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Abstract
Observers in perceptual tasks are often reported to combine multiple sensory cues in a weighted average that improves
precision—in some studies, approaching statistically optimal (Bayesian) weighting, but in others departing from optimality,
or not benefitting from combined cues at all. To correctly conclude which combination rules observers use, it is crucial
to have accurate measures of their sensory precision and cue weighting. Here, we present a new approach for accurately
recovering these parameters in perceptual tasks with continuous responses. Continuous responses have many advantages, but
are susceptible to a central tendency bias, where responses are biased towards the central stimulus value. We show that such
biases lead to inaccuracies in estimating both precision gains and cue weightings, two key measures used to assess sensory
cue combination. We introduce a method that estimates sensory precision by regressing continuous responses on targets and
dividing the variance of the residuals by the squared slope of the regression line, “correcting-out” the error introduced by
the central bias and increasing statistical power. We also suggest a complementary analysis that recovers the sensory cue
weights. Using both simulations and empirical data, we show that the proposed methods can accurately estimate sensory
precision and cue weightings in the presence of central tendency biases. We conclude that central tendency biases should be
(and can easily be) accounted for to consistently capture Bayesian cue combination in continuous response data.

Keywords Cue combination · Sensory integration · Central tendency

Introduction

One central goal in the study of perceptual decision-making
is to understand how an observer makes decisions in the
presence of several streams of sensory information. This is
a challenge since these streams are always noisy, sometimes
biased, and frequently conflicting. To optimize perceptual
decision-making, an observer should integrate across all
available streams of information that are relevant to the
current task. For example, sensory cues from both the
visual and auditory domains could be combined to estimate
the location of a visually obscured, sound-emitting object.
When the observer has prior knowledge about the most
likely location of the object, this too should be taken into
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account. If each piece of information is optimally weighted
according to its reliability (or precision), then combination
will lead to more precise estimates than if only a single piece
of information were used.

There are reports of optimal or near-optimal combination
of information for perceptual decision-making in adults
both across the senses, with observers optimally integrating
visual and haptic cues to depth (Ernst & Banks, 2002)
and near-optimally integrating auditory and visual cues
to location (Alais & Burr, 2004), and within the senses,
with observers optimally integrating disparity and texture
gradient cues to slant (Hillis et al., 2002; Knill & Saunders,
2003). This is also true when combining sensory cues and
prior knowledge (e.g., Kȯrding & Wolpert, 2004). However,
there are also numerous reports of behavior diverging
from optimal (Rahnev & Denison, 2018). To address this,
research should explore models of information integration
that predict when behavior is optimal and when it is not
(e.g., Laquitaine & Gardner, 2018; Norton et al., 2019).

To do so, it is necessary to create studies where
an observer’s sensory precision and/or weighting of the
different streams of information can be quantified and
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compared across conditions. If a researcher is satisfied
with using a two-alternative forced-choice method, then
techniques for recovering estimates of sensory precision
and/or weightings from the data are already well established
in the literature (e.g., Ernst & Banks, 2002). However,
if the researcher wishes to track sensory precision and
weightings over the course of an experiment, it becomes
preferable to allow observers to freely adjust their responses
on an appropriately chosen continuous scale. Continuous
responses of this type also lead to a more engaging task for
the observer, a richer data set that allows for rigorous model
comparison to uncover the source of suboptimalities in
behavior, and increased statistical power. This becomes an
issue because the analysis techniques available are relatively
immature. This paper presents insights and techniques to
help improve the analysis of continuous response data.

Specifically, we consider the case of a study with
continuous responses and create a reliable method of
recovering sensory precision and/or weightings from
continuous estimates corrupted by a well-documented bias
in perceptual judgements. The bias that we consider is a
central tendency bias, where sensory estimates are biased
towards the mean of recently seen stimuli. The term
goes back to Hollingworth (1910) who demonstrated a
central tendency bias for judgements of size. Hollingworth
presented observers with a square piece of card, and, after
a delay, asked them to choose a card of matching size from
a set of standards. The chosen standard for each reference
card varied with the series of references shown in any
particular block of trials. If the reference was larger than
the average reference in the block, it was matched to a
smaller standard than its true value and vice-versa. Since
Hollingworth, central tendency biases have been shown
for a range of stimulus types, such as judgements of line
length (Ashourian & Loewenstein, 2011; Duffy et al., 2010;
Huttenlocher et al., 2000), sweetness (Riskey et al., 1979),
facial expressions (Roberson et al., 2007; Corbin et al.,
2017), absolute size (Huttenlocher et al., 2000), shades of
grey (Huttenlocher et al., 2000), time-interval estimation
(Jamieson, 1977; Jazayeri & Shadlen, 2010; Ryan, 2011),
and color (Olkkonen et al., 2014; Olkkonen & Allred, 2014).
Clearly, central tendency biases have the potential to corrupt
a variety of perceptual judgements.

As we will see, accounting for this type of bias in
continuous responses is important for maximizing statistical
power; it is also important so that the estimate of precision
(or variability) that is recovered from the data is truly an
estimate of sensory precision. In what follows, we first
derive how a central tendency bias affects estimates of
precision and, hence, how a central tendency bias can
reduce the measured gain in precision (what we will
call the combination effect) that results from combining
information. We then develop an analysis method that

accounts for central tendency biases by correcting estimates
of precision according to the inferred strength of the bias,
thus recovering the combination effect. Through simulation
and an application to empirical data, we illustrate how the
new method offers a researcher increased statistical power
when analyzing behavioral data where a central tendency
bias is present. For completeness, we also consider the
effect of a central tendency bias on inferred cue weightings
in continuous responses to conflicting cues, suggesting a
method for analyzing these types of data that recovers the
unbiased weights and, again, we demonstrate the validity of
the method through simulations and an application.

Central tendency biases mask cue
combination effects in continuous response
data

Formally, given multiple pieces of sensory information,
or sensory cues, to a stimulus property, Bayesian cue
combination is the optimal way to combine the cues if the
goal is to maximize precision. If each cue is represented by
a sensory estimate c1, . . . , cn of the true stimulus property,
s, with Gaussian error distribution, such that ci ∼ N (s, σ 2

i ),
for i = 1, . . . , n, the lowest-variance combined estimate
is given by cc = ∑

i wici , where wi = ri/
∑

i ri , and
ri = 1/σ 2

i is the reliability of the estimate from the ith cue.
In other words, the optimal way to combine the estimates
is to take a reliability-weighted average, placing the most
weight on the most reliable piece of information. In the
case of two cues, the variance of the combined estimate is
σ 2

c = σ 2
1 σ 2

2 /(σ 2
1 + σ 2

2 ), which is lower than the variance
of