_lists/TOXCAST, accessed on March 16, 2021. 
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Figure 3.1. The General Design Principles of the four-step workflow for developing a derived AOP network illustrated by 
Applied Design Principles with regard to human neurotoxicity. 

3.3.3.1. Step 1 

Step 1 of the workflow is the definition of the purpose of an AOP network to be modelled. In this 

investigation, the purpose was to identify the most common/highly connected KEs and KERs in a 

neurotoxicity AOP network as the basis for quantitative modelling. Accordingly, the scope of the exercise 

included the linear AOPs known for human neurotoxicity formulated and published in the AOP-Wiki KB 

module. 

3.3.3.2. Step 2 

Step 2 of the workflow is the definition of the criteria for the selection of the AOPs for the development of 

the network. In this investigation, the criteria included: 

- The AOP development stage in terms of the progress of the AOP through the OECD review and 

endorsement processes,  

- The life stage applicability, and 

- The taxonomic applicability.  

Of these, taxonomy was chosen to be the main criterion for the collection of individual AOPs, i.e., those for 

human toxicology. The AOP development stage was investigated to evaluate the level of maturity of the AOPs 

used to derive the AOP network. It gives an indication of uncertainties in the AOP network and shows where 

further efforts are needed to elucidate the underlying mechanisms. 

As one of the uses of an AOP network is quantitative modelling, developing a network with a high level of 

qualitative and quantitative evidence will give confidence to the model applicability. As such, refinement of 

the parameters for the initially collected linear AOPs following Step 1 was considered: adjacency and non-
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adjacency of relationships between a pair of KEs, i.e., if a KER requires intermediate KEs or not, and the WoE, 

specifically the qualitative level of understanding for the relationships between a pair of KEs: high, medium 

or low. Considerations of the BH criteria for WoE assessment were out of the scope of this modelling exercise. 

This study relied on the assessments performed by the authors of the AOPs, which are summarised in 

dedicated tables in the AOP-Wiki KB module. 

3.3.3.3. Step 3 

Step 3 of the workflow is the identification of appropriate AOPs from the AOP-Wiki KB module. The AOPs 

identified, according to the criteria in Step 2, were inspected and collected manually in an Excel spreadsheet. 

The information contained in the AOPs was subsequently curated using the ontology annotations of KEs titles 

as presented in the supplementary material in the GitHub repository. 

3.3.3.4. Step 4 

Step 4 of the workflow is the generation and analysis of the network. Cytoscape 3.7.14, an open-source 

software platform, was used to model the AOP network, and NetworkAnalyzer 3.3.2 App5 (Assenov et al. 

2008), a pre-installed application of the Cytoscape software, was used to analyse the resulting AOP network. 

The nodes were manually positioned as needed to conserve space and maximise readability. Additional 

annotation information (e.g., WoE, adjacency and type of KE) was used to further define the visual attributes 

of the AOP network. The KEs shared by more than one AOP are shown graphically as non-repetitive (i.e., 

represented by a single arrow), while the duplication of a relationship between a pair of KEs was taken into 

account when calculating the network analytics. 

3.3.4. Network analysis 

The level of degree, betweenness centrality and eccentricity were chosen to characterise the derived AOP 

network analytically due to their ability to quantify the position of a KE in relation to its neighbour KEs in the 

network using Cytoscape NetworkAnalyzer 3.3.2 App5. The level of degree refers to the number of edges 

linked to nodes of interest (Barabasi and Oltvai 2004). Directed AOP networks can distinguish two types of 

degrees: an incoming degree (!"#$""!") representing the number of links that point to upstream KEs, and 

an outgoing degree (!"#$""#$%) that denotes the number of links that start from downstream KEs 

(Villeneuve et al. 2018a). Thus, the level of degree allowed for the identification of points of convergence 

and divergence and to analyse the overall connectivity of the KEs across the AOP network. The betweenness 

centrality and eccentricity helped to assess the furthermost upstream and downstream KEs across the AOP 

network. Mathematically, betweenness centrality is defined as the sum over all pairs of nodes %, i.e., KEs, of 

the network &: 

'((%) = 	 - .&%(%)
.&%&'"'%

&,%	∈	+

 

 
4https://cytoscape.org/, accessed on March 16, 2021.   
5http://apps.cytoscape.org/apps/networkanalyzer, accessed on March 16, 2021.  
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where .!"(%) denotes the total number of shortest paths from /	to 0 that pass through the node %, i.e., KE, 

and .!" denotes the total number of shortest paths from / to 0 (Cytoscape 2018).  

The eccentricity is a centrality measurement given by the maximum non-infinite length of the shortest path 

between the nodes %, i.e., KEs, that takes the inverse of the maximum of the distances between the nodes 

%: 

122 = 	 1
!4/0#$%(%)

 

A node is more central if the maximum of the distances is smaller. If the node is isolated, the value of this 

parameter becomes zero (Netzwerkerin). KEs with a higher score for the degree and betweenness centrality 

and a lower score for the eccentricity were considered the most common/highly connected KEs. Comparative 

analysis of multiple parameters provided the centrality score more efficiently and, therefore, less uncertainty 

in defining the most common/highly connected KEs. 
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3.4. Results 

3.4.1. Development of the AOP network for neurotoxicity 

Published AOPs in the AOP-Wiki KB were used to develop a derived AOP network for human neurotoxicity. 

Initially, twelve linear AOPs relevant to human neurotoxicity were identified in accordance with the 

methodology outlined in Section 3.3. Table 3.1 provides details of the AOPs selected, including their stage of 

development. 

Table 3.1. Twelve linear AOPs for neurotoxicity available in the OECD AOP-Wiki KB module used for modelling the AOP 
network for human neurotoxicity. 

AOP 
Wiki 

ID 
AOP Title Additional Taxonomy 

Qualitative 
Weight of 
Evidence 

OECD Status 
(Last checked 

November 2020) 

3 Inhibition of the mitochondrial complex I of 

nigrostriatal neurons leads to Parkinsonian motor 

deficits 

Homo sapiens, Rattus 
norvegicus 

High **WPHA/WNT 

Endorsed 

10 Binding to the picrotoxin site of ionotropic GABA 

receptors leading to epileptic seizures in adult brain 

Homo sapiens, Mus 
musculus, Rattus 
norvegicus, Colinus 
virginianus, Danio rerio 

High **WPHA/WNT 

Endorsed 

12 Chronic binding of antagonist to N-methyl-D-

aspartate receptors (NMDARs) during brain 

development leads to neurodegeneration with 

impairment in learning and memory in aging 

Homo sapiens, Monkey, 
Rattus norvegicus, Mus 
musculus, Danio rerio 

Low **WPHA/WNT 

Endorsed 

13 Chronic binding of antagonist to N-methyl-D-

aspartate receptors (NMDARs) during brain 

development induces impairment of learning and 

memory abilities 

Homo sapiens, Mus 
musculus, Monkey, 
Rattus norvegicus 

High **WPHA/WNT 

Endorsed 

17 Binding of electrophilic chemicals to SH (thiol)-group 

of proteins and /or to seleno-proteins during brain 

development leads to impairment of learning and 

memory 

Homo sapiens, Rattus 
norvegicus, Mus 
musculus 

Moderate EAGMST Under 

Review 

26 Calcium-mediated neuronal ROS production and 

energy imbalance  

- - Under 

Development 

42 Inhibition of thyroperoxidase and subsequent 

adverse neurodevelopmental outcomes in mammals 

Homo sapiens, Rattus 
norvegicus, Mus 
musculus 

High **WPHA/WNT 

Endorsed 

48 Binding of agonists to ionotropic glutamate 

receptors in the adult brain causes excitotoxicity that 

mediates neuronal cell death, contributing to 

learning and memory impairment. 

Homo sapiens, Rattus 
norvegicus, Mus 
musculus 

High **WPHA/WNT 

Endorsed  

54 Inhibition of Na+/I- symporter (NIS) leads to learning 

and memory impairment 

Homo sapiens, Rattus 
norvegicus 

High **WPHA/WNT 

Endorsed  

134 Sodium Iodide Symporter (NIS) Inhibition and 

subsequent adverse neurodevelopmental outcomes 

in mammals 

Homo sapiens, Rattus 
norvegicus 

High Under 

Development 

152 Interference with thyroid serum binding protein 

transthyretin and subsequent adverse human 

neurodevelopmental toxicity  

- - *Under 

Development 

260 CYP2E1 activation and formation of protein adducts 

leading to neurodegeneration 

Homo sapiens - Under 

development 

*AOP included in the OECD work plan 

**The OECD changed the name from TFHA (Task Force on Hazard Assessment) to WPHA (Working Party on Hazard Assessment
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Figure 3.2. Derived network of nine AOPs for neurotoxicity containing adjacent KERs. Green squares indicate an MIE, blue squares indicate the most common/highly connected KEs, 

red squares indicate an AO, and red squares filled with red colour indicate the most common/highly connected AOs. Solid arrows indicate relationships between KEs that are 
adjacent. The KEs shared by more than one AOP are shown as non-redundant, i.e., represented by a single arrow. The qualitative WoE between two KEs is annotated as H for high, 

M for medium and L for the low level of evidence. The KE cell injury/death is a common KE across the AOP network, being the most centrally located and most highly connected.
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After curation, with the exception of AOPs IDs 10, 26, and 152, all the nine other AOPs were found to share 

common KEs and were mapped in a network. The developed AOP network is shown graphically in Figure 3.2. 

The MIE defined as binding of the antagonist, N-methyl-D-aspartate receptors (NMDARs) is common to two 

AOPs (AOP ID 12 and AOP ID 13), and similarly, the MIE inhibition of Na+/I- symporter (NIS) linked two other 

AOPs (AOP ID 54 and AOP ID 134). Three AOs defined as neurodegeneration, Parkinsonian motor deficits and 

impairment of learning and memory/decrease of cognitive function connected all nine AOPs. 

The common KEs across the network are represented by the reduction of the human brain-derived 

neurotrophic factor (BDNF), mitochondrial dysfunction, oxidative stress, neuroinflammation, cellular 

injury/death, degeneration of dopaminergic neurons of the nigrostriatal pathway, decrease of neuronal 

network function, decrease in the synthesis of the thyroid hormones (TH), decrease in thyroxine (T4) in serum 

and neuronal tissue. Interestingly, different upstream KEs contribute to the same common KEs triggering 

different downstream KEs. For example, oxidative stress is initiated by two MIEs: activation of CYP2E1 and 

binding to SH/SeH proteins of two different AOPs. At the same time, once triggered, oxidative stress leads to 

several other downstream KEs, such as dyshomeostasis of glutamate, lipid peroxidation and unfolded protein 

response. 

The most centrally located KE across the network is cell injury/death triggered by several mechanisms. For 

instance, reduced levels of BDNF, which is widely expressed in the developing and mature central nervous 

system (CNS), cause aberrations in neuronal morphology and function, including neuronal cell death. Since it 

is a neurotrophic factor, it plays an essential role in neuronal survival, proliferation, differentiation 

(synaptogenesis) and maturation (AOP ID 13). Another crucial KE is neuroinflammation which triggers cell 

injury/death and neurodegeneration through the increased release of different pro-inflammatory mediators 

from activated microglia and astrocytes exacerbating neurodegeneration which potentiates 

neuroinflammation (AOP ID 17). Therefore, cell injury/death is involved in a feedback loop mechanism of 

cellular injury/death-neuroinflammation-neurodegeneration. Impaired proteostasis through the 

dysregulation of the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway (ALP) 

increases the accumulation of certain proteins (e.g., α-synuclein), contributing to the degeneration of 

dopaminergic (DA) neurons of the nigrostriatal pathway that further leads to the motor deficits observed in 

Parkinson’s disease (AOP ID 3). Cell injury/death also leads directly to the decrease of the neuronal network 

function implied in the impairment of learning and memory/decrease of cognitive function (AOPs IDs 13, 17, 

48, 54). Dyshomeostatis of glutamate and mitochondrial dysfunction are other mechanisms associated with 

neuronal cell injury/death (see references for each AOP in AOP-Wiki KB).  

The AOP network for neurotoxicity relies solely on KERs established between adjacent KEs. The use of the 

adjacent relationships between KEs shows the biological plausibility of triggering neurodegeneration as one 

of the most common/converging KEs (AOP ID 48) and AOs (AOP ID 12 and AOP ID 260) through different 

signalling pathways. Depending on brain structure and the sub-type of neurons undergoing 

neurodegeneration, different AOs can be triggered. Indeed, as illustrated through this network, degeneration 
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of DA neurons in substantia nigra pars compacta (SNpc) leads to the motor deficit, the AO in Parkinson’s 

disease (AOP ID 3). However, neurodegeneration in the hippocampus or cortex leads mainly to impairment 

of learning and memory/decrease of cognitive function (AO of AOPs IDs 12, 13, 17, 42, 48, 54, 134).  

The empirical evidence supporting KERs in this AOP network is mainly described in a qualitative or semi-

quantitative manner. The WoE supporting KERs varies from low to high; with low WoE possibly based on 

poor/insufficient empirical data or contradictory information. To increase the empirical evidence supporting 

the KER, more experiments designed for such a purpose may be required. The development of such networks 

of biological paths can help to identify and develop appropriate non-animal alternatives for the safety testing 

of chemicals. This is thoroughly discussed within the thesis. In addition, to improve confidence in an AOP 

network, for instance, to support regulatory use, e.g., CRA, a better quantitative definition of the thresholds 

to trigger respective KEs within each KER is needed. In other words, the availability of quantitative KERs 

should enable an assessment of the likelihood, and under what conditions of chemical concentration and 

exposure duration, a cascade of KEs triggered by an MIE will lead to an AO. 
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3.4.2. Analytical characterisation of the AOP network for neurotoxicity 

The analysis was performed on the derived AOP network for neurotoxicity that contains KEs and adjacent 

relationships between KEs of nine linear AOPs. As a result, network analytics confirmed that the most 

hyperlinked KE across the network is cell injury/death, followed by neuroinflammation, reduction of BDNF, 

neurodegeneration, and decrease in neuronal network function, with a level of degree of 13, 10, 8, 8 and 8, 

respectively. The least connected KEs were the MIEs with a level of degree 1, such as binding of agonist to 

the ionotropic glutamate receptors. The AO of Parkinsonian motor deficit also has a level of degree of 1, as 

one linear AOP is currently developed for this AO. The overall connectivity of the KEs is shown in Figure 3.3. 

However, it is important to outline that the results represent the scenario at the time the linear AOPs were 

investigated. As more linear AOPs are added, the extent of connection to a particular KE may change. 

 
Figure 3.3. The overall connectivity of KEs used to develop the derived AOP network for neurotoxicity. The score 
indicates the number of the KERs associated with a KE. Cell injury/death has the highest score, which means that is the 
most interconnected KE across the network. The least connected KE was the AO of Parkinson’s motor deficits due to the 
fact that only one AOP is currently available for this outcome. 

The level of degree of KEs helped to identify points of convergence (common KEs) and divergence across the 

network, as listed in Table 3.2. Seven convergent KEs and twelve divergent KEs were identified following the 

score of the !"#$""!" and !"#$""#$%. Points of convergence are defined as KEs linked to more upstream 

than downstream KEs (Villeneuve et al. 2018a), while points of divergence are defined as KEs linked to more 

downstream than upstream KEs (Villeneuve et al. 2018a). For example, oxidative stress is linked to three 

downstream KEs (glutamate dyshomeostasis, unfolded protein response, lipid peroxidation) and two 

upstream KEs defined as MIEs (CYP2E1 activation, binding to SH/SeH proteins). The AO the impairment of 

learning and memory/decrease of cognitive function has the highest number of incoming KERs (!"#$""!") 
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with a score of seven, while the highest number of outgoing KERs (!"#$""#$%) is cell injury/death with a score 

of seven. This indicates that the impairment of learning and memory/decrease of cognitive function is a point 

of high convergence and cell injury/death is a point of high divergence. Furthermore, all the MIEs of the 

network were identified as points of divergence, except the MIE protein adduct formation described in the 

AOP ID 260, which was linked to one upstream and one downstream KEs. Protein adduct formation leads to 

the accumulation of unfolded proteins in the endoplasmic reticulum (downstream KE), but also lipid 

peroxidation (upstream KE) contributes to the formation of protein adducts through one of its main products 

4-hydroxynonenal1. 

Table 3.2. The list of identified seven convergent and 12 divergent KEs for the AOP network for neurotoxicity. 
Convergent Key Events 

KE Type KE Title 
KE General apoptosis 
AO Impairment of learning and memory/Cognitive function, Decreased 
KE Neuroinflammation 
AO Parkinsonian motor deficits 
KE Synaptogenesis, Decreased 
KE Tissue resident cell activation 
KE Unfolded protein response 

Divergent Key Events 
KE Type KE Title 

KE BDNF, Reduced 
MIE Binding of agonist, Ionotropic glutamate receptors 
MIE Binding of antagonist, NMDA receptors 
MIE Binding of inhibitor, NADH-ubiquinone oxidoreductase (complex I) 
MIE Binding, SH/SeH proteins involved in protection against oxidative stress 
KE Cell injury/death 

MIE CYP2E1 activation 
KE Increased pro-inflammatory mediators 

MIE Inhibition, Na+/I-symporter (NIS) 
KE Lipid peroxidation 
KE Oxidative stress 

MIE Thyroperoxidase, Inhibition 
 

 
1https://aopwiki.org/aops/260, accessed on March 16, 2021.   
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Figure 3.4. The eccentricity of KEs across the AOP neurotoxicity network. The darker the colour, the more upstream is the KE positioned across the network, being less influenced by 
other KEs and less involved in the network. Reduction of BNDF is the lightest in colour, which means that it is the most connected KE. This parameter also confirms that the reduction 
of BDNF can be listed as one of the most common/highly connected KEs. The visual representation of the eccentricity was set from the score of 5 because this was the lowest score 
calculated by the NetworkAnalyzer App of Cytoscape software and therefore, served as the comparator for differences in scoring metrics for the individual KEs. 
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Figure 3.5. The betweenness centrality of the KEs across the AOP neurotoxicity network. The darker the colour, the more centrally located is the KE in comparison with the other 
KEs. This parameter confirms that cell injury/death can be considered as the most common/highly connected KE, having the highest score of 0.65. 
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Another critical analytical measure is the eccentricity, which is a node centrality index that helps to sort the 

KEs into upstream and downstream KEs. A low score of eccentricity shows that the KE is more centrally 

located within the network and can be easily influenced by other KEs with which it is interconnected. The 

most centrally located KE, according to the eccentricity, is the reduction of BDNF with a score of 5. The most 

upstream KEs, according to their eccentricity, are associated with the two MIEs: inhibition, Na+/I- symporter 

(NIS) and binding of agonist, Ionotropic glutamate receptors, with a score of 10 which indicates the maximum 

distance to the other KEs. These results are represented in Figure 3.4. 

Betweenness centrality measures the number of shortest paths between any two KEs in the AOP network 

that passes through the KE of interest (Villeneuve et al. 2018a). The KE with the highest betweenness 

centrality score was cell injury/death, which means that it is located most centrally within the network and 

confirms the assumptions made based on the graphical representation. This information complements the 

results given by the level of degree. These results are represented in Figure 3.5. 

The statistical distribution of the number of KEs, in relation to the level of !"#$""!" and !"#$""#$%, shows 

that the majority of the KEs are associated with at least other two KEs, with almost 50% of KEs for both the 

!"#$""!" and the	!"#$""#$%  without considering the presence of redundant, i.e., repetitive KERs (Figure 

3.6. A and B). The number of shared AOPs by a KE varies between one and seven AOPs (Figure 3.6.C). This 

has a tremendous impact on the development and analysis of an AOP network, as a network can be modelled 

once a KE shares at least two linear AOPs. The eccentricity parameter reveals that almost 67% of the KEs are 

so interconnected that they cannot be categorised as upstream or downstream KEs (Figure 3.6.D).  

 
Figure 3.6. The statistical distribution of analytical parameters in relation to the number of KEs in the AOP neurotoxicity 
network. (A) represents the number of KEs and the associated number of incoming KEs. (B) shows the number of KEs 
and associated number of outgoing KEs. (C) indicates the distribution of KEs in shared AOPs. (D) shows the distribution 
of KEs according to the eccentricity score (a measure of how upstream or downstream a KE is). 
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The common KEs identified based on both the graphical representation and analytics of the AOP network for 

neurotoxicity could serve as a basis for developing/selecting in vitro assays. These in vitro test methods could 

be included in an IATA for evaluating neurotoxicity induced by individual chemicals and mixtures (Bal-Price 

and Meek 2017). For example, Li et al. (2019) propose an IATA for the assessment of developmental 

neurotoxicity by selecting a set of assays that can be used to assess common KEs. The work here also supports 

the common KEs identified by Li et al. (2019) as testing endpoints. Such IATA offers the possibility of 

addressing different regulatory needs including screening and prioritisation, hazard 

identification/characterisation or even risk assessment if combined with exposure and absorption, 

distribution, metabolism, excretion, and toxicity (ADMET) data (Aschner et al. 2017; Bal-Price et al. 2018a; 

Bal-Price et al. 2018c).
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3.4.3. Adjacency and non-adjacency in the context of the AOP network for neurotoxicity 

One aspect considered while developing the AOP network was the inclusion of solely adjacent relationships 

between KEs, i.e., pair of KEs connected via a KER and not through intermediate KEs. Relying only on directly 

connected KEs facilitates the quantitative simulation of the AOP network. The topological difference between 

AOPs networks consisting of adjacent and both adjacent and non-adjacent relationships were evaluated by 

comparing the analytical parameters of the two AOP networks. The AOP networks containing both types of 

interactions are represented graphically in Figure 3.7. 

Four out of nine AOPs included in the AOP network contain solely adjacent relationships (AOPs IDs 12, 13, 

48, and 260) and five of nine AOPs contain both types of relationships (AOPs IDs 3,17,42, 54, and 134). Several 

KEs were involved in non-adjacent relationships, including reduction of BDNF, decrease in TH synthesis, a 

decrease of T4 in serum. Cell injury/death and reduction of BDNF remain the most connected/common KEs 

across the network. The AO defined as the impairment of learning and memory/decrease of cognitive 

function is involved in five non-adjacent relationships, besides the other seven adjacent relationships, and 

therefore, becoming the most connected KE across the network. 

Since a non-adjacent relationship is likely to be associated with more biological processes, an AOP network 

containing both types of relationships implies more connections, representing a higher level of biological 

complexity. Network analytics show differences in terms of distance and path length. At the same time, a 

given stressor might trigger all kinds of relationships, and the AOP network serves as a suitable platform for 

such evaluations. For the initial development of a qAOP it is easier to model adjacent KEs only, rather than 

include both types. However, this also depends on data availability and the scope of quantitative modelling.  



70 
 

 
Figure 3.7. Derived AOP network for neurotoxicity containing adjacent and non-adjacent relationships. Green squares indicate an MIE, blue squares indicate the most common/highly 
connected KEs, red squares indicate an AO, and red squares filled with red colour indicate the most common/highly connected AOs. Solid arrows indicate adjacent relationships 
between KEs. Dashed arrows indicate non-adjacent relationships between KEs. The qualitative WoE between two KEs is annotated as H for high, M for medium and L for the low 
level of evidence.
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3.4.4. Mapping stressors to the AOP network  

Chemicals either individually or in combinations (mixtures), as well as other factors such as particles and 

infectious agents, represent stressors responsible for the initiation of an AOP (OECD 2017). Mapping stressors 

to linear AOPs in an AOP network allows for the evaluation of interactions between co-occurring stressors. 

Furthermore, for the purpose of an IATA, it is essential to derive a clear relationship between MIEs and AOs 

and whether there are interactions between AOPs (OECD 2016). Different (types of) stressors may interact 

at the MIE or downstream KEs common to multiple AOPs. 

The AOP network for neurotoxicity is represented by chemicals as stressors, with no additional types being 

mentioned in the AOP-Wiki KB module at the time of retrieval. Based on an understanding of the nature of 

MIEs, in silico models can be derived and as a result, inform IATA and read-across. For example, several types 

of MIEs with associated AOPs have been distinguished and described by Cronin and Richarz (2017), including 

covalent reactivity, changes in receptor or enzyme activity. The different types of MIEs are identified in the 

AOP network for neurotoxicity including chronic receptor inhibition (binding of antagonist to NMDA 

receptors) and activation (binding of agonist to ionotropic glutamate receptors, binding of inhibitor to NADH-

ubiquinone oxidoreductase (complex I), binding to SH/SeH proteins involved in protection against oxidative 

stress, inhibition of thyroperoxidase, inhibition of Na+/I- symporter (NIS)), covalent reactivity (protein adduct 

formation) and enzyme activation (CYP2E1 activation). These examples could serve as starting points in the 

development of in silico models for neurotoxicity, i.e., (Q)SAR models. 

AOP networks are critical for addressing exposures to multiple stressors that lead to the same AO or to 

individual stressors that perturb multiple MIEs (Knapen et al. 2015; Villeneuve et al. 2018a). For example, the 

inhibition of thyroperoxidase (MIE ID 279) is induced by chemicals with industrial and therapeutic uses, such 

as antifungal agents (e.g., 2(3H)-benzothiazolethione, mercaptobenzothiazole), antithyroid agents (e.g., 

thiouracil, propylthiouracil, methimazole), pesticides (e.g., ethylenethiourea), industrial agents (e.g., 4-

nonylphenol) and cosmetic ingredients (e.g., resorcinol). On the other hand, acrylamide, with multiple 

chemical and industrial applications and also being a widely occurring food contaminant from cooking, binds 

to SH/Seleno proteins, an MIE in the AOP ID 17 that leads to the impairment in learning and memory through 

neuronal degeneration. Acrylamide also induces protein adduct formation, an MIE in AOP ID 260, that leads 

to neurodegeneration, an AO in AOPs IDs 12 and 260 and a KE in AOP ID 48. This is because of the electrophilic 

nature of acrylamide it reacts covalently with nucleophilic sulfhydryl groups on certain proteins that are 

critically involved in membrane fusion of the nerve terminals (Lopachin 2004; Lopachin and Decaprio 2005).  

For qAOP modelling purposes, in its initial phase of development, evidence that a chemical can induce an 

entire AOP is of great help. However, the AOPs evaluated herein lacked stressors known to be active across 

all the biological levels of the AOP. This might be due to the fact that no compounds were yet tested for those 

AOPs or were not tested at high enough concentrations. The only AOP that has chemicals associated with all 

KEs is AOP ID 42 “Inhibition of Thyroperoxidase and Subsequent Adverse Neurodevelopmental Outcomes in 

Mammals”. Therefore, a qAOP could be derived and was modelled by Hassan et al. (2017) for 6-propyl-2-
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thiouracil, which is an enzyme inhibitor that is known to trigger AOP ID 42. Information on all chemicals 

collected for the AOPs used for modelling the AOP network is provided in the supplementary material in the 

GitHub repository.  

The current description of stressors in the AOP-Wiki KB is lacking in detail, so it would be very valuable to 

include more information such as mechanistic knowledge related to the kinetics, existing QSAR models and 

read-across predictions, as well as other data sources. This would make the AOP-Wiki KB module not only a 

repository but also a resource for modelling qAOPs.  

One of the critical requirements for in silico modelling is the availability of reliable data. A data repository 

that could be used for in silico modelling is the ToxCastTM dashboard1. It contains 68 high-throughput 

screening (HTS) assays conducted on the brain tissue for several endpoints, including oxidative stress, binding 

to DA or GABAergic neurons, that characterise KEs of a linear AOP. Following the modelled AOP network for 

neurotoxicity, the list of assays was investigated for its potential utility in developing quantitative KERs 

(qKERs) that induce any of the AOs. To achieve this objective, the list was narrowed down to assays conducted 

on rat for the same time point of one hour (Table 3.3).  

 
1https://comptox.epa.gov/dashboard/chemical_lists/TOXCAST, accessed on March 16, 2021.  
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Table 3.3. Eight assays, conducted on brain tissue in rats for 1 hour identified in the ToxCastTM dashboard, shown to be anchored to a key event of the AOP network for neurotoxicity 
for the potential utility for modelling quantitative KERs of qAOP models. The targets were receptors measured in tissue-based cell free assays.  

AOP(s) 
ID(s) 

Event Type 
& ID Event Name Gene Name Gene 

Symbol ToxCastTM Assay Title Assay 
Function 

Signal 
direction 

Component 
Source 

AOP 13, 
12 

KE 52 Decreased, Calcium influx Calcium channel, 
voltage-dependent, N 
type, alpha 1B subunit 

Cacna1b NVS_IC_rCaChN Binding Loss Rat cortical 
membranes 

AOP 48 KE 177 Oxidative stress Nitric oxide synthase 1, 
neuronal 

Nos1 NVS_ENZ_rCNOS_Activ
ator 

Enzymatic 
activity 

Gain Rat brain 
membranes 

AOP 13 MIE 201 Activation of NMDA Glutamate receptor, 
ionotropic, N-methyl D-
aspartate 1 

Grin1 NVS_LGIC_rGluNMDA_
Agonist 

Binding Loss Rat forebrain 
membranes 

AOP 54 KE 851 Decrease of GABAergic 
interneurons 

Gamma-aminobutyric 
acid (GABA) A receptor, 
alpha 1 

Gabra1 NVS_LGIC_rGABAR_No
nSelective 

Binding Loss Rat whole brain 

AOP 54 KE 851 Decrease of GABAergic 
interneurons 

Gamma-aminobutyric 
acid (GABA) A receptor, 
alpha 6 

Gabra6 NVS_LGIC_rGABARa6 Binding Loss Rat cerebellar 
membranes 

AOP 48 MIE 875 Binding of agonist, Ionotropic 
glutamate receptors 

Glutamate receptor, 
ionotropic, AMPA 1 

Gria1 NVS_LGIC_rAMPA Binding Loss Rat forebrain 
membranes 

AOP 48 MIE 875 Binding of agonist, Ionotropic 
glutamate receptors 

Glutamate receptor, 
ionotropic, kainate 1 

Grik1 NVS_IC_rKAR Binding Loss Rat forebrain 
membranes 

AOP 13 KE 383 Reduced, Presynaptic release of 
glutamate 

Glutamate receptor, 
metabotropic 1 

Grm1 NVS_GPCR_rmMGluR1 Binding Loss Rat cerebellum 
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A qAOP model, as a screening and predictive model, should ideally allow evaluating both active (positive) and 

inactive (negative) compounds. The available data contained unbalanced categories of these two types of 

compounds, as shown in Figure 3.8. Thus, methodologies that can deal with such a challenge are needed to 

be developed to improve the predictive power of a qAOP model, as discussed in the subsequent Chapter 4. 

 
Figure 3.8. The percentage of active vs inactive compounds tested for multiple concentrations for the identified assays 
in the ToxCastTM dashboard linked to KEs of the AOP network for neurotoxicity. 

To model qKERs, multiple concentrations are necessary in order to compute dose-responses as previously 

described. Most of the compounds were tested at a single concentration (Figure 3.9). Additionally, the 

identified assays assess binding to receptors and enzymatic activity of compounds. This allows mapping of 

molecular and cellular effects for neurotoxicity as shown by a recent study (Chappell et al. 2020) that 

investigated synthetic food colours to alter signalling pathways related to neurodevelopmental processes. 

Thus, such data are suitable for the discovery of mechanistic pathways at molecular and cellular levels, and 

efforts are needed for appropriate data generation pipelines for modelling qAOPs. 

 
Figure 3.9. The percentage of compounds tested for multiple concentrations vs single concentration for the identified 
assays in the ToxCastTM dashboard linked to KEs of the AOP network for neurotoxicity. 
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An overview of the compounds that showed activity for multiple concentrations tested in one of the assays 

is presented in Figure 3.10. Nine compounds showed activity across at least two assays that can potentially 

allow development of different kinds of response-response relationships: 

• CP-457920 – Two genes of the same KE. 

• Didecyldimethylammonium chloride - Two KEs of the same linear AOP. 

• Emamectin benzoate – MIE to KE of two different linear AOPs. 

• Mancozeb – Two different MIEs of two different linear AOPs. 

• Phenylmercuric acetate – MIE to KE of two different linear AOPs. 

• Sodium dodecylbenzenesulfonate – MIE to KE of the same linear AOP. 

• SSR 241586 HCl – Multiple KERs: 

o MIE to KE of the same linear AOP. 

o MIE to KE of two different linear AOPs. 

o Two KEs of two different linear AOPs. 

o Two MIEs of two different linear AOPs. 

• Tributyltin chloride – MIE to KE of two different linear AOPs. 

• Tributyltin methacrylate – MIE to KE of two different linear AOPs. 

The lack of response in the other assays might suggest that the effects may be non-specific responses. Also, 

none of KERs can allow the modelling of the relationship of the KEs previous to the AOs of the AOP network 

for neurotoxicity, instead they model randomly connected KEs. A qKER should be seen as the core element 

of a qAOP model to predict an AO/apical endpoint of research and regulatory interest while making the qAOP 

a multiscale model to assess causally linked changes at different biological levels and account for time 

differences. 
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Figure 3.10. An overview of the active compounds (log10AC50) across the identified assays in the ToxCastTM dashboard 
associated with the KEs of the AOP network for neurotoxicity ordered alphabetically. The first nine compounds showed 
activity across multiple assays. 
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3.4.5. The use of AOPXplorer 

The AOPXplorer module1 of the AOP-Wiki KB was designed to visualise and explore AOP networks for a given 

AO. It also allows the uploading of additional data, e.g., high-throughput screening, omics and dose-response 

data that can be used to predict the AO. The AOPXplorer was developed as an App of the Cytoscape software 

that can be easily downloaded and installed. This facilitates the development of AOP networks while making 

them living documents. Currently, the AOPXplorer repository contains 18 AOP networks developed for 

different endpoints, including coagulopathy, ulcer gastric, steatosis, lung fibrosis, skin sensitisation, epilepsy, 

to name a few. The AOP network modelled herein was also included in the AOPXplorer repository, as shown 

in Figure 3.11 (Burgoon 2019). This allows further improvement and refinement of the AOP network by the 

scientific community that can view and further enrich the AOP network, thereby contributing to a better 

assessment of neurotoxicity. 

 
Figure 3.11. The interface of the AOPXplorer tool where the AOP network for neurotoxicity has been stored, which is 
presented graphically in the right-hand side of the window. 

 

  

 
1http://apps.cytoscape.org/apps/aopxplorer, accessed on March 16, 2021. 
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3.4.6. Applications of the derived-AOP network 

Even though the concept of the AOP network is still in its infancy, there are examples of AOP networks applied 

to both human and other species toxicological endpoints (Table 3.4). Because of its advantages, such as the 

use of analytics to characterise the position of a KE (including MIE and AO) within a network, the concept of 

a derived-AOP network has a plethora of applications in predictive toxicology, which are exemplified below. 

Table 3.4. Summary of eight derived-AOP networks currently developed and publicly available*. 

AOP Network Title Taxonomy Aim Reference 
AOP network related to 
reproductive and developmental 
toxicity in fish 

Fish Toxicity assay 
development 

Knapen et al. (2015) 

AOP network for disrupted 
androgen-and insulin-like 
hormone 3 (INSL-3)-dependent in 
male rats 

Rodents Evaluation of chemical 
mixtures 

Howdeshell et al. 
(2017) 

AOP network linking activation of 
the nicotinic acetylcholine 
receptor in honeybees to colony 
death 

Bees Evaluation of biological 
plausibility and 
empirical support to 
identify knowledge gaps 

LaLone et al. (2017b) 

AOP network for metabolic 
disorders mediated by hepatic 
steatosis 

Homo sapiens Identification of critical 
paths 

Knapen et al. (2018) 

Decreased serum thyroid hormone 
AOP network 

Rodents 
Amphibians 
Fish 

The use of layers and 
the identification of 
points of convergence 
and/or divergence 

Knapen et al. (2018) 

Hub KEs for inflammation-related 
AOP network 

Not specified Connection of AOPs that 
previously had no 
shared KEs 

Villeneuve et al. 
(2018b) 

Cytochrome P45019 [CYP19]-AOP 
network 

Not specified Linking all possible AOPs 
to an AOP 

Villeneuve et al. 
(2018a) 

Thyroxine [T4]-AOP network Not specified Linking all possible AOPs 
to a biological process 

Villeneuve et al. 
(2018a) 

*The review was conducted before July 2019. 
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3.5. Discussion 

More generally, AOP networks strengthen the utility of the OECD AOP-Wiki KB by increasing scientific 

confidence in the application of individual AOPs, facilitating a better understanding of their roles as individual 

blocks in the network of complex biological interactions. Network analytics can be utilised to analyse multiple 

perturbations and complex interactions across the biological and time scales of interconnected AOPs. As 

additional mechanistic details enrich the existing AOPs, it is envisaged that AOP networks will become more 

complete and more informative for predictive toxicology and regulatory decision making. 

There are several challenges in the development of an AOP network: 

i. The ontology annotations influence the construction of an AOP network. There are still KEs titled 

differently while having the same meaning and/or referring to the same process. For example, the 

AOP network on neurotoxicity contains KEs related to the mitochondrial dysfunction: KE ID 177, KE 

ID 1185, KE ID 1186. All of these KEs can be grouped or renamed under a common KE umbrella. This 

would also facilitate further quantification in terms of response-response relationships useful for 

systems toxicology. Following an expert review, such annotations can be easily amended. Slenter et 

al. (2018) evaluated the WikiPathways database2 in terms of the content and curation of metabolic 

pathways and showed the benefits of harmonising the annotation of metabolism and metabolic 

pathways. 

ii. As the information on the compensatory mechanisms for neurotoxicity is missing and not included 

in the OECD AOP-Wiki KB pages, such networks do not represent the entire complexity of biological 

processes (feedback and feedforward loops, etc.) and research in this sense is urgently needed. 

Understanding possible compensatory mechanisms and adaptive changes, which take place before 

the first KE is triggered, may moderate or contribute to the observed AO. If compensatory and 

adaptive mechanisms are effective, the cell is coping, and toxicity is not taking place. At present, this 

kind of information is captured in the KER descriptions, but perhaps the AOP template should also 

be modified permitting visualisation and description of these processes. 

iii. The uncertainty of the network model partly arises from the stage of development of an AOP. An 

AOP network is built on individual AOPs that ideally follow the OECD requirements, hence giving 

confidence to the use of an AOP network for predicting toxicity and assessing chemical safety. Even 

though seven out of twelve individual AOPs published in the AOP-Wiki KB module are endorsed at 

the time of preparation of this Chapter, this should not limit the use of all selected relevant linear 

AOPs as the basis of an AOP network. For example, four out of the initial 12 AOPs collected for the 

development of the AOP network for neurotoxicity were under development, from which one AOP 

was included in the OECD work plan. Therefore, it will be increasingly possible to develop AOP 

 
2https://www.wikipathways.org/, accessed on March 16, 2021.  
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networks once the OECD AOP-KB becomes more populated with linear AOPs and associated 

mechanistic information. 

iv. When a linear AOP is updated, the AOP network should also include the changes. The AOPXplorer 

serves as a tool that can encompass such changes. 

v. There are "orphan" AOPs that were not linked to the AOP network for neurotoxicity (AOPs IDs 10, 

26, 152) and were therefore excluded in the current work. However, these may eventually provide 

additional KEs and KERs for expanding the network. 

vi. AOP networks can be derived for different applications, including the development of toxicity assays 

(Knapen et al. 2015), evaluation of chemicals mixture (Howdeshell et al. 2017), evaluation of 

biological plausibility and empirical support to identify knowledge gaps (LaLone et al. 2017b) etc. 

Herein, linear AOPs were investigated for the AO of developmental and adult/ageing neurotoxicity 

induced in Homo sapiens. 

vii. To maximise the application of AOP networks, the use of network analytics provides an essential 

instrument for characterising the network and identifying common KEs and KERs. Several parameters 

defined by Villeneuve et al. (2018a), including the level of degree, betweenness centrality and 

eccentricity, were applied in this work. Information regarding the centrality and connectivity of a KE, 

the most upstream or downstream KEs across the network, is of great value for finding gaps in 

knowledge and unforeseen paths. The choice of metric(s) depends on the intended purpose, e.g., 

development of a battery of in vitro tests. 

viii. The concept of AOP network should not be confused with the concept of a hub. A hub consists of 

several KEs closely linked and involved in the same biological process. Therefore, a hub can be part 

of an AOP network. For example, one of the common KEs identified was neuroinflammation. 

However, the increase of pro-inflammatory mediators is also known to contribute to the cell 

apoptosis and necrosis, as AOP ID 17 illustrates. Since inflammation is a complex process, a KE 

describing it might not be identified as a connected node across the network as is the case of the 

increased pro-inflammatory mediators. Villeneuve et al. (2018b) developed a hub, which links 

different MIEs to distinct inflammation-mediated AOs or to AOPs where inflammation is an essential 

exacerbating element. Such a hub allows interconnectivity with other AOPs that were previously 

disconnected, independent of the tissue. 
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3.6. Conclusions 

An AOP network for human neurotoxicity was developed in Chapter 3 using the principles of the derived AOP 

network. A workflow was formulated which was adapted for the purpose of the present investigation. Even 

though the developed AOP network is simplistic and would require updating as more information becomes 

available, the results provide a solid basis for prioritising the testing of KEs, for quantifying KEs and KERs, and 

for quantitative modelling of the AOP network. In addition, the work could be useful for identifying 

biomarkers of toxicity such as BDNF at different biological levels and for further developing in silico and in 

vitro test methods, thereby contributing to the assessment of neurotoxicity without animal testing. Future 

prospects include investigation of when the addition of more linear AOPs to an AOP network (once novel 

AOPs are discovered and formulated) no longer affects the outcome significantly - in terms of identifying the 

most or least connected KEs, i.e., at which point do the KEs considered as most/least connected become 

stable? This would allow for understanding if the variability measured by topology parameters decreases and 

stabilises the network construction by considering more structured knowledge. 
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Chapter 4.  Probabilistic modelling of a simplified Adverse Outcome 

Pathway network for developmental neurotoxicity 

 

The conceptual framework presented herein reflects the discussions of an expert panel that addressed the 

challenge of quantifying a simplified AOP network for neurotoxicity at an international workshop “e-

Resources to Revolutionise Toxicology: linking Data to Decisions”, that took place between 7-11 October 

2019 at the Lorentz Centre in Leiden, the Netherlands. The manuscript based on this Chapter is under 

preparation for publication. The in silico predictions for P-glycoprotein were provided by the in3 early stage 

researcher Liadys Mora Lagares, National Institute of Chemistry, Ljubljana, Slovenia.  

 

Abstract 
In a century where toxicology and chemical risk assessment has been devoted to the development of 

alternative methods to animal testing in predictive toxicology, there is an opportunity to understand the 

causal factors of neurodevelopmental disorders such as learning and memory disabilities in children. New 

testing paradigms, along with the advances in probabilistic programming, can help with the assessment of 

mechanistically-driven hypotheses on the exposure to environmental chemicals that could potentially lead 

to developmental neurotoxicity (DNT). This investigation aimed to develop a Bayesian hierarchical model of 

a simplified AOP network for DNT. The model predicted the probability that a compound induces each of 

three selected common key events of the AOP and the AO of DNT, taking into account correlations and causal 

relations informed by the key event relationships. A dataset for 97 compounds representing pharmaceuticals, 

industrial chemicals and pesticides was compiled including physico-chemical properties as well as in silico 

and in vitro information. The Bayesian model was able to predict DNT with good accuracy (73%), and helped 

classify the compounds into low, medium and high probability classes for the potency of DNT. The conceptual 

framework achieved three further goals: it dealt with missing values; accommodated unbalanced and 

correlated data; and learned the structure of a directed acyclic graph to simulate a simplified version of an 

AOP network. Overall, the model demonstrated the utility of Bayesian hierarchical modelling for the 

development of quantitative AOP (qAOP) models and will contribute to the adoption of new approach 

methodologies in chemical risk assessment.  
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4.1. Introduction 

Neurodevelopmental disorders such as impairment of learning, and memory and cognitive dysfunction, are 

of serious concern due to the health risks and consequences on the developing brain resulting from the 

exposure of the young to exogenous chemicals (Bennett et al. 2016; Crofton et al. 2012; Grandjean and 

Landrigan 2006). Furthermore, it is recognised that there is a lack of adequate information and insufficient 

toxicity data for most compounds, e.g., limited epidemiological evidence relating to the possible effects of 

developmental neurotoxicity (DNT), such that DNT is considered to be a “silent pandemic” (Grandjean and 

Landrigan 2006). When testing is possible, the available DNT testing guidelines for in vivo methods (OECD 

2007; OECD 2018a; USEPA 1998) are time- and resource-consuming, besides having other drawbacks, such 

as being recognised as being of little predictive value for the protection of human health and the environment 

(Paparella et al. 2020). Importantly, the assessment of DNT is not a mandatory requirement in the European 

Union and the United States of America, and it is usually undertaken when data from developmental and/or 

reproductive toxicity studies on adult animals indicate a possible concern for neurotoxicity (Bal-Price et al. 

2018c). With the limitations of in vivo testing for DNT, there is an opportunity to consider NAMs, such as a 

battery of in vitro test methods, omics technologies and in silico models as a viable alternative. Whilst NAMs 

for DNT are not yet standardised or approved by regulatory authorities, they can provide valuable 

mechanistic insights regarding potential developmental neurotoxicants (Bal-Price et al. 2015; Fritsche et al. 

2018; Sachana et al. 2019). 

Frameworks are required to organise information from NAMs to predict complex toxicological endpoints, 

including neurotoxicity and implicitly DNT, as explained throughout the thesis. Recent progress in the 

development of qualitative and quantitative AOPs underlines their utility to design appropriate experiments 

and computational simulations following the organisation of evidence into a series of building blocks 

represented by the MIEs, KEs and AOs at corresponding molecular, cellular, tissue, organ, organism and 

population levels (Mahony et al. 2020). However, as DNT is a complex process with multiple molecular and 

cellular paths, no single AOP will be able to explain it in isolation. Thus, a network of linear AOPs allows for 

the better depiction of the overall mechanistic understanding of DNT than a single linear AOP, as shown in 

Chapter 3. To illustrate this point, given the limited available resources for quantifying biological paths of 

DNT, identification of common key events (CKEs) that intersect the individual paths can assist in the 

prioritisation of testing strategies, i.e., assays based on CKEs. A CKE is considered a key event with high 

connectivity and is located centrally within the network of AOPs, and that it is essential to link multiple linear 

AOPs, i.e., MIE(s) to the AO(s) (Knapen et al. 2018; Villeneuve et al. 2018a). However, one of the limitations 

in the application of both linear and network of AOPs is quantification, specifically to determine the tipping 

points/thresholds that stressors, e.g., compounds, genetic and environmental factors, require to elicit an 

adverse response. 
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Linear and network qAOPs are increasingly being modelled using probabilistic methods. These have become 

a core approach in computational modelling due to the ease of computing predictions and associated 

uncertainties relating to variables of interest (Perkins et al. 2019a; Perkins et al. 2019b). Key amongst the 

probabilistic approaches are Bayesian models that fit, and make inferences from, data using Bayes’ theorem 

for variables, about which probability distributions on the parameters of the model are derived (Gelman et 

al. 2013). Bayes’ theorem is a mathematical formula that transforms the prior distributions into posterior 

distributions based on the evidence provided (Bishop 2006). The biggest advantage of this approach lies in 

the reproducibility of the predictions; once the prior/beliefs (i.e., our knowledge about the data before seeing 

the data) are defined, similar values will be obtained each time the model is run, unless new evidence is 

added (Gelman et al. 2013; McElreath 2016). Also, probability theory can be used to represent the 

uncertainty, e.g., errors arising from measurements and the finite size of the datasets etc. (Bishop 2006). An 

AOP network can also be regarded as a DAG i.e., a graph with no cyclic paths (the loops are removed). Hence, 

Bayesian networks provide an appropriate framework to compute the joint probability distributions and 

most importantly, causal inferences (Needham et al. 2007). There are three ways known to assign 

probabilities in a Bayesian model depending on the research question and available evidence: making 

subjective assessments, using empirical probabilities based on observed data, and constructing a parametric 

probability model (Gelman et al. 2013). In addition, a Bayesian model allows for data analysis to be performed 

using a variety of mathematical functions, linear and nonlinear regression and/or multilevel regression 

(Gelman et al. 2013). Hierarchical models, also known as multilevel models, random-effects, mixed-effects 

or varying-effects models are a generalisation of regression defined by the parameters of a model. Such 

hierarchical models are structured into exchangeable levels/groups, e.g., categories of chemicals, taking into 

account the independencies and interactions between those groups leading to improved inferences (Gelman 

2006; Gelman et al. 2013). These models are ideal for the complex structure of data involving hierarchical 

organisation similar to what the simplified AOP network for DNT represents. 
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4.2. Aim of this chapter 

Given the availability of heterogeneous and limited information about DNT, i.e., in vivo and in vitro data, and 

the potential for Bayesian machine learning to investigate chemical-induced DNT, this Chapter aimed to 

quantify a simplified, reduced version of the AOP network for neurotoxicity developed in Chapter 3 (and 

published by Spinu et al. (2019)). The main objective was to predict the probability that a compound induces 

each CKE independently and the AO, taking into account potential correlations and causal relations given by 

the KERs and additional details such as physico-chemical properties, in silico and in vitro information. This 

investigation aimed also to demonstrate whether Bayesian hierarchical modelling is fit-for-purpose in CRA 

informed by qAOP models. 
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4.3. Methodology 

4.3.1. Conceptual framework 

A conceptual framework was formulated to quantify a simplified version of the AOP network for 

neurotoxicity with the focus on the DNT that was previously established (in Chapter 3). Based on the resultant 

AOP network, the topology analysis combined with the domain knowledge allowed for the selection of the 

most promising CKEs for quantification, i.e., highly connected KEs across the AOP network that describe the 

AO of DNT. Thus, the reduction of brain-derived neurotrophic factor (BDNF) that leads to a decrease of 

synaptogenesis and a decrease of neural network formation involved in the impairment of cognitive function 

represented the selected biological path, as summarised in Figure 4.1. Following Bayes' theorem, the 

likelihood was informed by the mechanistic knowledge of the simplified AOP network. Thus, the framework 

helped to define the regression equations encoding the knowledge about the variables of relevance, i.e., 

CKEs and KERs, as well as the collection of appropriate data to fit the model from available and trustworthy 

resources, including peer-reviewed publications. The prior was set herein to be noninformative, as explained 

below. The Bayesian analysis was conducted applying the Markov chain Monte Carlo (MCMC) algorithm to 

perform the inferences to the unknown parameters and missing data to obtain posterior distributions given 

by the likelihood multiplied by the prior distributions. The posterior distributions for each chemical and each 

CKE, including the AO, were obtained and summarised accordingly taking into account the correlations and 

causal interdependencies between variables included in the model. 

 
Figure 4.1. The conceptual framework used to develop the Bayesian hierarchical model. The model included three CKEs 
of the AOP network for DNT shown in green that served as a basis in defining the likelihood functions and collecting 
appropriate data to fit the model. 
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4.3.2. Data description 

Two in vitro studies (Frank et al. 2017; Harrill et al. 2018) that tested compounds for their potential DNT 

adverse effect were chosen as a primary data source. The compounds were merged into a single list and 

aligned with information referring to compound name, CAS RN, SMILES and the US EPA Comptox Chemical 

Dashboard substance identifier (DTXSID). In total, 97 compounds served as a starting point to collect 

additional and informative details to improve the modelling. The list contained different types of compounds: 

pharmaceuticals, pesticides and industrial chemicals (Supplementary material available on GitHub 

repository). Fifty-six compounds were tested in both in vitro studies, while 11 compounds were tested only 

for synaptogenesis and 30 compounds were tested only for neural network formation. Importantly, ten 

compounds were tested as different salts and hence, these compounds were kept and treated individually. 

These two in vitro studies differ in the concentration ranges used, type of the viability assay applied, 

calculation of the effective concentration (EC) and the temporal exposure (five days vs over 12 days). Also, 

valproate was tested in two ranges of concentration in both studies: lower and higher. The range of higher 

concentrations showed response/activity in both studies and, thus, the ECx values of the range of higher 

concentrations tested, and associated responses, for valproate were kept as part of the data curation 

process. The difference in the range of concentration and time of exposure shows that synaptogenesis occurs 

at lower levels than neural network formation and aligns perfectly with the principles that a qAOP model is 

expected to demonstrate, i.e., quantitative predictions underlying the transition from one KE to the next KE 

as described in Chapter 2.  

Other data collected included the calculated logarithm of the octanol-water partition coefficient (SLogP), a 

measure of lipophilicity; permeability to blood-brain-barrier (BBB); and the capability to bind to the P-

glycoprotein (P-gp) transporter, i.e., if the compound acts as P-gp inhibitor, substrate and is (non)activ against 

P-gp. Predictions for BBB and P-gp were calculated using in silico models and available tools based on curated 

SMILES as listed in Table 4.1. BBB permeability is essential in understanding if a compound crosses into, and 

has the possibility to act on the CNS (Kaplan et al. 2020). P-gp is a transmembrane protein belonging to the 

ATP-binding cassette family of transporters (ABC-transporters), highly associated with the ADMET properties 

of compounds. It may contribute to a decrease in toxicity by eliminating the compound from cells and 

preventing its intracellular accumulation (Mora Lagares et al. 2019). Lastly, the compounds were grouped 

into positive/negative for DNT induction based on in vivo studies as summarised in Mundy et al. (2015), and 

positive/negative for the reduction of BDNF, informed by the literature review performed to evaluate the 

peer-reviewed publications that studied the impact of compounds for the reduction of BNDF (Supplementary 

material available on GitHub repository). The compounds were classified as active/inactive for the CKEs of 

decrease of synaptogenesis and neural network formation based on the selectivity identified by the 

corresponding in vitro studies, taking into account viability and the results of toxicity assays. Compounds that 

showed no activity were assigned zero as a numerical value, whilst any compounds not tested in one of the 
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in vitro assays were treated as missing variables. An overview of the type of data utilised for modelling DNT 

is presented in Figure 4.2. 

 
Figure 4.2. Types of information collected and curated for model development exemplified for bisphenol A. It underlines 
how different streams of data can be integrated for improved causal predictions. 
  
4.3.3. Exploratory data analysis 

Exploratory data analysis (EDA) was applied to analyse the data collected and to summarise their main 

characteristics including the types of variables (e.g., continuous or discrete); the shape of the distributions of 

individual variables; correlations between the variables using the Pearson correlation coefficient; missing 

values; chemical characteristics described by physico-chemical properties associated with a category of one 

of the CKEs and DNT; and the presence of (un)balanced categories in the dataset. EDA was conducted to help 

choose the appropriate priors and regressions and define the overall strategy for computational modelling.  
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4.3.4. Bayesian hierarchical modelling 

A single nested partial pooled Bayesian hierarchical model was formulated taking into account data issues 

such as: correlations and interactions between variables; missingness at both levels’ predictors and outcomes 

and learning from the DAG structure of the simplified AOP network for DNT. This helped capture causal 

relationships and additional dependencies given by the CKEs and KERs as outlined in Figure 4.3. The 

continuous variables were standardised prior to fitting the model. The causal graph is described as a set of 

linear regressions with the latent variable, e.g., Y of CKE 1 reduction of BDNF, as a predictor that goes into 

the next linear regression, e.g., Y of CKE 2 decrease of synaptogenesis. 

 
Figure 4.3. A simplified graphical representation of the proposed Bayesian hierarchical model utilised to assess 
individual compounds for their potency in inducing DNT. The model follows a specific biological path of the AOP network 
for DNT. BDNF: reduction of brain-derived neurotrophic factor; SYN: decrease of synaptogenesis; NNF: decrease of 
neural network formation; DNT: developmental neurotoxicity; miss: missing values; i: number of compounds; X: 
predictors, independent variables; Y: outcomes, dependent variables; !, #, $: parameters of the model. 

The Bayesian hierarchical model consisted of nine unknown parameters: hyperpriors !	and	&, priors	's,	and 

the likelihood functions given by the	*s. In a Bayesian framework, all the unknown parameters must have 

predefined distributions, which represent our belief before evaluating the data, and that will be estimated 

from the data. Because of the hierarchical type of modelling, the parameters were sampled and partial-

pooled from a common global distribution given by the hyperpriors that were defined as noninformative. 

The sign tilde “~” indicates the type of distribution the parameter was generated from. Herein, a common 

mean ! and standard deviation & were defined to describe the global distribution of the entire dataset and 

were generated from normal and half-normal distributions. 

!	~	,-./01(0, 	0.01) 

&	~	7018,-./01(5) 

Each ' varied per CKE and, thus, each group-level CKE was generated from a normal distribution shrank 

towards the hyperpriors specified above. 

'!"#$ , '%&# , '##$	~	Normal(!, &) 
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The independent variables, which consisted of both discrete and continuous types of variables and their 

potential interactions, were grouped per CKE to model the binary predictions, as shown below.  

?!"#$: AB-CD, 	 E()*+, E(-../ , 	FFF, 	DCG+,0+(+1+.,, 	DCG23(21)*14 , 	DCG*51+64⁄  

?%&#: IE78, 	JKD	 

?##$: IE98!"# , IE98!$% , 	BL7 

The missingness has been treated by Bayesian imputation where each missing data point was masked in 

advance. If X predictors contained missing data, the imputation was sampled from the prior distribution as 

shown below, while the missing Y outcomes have been imputed from the posterior predictive distributions. 

Noninformative priors were defined to sample the missingness for all CKEs. 

!:;+22	~	,-./01(0, 	1) 

&:;+22	~	7018,-./01(2) 

?!"#$ 	~	,-./01(!:;+22, &:;+22, ?;+22) 

?%&#	~	,-./01(!:;+22, &:;+22, ?;+22) 

?##$ 	~	,-./01(!:;+22, &:;+22, ?;+22) 

The likelihood function, herein defined as *s represented the deterministic relationship between the matrix 

of X predictors and the parameters 's describing each CKE and were estimated from data. Besides the 

multiplication, the causal relationship was considered by adding the previous * to the subsequent * to follow 

the DAG structure of the AOP network. Importantly, the likelihood function for the AO of DNT was informed 

solely by the sum of likelihood functions of the CKEs. The subscript i index indicates that each compound had 

its probability estimate. 

*!"#$" = '!"#$ ∗ ?!"#$  

*%&#" = '%&# ∗ ?%&# + 	*!"#$"  

*##$" = '##$ ∗ ?##$ + *%&#"  

*"#<" = *!"#$" + *%&#" +	*##$"  

The three CKEs were generated from a Bernoulli distribution of the deterministic relationships estimated 

from the data. The AO of DNT was generated as well from a Bernoulli distribution of the deterministic 

relationship that summed up the logistic regression of all *s that described independently the CKEs. 

R!"#$" 	~	FS.T-U11V(*!"#$") 

R%&#" 	~	FS.T-U11V(*%&#") 

R##$" 	~	FS.T-U11V(*##$") 

R"#<" 	~	FS.T-U11V(*"#<") 

The model has been developed in PyMC3 version 3.9.3. Two MCMC methods were used to obtain the 

estimates: the No-U-Turn Sampler (NUTS), a variant of Hamiltonian Monte Carlo for continuous responses, 

and the Binary Gibbs Metropolis (BGM), a special case of the Metropolis-Hastings algorithm for binary 

responses, with four chains and 4000 samples for tuning step and 40000 draws in total that runs in 5 min and 
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23 sec. Notably, the model fitting had two objectives: (1) to make inferences about the relationships between 

variables, and (2) to make predictions based on the model estimates using collected and curated data. 

Model fitting was evaluated for its convergence. The Gelman-Rubin diagnostics, also known as the R-hat 

statistic, measures how similar different chains are, i.e., within and between chains, and so, if the chains 

converged to the same distribution (Gelman and Rubin 1992). The Monte Carlo standard error is another 

measure of the accuracy of the chains, given by the posterior standard deviation divided by the square root 

of the number of the effective samples (Gelman et al. 2013). The smaller it is, the closer the posterior mean 

is expected to be to the actual value. The effective sample size estimates the independent draws, because 

samples will typically be autocorrelated within a chain and can increase the uncertainty in estimates (Gelman 

et al. 2013). It should be at least the same as the actual number of the samples. The Bayesian credible interval 

(CI) of 95%, also known as the highest density interval (HDI), an interval within which an unobserved 

parameter value falls with a particular probability, was applied. A 95% CI has the upper and lower 2.5% 

percentiles of the posterior distribution as its bounds. 

The Bayesian hierarchical model had 657 parameters in total for a dataset of 97 compounds. The number of 

parameters represented a risk of overfitting; this means that a model learns too much from the sample 

(Gelman et al. 2013; McElreath 2016). In a Bayesian framework, a significant source of overfitting is given by 

choice of priors that have a vital role in normalising the likelihood functions and thus, being carried along 

with the model (Gelman et al. 2013; McElreath 2016). Hence, the overfitting risk depends on both structural 

details of the model and the composition of the sample. To prevent the risk of overfitting, we opted to shrink 

the 's parameters towards a common hyperprior that controlled the distribution of them and, hence, opted 

for a partial pooling of the level of details to produce estimates for each of CKEs and the AO, and chose 

“sceptical” hyperpriors and priors to regularise the inferences. 
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Table 4.1. List of sources and associated data collected for the development of the Bayesian hierarchical model. The table summarises all variables, i.e., predictors and outcomes 
defined as features included in the model for the type of data and performance where applicable. 

Feature Description/Relevance Data Type Performance Source 

Chemical Name The names used to define the compounds tested in both in 
vitro studies. 

Not Applicable Not Applicable Frank et al. (2017); Harrill et 
al. (2018) 

CASRN Chemical Abstracts Service Registry Number associated 
with the tested compounds used to identify and track them 
during the modelling. 

Not Applicable Not Applicable Frank et al. (2017); Harrill et 
al. (2018) 

DNT 
Classification 

Each compound was classified as either positive, known or 
potential inducing DNT/negative, safe or without evidence 
for inducing DNT based on in vivo studies. 

Binary, i.e., positive (i.e., associated 
with DNT) or negative 

Not Applicable Frank et al. (2017); Harrill et 
al. (2018); Mundy et al. 
(2015) 

SLogP The logarithm of the octanol/water partition coefficient 
calculated based on the SMILES of the compounds. 

Continuous, i.e., unitless values Not Applicable KNIME RDKit v.3 

BBB Each compound was classified for its capability to permeate 
the blood-brain-barrier (BBB) based on curated SMILES. 
Predicting BBB permeability means indicating whether 
compounds pass across the BBB. The CNS-active 
compounds must pass across it, and CNS-inactive 
compounds must not pass across it to avoid CNS adverse 
effects. 

Binary, i.e., positive (BBB permeable) 
and negative 

The in silico model 
available in admetSAR 
v2.0 had the area under 
the curve (AUC) with a 
range from 0.625 to 
0.99. 

Literature review,  
Online BBB Predictor v.0.9,  
admetSAR v.2.0, 
Liu et al. (2014); Yang et al. 
(2019) 

Cbrain/Cblood In vivo blood-brain-barrier penetration represented as BB = 
[Brain]/[Blood], where [Brain] and [Blood] are the steady-
state concentration of radiolabelled compounds in the 
brain and peripheral blood. High absorption to CNS had a 
value of more than 2.0, medium absorption: 2.0 - 0.1, and 
low absorption: less than 0.1. The predictions are based on 
in vivo data on rats.  

Continuous, i.e., unitless values The QSAR model of Ma 
et al. (2005) had 
R=0.955 with s=0.232, 
used by PreADMET v.2.0 
to model the  
predictions.  

Ma et al. (2005) 
PreADMET v.2.0 

P-glycoprotein 
Status 

Each compound was classified based on curated SMILES as 
a substrate or not, inhibitor or not, active or inactive for P-
glycoprotein (P-gp) transporter using an in silico model. 

Binary, i.e., yes or no for a compound 
to act as a substrate, an inhibitor or 
showing or not activity against P-gp 

The non-error rate and 
the average precision 
was 0.70 for the 
external validation set. 

Mora Lagares et al. (2019) 

To be continued 
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Table 4.1. Continued. 

Feature Description/Relevance Data Type Performance Source 

BDNF, 
Reduction 

Each compound was classified as either positive, inducing 
the reduction of BDNF levels, or negative based on a 
literature search for in vivo/in vitro studies. 

Binary, i.e., positive (evidence 
showing alterations of BDNF), or 
negative 

Not Applicable Literature review of historical 
and peer-reviewed studies 
that evaluated compounds for 
their potency of inducing 
reduction of BDNF 

Activity 
Synaptogenesis 

Selectivity and potency of a chemical were kept the way 
the reference classified a compound based on results for 
viability and effective concentrations.  

Categorical, i.e., inducing or not 
alterations of synaptogenesis 

The battery assay had a 
sensitivity of 87% and a 
specificity of 71%. 

Harrill et al. (2018) 

Viability 
Synaptogenesis 

The amount of ATP present in each well was calculated to 
assess compounds for their viability. 

Continuous Not Applicable Harrill et al. (2018) 

Synaptogenesis, 
EC30 (μM) 

30% change compared to control expressed as an 
effective concentration EC30 (μM) for puncta per total 
dendrite length (the most sensitive endpoint) measured 
in rat primary cortical cells for five days using an imaging 
assay. 

Continuous Not Applicable Harrill et al. (2018) 

Neural Network 
Formation 
Activity 

Selectivity and potency of a chemical were kept the way 
the reference classified a compound based on results for 
viability and effective concentrations. 

Categorical, i.e., inducing or not 
alterations of neural network 
formation 

The model had a mean 
accuracy of 80.2%. 

Frank et al. (2017) 

Neural Network 
Formation 
Viability 

Total lactate dehydrogenase (LDH) release upon cell lysis 
was calculated to assess compounds for their viability. 

Continuous, i.e., unitless values Not Applicable Frank et al. (2017) 

Neural Network 
Formation, 
EC50min and 
EC50max (μM) 

50% change compared to control expressed as an 
effective concentration EC50 (μM) with a minimum and 
maximum values of all 17 parameters measured in rat 
primary cortical cells over 12 days using microelectrode 
array (MEA) recordings. 

Continuous Not Applicable Frank et al. (2017) 
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4.4. Results  

The EDA allowed for a better understanding of the data collected and utilised for the Bayesian analysis. As a 

result, the final dataset was composed of unbalanced discrete variables describing P-gp inhibition, substrates 

and activity against P-gp, permeability to BBB along with the classifications for CKEs and AO (Appendix II, 

Figure S1). The distribution of continuous variables showed the presence of leverage points i.e., outliers, for 

SLogP, and the presence of missing values for other properties given by the long tails (Appendix II, Figure S2). 

Although the EDA confirms that the compiled data set is not ideally suited for modelling purposes, Bayesian 

modelling can adapt the different streams of data. The process of using the data in Bayesian modelling 

requires the data to be defined appropriately with regard to mathematic transformations. 

The correlation matrix of the entire dataset allowed for the evaluation of the correlation coefficients between 

the variables included in the model, i.e., predictors and outcomes (Appendix II, Figure S3). It gave an 

indication of how to better define the regression functions and make them more informative to model the 

AOP network. In contrast, the correlation matrix of the missing values indicates how strongly the presence 

or absence of a variable affects the presence or absence of another variable (Appendix II, Figure S4). It 

highlighted the relevance of not discarding the missing values as the “missingness” was informative. Notably, 

the missingness was present at all levels: in silico predictions, since the dataset contained organic and 

inorganic compounds, and in vitro predictions, as not all compounds were in both in vitro systems. Thus, 

probability distributions are the key ingredients of Bayesian modelling and, hence, there is a need to assess 

the dataset utilised through EDA to define and fit the model. 

The statistical parameters of the model did not show the presence of any divergences (Appendix II, Figures 

S5 and S7). The Gelman-Rubin diagnostics of the model had a value below 1.005 for all the parameters of the 

model. The Monte Carlo standard error of the inferences did not exceed 10% of the posterior standard 

deviation. The effective sample size was greater than 10% of the number of iterations. In addition, the mean 

value of all the inferences of four chains obtained from the data for each hyperprior and prior to eleven X 

predictors are presented in Figure S6 (Appendix II). 

The posterior distributions and posterior predictive distributions were obtained from the Bayesian analysis. 

The posterior distributions represent the evidence provided by the data combined with the prior that 

incorporates our knowledge before analysing the data. Thus, the conclusions were derived from the 

likelihood functions !s yielded to predictions of the observed data, i.e., binary classifications of each CKE 

including the AO, defined as posterior predictive distributions. The distribution of the posterior probability 

of the three categories of compounds for each CKE including the AO, i.e., inducing the CKE (yes), not causing 

the CKE (no) and compounds with a missing level of details (missing), is shown in Figure 4.4. The results for 

the distribution of the posterior predicted probability of the three categories of compounds for each CKE 

including the AO, i.e., inducing the CKE (yes), not causing the CKE (no) and compounds with a missing level 

of details (missing), are represented in Figure S8 (Appendix II).  
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Figure 4.4. The distribution of the posterior probability of the ! likelihood functions of the three CKEs and the AO for 
positive and negative compounds, and compounds with a level of missingness. The compounds analysed for the AO of 
DNT did not contain any missing data; the classification is made based on in vivo studies. 
 

An overview of the posterior probability of each compound is presented in Figure 4.5. It shows that the 

Bayesian credible interval is broader for compounds with missing information. Thus, the HDI captures the 

uncertainty given by the sources of variability and missingness in a quantified manner. For instance, 

colchicine, an alkaloid analogue used as an anti-inflammatory medicine, that had data across all levels, had a 

95% HDI of 0.76 to 1.0 with a mean probability of 0.94 for the induction of DNT. On the contrary, lactofen, a 

nitrophenyl ether selective herbicide, that had missing data for the first two CKEs had a 95% HDI of 0 to 0.95 

with a mean probability of 0.46 for induction of DNT. 

 



96 
 

 
Figure 4.5. An overview of the predicted posterior probability of the q of each independent key event that takes into 
account the causal relationship. Compounds in black are compounds tested in both in vitro studies, while the 
compounds in grey are compounds tested in one of the in vitro studies, and thus, with a higher level of missingness 
overall. The dot represents the mean, the thicker line is the standard deviation, and the thin line represents the 95% of 
the Bayesian credible interval (CI), also known as the highest density interval (HDI). 
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Two thresholds derived from the results of the predicted posterior distributions themselves were used to 

classify the compounds for high, medium and low probability of inducing a CKE and the AO. Such classification 

might be used for prioritisation and additional screening purposes. Therefore, all compounds had a 

probability higher than 40% for posterior distributions and a probability of 60-65% for posterior predicted 

distributions, being classified overall as having a high probability to induce a reduction of BDNF (Figures S9-

S11). The results for the decrease of synaptogenesis varied for posterior distributions, while the posterior 

predictive distributions showed a probability of between 60-65% (Figures S12-S14). Except for d-

amphetamine sulfate, d-sorbitol, bisphenol A and tetrabromobisphenol A, that were classified as having a 

high probability overall, the remaining compounds had a medium level of probability to decrease 

synaptogenesis. For the decrease of neural network formation, the posterior probability varied across the 

compounds, while the posterior predicted probability was between 60-65% for all compounds that were 

classified as having a medium level of probability overall to induce this CKE (Figures S15-S17). Finally, the 

predictions for the AO, which is of most interest for research and regulatory purposes, helped to classify the 

compounds into the three levels, with fewer in the low level of probability and most of the compounds with 

a high level of probability to induce DNT (Figure 4.6). The results for DNT for posterior probability and 

posterior predicted probability is shown in Figures S18-S19. This unbalanced classification is explained by the 

initial list of compounds that had 72 out of 97 compounds with known positive DNT. 

The overall accuracy of the model is 86%, and the overall balanced accuracy of the model that takes into 

account the unbalanced categories is 73%, with a sensitivity and a specificity of 46% and 100%, respectively 

for the prediction of the DNT category. Two compounds have been misclassified with a high level of 

probability for inducing DNT: cotinine and phenol. These were identified as inactive in both of the in vitro 

studies and without in vivo evidence for causing DNT. A probability of 70% for posterior distribution and a 

probability of 71% for posterior predicted distribution for cotinine, and a probability of 65% for posterior 

distribution and a probability of 66% for posterior predicted distribution for phenol have been computed. 

The potential reasons for this misclassification can be in part because of the in silico model used for the 

prediction of BBB, which classified the compounds as positive. However, the large credible interval associated 

to the predicted value underlines the precautious of making decisions for these compounds.  Also, the ten 

compounds tested under different CAS RN (salts vs base form of a chemical) showed variability in the 

predicted probability for DNT (Figure S20). All the pairs of compounds were classified in the same category 

except that a different classification has been associated to loperamide (low) and loperamide hydrochloride 

(medium), and terbutaline (medium) and terbutaline hemisulfate (high). 
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Figure 4.6. The predicted probabilities (high, medium and low) of inducing DNT colour-coded based on two thresholds estimated from the results.
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4.4.1. Case study 

A possible means of analysing and interpreting the results for screening and prioritisation as well as potential 

regulatory purposes, was investigated. For this, five compounds were chosen to cover different probabilities 

of predictions, these were: bisphenol A (BPA), glyphosate, dexamethasone, fipronil and lead acetate 

trihydrate (lead). All compounds are known to promote DNT, possibly through varying mechanisms. BPA has 

been suspected as an endocrine disruptor that can potentially lead to altered reproduction and 

neurodevelopmental toxicity (Mustieles et al. 2020). Glyphosate had no neurodevelopmental effects in 

several in vitro studies without effects on neurodevelopmental processes (Frank et al. 2017). Dexamethasone 

showed in vitro implications of neurobehavioral deficits (Jameson et al. 2006). Fipronil is known to disrupt 

the CNS by blocking GABA-gated chloride channels and glutamate-gated chloride channels (Lassiter et al. 

2009). Lead has been thoroughly studied for its implications in inducing DNT and its activity has been 

summarised into a linear AOP (OECD AOP-Wiki KB ID 12) by Tschudi-Monnet and FitzGerald (2018). In the 

context of the present Bayesian model: (i) BPA contained complete details for the variables of interest and it 

was classified as inducing all CKEs, as well as the AO; (ii) glyphosate had missing information regarding the 

potency of reducing BDNF and it has been identified as negative for the other CKEs and the AO; (iii) 

dexamethasone showed no activity for the CKEs; however, it was identified as causing DNT based on the in 

vivo studies; (iv) fipronil had missing details regarding the CKE of the decrease of synaptogenesis, and it was 

identified as negative for the other CKEs and the AO; (v) lead did not show activity for the CKE relating to the 

decrease of synaptogenesis and it contained missing information derived from in silico models.  

The proposed framework is comprised of three phases, as shown in Figure 4.7:  

- Phase I: checking the posterior predictive distributions for the AO of DNT and the associated predicted 

level of probability: low, medium or high. 

- Phase II: checking the compounds for their posterior distributions for the CKEs and the AO of DNT for a 

better understanding of classifications including the uncertainty given by the HDI. 

- Phase III: translating the observations into a conclusion for decision-making, e.g., the requirement of 

additional in vitro screening.  

A concluding remark is that: (i) BPA was predicted to have a high probability of inducing DNT and can be 

considered as positive control compounds in any future wet and/or in silico experiments, (ii) glyphosate 

showed a low probability for inducing DNT and, thus, it can be classified as a negative control compound for 

the same purposes mentioned above, (iii) dexamethasone, with a medium level of probability might need 

additional data or investigation, e.g., testing other biological paths involved in inducing DNT, (iv) fipronil, also 

with a medium level of probability, has to be evaluated for the CKE relating to the decrease of synaptogenesis 

as well as for potential other CKEs of the AOP network, and (v) lead presented a high probability of inducing 

DNT. Thus, the Bayesian hierarchical model formulated for a simplified AOP network was able to prioritise 

compounds for testing based on a variety of data, including missing data. The Bayesian hierarchical model 
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will help direct what further information, i.e., in vitro, in silico data will be required to strengthen an opinion 

or a decision about potential DNT toxicants. 
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Figure 4.7. A potential utility of the results of the proposed Bayesian hierarchical model for the simplified version of the AOP network for DNT. A final decision can be informed by 
grouping the compounds into three classes for the level of predictions given by the probabilities of posterior distributions on both observed and unobserved variables.
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4.5. Discussion 

Bayesian machine learning has been increasingly applied in toxicology, from improving the modelling of 

physiologically-based pharmacokinetic (PBPK) models of inter- or intra-individual variability across a 

population (Bois et al. 1996; Bois et al. 2010), dealing with pseudo-replications (Lazic et al. 2020) or a 

combination of Bayesian statistics and deep learning to the investigation of hepatotoxicity (Semenova et al. 

2020). However, only recently, has it been applied to the concept of modelling of an AOP, as reviewed in 

Chapter 2. To our knowledge, the Bayesian hierarchical model proposed in this Chapter is the first to model 

a linear path within an AOP network derived from topology analysis, combined with the expert judgement, 

while being able to deal with missing data. Additionally, it is a parametric model of continuous distributions 

as opposed to discrete Bayes nets, also known as Bayesian networks or belief networks, that imply 

conditional probability tables (CPTs) and that have been proposed as an option for the probabilistic 

quantification of AOPs (Perkins et al. 2019a). 

A qAOP model is data-driven, and thus, initiatives that focus on data generation and collection are crucial for 

their development. The requirement for reliable and meaningful data is especially relevant with regard to 

the mechanistic understanding of the endpoints related to DNT. The Programme on the development of 

AOPs co-ordinated by the OECD has been instrumental in creating a knowledge management database of 

AOPs. The database plays a pivotal role in supporting research projects and improving the predictions of toxic 

responses for humans (OECD 2017; OECD 2018b). However, in practice, few AOPs exist compared to the 

abundant and increased mechanistic toxicological knowledge and those that do exist are often not 

sufficiently quantified for practical applications. In order to address this, the collaborative project 

Developmental Neurotoxicity Data Integration and Visualisation Enabling Resource (DNT-DIVER) of the 

National Toxicology Program (NTP) by the National Institute of Environmental Health Sciences (NIEHS) aims 

to jointly generate and collect data for the assessment of DNT toxicants (Behl et al. 2019). As a result, 

screening libraries consisting of known and suspected developmental neurotoxicants, and negative controls 

classified based on in vitro studies conducted on cell culture systems, zebrafish and planarian models are 

becoming available. These data could be utilised for prioritisation and additional investigation and, 

potentially, for the future development of qAOP models incorporating further other levels of details than 

those included herein. Importantly, as DNT effects occur primarily in the offspring, following exposure to 

chemicals, it is essential to study metabolism and other kinetic and dynamic behaviours that a compound 

may exhibit in order to determine the in vivo exposure and possible accumulation during years of exposure 

e.g., incorporating PBTK models adapted for pregnancy. Thus, once other important kinetic and dynamic 

types of information, as well as tools to facilitate this understanding, becomes available, the Bayesian model 

can be updated accordingly.  

In the context of Bayesian modelling applied to toxicology, an in silico model should answer to causal rather 

than associative questions that cannot be computed from data alone. Causal inference can be defined as a 
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way of predicting what would happen, or what might have occurred, to an outcome y given a set of predictors 

X as a result of a treatment, intervention or exposure z (Gelman et al. 2020). Causal effects can take both 

linear and nonlinear functions. Herein, the causal effects given by the KERs were treated as linear models for 

simplicity. It was also interesting to capture the variations between the effects, and the interactions between 

the variables, to predict the effects of individual compounds. The causal regression model followed a 

hierarchical structure to cover the above aspects. Thus, hierarchical (multilevel) models are extensions of 

regression in which data are structured in groups and coefficients can vary by group (Gelman 2006). 

Consequently, hierarchical models can be used for a variety of inferential objectives, including causal 

inference, prediction and descriptive modelling. For example, the causal inference was simulated using linear 

regressions and the prediction aim was achieved by the two-class logistic regression of the dependent 

variables implemented. The descriptive understanding helped to underline the main features of the data and 

where additional efforts are needed. 

Probabilistic programming languages (PPLs) have only recently been applied in ML and artificial intelligence 

(AI) following the development of several approximate integration algorithms, e.g., MCMC methods 

(Ghahramani 2015). PPLs are domain-specific languages utilised to formalise a Bayesian model, they help to 

automate the process of inferring unobserved variables in the model, i.e., outcomes of interest conditioned 

on the observed data. Thus, PPLs rely on combining the inference capabilities of probabilistic methods with 

the representational power of programming languages (Ghahramani 2015). The ecosystem of PPLs has 

become more and more available through various examples, e.g., BUGS, Edward, Infer.NET, Nimble, Pyro, 

Tensorflow, Turing, Stan, to name a few. In this Chapter, the Bayesian model was coded in PyMC3 (Salvatier 

et al. 2016), a Python package. It is acknowledged that the choice of PPL is rather subjective in that it often 

depends on the user’s experience as to how the model can be coded. 

There are several advantages in modelling a qAOP in a Bayesian (hierarchical) manner, which include: 

1. A qAOP model must allow for an objective scientific judgement of potential toxicity of chemicals (Spinu 

et al. 2020). A Bayesian model aims to determine the posterior distribution for the model parameters 

allowing for the quantification of a response, the magnitude of response or the effect of the size of single 

KE or a pair of KEs in a probabilistic manner. Notably, the associated credible interval incorporates the 

uncertainty of both dependent and independent variables and the different sources of variability as is 

the case for DNT. Thus, a Bayesian model becomes more informative than a single best estimate that a 

frequentist model provides, i.e., “statistically significant” and “non-significant” and, thus, contributes to 

the paradigm shift in statistical thinking and decision-making as argued by Amrhein et al. (2019) while 

leading to a transparent, traceable, reproducible and reliable assessment. For example, Hothorn and 

Ralph (2020) advocated the use of compatibility intervals as an alternative to formal statistical testing in 

toxicology, i.e., confidence intervals, which describe the compatibility of the data with the hypothesis 

and the model to evaluate endpoints of regulatory interest. Thus, providing confidence in an assessment 

of potential DNT toxicants, by accounting for uncertainty in a Bayesian manner, can better inform 
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decision making while giving an understanding of the importance of the resultant predictions, especially 

in data-sparse situations such as DNT.  

2. There is a demand for strategies that would better integrate the variety of information available, 

including NAMs or combinations of non-animal methods known as defined approaches, for an informed 

risk assessment and a structured decision-making process (Avila et al. 2020), e.g., IATA for DNT screening 

and prioritisation purposes (Bal-Price et al. 2018a; Paparella et al. 2020; Worth and Patlewicz 2016). 

Additionally, a battery of DNT in vitro test methods is advocated to generate valuable mechanistic data. 

Data from such in vitro test methods can be analysed to identify reliable indicators of DNT, leading to an 

analysis of greater complexity, but increased relevance (Paparella et al. 2020). A Bayesian model can 

accommodate any type of data essential for the assessment of a chemical, including missing information, 

be they organic or inorganic; it can also cope with the complexity of the mechanistic knowledge such as 

involved in DNT endpoint as well as the combination of multiple sources of information. Thus, such 

modelling represents a means to determine if the available information is sufficient to address a question 

and what kind of additional efforts and where such efforts are needed. It can also help to screen a large 

number of compounds and identify tailored toxicological paths for an individual compound or a chemical 

class, including mixtures, while offering an understanding of the likelihood of effects and the level of 

perturbations at different biological levels. 

3. A linear AOP is considered to be a unit of development and is evaluated in a structured and transparent 

way, based on the available mechanistic knowledge. At the same time, networks of linear AOPs should 

serve as the basis for the development of predictive models (Villeneuve et al. 2014a). One reason for 

using linear AOPs in this manner is that they can interact between themselves, e.g., single chemicals can 

activate multiple paths leading to an AO and, thus, a reliable qAOP model must meet such challenges 

(Schultz and Watanabe 2018). A Bayesian hierarchical model can adapt to the complex mechanistic 

structure, informed by the AOPs/AOPs network, taking into account the interactions, correlations, and 

causal relations. In addition, it can simultaneously handle predictors on multiple levels i.e., KEs, individual 

chemicals/class of chemicals, as they are informed by the global distribution of the entire dataset. This is 

especially useful when the datasets are too small to be analysed separately, as is the case with DNT. The 

hierarchical approach is better than treating each KE independently since the data from different KEs 

inform one another meaningfully and learn from each other, even without adding the causal regressions. 

For example, underrepresented categories of chemicals will borrow strength from well-represented 

chemicals and, thus, the hierarchical approach can deal with the unbalanced classifications under a 

unified statistical framework. Therefore, a Bayesian hierarchical model can contribute to the paradigm 

shift towards a mechanistically-driven assessment in modern toxicology and translate a qualitative AOP 

into a quantitative computational predictive model for potential use in CRA. Best practices of data 

analysis under the umbrella of the qAOP concept might need to consider the usefulness of Bayesian 

models. 
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4.6. Conclusions 

In conclusion, a Bayesian hierarchical multiparameter model was developed for a simplified AOP network 

derived based on a topology analysis, combined with expert judgement. The conceptual framework achieved 

three goals: it dealt with missing values; accommodated unbalanced and correlated data; and learned the 

structure of a DAG to simulate a simplified version of an AOP network. The model can be used to predict the 

potency of a compound that follows a specific biological path of inducing DNT with the associated uncertainty 

given by different sources of data variability. Also, the model can guide the data generation processes to 

better understand DNT mechanistically and support decision-making in CRA. The methodology can be applied 

to other endpoints of interest and can accommodate new evidence and other types of data. Future directions 

include the addition of other biological paths and details about kinetics and dynamics to extend the 

applicability domain and usage as a qAOP model.  
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Chapter 5.  Development of a quantitative linear Adverse Outcome Pathway 

for Parkinsonian motor deficits 

 

As Chapter 2 summarised, in addition to a network, a qAOP model can also be derived from a linear 

qualitative AOP. However, such a quantitative approach is context- and data-dependent. The results 

presented herein reflect a series of discussions with Prof Mark Cronin, Dr Andrew Worth and Dr Anna Bal-

Price on the use and applicability of the OECD AOP-Wiki Knowledge Base for the development of qAOPs 

during the secondment at the EC JRC, Ispra, Italy (September 2018 – January 2019) with the scope to evaluate 

the potential empirically-derived quantification of a linear AOP for Parkinsonian motor deficits. 

 

Abstract 
The pathogenesis of Parkinson’s disease (PD) is multi-factorial and industrial chemicals are associated with 

the risk to induce its symptoms. The AOP concept represents an excellent tool to summarise and inform 

quantitative modelling of causal relationships of an underlying mechanistic path for PD induced by stressors. 

The aim of this Chapter was to assess the OECD publication of the well-developed and endorsed qualitative 

AOP for Parkinsonian motor deficits in order to determine if the references cited could provide a basis for 

quantification. Additionally, a case study for rotenone was undertaken to extract data and model qKERs for 

the PD qAOP. As a result, 13 peer-reviewed publications representing ex vivo, in vivo, and in vitro studies, 

were identified as being potentially useful for quantification. In addition, three KEs at the cellular level for 

three time points, i.e., four hours, 24h, 48h, and 11 KERs were quantified. The response-response functions 

were fitted using the drc R package. Additionally, the concentration-responses and the effect size of KERs 

were modelled probabilistically in PyMC3. The results provide a series of thoughts, recommendations and 

opened questions on how to address the existing issues to facilitate and increase the development of qAOP 

models. 
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5.1. Introduction 

As outlined throughout the thesis, the AOP framework has emerged as an essential instrument to synthesise 

the available scientific evidence regarding chemical toxicity, at different levels of biological organisation, in a 

transparent, structured and comprehensive manner. The development of an AOP relies on the SR 

methodology, which is a protocol-driven approach and utilises available data derived mainly from the 

scientific literature. Each line of evidence is rigorously documented and efficiently assembled following the 

five fundamental principles that guide the AOP development (Villeneuve et al. 2014a; Villeneuve et al. 

2014b). The quality of data can be evaluated against BH considerations allowing assessment of the level of 

maturity in the overall AOP (Becker et al. 2015; Meek et al. 2014b), with the ultimate goal of the endorsement 

of the AOP by the OECD. The OECD TGs help to generate relevant and reliable information. Despite this, not 

all KEs of an AOP or endpoints have an approved standard method and accessible data for chemical safety 

assessment. Hence, academic research represents an important source of data, even though it might be 

insufficiently reported and not fully detailed.  

An AOP encompasses both descriptive and empirical studies. However, a qualitative AOP should be 

quantified to make the mechanistic knowledge applicable for RA, as outlined throughout the thesis. A qAOP 

aims to simulate and predict the threshold, or magnitude, of chemical-induced toxicity in a KE. This 

quantification is based on the response of the prior KE with the focus to develop qKERs as stated in Chapter 

2. The quantification of an AOP can take many forms from simple linear regression to sophisticated 

biologically-based computational models, depending on the level and nature of the empirical data (Perkins 

et al. 2019a). At the same time, a qAOP model is usually developed for a chemical, referred to as a reference 

compound, even though an AOP must be chemically agnostic (Conolly et al. 2017; Zgheib et al. 2019). The 

empirical data are usually generated independently for an individual KE and not necessarily integrated into 

an AOP framework. Therefore, the descriptions of an AOP, which are based on peer-reviewed publications 

and compiled as part of the OECD AOP Development Programme, can be explored to inform the qAOP model, 

this has several advantages, including:  

• Original articles are cited. The reported findings are of high quality following a rigorous and 

transparent evaluation. 

• The references are relevant to human or ecotoxicology, and associated with an AOP, allowing for the 

understanding of all factors involved in predicting the AO, and where additional efforts are required.  

• The references are assessed for the WoE analysis, and thus, support the applications of AOPs.  

Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease 

(Dexter and Jenner 2013; Esteves et al. 2011; Glass et al. 2010; Poewe et al. 2017). Historically, it was first 

described by James Parkinson in his work “An Essay on The Shaking Palsy” on observations of six individuals 

with “paralysis agitans” in 1817 (Betarbet et al. 2005; Bove and Perier 2012; Segura-Aguilar and Kostrzewa 

2015). Although PD is an age-related disorder with prevalence in industrialised countries affecting 1% of 
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people over 60 years and 5% of people over 80 years, 10% of cases are classified as young-onset, occurring 

between 20 and 50 years of age (Betarbet et al. 2005; Dexter and Jenner 2013; Esteves et al. 2011; Whitton 

2007).  The pathogenesis of PD is multi-factorial implicating various genetic as well as environmental factors 

(Dexter and Jenner 2013; Fujita et al. 2014). The hypothesis that exposure to environmental toxicants may 

increase the risk of developing PD has subsequently attracted interest. For example, epidemiological studies 

showed the association between the exposure to pesticides such as organochlorine insecticides used in 

agriculture with the increased risk of developing PD (Dias et al. 2013). In addition, a meta-analysis of 19 

studies evaluating the potential impact of pesticide exposure found an estimated doubling of disease risk 

(Priyadarshi et al. 2000). As a result, several ex vivo, in vivo and in vitro models have been developed to 

produce and evaluate histological, molecular, and behavioural mechanisms induced by neurotoxicants such 

as rotenone, 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), paraquat and 

lipopolysaccharides (Bove and Perier 2012; Segura-Aguilar and Kostrzewa 2015). 

The pathogenesis of PD is characterised clinically by progressive impaired motor function (Dexter and Jenner 

2013; Lin and Beal 2006). The main features include tremor, rigidity, bradykinesia and postural instability 

(Bove and Perier 2012; Dexter and Jenner 2013; Fujita et al. 2014; Zaltieri et al. 2015). Nonmotor-related 

symptoms are olfactory deficits, autonomic dysfunction, depression, cognitive deficits, and sleep disorders 

(Glass et al. 2010). The pathological hallmark of PD is represented by the loss of DA neurons in SNpc and the 

presence of intracellular inclusions containing aggregates of the alpha-synuclein protein, called Lewy bodies 

(Betarbet et al. 2005; Glass et al. 2010; Lin and Beal 2006). The symptoms of PD are only apparent when the 

loss of at least 50% of the DA neurons in the SNpc occurs, leading to over 80% reduction in dopamine levels 

in the striatum (Whitton 2007). The disease map developed by Fujita et al. (2014) offers a comprehensive 

overview of the molecular interactions and pathways involved in the pathogenesis of PD structured into 

synaptic and mitochondrial dysfunction, impaired protein degradation, alpha-synuclein pathobiology and 

neuroinflammation. However, the AOP construction offers a clear-cut mechanistic representation and 

summary of the toxicity induced, chemically, that leads to an AO. It can be used as an informative tool for 

computational modelling. The AOP developed by Terron et al. (2018) explains the causatively linked cellular 

KEs between the inhibition of mitochondrial complex I and the manifestation of Parkinsonian motor deficits 

for rotenone, which was investigated herein.  
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5.2. Aim of this chapter 

The aim of Chapter 5 was to investigate the possibilities of developing a qAOP for PD on the basis of existing 

knowledge and data. Specifically, the appropriateness of the references cited in the OECD peer-reviewed 

publication (Bal-Price et al. 2018b) relating to adjacent KERs were evaluated against a predefined list of 

assessment criteria for modelling quantitatively AOP ID 3 for Parkinsonian motor deficits1 induced by 

rotenone. Secondly, quantitative data, i.e., dynamic and kinetic types of information, from two in vitro 

human-based models, were extracted and mapped to model qKERs. Additionally, a comparison of frequentist 

and Bayesian approaches was conducted. This activity was performed as a case study, contributing overall to 

the advancement of the qAOP framework. 

5.3. Methodology  

5.3.1. Data collection and evaluation 

The references cited in the OECD peer-reviewed publication for the linear AOP on Parkinsonian motor deficits 

(Bal-Price et al. 2018b) were collected in an Excel file and investigated for: (i) the presence of experimental 

studies, (ii) studies conducted for rotenone, (iii) studies conducted in human and rodent type of in vivo/ex 

vivo/in vitro models, (iv) appropriate extractable quantitative data, and (v) toxicity assessment performed by 

functional assays. This preliminary selection of scientific publications was conducted solely for adjacent KERs 

to ease the decision for data extraction for modelling qKERs. In addition, it allowed for the understanding of 

the type of scientific evidence required to build a qualitative AOP, the variety of stressors the AOP covers and 

where additional efforts are needed. The final studies selected were evaluated against a series of predefined 

criteria for a complete overview of their potential application for qAOP modelling purposes listed in Table 

5.1. These criteria were formulated together with two experts with experience in in vitro and in silico 

toxicology and policy-decision making. Additionally, these criteria can guide the efforts of the scientific 

community towards designing testing strategies to comply with AOP construction, as the references were 

not primarily intended to assess an AOP. As such, they can provide suggestions on how to better improve the 

OECD AOP-Wiki KB in order to make it a useful and informative data repository for computational modelling.  

 
1https://aopwiki.org/aops/3, accessed on March 16, 2021.   
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Table 5.1. A list of 16 criteria proposed to be used for the assessment of peer-reviewed publications for qAOP modelling 
purposes. 

No Evaluation criteria  Justification 

1. 

The study is relevant to toxicology or human disease/symptom of 
a disease defined as an AO.  

This provides information on the AO or underlying 
mechanism of toxic action. The same disease, e.g., PD, 
can have a diverse degree of different symptoms in 
different patients. AOP ID 3 is developed for one of the 
PD's symptoms: motor deficit. 

2. The study is associated with a well-developed and mature AOP. A sufficiently mature AOP will allow understanding of 
all factors involved in predicting the AO. 

3. 
The study should provide measurements of a relevant endpoint 
e.g., changes of tyrosine hydroxylase culture should be evaluated 
in DA neurons. 

The biological plausibility should follow the AO or 
endpoint of research interest. 

4. The study includes data for KEup and KEdown measured in the 
same experimental design. 

This will help building quantitative KERs and decrease 
the uncertainty of the model. 

5. 

The study provides information on the directness or indirectness 
of the KER. Primarily studies performed to support direct 
(adjacent) KERs should be selected.  

Allows for modelling of the quantitative relationships 
of adjacent KERs in order to facilitate development of 
the final qAOP model. Indirect (non-adjacent) 
relationships, feedback loops, compensatory 
mechanisms can be also checked for existing 
publications at a later stage. 

6. 

In vitro study concentrations of a chemical inducing the KER 
should be relevant to human exposure. 

In vitro concentrations should be compared with 
human plasma level or if available tissue levels. This 
information will be useful later in judging the likelihood 
of an AO, for a given exposure scenario. 

7. 

The quantitative measurements are functional assay-based. If 
gaps are identified, omics types of data can be accepted if they 
are informative for dose-response modelling. 

Assay-based quantitative data type should include 
experimental data relevant to KEup and KEdown of the 
same KER e.g., ATP production, necrosis/apoptosis, 
changes in protein levels (quantitative 
immunocytochemistry), uptake, activation/inhibition 
of receptor/ion channel function. 

8. 

The study includes a range of concentrations and various times 
of exposure (dose and time responses) to define the thresholds 
of KEs upstream which will trigger relevant KEs downstream in 
each KER. 

This will help defining the exposure required in risk 
assessment under which AO might be triggered. 

9. 
The study mentions the nominal and free chemical 
concentration, especially in the context of in vitro experiments to 
facilitate data interpretation. 

This information can be coupled later with 
PBPK/(Q)IVIVE models. 

10. 

The study provides data for cell/tissue viability in addition to the 
cell specific toxicity response (KE) to ensure that cell type specific 
endpoints are not induced by cytotoxic effects of a chemical, 
unless the KE of interest is cytotoxicity. 

These data will indicate that the toxic response is 
mediated by specific mechanisms, i.e., other than non-
specific cytotoxic mechanisms. 
 

11. The study includes data on kinetics relevant to the MIE/KEs, 
especially in in vitro experiments. 

This is vital for a robust qAOP model. 

12. 
The test methods used (models and measured endpoints) have 
been adopted as national or international guidelines, e.g., OECD, 
ICH.  

Reliability of the test methods used is vital to evaluate 
the uncertainty of the model. 

13. 
The test methods used (models and measured endpoints) have 
been validated in a formal validation study, or in accordance with 
accepted validation principles. 

Reliability of the test methods used is vital to evaluate 
the uncertainty of the model. 

14. The study has been performed in a quality control environment 
(i.e., GLP). 

This gives confidence in the reproducibility of data and 
serves as a scientific rationale for the qAOP model. 

15. 

Data can be retrieved from graphs/plots.  Quantitative data are needed, unless other types of 
data are suitable. Pictures/images (i.e., activity 
detection, optical density etc.) without quantitative 
evaluation are not accepted, unless transformed in a 
scoring or binary system e.g., based on an expert 
judgement. 

16. 
The study design is based on at least three measurements for the 
same endpoint, in three independent experiments.  

Adds confidence in the reproducibility of the data. 
Statistical significance diminishes the uncertainty of 
the model. 
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5.3.2. Data extraction and analysis 

Two in vitro studies (Barrientos and Moraes 1999; Chou et al. 2010) were selected. They provided data for 

the modelling of causal linkages between three KEs at the cellular biological level, specifically the inhibition 

of complex I, mitochondrial dysfunction and impairment of proteostasis. Data, i.e., concentration and time 

responses (% of control) were extracted from figures using GetData Graph Digitizer v.2.26 software2 and are 

available on the GitHub repository. The extracted data represented the mean of the n replicates. Data were 

arranged per time point and KEs since a KE could have been tested for multiple biological effects, as shown 

in Figure 5.1. There are missing values for the data due to the different ranges in concentration tested for 

the same time point. Therefore, a harmonisation was necessary to fit the responses between the effects. 

After the organisation of the extracted data, the estimation of missing values for the time points of four and 

48 h was performed from a normal distribution using the mice R package v. 3.12.03. The modelling of 

concentration-response and response-response functions was undertaken using the drc R package v. 3.0-14. 

The choice of the fitted line was made based on the Akaike information criterion (AIC) of the evaluated logistic 

regressions. The best-fitted curves were selected to describe each causal relationship for rotenone 

mathematically. 

 

 
Figure 5.1. A graphical representation of the quantified causal relationships for PD informed by the KEs and specific 
measurements that characterise the KEs based on the available extracted data of human-based in vitro studies. KER3 
represents the common KER across the three time points tested. CI, Complex I, Inhibition; ROS, Production of reactive 
oxygen species, Increase; LIPOX, Lipid peroxidation, Increase; MMP, Mitochondrial Membrane Permeability, Decrease; 
PA, 20S Proteasome Activity, Decrease. 

  

 
2http://www.getdata-graph-digitizer.com/index.php, accessed on March 16, 2021.    
3https://CRAN.R-project.org/package=mice, accessed on March 16, 2021.   
4https://CRAN.R-project.org/package=drc, accessed on March 16, 2021.   
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5.3.3. Bayesian modelling 

Extracted data were also used for the probabilistic modelling of concentration-responses and response-

responses. As argued elsewhere in this thesis, a response-response relationship is causal by nature and does 

not imply associations. It should evoke the magnitude (threshold) of/between two key events (upstream to 

downstream effects). To follow the causal principles of modelling KERs, appropriate experiments are needed 

to be conducted. However, this is not the case for this example where data were not produced with the 

intention of being used for such an application. However, these data were used for demonstration purposes 

to showcase the importance of Bayesian modelling of both concentration-responses and response-responses 

for toxicity assessment. 

The workflow of the Bayesian model formulation was described in depth in Chapter 4.  It consists of specifying 

the prior distributions and likelihoods that reflect the assumptions about the data and how the model should 

be structured. It is followed by fitting the observed data to the model to estimate the unknown parameters 

of the model sampled from the posterior distributions. These samples can be used to quantify the uncertainty 

of the model parameters in the form of distributions, which underlines the uniqueness of Bayesian 

approaches to provide probability statements rather than points of estimates, taking into account sources of 

variances propagated along with the model.  

The likelihood in the Bayesian model is defined as a log-logistic function, which is by far the most used 

regression to analyse a concentration-response curve (Labelle et al. 2019; Shao and Shapiro 2018). 

Depending on the type of effect (inhibition vs activation), it takes one of the following mathematical forms.  

 

For inhibition type of effects: 

!(#) = &!"# +	
&!$% − &!"#

1 +	10&∗(,-.)*# −	,-.)*/0+*)
 

 

For activation type of effects: 

!(#) = &!"# +	
&!$% − &!"#

1 +	10&∗(,-.)*10+* −	,-.)*#)
 

 

From the likelihood, five parameters are derived: 

&!"#, &,-. 	: Minimum (low) or maximum (high) concentration-response. 
/0+*, 10+*: Half maximal inhibitory (effective) concentrations. 
3: Hill slope or steepness of the transition of the response between two levels. 

The priors of the parameters were chosen as non-informative and were described as normal distributions:  

&!"#	~	5-678,	(0, 10) 
&,-. 	~	5-678,	(100, 10) 
/0+*, 10+*	~	5-678,	(1, 5) 
3	~	5-678,	(0.5, 10) 
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As summarised in Chapter 2, a response-response relationship can be modelled in a variety of different ways. 

Herein, the effect size is proposed for the examination of the magnitude of the treatment effect between 

two events, i.e., a KER. One way to measure the effect size is by Cohen's index, which represents the 

difference between two means of responses divided by a standard deviation ; (pooled standard deviation) 

of the responses.  

1!!<=>	;?@< =
A01!"2	A01#$%&

;  

; = 	B ;)
3 + ;33

C) +	C3
 

 

The effect size is widely used in meta-analysis studies and Cohen’s index is the most reported statistic used 

to evaluate and summarise the findings (Fritz et al. 2012). The effect size was previously modelled in a 

Bayesian framework (Kruschke 2013). However, it was not applied to evaluate a chain of events such as of 

an AOP in toxicology, but rather to evaluate the difference between two groups of treatments. An interesting 

question to be explored is that if the effect size can be used as a means to understand how the key events 

differ between each other, which can implicitly describe the response-response relationships of the chain of 

events in a concentration and time dependent manner. 

The likelihood of the effect size between two KEs was informed by Cohen’s index, and the priors for the 

parameters of the model were defined as normal distributions for mean µ and half normal distributions for 

standard deviation s. 

µ	~	5-678,	(0, 100) 
s	~	D8,!5-678,	(100) 

E145/789#	~	5-678,	(µ,s) 
 

The Bayesian model describing concentration-responses followed the DAG structure as presented in Figure 

5.1. The Bayesian model of the effect size described solely the KER3 that is common for the three time points 

for which the same ranges of concentration were tested. 
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5.4. Results  

5.4.1. Data assembly for qKERs 

In total, 430 peer-reviewed publications were analysed for their relevance for computational modelling of 

qAOPs. Following the initial screening process, 56% of references were experimental studies that tested 

neurotoxicants other than rotenone, e.g., MPTP and its metabolite MPP+, paraquat etc., and 26% of 

references were descriptive studies represented by systematic review and qualitative summaries associated 

to the mechanistic path. 15% of references tested rotenone on species other than humans and rodents and 

included phenotypic and imaging analysis of any endpoints of KEs. Only 3% out of the total number of studies 

were conducted for the measurement of effects induced by rotenone to characterise adjacent KERs of the 

AOP in a quantitative manner (Figure 5.2). 

 

Figure 5.2. The decision tree to select peer-reviewed publications for rotenone for quantification purposes as well as 
the percentage of evaluated references. 

The selected studies were further grouped per KEs and type of model utilised (Figure 5.3). The MIE was tested 

in an in vitro bovine heart-derived model (Grivennikova et al. 1997; Ramsay and Singer 1992), while the other 

KEs and AO were measured in human- and rat-based in vivo/ex vivo/in vitro systems. The inclusion of these 

two studies was because there were no other published methods that measured the ability of rotenone to 

bind to complex I at the time of analysis. Importantly, five studies investigated multiple KEs. For example, 

Saravanan et al. (2005) measured the inhibition of complex I and mitochondrial dysfunction. Such studies 

represent the ideal type of quantitative data that helps to reduce the potential variabilities imposed by 

experiments.  
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Figure 5.3. The final 13 selected references grouped per experimental type with the potential utility for their 
quantification purpose. 

The studies selected were assessed against the criteria proposed in the Methodology section. The quality 

assessment yielded: (i) acute (minutes, hours) and chronic (weeks) types of exposure, (ii) that not all studies 

were tested in a minimum of three concentrations/doses and at a minimum of two timepoints for the 

development of corresponding curves and investigation of dynamics, (iii), none of the studies followed 

standardised test guidelines, and few were conducted in accordance with GLP conditions, (iv) data were 

stored mostly in figures, and none of the studies provided the raw results, and (v) cell viability/cytotoxicity 

and kinetics were not examined by all studies. A complete overview of the results of the evaluation can be 

found in the GitHub repository. 

5.4.2. Frequentists-derived results 

The best fitted mathematical equations for KERs included: (i) a three-parameter log-logistic regression 

calculated for the KER increase of ROS production leading to an increase in lipid peroxidation at 24h and 48h, 

and (ii) a four-parameter log-logistic regression computed for the remaining KERs similarly to the regression 

used for Bayesian modelling. The equations and associated parameters for KERs are summarised in Appendix 

III Table S1. The equations and associated parameters for KEs can be found in the GitHub repository. 

The fitted curves for KEs and KERs presented sigmoid and exponential trends for each timepoint and for the 

concentration-responses. Most of the response-response functions showed that a reduction in a prior KE led 

to a non-linear reduction in the subsequent KE (Appendix III Figures S1-S3). Thus, the qKERs established 

presented continuous responses allowing for the estimation of the level of the response for each timepoint.  
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5.4.3. Bayesian-derived results 

The Bayesian model allowed for the computation of the concentration-responses as a log-logistic function 

(Appendix III Figures S4-S8). The parameters of the concentration-response curve were defined by the mean 

and associated credible interval that described the uncertainty, as exemplified in Figure 5.4. Such an 

approach becomes more informative for decision-making comparing to single point estimates that might 

lead to incorrect conclusions.  

 

 
Figure 5.4. The mean and associated 95% credible interval (HDI) of each of the parameters that describe the log-logistic 
regression of a concentration-response. Herein, the example of the KE inhibition of complex I induced by rotenone at 
four hours was taken. The four individual distributions represent the uncertainty associated to the predicted parameter. 
 
 

The effect size of the KER for the tested concentrations modelled probabilistically was small, almost equal to 

zero. It showed a slight decrease/remained unaffected over time (Figure 5.5). This underlines the importance 

of considering the effect size and associated differences in the mean between the KEs to identify potential 

tipping points. 

 

 

Figure 5.5. The mean and associated 95% credible interval (HDI) of the posterior distributions of the effect size of the 
KER3 that describes the increase in ROS production leading to decrease in mitochondrial membrane permeability at 
three different time scales given the available data. 
 
5.4.4. Comparison between Bayesian vs frequentist modelling  

This case study allowed for the comparison of Bayesian and frequentist modelling approaches used to fit 

concentration-response and response-response relationships. Additionally, a comparison between the 

concentration-response for imputed vs non-imputed missing values modelled probabilistically vs modelled 

in a frequentist way was conducted, as exemplified for a KE in Figure 5.6. The imputed data may lead to 

conclusions not supported by evidence that require justification. The frequentist-derived curve does not 

account for the uncertainty. This demonstrates the importance of designing appropriate experiments to 

generate relevant data to investigate a chemically-induced causal effect that rather be modelled 

probabilistically.  

Time = 24h Time = 48hTime = 4h
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Figure 5.6. A comparison of concentration-responses fitted probabilistically in PyMC3 for the non-imputed data (A), 
fitted probabilistically in PyMC3 for imputed data to harmonise the ranges of concentrations with the other KEs (B), and 
fitted deterministically in the drc R package (C). The plots represent the KE 1 of inhibition of complex I by rotenone. 
 

A summary of the main characteristics that describe the pros and cons of choosing one or other of the 

modelling approaches is presented in Table 5.2. 
 

Table 5.2. A list of characteristics specific to Bayesian vs frequentist modelling. 
Bayesian modelling Frequentist modelling 

Uses probabilities for both hypotheses and data. Never uses or gives a probability of a hypothesis. 
Depends on the prior and likelihood of observed data. Depends on the likelihood for both observed and 

unobserved data. 
Requires one to know or construct a ‘subjective prior’, 
e.g., how to reflect the data structure in the model. 

Does not require a prior, thus, it is objective. 

There is no single method for choosing a prior. 
However, by trying different priors, the sensitivity of 
the results can be evaluated against the choice of the 
prior. 

The p-value depends on the exact experimental 
setup, which needs to be fully specified ahead of 
analysis. 

95% credible interval: there is a 95% probability that 
the true (unknown) estimate would lie within the 
interval, given the evidence provided by the observed 
data.  

95% confidence interval: we can be 95% confident 
that the true (unknown) estimate would lie within 
the lower and upper limits of the interval, based 
on hypothesised repeats of the experiment.  

Tends to be computationally intensive with the 
increased number of parameters. 

Tends to be less computationally intensive. 

 

  

A

B

C

! ", $, %, &, ' = 10.3+ 94.7− 10.3
1 + exp −2.3 log " − log 5.5



118 
 

5.5. Discussion 

The OECD publications of the endorsed AOPs, as part of the OECD AOP Development Programme, can serve 

as a starting point in understanding if a preliminary quantification of AOPs is possible and/or what additional 

efforts are required to accomplish such an objective. As shown in Chapter 2, most of the currently available 

probabilistic (four out of six) and mechanistic (nine out of eleven) qAOPs were developed based on 

experimental data. At the same time, available extensive databases, such as ToxCastTM, are not suitable to 

provide data to model response-response functions of causal relationships which are informed by AOPs for 

neurotoxicity, as outlined in Chapter 3. There is thus an opportunity to investigate potential utility of the 

AOP-Wiki KB to explore quantitative causal linkages. However, as the SR methodology underlines, the 

selection of appropriate studies requires a transparent and reproducible workflow in decision-making. In this 

investigation, 16 criteria were formulated and proposed to guide the choice of peer-reviewed articles for 

data extraction and quantification purposes on the basis of their having appropriate quality (Table 5.1). 

The AOP network presented in Chapter 3 described two adverse outcomes related to neurodegeneration: 

impairment of learning and memory, and cognitive dysfunction quantified as developmental neurotoxicity in 

Chapter 4, and Parkinsonian motor deficits. It is recommended to start the quantification of an AOP with a 

linear construction and subsequently introduce complexity step by step. This is because: (i) a simplified linear 

construction is more easily understood by stakeholders, including regulators, as opposed to systems biology 

type of computational models that require extensive expertise, (ii) complexity in a qAOP needs to be justified 

for its inclusion, e.g., if making a qAOP is more/less informative in assessing a chemically induced adverse 

effect, (iii) simple constructs are less time consuming, as well as being (iv) easier to design with regard to 

testing strategies for data generation purposes and (v) less data hungry than systems biology tools. 

As a result of the work undertaken in the current investigation, several challenges were identified in the 

quantification of the linear AOP for Parkinsonian motor deficits for rotenone. One of these challenges 

included the way the data were presented. Many data, i.e., concentration- and time-responses, were 

displayed in graphs, and fewer in tables. This makes the retrieval process complex and potentially inaccurate. 

In addition, the raw results were not available for the scrutiny. For the full reuse of data, as well as ensuring 

they are reproducible, there should be a full access to the data. The availability of specific protocols, the open 

science movement and better ability to disseminate the results will assist in this process of modelling qAOPs. 

For instance, the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles are becoming 

widely accepted (Wilkinson et al. 2016). The scientific evidence, e.g., peer-reviewed publications, as well as 

the statistical analysis, e.g., the statistical significance informed by the chosen p-value, or the mean value 

calculated for three independent experiments, are sparse. Their relevance relies in understanding the testing 

hypothesis to evaluate the chemical toxicity. The lack of appropriate data is dragging down the development 

of qAOP models while available resources that are mostly inadequate have a consequence in data 

interpretation and for the utilisation of the published results for modelling qAOPs. Even for rotenone, a 
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commonly used chemical for the development and validation of in vivo/in vitro models, it was not possible 

to build an ideal data set. A potential open question remains if we should count on these types of data 

collected and mapped from available sources or focus the efforts towards producing appropriate data from 

specifically designed experiments and conducted with AOP development in mind, or a combination of both. 

A KE can be measured by many assays. This is partially because a KE is named rather generically, which allows 

the integration and development of networks of KEs. This is also because a KE implies several biomarkers, 

which can be assessed by different assays. Thus, it becomes disputable which of the measured effects to rely 

on (to select and/or prioritise) as being sufficiently sensitive to capture the tipping points, or should results 

of all assays be considered. Herein, three measurements that were available for the KE mitochondrial 

dysfunction, e.g., mitochondrial membrane permeability, ROS production, and lipid peroxidation, were 

included and organised according to the qualitative description of the AOP. Choosing or selecting 

measurements representative of a single KE should be established based on a domain knowledge combined 

with an in vitro model and ideally recognised/validated assays to ensure that the qAOP model addresses the 

research question of interest in regard to the chemical potency of inducing the toxic effect. 

If relevant, a qAOP model should reflect aspects of disease as it progresses over time. For instance, the AOP 

quantified herein should ideally reflect the progressive nature of cell loss in Parkinson’s disease. Thus, kinetics 

and dynamics of chemical behaviour have to be considered for the predictions of causal response-response 

tipping points. A study conducted in a bovine heart-derived model (Grivennikova et al. 1997) and a study 

conducted in a human cell-derived in vitro model (Barrientos and Moraes 1999) analysed chemical kinetics 

that concluded a concentration below 5nM of rotenone led to a 35-40% inhibition of complex I after four 

hours of cell treatment. However, the inclusion of kinetics for rotenone makes the AOP chemical-specific and 

thus, does not follow the proposed best practices (Perkins et al. 2019a; Villeneuve et al. 2014b). A solution 

proposed to tackle this challenge is kinetic to remain a constant parameter in a Bayesian model comparing 

to the other variables (Bois 2013). Calculation of toxicity equivalent factor (TEF) to derive an equivalent 

concentration for another chemical, and mathematical inversion are other promising solutions in broadening 

the chemical domain of a qAOP model (Conolly et al. 2017; Zgheib et al. 2019).  

Without consistent and appropriate quantitative data, an endpoint of interest cannot be modelled in the 

context of the qAOP framework. Thus, several opportunities to conduct additional research in this area can 

be proposed. For instance, although dose/concentration-response curves are regularly and routinely 

employed, they are rarely analysed further than the determination of a PoD or the concentration required 

to induce a 50% response, i.e., IC50, EC50 in the assay of choice. Several software tools that are available, 

e.g., the US EPA Benchmark Dose Software (BDMS)5, the Dutch National Institute for Public Health and the 

Environment (RIVM) PROAST6, Bayesian inference for Dose-Response Analysis (BiDRA) (Labelle et al. 2019), 

 
5https://www.epa.gov/bmds, accessed on March 16, 2021.   
6https://www.rivm.nl/en/proast, accessed on March 16, 2021. 
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allow for incorporation of the uncertainty in the assessment of dose/concentration-responses captured by 

the Bayesian approach. However, mathematically encoded non-linear response-response relationships 

represent the core components of a qAOP model, and efforts in modelling and software development are 

imperative to achieve the acceptance, use and advancement of the qAOP models in CRA. An AOP can assist 

the CRA process by setting the directions/guidance to organise the available mechanistic knowledge and 

determine what kind of new data to generate to fill the gaps for causally-informed decisions. A qAOP model 

quantifies the causal path/network of paths taking into account uncertainty and additional decisive factors 

to achieve the end goal, such as of human safety assessment. 

The AO, i.e., motor deficits induced by chemical exposure, which is of regulatory interest, was measured 

solely in vivo in rats using non-validated/non-standard behavioural tests. This underlines the demand for the 

development of alternative methods as traditional in vivo testing may not identify potential neurotoxicants. 

This need, as well as the integration of multiple types of evidence and modelling techniques to fill the data 

gap, were exemplified in the recent OECD Testing and Assessment publication on the application of an AOP-

based testing strategy in a read-across safety assessment of a complex I inhibitor (OECD 2020). 

The integration of mechanistic pathways (AOPs) with exposure pathways, known as aggregate exposure 

pathways (AEPs) that allows for the incorporation of kinetics details can contribute to a complete and 

conclusive RA and improve confidence in the decision-making. A qAOP model uses quantitative data to 

predict the risk of an AO under specific exposure conditions. The use of biomonitoring and epidemiological 

types of evidence could help to decide on the particular exposure scenarios, which to be examined by a qAOP 

model. 

The AOP studied herein provides compelling evidence for rotenone seconded by MPTP. Other chemicals for 

which the AOP for Parkinsonian motor deficits was formulated showed activity for specific KEs, but not for 

the entire linear construction. For example, paraquat showed neuroinflammation and dopaminergic neuron 

loss (Sandstrom von Tobel et al. 2014). Additional investigation is needed for the evaluation of the effects it 

has on mitochondria and motor deficits, or other paths. Thus, it becomes essential to evaluate both single, 

and a mixture of, potential inhibitors of complex I and their individual and/or combined mechanistic 

behaviour. The real-life exposures humans experience is to mixtures rather than single chemicals. Available 

mechanistic data are generated for one compound at a time. Hence, quantification of common/similar and 

specific biological paths to multiple chemicals ensures better depiction of aggregated coexposure/sequential 

exposure in humans. 

As data are not available in a raw format, tools for data extraction from graphical plots represent an 

opportunity to be developed, validated and recognised by the scientific community. Herein, free-available 

software was used (GetData Graph Digitizer v.2.26 software). However, it operates solely on Windows, it is 

not widely accepted, and it was not designed to inform RA. An open question remains if there is a need for 

standardised methods to extract data for modelling of dose-responses given the importance of standardised 

methods to report the data utilised to generate predictions. As more standardised tools become available, 
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this leads to greater uptake by the industry and acceptance from regulatory agencies. It could help 

experimental scientists measure the correct data and report them in easily (re)usable formats. 

This Chapter allowed for the development of recommendations for the generation of an ideal dataset for 

qAOP modelling to be proposed. However, the recommendations need to remain flexible and adaptable 

depending on the AOP to be quantified and available resources. The following recommendations were 

identified as part of this study: 

• Ideally, chemicals should be assessed against a battery of in vitro tests and/or human iPSC-derived 

models to capture variability relating to the concentration tested and time-points selected. 

• The in vitro system(s) utilised should be characterised according to the OECD Guidance Document on 

Good In Vitro Method Practices (GIVIMP) principles. 

• In vitro biokinetics should be evaluated for experimental reliability, e.g., chemical solubility and 

stability, cross-contamination among wells, adsorption to plastic etc. 

• The range of concentrations for testing should be based on viability and cytotoxicity assay 

parameters. In addition, the concentrations should be representative to human exposure. 

• The time points to be tested should be based on the available mechanistic knowledge and adapted, 

if appropriate, to the in vitro model. 

• A full list of the tested compounds should be reported along with relevant identifiers e.g., for model 

compounds, negative compounds, assay-specific positive compounds, studied compounds. 

• The metabolomic consequences of compounds’ exposure should be assessed, if possible. 

• A preliminary set of experiments should be performed to act as a range finder and fine-tune the 

experimental conditions.  

• The AO of the AOP should be measured. However, this remains an open question that depends on 

whether there are available assays to quantify the AO of the qualitative description of the AOP 

besides the regulatory applicability of the AO. For example, the PD AOP case that refers to motor 

deficits does not have a (validated) in vitro model to allow for the evaluation of such a symptom. 

Coupling with epidemiological and biomonitoring human data can become informative to evaluate 

and extrapolate predictions of the qAOP. 

• Measure all KEs proposed by the qualitative description of the AOP. A qualitative AOP includes KEs 

at different biological levels, i.e., cellular, tissue, organ, organism levels. If it is not possible to 

measure KEs at all biological levels, KEs at different biological levels should ideally be considered. 

This will fulfil one of the expectations of the utility of qAOP to indicate the biological dimensions of 

the studied stressor. 

• Evaluate a KE for essential effects, i.e., the activity of biomarkers, and justify the choice. For example, 

mitochondrial dysfunction can be measured for several biomarkers, e.g., ATP production, mROS 

levels, MPT levels, as well as nuclear mitochondrial genes. The choice of biomarkers that characterise 
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a disease/adverse outcome is crucial and requires knowledge and prioritisation schemes to establish 

testing strategies for minimising the costs, time and additional efforts.  

• Map the assays and measured effects to the building blocks, i.e., KEs of the AOP. 

• Provide raw results for all tests including for the replicates. 

 

5.6. Conclusions 

Chapter 5 investigated the scientific literature cited in the OECD publication of the AOP for Parkinsonian 

motor deficits in order to determine their potential for quantification. A number of references were identified 

as being suitable. These were assessed further against predefined criteria to establish the appropriateness 

of the available data. A case study to demonstrate the possibility of quantification was applied to rotenone, 

used as a prototypic mitochondrial toxin to evaluate PD. Data from two in vitro studies allowed for the 

mapping of the quantitative results in a concentration and time-dependent manner. The qKERs described 

the biological behaviour of rotenone at the cellular level resulting in the induction of a decrease of 

proteasome activity involved in the degeneration of DA neurons and the accumulation of alpha-synuclein 

protein responsible for Parkinson motor deficits. Two approaches, frequentist and Bayesian, were used to 

model KEs and KERs quantitatively. Best-fitted curves were obtained to describe the KEs and response-

response relationships between the KEs. The effect size of KERs was calculated probabilistically. In total, three 

KEs at the cellular level and 11 KERs for AOP for PD were modelled. To advance the development of qAOP 

models, a multidisciplinary team effort is required in addition to having appropriate data and a well-proposed 

scenario. An advantage of the AOP framework is that it forces the developer to think causally about the 

biological effects following exposure to a chemical that results in the induction of an adverse effect. Despite 

the difficulties and complexities, quantification of the causally-chained relationships can strengthen the 

applications of qAOP models in CRA. 
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Chapter 6.  Discussion 

The first section of the final Chapter of this thesis summarises and discusses the main conclusions of the 

research presented within Chapters 2 to 5, including the main takeaway messages (what has been learned 

through this research). A full discussion of the results can be found within each of the respective chapters. 

The second section focuses on the future work and remaining open problems (what is still to be learned, food 

for thought) that require solving in order to progress the development and applications of qAOP models. This 

Chapter is completed with a commentary on the implications of causality for the development of qAOP 

relevant computational models in predictive toxicology. 

6.1. Summary of the research findings 

In the present dissertation, the concept of qAOPs has been thoroughly studied following the objectives 

defined in Chapter 1. The main results were: 

I. The state-of-the-art of the qAOP concept was reviewed. In total, six probabilistic qAOPs and eleven 

mechanistic qAOPs were identified at the time of the investigation. The qAOPs were evaluated 

against five common features (problem formulation, mechanistic knowledge and associated data, 

quantitative approaches, regulatory applicability, additional considerations) informed by the 

collected definitions of the qAOP formulated by the scientific community. The evaluation revealed 

the diverse types of qAOP models that utilised various techniques and tools. 

II. An AOP network for neurotoxicity in humans was developed and analysed. The development of 

the AOP network followed the principles of the science of networks while making use of the 

mechanistic knowledge available in the OECD AOP-Wiki KB. It connected nine linear AOPs based on 

a methodology formulated as part of this research. The proposed workflow can be used for the 

investigation of other endpoints and research purposes. The results allowed for the identification of 

the most common/highly connected KEs, to be further prioritised for quantification. 

III. A conceptual framework for the quantification of a simplified AOP network for developmental 

neurotoxicity (DNT) was proposed. The quantification used empirical data and Bayesian machine 

learning that accounted for correlations, causal relationships and missing information. The model 

was able to capture three KEs (reduction of BDNF, decrease of synaptogenesis, decrease of neural 

network formation) to predict DNT with good accuracy (73%). It also helped to classify the 

compounds into low, medium and high probability classes for their potency of inducing DNT. 

IV. A linear AOP for Parkinsonian motor deficits induced by rotenone was quantified for its cellular 

effects. The AOP utilised empirical data extracted from scientific publications. 16 criteria to evaluate 

experimental studies were formulated in order to guide the in vitro testing strategies for 

quantification purposes. Three time points (four hours, 24h, 48h) and 11 KERs were modelled 

mathematically to fit the best curve to describe the magnitude of the transition from a downstream 

to an upper KE. The KEs were quantified using frequentist and Bayesian approaches. 
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6.2. Main takeaway messages of the thesis 

The most significant findings of the present thesis included: 

• An appreciation that existing qAOP models comprise a variety of structures and modelling 

techniques, as summarised in Chapter 2. Both linear and networks of AOP(s) may be quantified by 

applying probabilistic (stochastic) and/or deterministic in silico methods. Thus, there is no “one-size-

fits-all” approach for qAOP development. In addition, it was determined that probabilistic 

approaches are not as data-dependent as deterministic approaches. 

• The available biological mechanistic information can be better captured by an AOP network for 

further quantification and additional investigation purposes, than by a linear AOP, as outlined in 

Chapter 3. KEs and KERs are shared by multiple individual AOPs. Identification of points of 

convergence and divergence leads to a representation of real-world exposure scenarios to single 

chemicals and/or mixtures. A mechanistic qAOP model is pathway-driven and, hence, it should 

simulate changes/transitions that propagate through a network of biological paths. 

• The heterogeneity and inconsistency of data should be captured by a qAOP model. Bayesian 

modelling was shown to be able to cope with this challenge, as demonstrated in Chapter 4, this being 

in addition to the other advantages that it presents. Shifting CRA towards probabilistic thinking allows 

details regarding the level of uncertainty and confidence in the decision-making and hypothesis 

testing to be provided. A qAOP model can also become an informative tool to communicate the risk 

arising from chemical hazards to the public. 

• There is a need for appropriate data (dose/concentration- and time-responses) for computation of 

qKERs as exemplified in Chapter 5. A battery of in vitro tests, rather than in vitro tests conducted in 

isolation, and appropriate experimental design strategies, are essential to reduce data variability and 

facilitate the development of qAOP models. Thus, the ability to measure at a high degree of precision 

is essential to advance the qAOP framework.  
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6.3. Prospects for future work 

Several challenges and open problems with regard to the development, validation and implementation of 

qAOPs for full acceptance and use have been identified throughout this thesis that can direct future research. 

In the pages that follow, I discuss how to embrace the identified weaknesses and obstacles as opportunities 

towards the mission of improved decision making in CRA. 

6.3.1. Development of qAOPs 

Computational models, i.e., ML/AI technologies, for early safety evaluation, have been increasingly employed 

to predict adverse effects to safeguard human health and the environment. However, the current (novel) 

methodologies fail to be fully utilised for CRA, e.g., as alternatives for evaluating untested compounds. This 

is because it is not sufficient to measure and analyse data but rather to have meaningful quantitative 

information that provides a mechanistic understanding of how a chemical causes an adverse effect, also 

acknowledged as a “signal in the data” by Bender and Cortes-Ciriano (2021).  

A qAOP model can be considered a knowledge assembly process that involves (I) descriptive/causal 

knowledge, (II) pattern recognition knowledge, and (III) predictive knowledge. The descriptive/causal 

knowledge is given by qualitative AOPs that set the research direction, e.g., testing strategies and design. It 

should be recognised that technology and modelling are not driving the innovation, but rather the 

understanding of cause and effects. This is emphasised in depth in Section 6.5. Pattern recognition knowledge 

is represented by bioactivity type of data combined with molecular descriptors. These data matrices 

represent the most used data for modelling at present. Such data can allow for the extraction of features to 

learn more about the associations between quantitative variables. This leads to improved prediction 

accuracy, greater chemical space coverage, identification of better-informed target entities and 

interpretability of quantitative features. However, it is the predictive knowledge that makes a computational 

model applicable to solve real-world situations that is required by regulatory agencies. Despite all of the 

progress, the question remains open about how to reach the required level i.e., when is the knowledge 

considered sufficient to evaluate complex toxicity mechanisms of potential toxicants? 

A qAOP model is both data- and mechanism-driven. For data, there is a need to obtain chemical and biological 

information for reference chemicals. Key questions to be addressed for the development of a qAOP include: 

how to identify substances for regulatory action or further testing? What kind of criteria to apply to prioritise 

chemicals for investigation? How was the conclusion about a chemical reached? There also are many 

molecular properties and descriptors that may be obtained experimentally or estimated: which of them are 

informative to describe the chemical space of the qAOP? What type of chemical information should be 

included in the development of a qAOP? In addition, the incorporation of biological information represents 

the main strength of a qAOP. At present, the bioactivity of chemicals is measured e.g., binding and enzymatic 

assays for protein/receptor interaction and ligand-specific to target. Cellular stress responses of chemicals 
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are also measured, i.e., high-throughput transcriptomic analysis, and for general toxic effects (cytotoxicity). 

Tiered screening schemes can ease the selection of bioassays for obtaining appropriate data for modelling. 

Increasing numbers of computational models are becoming available for the identification and prediction of 

MIEs and AOs. However, less is known about the intermediate KEs. Thus, there is an opportunity to consider 

these KEs when designing a strategy to develop a qAOP. At the same time, not all endpoints are well studied. 

As such, there is a need to decide how to choose and prioritise the endpoints as well as establishing 

definitively the MoAs associated with compounds. Omics analysis could be a solution in its role to generate 

hypotheses as well as to describe a MoA. However, an adverse effect is not monocausal, hence, there is the 

on-going debate of whether the AOs should be considered in isolation or, in the longer term, is it preferable 

to model systems? Modelling a number of endpoints simultaneously requires the development of networks 

that are able to cover the MoA of interest and reflect on the development and functions of cells, tissues and 

organs. This also opens up the possibility of considering other scenarios, such as population variability, 

species differences, health related conditions, age, single chemicals vs mixtures, i.e., chemical-chemical 

interactions, amongst others. 

NAMs are increasingly exploited for data generation and target identification purposes, including for those 

data that are required for qAOP modelling. There are a number of NAM methods including advanced 

analytics, 2-D and 3-D in vitro models, organ-on-a-chip models etc. and the choice of method will have to be 

pragmatic based on suitability, the data required and, not least, cost. NAMs are not yet fully accepted as 

replacements to the traditional animal tests, especially in areas such as preclinical studies in drug discovery. 

However, it is anticipated that the transition from generating new animal data to a fully accepted NAMs 

pipeline will require integrated data analysis, e.g., NAMs in a WoE analysis. 

A qAOP model should allow for the prediction of the tipping points (often known as Points of Departure, 

PoDs) that define subsequent downstream adverse effects at a range of biological complexity. This raises the 

intriguing possibility of being able to redefine how these causally inferred tipping points are expressed. For 

instance, PoDs are based on the activity and not (non-) specific effects. However, as we move into a 

probabilistic risk assessment framework, rather than defining a chemical as being hazardous or non-

hazardous, or an exposure as being safe or not, the opportunity is to start to deal with probabilities of harm, 

leading to the discussion of what would be acceptable. Ideally, a qAOP should generalise the predictive 

knowledge to extend its life as much as possible and these techniques are ideally suited to support this 

analysis. 

Overall, qAOPs can improve the identification of adverse effects in a more meaningful and optimised manner, 

support a new and better means of understanding the risk associated with exposure to a chemical, if the 

above challenges are addressed. 

6.3.2. Validation of qAOPs 

It is widely acknowledged that it is not possible to have a one-to-one replacement of complex in vivo toxicity 

tests with in vitro assays (Mahony et al. 2020). Instead, a full evolutionary replacement of animal tests that 
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involves integrative approaches, e.g., IATA, is envisaged to achieve such a goal. However, it remains 

challenging to integrate the variety of evidence, e.g., historical data, bioactivity, toxicity data from different 

sources given that, in addition, most NAMs are not validated for toxicity or hazard assessment. As part of the 

process of developing alternatives, there will also be a need to validate qAOPs, especially those that utilise 

available information to contribute to and strengthen the outcome of a model in an integrative manner.  

The process of validating qAOPs remains an open question and will require acceptance at the international 

level (e.g., OECD). However, three overarching metrics can be proposed to validate a qAOP, including 

biological reasoning, predictive performance and the level of confidence. For instance, it is not sufficient to 

obtain statistics, such as conducting a sensitivity analysis, in the context of such complex and demanding 

models as qAOPs. An understanding of biological reasoning is required to explain the chosen endpoint and 

depict the mechanism as an AOP. Predictive performance analyses the tipping points that are inferred and, 

by comparison with exposure estimates, i.e., Cmax, can show their relevance to humans. A further stumbling 

block that needs to be addressed, which is how to benchmark predictions and against what i.e., the gold 

standard is human data. With regard to this, human biomonitoring studies, can offer a perspective in this 

sense to demonstrate, for example, the (Q)IVIVE predictions. Notably, to make a qAOP model reliable and 

increase its adoption into practice, overall confidence informed by both the computational approach as well 

as the qualitative description of the AOP is needed. A schematic workflow for the assessment of qAOPs is 

proposed in Figure 6.1. This also allows for the quantification of uncertainty and captures the bias propagated 

through the modelling process. 

 

Figure 6.1. A potential framework for the assessment of the level of confidence of a qAOP model informed by both 
qualitative AOPs as well as computational approaches. 
 
However, above any metrics that can be applied to evaluate its quality and trustworthiness, maybe the real 

validation of a qAOP rests in its usability in real life. The state-of-the-art models are not necessarily going to 

be those that make it to the implementation phase and thus have an impact on the toxicity assessment, e.g., 

improved decision-making. Real-world reliability, traceability and ease of maintenance are what will make 

the difference and turn qAOPs into practically applicable tools. 
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6.3.3. Reporting and implementation of qAOPs 

Documenting and dissemination of qAOPs will be vital for their distribution, uptake and use. As part of this, 

a standardised reporting system can facilitate communication between model developers and 

reviewers/users. Additionally, such a reporting system can solve issues such as lack of harmonisation and 

consistency in data requirements between sectors and countries/regions and lack of coherent and 

transferable data resources. There are a number of reporting templates available for computational 

toxicology including those for QSAR, PBPK, read-across (OECD 2014b; OECD 2021; Schultz et al. 2015). 

However, since qAOPs are in their infancy and not as mature as these other computational toxicology models, 

little thought has yet been given to the protocols to collect, store, process and share data used for their 

development. Even though, as described throughout this thesis, there is no one-size-fits-all qAOP 

methodology, creating consistent reporting and documentation will increase the regulatory uptake of qAOPs. 

For example, decision trees, as a decision support tool can ease the formulation of appropriate protocols for 

qAOP model reporting and documentation, depending on the type of quantitative approach utilised. Open 

discussions with regulatory agencies such that their needs and expectations are met and to make the qAOPs 

flexible, represent another essential means to increase their adoption. 

Implementation of qAOPs depends on their applications; these can include screening allowing for chemical 

prioritisation, enhancing the evidence informed by animal data, through to a complete replacement of 

testing by NAMs. Notably, it is acknowledged that Next Generation Risk Assessment (NGRA) is based on the 

integration of NAMs in a WoE assessment to make a safety decision based on non-animal data (Dent et al. 

2018). A qAOP has the ability to contribute and increase the acceptance of NGRA through illustration with 

well-worked and successful case studies, e.g., Gilmour et al. (2020). Notably, the replacement of animal 

testing should be undertaken while achieving the same, or greater, level of protection of humans as afforded 

by the current techniques (Mahony et al. 2020). As such, we are at the start of a transition period from animal 

testing towards a complete non-animal CRA. However, revolutionary change will only occur when science is 

mature enough to explain biological processes in-depth and after regulators have acknowledged them. Thus, 

the hope around the qAOP makes it achievable given the current advances and aspirations (Cronin et al. 

2021; Knight et al. 2021).  

Hopefully, more and more qAOPs will become available that explore these possibilities. To achieve that and 

eliminate any perceived weaknesses, three potential directions are identified and proposed as next steps 

towards advancing the qAOP concept as presented below. 
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6.4. Potential next steps of advancing qAOPs 

6.4.1. Showing qAOP as an iterative process 

A qualitative AOP is a linear construction in terms of how it is represented structurally and how the 

knowledge is gathered to form the desired building blocks. However, whilst testing a linear AOP in vitro, in 

most cases linearity is not followed, e.g. as in Zgheib et al. (2019). This is because the order of the biological 

events and, especially, the associated biomarkers representative of a KE, may occur differently. Additionally, 

some compounds might not show activity against all selected biomarkers. There is also the possibility that a 

KE may be measured by several bioassays and, hence, it leads to a network of responses. These are several 

of the practical challenges that influence the final structure of a qAOP. At the same time, it is important to 

underline again the essentiality of wet experiments conducted with an AOP in mind to depict an endpoint 

causally. Data, knowledge and modelling are highly interdependent, as outlined throughout the thesis.  

Given the likelihood of the lack of linearity in an AOP and the experimental measurement, it becomes 

challenging to decide on the parameters that would describe a biological system and the assessment 

question that a qAOP should model. Thus, development of a qAOP emerges as an iterative, cyclical process 

which proceeds until a sufficient level of detail is reached to provide predictions and robust mechanistic 

understanding for the decision regarding risk to be made. The formulation of a workflow, with a step-by-step 

description illustrated with examples on how to tackle this particularity about a qAOP, can increase the 

possibility for its development and application. The development of the workflow can be considered to be 

fundamental as guidance on how to approach the ab initio development of a qAOP. 

6.4.2. Coupling qAOP with (Q)IVIVE 

As Chapter 5 has proven, the available data to develop a qAOP are sparse, difficult to extract and integrate, 

in addition to other disadvantages including variability and reproducibility issues. Most of the data used at 

present for a qAOP and data that will be used for quantification purposes are, and will be derived, mostly 

from in vitro tests. Unfortunately, until recently in vitro studies conducted were not designed with AOPs, nor 

the acceptance of alternative methods to animal testing, in mind. Thus, to reiterate, a multidisciplinary effort 

to formulate and design informative experiments for the qAOP development pipeline is required.  

In the view of the lack of data and the need for better experiments, there are several issues that will have to 

be addressed to progress to a successful outcome. Key to the use of NAMs and qAOPs is determining how 

their output is related to in vivo/clinical outcomes of relevance to CRA. Specifically, there is a need to better 

extrapolate PoDs from the commonly used static, short-term in vitro systems to the longer-term effects of in 

vivo exposure. Answering these types of practical issues will allow for qAOPs to be used to identify potentially 

harmful exposures to chemicals that can pose risks to human health. A significant part of the use of NAMs 

data within the qAOP framework will be the ability to extrapolate effects “up” from in vitro to in vivo. Thus, 

approaches that integrate qAOPs with (Q)IVIVE for an appropriate extrapolation will lead to better predictive 
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ability of potential adverse effects. This will enhance the regulatory acceptance of a qAOP to be routinely 

employed in CRA. 

6.4.3. Integrating qAOP into a WoE analysis 

A WoE analysis involves a variety of scientific data that should be organised and integrated in the best and 

intelligible way to provide, for instance, a complete uncertainty evaluation. There are further open items for 

discussion on how a qAOP could contribution to a WoE, given that it is intended to be a unifying framework. 

One school of thought is that the qAOP is an ideal structure to bring about integrated data analysis through 

WoE, with the possibility of providing an informed, evidence-based quantitative decision. Since uncertainties 

can be incorporated into the qAOP analysis, they will be able to provide a demonstration of the confidence 

that can be placed in the decisions. Thus, integration of the output of a qAOP within a WoE analysis will 

ground its role in regard to the assessment of the available supporting data. 

Ideally, such an integrative framework should be organised as an evaluation tool sufficiently easy to be used 

by the AOP developers and any other interested party. In addition, it should be automated and provide a 

quantitative confidence score with sufficient details to appreciate the (in)consistencies as well as if, and 

where, additional efforts are needed. Development and exemplification of such a methodology will enhance 

the rigour, transparency and reproducibility of the quantitative analysis and shape chemical testing priorities 

leading to qualitatively improved decision-making.  
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6.5. Final thoughts: Putting the pieces together to allow the transition from endpoint-

based to cause-and-effect Next Generation Risk Assessment 

 

“I would rather discover one causal relation than be king of Persia” (Democritus, 430-380 BC) 

 

The 21st Century has seen a shift from chemical risk assessment based on traditional animal tests identifying 

apical endpoints and concentrations that are “safe”, to the prospect of exposure and mode of action led non-

animal next generation risk assessment. There have been a number of drivers for this process and an 

undoubted catalyst, is the underpinning theme of this thesis, i.e., the AOP concept and philosophy. A decade 

on from the inception of AOPs, it is easy to see that Ankley et al. (2010) hit the sweet spot. In part, the world 

was in a mood for forward-looking and unifying frameworks, following the global financial crash of 2008; the 

vision of analysis of perturbing pathways, rather than finding adverse outcomes, had been presented to us 

as “Toxicity Testing in the 21st Century” (National Research Council 2007) and new technologies were 

becoming available that gave us an insight into those biochemical and physiological pathways. The AOP 

framework presented was elegant, fundamental and irrepressible! A decade later and the original linear, 

boxy AOP concept has been developed in several ways. With more data being generated from emerging 

technologies in chemical safety assessment, e.g., 2-D and 3-D in vitro models, batteries of in vitro tests, organ-

on-a-chip, high-throughput and high-content screening technologies, as well as applied ML approaches, the 

opportunities for quantifying AOPs have arrived and more and more qAOP models should be alive due to the 

available resources. The qAOPs, firstly described by Villeneuve et al. (2014a), are considered a cornerstone 

to screen molecules and predict their points of departure from normal physiological pathways. However, as 

of mid-2020, there are only about 16 models for qAOPs publicly available (Spinu et al. 2020). The difficulties 

in developing a qAOP model are many and of diverse nature, including the lack of appropriate and 

heterogeneous data compared to the abundance in the qualitative mechanistic information and challenges 

in integrating multiscale omics data to identify and map causal effects induced by toxicants, to name a couple. 

Thus, what type of efforts should become the focus in advancing the concept of qAOP in predictive 

toxicology?  

 

The modern approaches that are thought to be the basis of NGRA are exemplified by studies such as Baltazar 

et al. (2020). Subsequently, Knight et al. (2021) have identified the key elements that need to be brought 

together to support these new approaches in an unbiased way and Cronin et al. (2021) made a “call for 

action” that they be implemented. Whilst competent methodological approaches are being developed and 

demonstrated, a key element to their widespread use and application is trust. Trust is required at various 

levels, from the risk manager in industry, to the regulatory scientist in a government agency to the consumer. 

We also need to believe in and be able to demonstrate trust with the models themselves. As we move 
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towards an AI-driven society, understanding how we can trust will give stakeholders confidence and reduce 

the conspiracy theory laden “fake news”. In other words, if we can explain and justify our models, they will 

become more credible.  An element of “disruptive thinking” is required to improve and increase acceptability 

of new methods (Mahony et al. 2020).  

 

An essential criterion to increase trust in models is to demonstrate causality. In terms of the toxicology 

supporting CRA, causality is usually thought to be represented by the direct association with the mechanism 

of action producing the adverse outcome. Hence the popularity off the (q)AOP concept, which is firmly based 

around a mechanistic framework. Whilst this demonstration of causality is obvious to many in the area of 

toxicological risk assessment, it is worthwhile to consider the subject and meaning of causality in more detail, 

especially as it forms an integral part of many of our mathematical theorems, not least Bayesian theory.  

 

The science of causality has been brought to light by Judea Pearl whom, in his recent book “The Book of Why” 

written together with Dana Mackenzie (Pearl and Mackenzie 2019), tells the “silent history of cause and 

effect”. Pearl and Mackenzie explain how the “Causal Revolution” is the new paradigm that is so much 

needed to progress computational modelling, especially in the context of AI. A reason for the need for the 

understanding of causal relationships is that traditional statistical thinking fails to address the real-world 

causal processes. Such processes imply the series of relationships essential for understanding mechanisms 

when circumstances change or not. With causality being the direct relationship of cause and effect, this surely 

being driven by evidence, often requiring painstaking effort and application to obtain, is it the neglected child 

of computational modelling and AI? At a time when there is a demand for computational modelling in 

toxicology and chemical safety assessment, possibly driven more by hope and hype than reality, it is surely 

time to step back and consider what causality means in the “new age” and why it will be crucial in a society 

requiring evidence, not words? 

 

Thus, this final section of the thesis explores the key role of causality in developing models, as proposed by 

Judea Pearl, to underline similarities in addressing the problem formulation, and potentially facilitate the 

development, utilisation and acceptance of models of qAOP. As a consequence, it is intended that this section 

will support the acceptance of models at all levels from consumer to regulator, building on the concepts of 

causality from outside of toxicology to support our understanding of AOPs. The intention is to provide a 

stimulus to be “constructively disruptive” in our thinking, to improve understanding, acceptability and 

uptake, i.e., how we can use the “Causal Revolution” to bring about a “Toxicological Revolution” more rapidly. 

 

Firstly, we must accept the fundamental concept that a qAOP model aims to identify causal relationships 

between a stressor, i.e., chemicals or genetic and environmental factors, and the toxicity endpoint/AO of 

regulatory (or other) interest. For example, Bal-Price et al. (2018b) compiled evidence showing that a brain 
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concentration of 20-30 nM of rotenone in rats leads to approximately 53% of inhibition of complex l, this, in 

turn, leads to a decrease in respiration rate of approximately 20-53% and, possibly more significantly, an 

approximately 20-60% decrease in ubiquitin proteasomal system activity which is involved in neuronal loss 

and motor impairment, the latter being responsible for Parkinsonian motor deficits (Figure 6.2.A). Hence, a 

causal effect is informed by both observational and experimental studies, herein, organised through the 

qualitative AOP framework. This allows the formulation of a series of assumptions and their quantitative 

translation as a qAOP model to simulate and predict the magnitude by which a downstream key event is 

altered, or perturbed, by a change in an upstream key event. Therefore, it is desirable that the AOP 

demonstrates causality in toxicology supplemented by computational modelling. 

 

Figure 6.2. A. The AOP for Parkinsonian motor deficits taken as an example to underline one of the characteristics of a 
qAOP model, mainly understanding the cause and effect in the context of predictive toxicology 
(https://aopwiki.org/aops/3). Numbers represent the indices of the events in the OECD AOP-Wiki KB available at 
https://aopwiki.org/events/XXX, where xxx is the index in the node. B. A causal diagram representing the linkage 
between cigarette smoking and lung cancer. The debate about this cause-effect relationship led to several achievements 
including: (i) the establishment of randomised control trials methodology conducted by Doll and Hill to compare a 
treatment group (patients with diagnosed cancer) to a control group (healthy volunteers) (Doll and Hill 1954); (ii) 
Cornfield’s inequality that described the hypothesis of the presence of a smoking gene that makes the difference of 
developing lung cancer and which has driven the sensitivity analysis methodology, and most importantly; (iii) Hill criteria 
that helped to summarise the evidence and which are now largely utilised. C. A putative scheme of a general process 
that a qAOP model implies. Depending on the available level of resources, an AOP can be used to generate data or 
model quantitatively to make predictions and test a hypothesis. D. The causal inference engine was proposed by Judea 
Pearl as described in the text and is taken from Pearl and Mackenzie (2019). 

To understand the fundamental principle of causality in an AOP, let us consider whether it is known or 

assumed, and if the AOP framework itself allows us to think in a causal way. To help us understand, the AOP 

can be placed in the context of established theory. For instance, Pearl refers to the “causal diagram” as the 

way to represent our scientific knowledge about a variable of interest, also termed as directed acyclic graphs. 

Thus, causal diagrams consist of variables (nodes) or quantities and arrows (edges) that indicate known or 
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suspected causal relationships between those variables (Figure 6.2.B). The author advocates the use of such 

diagrams due to the ease of drawing and comprehending them; because they can estimate all sorts of causal 

relationships: simple or complicated, deterministic or probabilistic, linear or nonlinear; and most importantly, 

they allow for the storage of information for future reference and application. Additionally, DAGs are models 

representing how we think the world/process of interest works. Once written, they help to find all testable 

implications, if the model we came up with is compatible with the data, and hence, the causality becomes a 

theory-driven approach. Furthermore, a causal diagram is a Bayesian network, a term coined by Judea Pearl 

in 1985. Each arrow implies a direct causal relation, or at least the possibility of one, in the direction of that 

arrow. Pearl confesses that “[he] wanted Bayesian networks to operate like the neurons of a human brain; 

you touch one neuron, and the entire network responds by propagating the information to every other neuron 

in the system” (Pearl and Mackenzie 2019). Furthermore, Bayesian networks are efficient in coping with 

contradictory and uncertain data that can be implemented on fast computer platforms and are 

understandable mathematically. Other advantages include transparency compared to other computational 

techniques, e.g., deep neural networks, allowing every step to be followed and the understanding of how 

and why each piece of evidence changed the network’s beliefs; there is no need to intervene to tell it how to 

evaluate a new piece of data once the network is built up; updating can be done very quickly; and the network 

is integrative, which means that it reacts as a whole to any new information. However, not all Bayesian 

networks are causal as Pearl points out, “while probabilities encode our beliefs about a static world, causality 

tells us whether and how probabilities change when the world changes, be it by the intervention or by act of 

imagination” (Pearl and Mackenzie 2019). Pearl adds that “the main differences between Bayesian networks 

and causal diagrams lie in how they are constructed and the uses to which they are put. A Bayesian network 

is literally nothing more than a compact representation of a huge probability table” (Pearl and Mackenzie 

2019). In other words, a Bayesian network can tell how likely one event is, given an observed one, while 

causal diagrams can answer interventional and counterfactual questions. Interventional questions ask what 

effect an intervention will produce on the observed variable. For example, does chemical X alone, or in 

combination with a chemical Y, induce adverse effects? Counterfactual questions ask “what if” referring to a 

process analysed retrospectively, “we imagine a different scenario in order to change the circumstances being 

analysed” Pearl explains (Pearl and Mackenzie 2019). For example, what if a person was exposed to chemical 

X, but not under the specified conditions, would the same adverse effect be observed? In other words, 

counterfactual questions allow us to assess situations that cannot be observed or measured in real-life, or in 

the past, due to ethical considerations or incapacity of performing such experiments; a change might not be 

possible to be forced in the past to see what could have happened otherwise. Also, Pearl comments that 

“with Bayesian networks, we had taught machines to think in shades of grey, and this was an important step 

toward humanlike thinking. But we still couldn’t teach machines to understand causes and effects” (Pearl and 

Mackenzie 2019). Hence, the science focused on identifying patterns in data rather than understanding the 

reason for those patterns. Given this discussion, it becomes immediately obvious why an understanding of 



135 
 

Pearl’s thoughts and concepts are relevant to the AOP framework. They provide a philosophical basis for the 

working of an AOP along with a strong justification of its quantification, especially through Bayesian networks 

and approaches. Additionally, the methodology of causality proposed by Pearl helps to answer both types of 

“why” questions: the straightforward one, when we seek to know the cause, and the one when we want to 

understand the mechanism itself. 

 

The second reason for considering causality is that a qAOP model is hypothesis driven. AOPs give us the 

opportunity to test a hypothesis in order to examine the causal evidence for an adverse effect for human or 

ecological risk assessment. Mechanistic modelling, that can imply empirical dose-responses, Bayesian 

networks and systems biology, is considered most appropriate for such purposes. For example, a simplified 

AOP mechanistic model linking thiol oxidation to chronic kidney disease through oxidative stress and 

mitochondrial disruption was quantified, aiming to compare three quantitative approaches (Zgheib et al. 

2019). Additionally, this qAOP model allowed for the evaluation of different levels of exposure of a chemical 

tested over time and the derivation of chemical-independent key event relationships by inversion of the 

empirical model applied. Therefore, a qAOP model serves as a tool to translate descriptive qualitative 

assumptions into the quantitative predictions of an AO in hazard and risk assessment as outlined by  

Figure 6.2.C. 

 

Considering how we develop a hypothesis in more detail, we need to think about the data underlying or 

describing the relationships. Pearl asserts that “data are profoundly dumb” because they cannot tell us the 

“why” (Pearl and Mackenzie 2019). Therefore, as Pearl indicates, “causal questions cannot be answered from 

data alone, it needs to formulate models that generate the data to understand their patterns” (Pearl and 

Mackenzie 2019). Also, Pearl emphasises that “data interpretation means hypothesising on how things 

operate in the real world” (Pearl and Mackenzie 2019), and even though conclusions can be drawn with only 

partial information, and not necessarily knowing every causal relation between the variables of interest, a 

minimum causal hypothesis is always required; even missing data require a causal understanding. 

Importantly, Pearl makes the distinction of two types of data interpretation: deduction - reasoning from 

hypothesis to conclusion, and induction - reasoning from evidence to a hypothesis. Furthermore, Pearl refers 

to the methodology based on the Bayes’ rule that consists of several steps: (1) formulate a hypothesis, (2) 

deduce a testable consequence of the hypothesis, (3) perform an experiment and collect evidence, and (4) 

update your belief in the hypothesis. Therefore, a qAOP does not require pattern recognition but rather can 

be placed in the context of measuring or obtaining the data for assays associated with key events, and hence, 

fits perfectly within the above methodology. 

 

If we accept the arguments requiring consideration of causality in our models for toxicology, and especially 

qAOPs, then we need means to evaluate that causality. As we move to the holy grail of regulatory acceptance 
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of models and their predictions, evidence for the demonstration of causality within the model becomes 

paramount. Traditional approaches for evaluating causality in toxicology follow the criteria formulated by 

Austin Bradford Hill in 1965 when he attempted to summarise the arguments for the causal linkage of 

cigarette smoking to lung cancer (Figure 6.2.B) (Hill 1965). The so-called “modified Bradford Hill” criteria are 

used as a premise to act as a framework for semi-quantitative and quantitative weight-of-evidence qAOP 

models (Becker et al. 2017; OECD 2018b; Perkins et al. 2019b). Notwithstanding, Pearl describes the Hill 

criteria as being “qualitative patterns of statistical trends” and asserts that Hill himself called them 

“viewpoints” and not requirements. Pearl emphasises that the “Hill’s “viewpoints” are still useful as a 

description of how a discipline comes to accept a causal hypothesis, using a variety of evidence, but they came 

with no methodology to implement them. Each scientist just has to decide for him- or herself. But gut decisions 

can be wrong, especially if there are political pressures or monetary considerations” (Pearl and Mackenzie 

2019). For example, the consistency or strength of the association that comes with the Hill criteria by itself 

can prove nothing, “if thirty studies each ignore the same confounder, all can easily be biased” (Pearl and 

Mackenzie 2019). Put simply, a confounder represents a common cause between two variables. In the 

context of an AOP, we should think of confounders as being the modulating factors such as the age of a 

person, diet, genetic predispositions etc. Also, a confounder can help understand the difference between 

causal reasoning and causal inference, what we want to assess vs what we do actually assess using statistical 

methods. Causal inference cannot exist without confounders, while causal reasoning does not necessarily 

focus on confounding variables. Furthermore, Pearl asserts three levels of causation, named the “Ladder of 

Causation”, referring to the human cognitive ability: seeing, doing, and imagining. Climbing on these three 

rungs, Pearl advocates that we can make the machines to think: “a causal reasoning module will give the 

machines the ability to reflect on their mistakes, to pinpoint weaknesses in their software, to function as moral 

entities, and to converse naturally with humans about their own choices and intentions” (Pearl and Mackenzie 

2019). This describes the ideal world where we imagine AI to support and facilitate the chemical hazard and 

risk assessment and, hence, help with the complexity of the exposure to chemicals and the associated risks 

to human health. 

 

Thus, we evaluate causality not only in qAOPs but also throughout toxicology, accepting the Hill criteria as a 

starting point, or framework, on which to hang our evidence. Understanding the limitations of the Hill criteria 

takes us a step closer to a more ideal approach; engaging with the opportunities given by the assessment of 

causality can offer us an insight into where to go next. Moreover, available means facilitate the start of 

assessing the causality by applying existing algorithms, or developing new ones based on formulated theories 

and principles, in investigating the causality in toxicology as summarised in Table 6.1.  
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Table 6.1. List of available algorithms to help to assess the causality. 
Package Name Programming Language URL7 

CausalLift Python https://github.com/Minyus/causallift/  
CausalML Python https://github.com/uber/causalml  
DoWhy Python https://github.com/Microsoft/dowhy  
EconML Python https://github.com/Microsoft/EconML  
pylift Python https://github.com/wayfair/pylift  
pymatch Python https://github.com/benmiroglio/pymatch  
causaleffect R https://cran.r-project.org/web/packages/causaleffect/  
causalGAM R https://cran.r-project.org/web/packages/CausalGAM/  
dagitty R https://cran.r-project.org/web/packages/dagitty/  
ggdag R https://cran.r-project.org/web/packages/ggdag/  
mediation R https://cran.r-project.org/web/packages/mediation/  
pcalg R https://cran.r-project.org/web/packages/pcalg/  
uplift R https://cran.r-project.org/web/packages/uplift/  

 

Hence, the “causal inference engine” proposed by Pearl to handle causal reasoning aligns perfectly with the 

stages of the development of a qAOP model, which contrarily, relies heavily on the available resources today. 

Pearl presents his blueprint as a diagram similar to a decision tree in which inputs enter the inference engine 

and produce the outputs (Figure 6.2.D). It has three different kinds of inputs: assumptions given by the 

knowledge, queries and data. The first output is a yes/no decision to a query; if the answer is yes, an 

"estimand" is produced. The second output is a mathematical formula for generating the answer from 

hypothetical data. The third output is produced after the data are entered, which is an estimated answer, 

along with the statistical estimates of the uncertainty. Pearl adds “this uncertainty reflects the limited size of 

the data set as well as possible measurement errors or missing data” (Pearl and Mackenzie 2019). Rather 

than relying on the vague nature of the definition of the Hill criteria, is it time to think more about how we 

can better quantify uncertainty in AOPs and what these other theories tell us? 

 

So, what have we learned? Modelling, in all its glory and infamy, is fundamental to the paradigm change 

dictated by 21st Century Toxicology. qAOPs are in their infancy, although like any infant – much is expected 

as they flourish and mature. We believe, at its heart, a model for a qAOP mainly implies two characteristics: 

namely the understanding of causal relationships and the testing of hypotheses. Hence, a qAOP model can 

be considered a causal model to predict the results of an action or an intervention. However, big data make 

us look for correlations and associations instead of causality. Additionally, most of the ML techniques applied, 

even though composed of independent and dependent variables, test/training and validation sets, do not 

infer causality of the included variables, rather they are trained to learn from experience. In the context of a 

qAOP model, causality is currently informed by the qualitative linear or network of AOPs that promote a 

structured format for understanding a stressor-induced mechanism of action assessed against the modified 

Hill criteria. Importantly, a qAOP model requires data as a mean to predict the adverse effects quantitatively. 

Unfortunately, the available resources do not fit within this framework. Thus, causal diagrams can dictate 

 
7Last time accessed on March 16, 2021.  
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the production of data. For example, computational models can help retrieve observational data to construct 

causal relationships and consecutively can help design appropriate experiments to verify the assumptions. 

Causal models can help formulate and prioritise the assessment questions in a transparent manner, 

anticipate the potential consequences of a policy in decision-making, e.g., utilising counterfactual questions, 

identify emerging issues or questions, less evident to human expert judgement and avoid the bias in the 

decision-making process. Causal models can, and must, serve as a basis for the development of a robust, 

transparent, comprehensible and reproducible AI. More efforts are needed to shift towards understanding 

the causality rather than deriving data-driven models – for toxicology this means building models on 

mechanisms of action. Hence, we need causal assumptions in order to make reliable conclusions.  

 

Something is certain, the causal revolution initiated by Judea Pearl is happening. It is not only emerging in 

epidemiology, sociology, and economics but also, in predictive toxicology, and it can contribute to the 

development of qAOP models. 

 

The qAOP model has the power to computationally model the causal linkages, i.e., KERs, in a transparent 

manner, making use of available data and applying a range of methodologies. A qAOP model makes the data 

accessible, readable and (re)usable, hence, it has the capability to inform decision-making processes. 

Hopefully, qAOPs will one day be accepted as more than a screening tool. The combined use of PBPK, QSAR 

and qAOP models could, in principle, be used for a definitive chemical risk assessment.  
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Appendices 

Appendix I. Overview of the 23 definitions for the qAOP concept 

The definitions were obtained from the literature (as referred to in Chapter 2); listed in chronological 
order, the common features of a qAOP model derived from the highlighted key words, and the type 
of qAOP (quantitative WoE, probabilistic or mechanistic) implied by the definition. 

Common features Type of qAOP Extracted qAOP definition 

Mechanistic knowledge 
and associated data 

Quantitative approaches 
Additional considerations 

Mechanistic 

“For maximum application across levels of biological 
organization, AOPs should encompass test endpoints 
or nodes that can be quantitatively related to 
demographic traits of the model population. Models 
that describe lower-level mechanistic detail be 
coupled with those being used for modeling 
population processes and necessitates empirically 
derived quantitative relationships between the 
individual endpoint and inputs to the demographic 
rates of the population models. Establishing these 
relationships often requires simultaneous bottom-up 
and top-down integration of the physiology of the 
organism with the natural history of the population.” 
(Kramer et al. 2011) 

Quantitative approaches 
Additional considerations 

 
Mechanistic 

“Ideally, causality across AOPs is approached not only 
in a qualitative, but also in a quantitative way 
relating exposure to the adverse outcome… The 
situation is relatively straightforward if the extent to 
which a MIE or KE is altered and is known to be 
sufficient to trigger the final AO. It is assumed that the 
AO occurs only after a biologically meaningful overall 
threshold has been passed.” (Bal-Price et al. 2015) 

Quantitative approaches 
Regulatory applicability 

Additional considerations 
Mechanistic 

“The use of AOPs in a full risk assessment would 
require a quantitative description of the links 
between suborganismal changes, ecologically 
relevant outcomes in individuals and population-
level responses. Moreover, a complete risk 
assessment would need to be based not only on the 
simplified toxicodynamic sequence of events depicted 
in the AOP itself, but also take into account chemical- 
(e.g., external and internal exposure) and situation-
specific (e.g., outcomes for a specific field population) 
aspects. Bioavailability and toxicokinetic processes 
require specific attention if the AOP is to be used for 
any quantitative assessments with regulatory 
relevance. Furthermore, to enable AOP application 
for quantitative risk assessment, the linkages 
between KEs and AOs need to be defined 
quantitatively. To establish a quantitative AOP, 
thresholds for upstream MIE or KE to trigger the 
downstream KEs or AOs need to be defined, taking 
into account the potential modifying factors as well 
as site-specific contexts to the fullest extent possible.” 
(Groh et al. 2015) 
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Quantitative approaches 
Regulatory applicability 

Additional considerations 
Mechanistic 

“A further academic perspective for future AOP 
research, with a strong link to regulatory 
applications, is to quantitatively describe the causal 
links of the AOP chain to facilitate the prediction of 
AOs based on the analysis of molecular initiating 
events or key events and the extrapolation between 
models and species. For a full quantitative approach, 
established toxicokinetic and toxicodynamic models 
could be applied to effectively integrate exposure and 
toxicokinetic information.” (Groh and Tollefsen 2015) 

Mechanistic knowledge 
and associated data 

Quantitative approaches 
Regulatory applicability 

Mechanistic 

“The need for predictive power has been a strong 
impetus to develop adverse outcome pathway (AOP) 
analyses, which describe networks of causally linked 
events at different levels of biological organization, 
and to develop general quantitative methods that 
summarize toxicant impact in process-based toxicity 
measures. Integration of these two developments 
into quantitative AOP approaches promises to yield 
powerful predictive tools for ecological risk 
assessment. These approaches, in which toxicity 
metrics relate to chemical, biological and ecological 
processes, eliminate or reduce the dependence of 
toxicity assessments on experimental design, choices 
of endpoint, and species of organism and chemical 
compound. Furthermore, quantitative AOPs open the 
way to using results from (semi)automated high-
throughput and high content screening tests to 
anticipate the impact of toxicants on processes at 
ecologically relevant levels of biological organization. 
Typically, those rapid and cost-efficient screening 
tests record molecular, cellular or individual 
responses to toxicant exposure in a dose−response 
manner in order to rank the hazard of a group of 
compounds. Data from those screening tests could 
also be analyzed within a quantitative AOP 
framework.” (Muller et al. 2015) 

Quantitative approaches Probabilistic and 
mechanistic 

“In an idealized case, an AOP would include a 
description of all key events, delineation of methods 
which can be used to measure each key event, 
descriptions of each key event relationship (KER), and 
quantitative models for each KER to permit statistical 
prediction of a downstream key event from an 
upstream key event. If all of this information were 
available, quantitative predictions of the adverse 
outcome (AO) could be made from an upstream key 
event.” (Patlewicz et al. 2015) 

Quantitative approaches 
Additional considerations 

Mechanistic 

“Stronger scientific confidence in KE relationships are 
required to enable AOPs to be used to understand 
fully pathway homology across species. They permit 
development of quantitative models for 
extrapolating difficult to measure outcomes such as 
population level effects from KEs.” (Perkins et al. 
2015) 
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Quantitative approaches 
Regulatory applicability 

Additional considerations 

Quantitative weight 
of evidence and 

mechanistic 

“Semiquantitative and quantitative AOPs (qAOPs) 
have been targeted for development to serve as 
predictive models in the quantitative toolbox for 
human and environmental health impact 
assessment. To enable transition of AOPs to life cycle 
impact assessment (LCIA), AOPs must become more 
quantitative in nature, with specific emphasis on 
establishing quantitative dose–response 
relationships between MIEs and various KEs to the 
adverse outcome of concern. Therefore, to facilitate 
LCIA, the underlying AOP framework must be 
quantitative and able to predict dose–response 
relationships between activation of MIEs or other key 
events to adverse outcomes that are directly involved 
in fitness (i.e., effects that impair the ability of 
individuals to survive or reproduce). A quantitative 
AOP should provide numerically based assessments to 
attempt to quantify weight of evidence (WoE).” 
(Gust et al. 2016) 

Regulatory applicability Mechanistic 

“To provide information useful for chemical risk 
assessment, AOPs need to have some quantitative 
information relevant to important KERs. Beyond 
characterizing the pathway, it is important to 
understand the dose that activates the pathway, and 
if it is relevant to human or ecological exposure 
scenarios.” (Kleinstreuer et al. 2016) 

Mechanistic knowledge 
and associated data 

Mechanistic 

“It is important to understand the key event 
relationships (KERs) and to provide relevant 
information or, even better, quantitative data 
supporting KERs, especially between the early KEs.” 
(Bal-Price et al. 2017) 

Mechanistic knowledge 
and associated data 

Quantitative approaches 
Regulatory applicability 

Additional considerations 
 

Probabilistic and 
mechanistic 

“The term quantitative AOP (qAOP) refers to a loosely 
defined, but relatively advanced stage in the 
progression of AOP development and description. At 
this stage, quantitative understanding of the 
relationships underlying transition from one KE to the 
next, as well as critical factors that can modulate 
those relationships, are sufficiently well-defined to 
allow quantitative prediction of the probability or 
severity of the AO occurring for a given activation of 
the MIE. Information concerning the quantitative 
understanding of what defines the transition from 
one KE in an AOP to the next is thus captured and 
included (where possible) in the KE relationship 
descriptions. That quantitative understanding may 
take many forms, depending on the extent of the 
available, relevant data. In the case of a relatively 
limited data set containing little or no or 
dose−response and time-course information, the 
relationship between adjacent KEs may be as simple 
as a linear regression equation linking an upstream 
with an immediately downstream KE. With richer 
data sets, reflecting fuller dose-response and time-
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course designs, the quantitative understanding may 
be encoded into sophisticated biologically based 
models that simulate complex, nonlinear, dynamics 
that can result from feedback loops, adaptive and 
compensatory responses, stochastic influences, 
interactions with other pathways, and/or influences 
of external or internal modulating factors. Whatever 
form they take, quantitative understanding of the KE 
relationships encompassed in an AOP description can 
facilitate a broader spectrum of applications. 
Consequently, there is interest in developing the 
quantitative understanding and description of AOPs 
to the extent that regulatory needs warrant and 
resources allow.” (Conolly et al. 2017) 

Regulatory applicability 
Quantitative weight 

of evidence and 
mechanistic 

“KERs facilitate inference or extrapolation based on 
the premise that if the upstream KE is altered to a 
sufficient degree, predictable changes (qualitative or 
quantitative) can be expected in the downstream 
event in the hypothesized AOP. For empirical support, 
qualitative consideration of the extent of supporting 
data or WOE for hypothesized AOPs takes into 
account “patterns” of quantitative relationships for 
KERs (i.e., the extent to which temporal and dose 
response patterns align with what would be 
anticipated, for essential key events in an AOP). This 
differs from quantitation of the KERs, addressing 
essentially how much change in KEup is needed to 
evoke some unit of change in KEdown as a basis for 
developing predictive response models.” 
(Meek 2017) 

Mechanistic knowledge 
and associated data 

Quantitative approaches 
Mechanistic 

“Currently there are few, or no, examples of (Q)SAR 
or QAAR models for Key Event Relationships, 
although some in silico models for Key Event 
Relationships are becoming available, especially in 
the form of quantitative AOPs (qAOPs). Quantitative 
models for the MIE, as well as for Key Events and Key 
Event Relationships require a more complete data set 
with information from a greater number of 
compounds covering a range of activity and 
properties.” (Cronin and Richarz 2017) 

Quantitative approaches 
Regulatory applicability 

Additional considerations 
Mechanistic 

“Computational predictive modelling can be applied 
to quantitatively describe the sequences of key events 
(KEs) and their relationships (KE relationships, KER) 
and the biologic processes of pathogenesis that 
comprise an AOP. The reliability of predictions from 
these models is improved with greater understanding 
of the biologic foundation of the AOP. Predictions 
also are improved by complete appreciation of the 
quantitative determinants from upstream biologic 
perturbations to subsequent downstream overt 
organismal effects comprising the AO. When 
mathematical descriptions of these relationships are 
biologically driven equations, a mechanistic 
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quantitative AOP (qAOP) is derived.” 
(Hassan et al. 2017) 

Mechanistic knowledge 
and associated data 

Quantitative approaches 
Regulatory applicability 

Probabilistic and 
mechanistic 

“Information captured in the “quantitative 
understanding of the linkage” section of the KER 
descriptions within the AOP framework provides the 
foundation for addressing this desire for 
quantification. Quantitative AOPs can be described in 
various ways, ranging from expert judgment-based 
scoring, requiring limited information, where 
elements of the AOP are weighted using expert 
opinion, to more probabilistic approaches, where 
statistical relationships exist between the MIE/KE and 
the adverse outcome, to mechanistic approaches. 
The more mechanistic approaches employ 
mathematical models or relationships of MIE, KE, and 
KER (e.g., response–response relationships between 
KERs) to quantitatively predict the risk of an adverse 
effect given specified initial conditions (e.g., a set of 
exposure conditions).” (LaLone et al. 2017a) 

Quantitative approaches Mechanistic 

“Whereas an AOP description lays out the sign posts 
within a biological system that indicate progression 
toward an AO, computational models can 
quantitatively simulate the dynamics of the complex 
biology at multiple scales that dictate dose–response 
and time–course behaviors and define the conditions 
under which perturbation of early KEs in the pathway 
will ultimately lead to the AO, or not.” 
(Wittwehr et al. 2017) 

Quantitative approaches 
Additional considerations 

Mechanistic 

“It is possible to assemble quantitative AOPs (qAOPs) 
that consider quantitative relationships between 
KEs, including feedback models designed to reflect 
system regulation, to predict AOs.” (Ankley and 
Edwards 2018) 

Mechanistic knowledge 
and associated data 

Quantitative approaches 
Additional considerations 

Mechanistic 

“The integration of all information will also lead to 
the development of quantitative AOPs that can be 
used for dose-response analyses, and iteratively, 
inform refinements of the next generation of 
mechanistic IATAs.” (Clippinger et al. 2018) 

Mechanistic knowledge 
and associated data 

Quantitative approaches 
Regulatory applicability 

Additional considerations 

Probabilistic and 
mechanistic 

“The most advanced developments in AOPs, known as 
quantitative AOPs (qAOPs), have potential utility to 
quantitative ecological risk assessments. A qAOP 
describes quantitative response−response 
relationships linking the molecular initiating event 
and adverse outcome to enable quantitative 
prediction of the probability of occurrence or severity 
of an adverse outcome for a given magnitude of 
chemical interaction with a molecular initiating event. 
Depending upon the extent of mechanistic 
understanding and the needs in terms of regulatory 
application, a qAOP could be as simple as a linear 
regression that quantitatively links the molecular 
initiating event to the adverse outcome, or as complex 
as a consecutive series of nonlinear models which 
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describe responses at several levels of biological 
organization and simulate associated internal and 
external modifying factors.” (Doering et al. 2018) 

Mechanistic knowledge 
and associated data 

Quantitative approaches 
Mechanistic 

“A quantitative adverse outcome pathway (qAOP) is 
a mathematical/computational model that 
represents the dynamic processes linking a molecular 
initiating event with an adverse outcome. A unique 
feature that distinguishes a qAOP from other 
biologically based mathematical models is the 
prediction of key events that are part of the 
qualitative adverse outcome pathway and are 
measurable experimentally.” 
(Schultz and Watanabe 2018) 

Additional considerations Mechanistic 

“Quantitative AOPs will help answer what level of in 
vitro perturbation should be used as a point of 
departure (PoD) for quantitative in vitro to in vivo 
extrapolations (QIVIVE).” (Beilmann et al. 2018) 

Quantitative approaches 
Probabilistic and 

mechanistic 

“For each pair of KEs, a quantitative KE relationship 
(KER) can be derived as a response-response function 
or a conditional probability matrix describing the 
anticipated change in a KE based on the response of 
the prior KE. This transfer of response across KERs can 
be used to assemble a quantitative AOP.” (Foran et al. 
2019) 

Mechanistic knowledge 
and associated data 

Quantitative approaches 
Regulatory applicability 

Additional considerations 

Probabilistic and 
mechanistic 

“Quantitatively, a KER may be defined in terms of 
regressions between KEs response-response 
relationships or dose-dependent transitions. They 
may take the form of simple mathematical equations 
or sophisticated biologically based computational 
models that consider other modulating factors, such 
as compensatory responses, or interactions with 
other biological or environmental variables. 
Depending on the level and nature of empirical data 
available, there is a continuum of AOPs from purely 
descriptive qualitative AOPs to qAOP models with 
detailed response-response relationships that allow 
one to infer the magnitude or probability of an AO. 
Here, we define a full qAOP model to be any 
mathematical construct that models the dose 
response or response-response relationships of all 
KERs described in an AOP, a partial qAOP as a 
construct that models the dose/response-response 
relationships of more than one KER, and a 
quantitative KER as a construct that models a single 
dose/response-response relationship. qAOP models 
support explicit incorporation of complex 
relationships, such as feedback loops, thresholds, 
and signaling cascades that are generally embedded 
in the KE or KER of descriptive AOPs. Models 
incorporating complex biological relationships can 
create predictions with greater biological fidelity to 
support hazard and risk assessment than models 
with simplified assumptions.” (Perkins et al. 2019a) 
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Appendix II. Supplemental results of Chapter 4 

 

Figure S1. An overview of the distribution of the categorical type of variables that the machine-readable dataset 
contained to be analysed by the proposed Bayesian hierarchical model. 
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Figure S2. An overview of the distribution of the continuous type of variables that the machine-readable dataset 
contained to be analysed by the proposed Bayesian hierarchical model. 

  



157 
 

 

Figure S3. A visual representation of the correlation matrix between both categorical and continuous variables of the 
machine-readable dataset. It was generated based on the Pearson correlation coefficient. A value of one shows a total 
positive linear correlation. 
 

 

Figure S4. A visual representation of the correlation matrix of the missing values for all variables of the machine-readable 
dataset. It shows how strongly the presence or absence of one variable affects the presence of another variable. It was 
calculated using the Missingno v.0.4.2 Python package. 
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Figure S5. A visual summary of the statistical parameters that shows how well the samples from the inference step has 
been converged. A. The R-hat statistics, also known as Gelman-Rubin convergence diagnostic, indicates whether there 
is a lack of convergence of the posterior sampling. Herein, it did not exceed the threshold of 1.005. B. The Monte Carlo 
standard error is given by the posterior standard deviation divided by the square root of the number of the effective 
samples. The smaller it is, the closer the posterior mean is expected to be to the actual value. Herein, it did not exceed 
10% of the posterior standard deviation. C. The number of the effective sample size should exceed the actual number 
of the samples. Herein, it is larger than 10% of the number of samples. 
 

 
Figure S6. A forest plot of the statistical summary of the hyperpriors and priors of the inference sampling. It shows the 
results for each of the parameter computed on data. The dot represents the mean, the thicker line is the standard 
deviation, and the thin line represents the 95% of the Bayesian credible interval, also known as the highest density 
interval (HDI), of each independent chain out of four chains run in total.  
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Figure S7. Distributions of the sampled values for each parameter of the Bayesian hierarchical model. On the left plot, 
the estimated probability distribution for each independent trace is shown. On the right plot, the actual sampling 
followed through the distribution is shown. The colours indicate the one set of the predictors on which the parameters 
have been computed. 
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Figure S8. Results of the predictions on the outcomes for which the Bayesian hierarchical model has been screened.  
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Figure S9. The predicted probabilities of the ! likelihood function colour-coded based on the correct category of compounds being associated with inducing or not the reduction of 
brain-derived neurotrophic factor (BDNF). 
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Figure S10. The posterior predicted probabilities calculated on the observed variables defined based on a binary classification resultant of the literature review. It shows ordered 
compounds for potency for inducing the reduction of brain-derived neurotrophic factor (BDNF). 
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Figure S11. The predicted probabilities colour-coded based on two thresholds estimated from the results set to group the compounds for their high, medium and low probability of 
inducing the KE for potential future purposes, such as additional investigation and prioritisation testing schemes. Herein, all the compounds have been predicted with a high level of 
probability. 
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Figure S12. The predicted probabilities of the ! likelihood function colour-coded based on the true category of compounds being associated with inducing or not the decrease of 
synaptogenesis. 
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Figure S13. The posterior predicted probabilities calculated on the observed variables defined based on the classification proposed by the in vitro study. It shows ordered compounds 
for potency for inducing the decrease of synaptogenesis. 
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Figure S14. The predicted probabilities colour-coded based on two thresholds estimated from the results set to group the compounds for their high, medium and low probability of 
inducing the KE for potential future purposes such as additional investigation and prioritisation testing schemes. Herein, none of the compounds has been predicted with a low level 
of probability. 
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Figure S15. The predicted probabilities of the ! likelihood function colour-coded based on the true category of compounds being associated with inducing or not the decrease of 
neural network formation. 
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Figure S16. The posterior predicted probabilities calculated on the observed variables defined based on the classification proposed by the in vitro study. It shows ordered compounds 
for potency for inducing the decrease of neural network formation. 



169 
 

 
Figure S17. The predicted probabilities colour-coded based on two thresholds estimated from the results set to group the compounds for their high, medium and low probability of 
inducing the KE for potential future purposes such as additional investigation and prioritisation testing schemes. Herein, all the compounds have been predicted with a medium level 
of probability. 
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Figure S18. The predicted probabilities of the ! likelihood function colour-coded based on the correct category of the compounds being associated with inducing, or not, DNT 
effects.  
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Figure S19. The posterior predicted probabilities calculated on the observed variables defined based on in vivo studies. Compounds were ordered for potency for DNT. 
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Figure S20. Predictions for the ten compounds tested under different CASRN and that were kept separate throughout 
the modelling. The dotted lines represent the thresholds set to categorise the compounds into low, medium, and high 
level of probability of inducing DNT. 
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Appendix III. Supplemental results of Chapter 5 

Table S1. A summary of the resultant fitted response-response functions per each time point and KER that link three 
KEs, i.e., inhibition of complex I, mitochondrial dysfunction and impaired of proteostasis using drc R package v. 3.0-1. 

KER KER Name Time 
point Best-fit model Mathematical equation 

1 Complex I, Inhibition -> ROS production, 
Increase 4 h 

Four-parameter log-
logistic (LL.4) 

!"#, (&, ', (, ))+
= 	76.9 + 613.3 − 76.9

1 + exp"−2.1(log(#) − log(514.4))+ 

2 Complex I, Inhibition -> Mitochondrial 
Membrane Permeability, Decrease 4 h 

Four-parameter log-
logistic (LL.4) 

!"#, (&, ', (, ))+
= 	84.8 + 112.2 − 84.8

1 + exp"11.2(log(#) − log(90.3))+ 

3 
ROS production, Increase -> 
Mitochondrial Membrane Permeability, 
Decrease 

4 h 
Four-parameter log-
logistic (LL.4) 

!"#, (&, ', (, ))+
= 	14.3 + 130.9 − 14.3

1 + exp"3.5(log(#) − log(125.8))+ 

1 ROS production, Increase -> Lipid 
peroxidation, Increase 

24 h 
Three-parameter log-
logistic (LL.3) !(#, (&, (, )) = 102.3

1 + exp"−6.7(ABC(#) − ABC(84.5))+ 

2 
Lipid peroxidation, Increase -> 
Mitochondrial Membrane Permeability, 
Decrease 

24 h 
Four-parameter log-
logistic (LL.4) 

!"#, (&, ', (, ))+
= 78.5 + 109.7 − 78.5

1 + exp"7.2(log(#) − log(70.7))+ 

3 
ROS production, Increase -> 
Mitochondrial Membrane Permeability, 
Decrease 

24 h 
Four-parameter log-
logistic (LL.4) 

!"#, (&, ', (, ))+
= 	−559.9 + 105.7 + 559.9

1 + exp"7.9(log(#) − log(193.9))+ 

1 ROS production, Increase -> Lipid 
peroxidation, Increase 

48 h 
Three-parameter log-
logistic (LL.3) !(#, (&, (, )) = 162.6

1 + exp"−8.7(ABC(#) − ABC(116.3))+ 

2 
Lipid peroxidation, Increase -> 
Mitochondrial Membrane Permeability, 
Decrease 

48 h 
Four-parameter log-
logistic (LL.4) 

!"#, (&, ', (, ))+
= 	59.9 + 105.2 − 59.9

1 + exp"12.4(log(#) − log(123.9))+ 

3 
ROS production, Increase -> 
Mitochondrial Membrane Permeability, 
Decrease 

48 h 
Four-parameter log-
logistic (LL.4) 

!"#, (&, ', (, ))+
= 	67.9 + 101.5 − 67.9

1 + exp"277.4(log(#) − log(136.8))+ 

4 ROS production, Increase -> 20S 
Proteasome Activity, Decrease 

48 h 
Four-parameter log-
logistic (LL.4) 

!"#, (&, ', (, ))+
= 	124.8 + 145.1 − 124.8

1 + exp"264.6(log(#) − log(90.1))+ 

5 
Mitochondrial Membrane Permeability, 
Decrease -> 20S Proteasome Activity, 
Decrease 

48 h 
Four-parameter log-
logistic (LL.4) 

!"#, (&, ', (, ))+
= 	63.4 + 91.4 − 63.4

1 + exp"−57.9(log(#) − log(85.1))+ 
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Figure S1. The fitted curves to the causal relations of both KEs, i.e., inhibition of complex I leading to mitochondrial 
dysfunction, and KERs for data measured after four hours conducted in drc R package after the imputation of the missing 
data using mice R package. CI, Complex I, Inhibition; ROS, Production of reactive oxygen species, Increase; MMP, 
Mitochondrial Membrane Permeability, Decrease.   

 

Figure S2. The fitted curves to the causal relations of the KE mitochondrial dysfunction, and KERs that encompass the 
characteristic biomarkers for data measured after 24 hours conducted in drc R package after the imputation of the 
missing data using mice R package. ROS, Production of reactive oxygen species, Increase; LIPOX, Lipid peroxidation, 
Increase; MMP, Mitochondrial Membrane Permeability, Decrease.  
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Figure S3. The fitted curves to the causal relations of both KEs, i.e., mitochondrial dysfunction leading to impaired 
protestasis, and KERs for data measured after 48 hours conducted in drc R package after the imputation of the missing 
data using mice R package. ROS, Production of reactive oxygen species, Increase; LIPOX, Lipid peroxidation, Increase; 
MMP, Mitochondrial Membrane Permeability, Decrease; PA, 20S Proteasome Activity, Decrease. 
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Figure S4. Distribution of the inferences of the parameters that describe the log-logistic regression of concentration-
responses for the KE inhibition of complex I by rotenone at 4h. 
 

 

Figure S5. Pairplot of the sampled parameters that describe the pairwise relationships between the parameters of the 
log-logistic regression of concentration-responses for the KE inhibition of complex I by rotenone at 4h. 
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Figure S6. Fitted log-logistic regression to the observed data and associated credible interval to describe concentration-
responses of each individual KE induced by rotenone at 4h.  
 

 

Figure S7. Fitted log-logistic regression to the observed data and associated credible interval to describe concentration-
responses of each individual KE induced by rotenone at 24h. 
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Figure S8. Fitted log-logistic regression to the observed data and associated credible interval to describe concentration-
responses of each individual KE induced by rotenone at 48h. 
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Appendix V. List of recorded presentations about the research conducted in this thesis 

1. ASCCT and ESTIV Webinar, Development and Use of Adverse Outcome Pathway Network to Support 

Assessment of Organ Level Effects, available at https://youtu.be/8kXlpJYDlik. 

2. PyMCon2020 Conference, Estimating the Causal Network of Developmental Neurotoxicants Using 

PyMC3, available at https://youtu.be/2nfcwZCLDAE. 

3. in3 Project Online Open Days, Modelling of quantitative Adverse Outcome Pathways: Progress report 

(Part I), available at https://youtu.be/3HhV1VRYgR8. 

4. in3 Project Online Open Days Modelling of quantitative Adverse Outcome Pathways: Progress report 

(Part II), available at https://youtu.be/dsbo6eno3_g.  
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Appendix VI. The permalink of the associated GitHub repository that contains digital 

supplementary materials of the present thesis 

 
https://github.com/nicospinu/phd_thesis  

 


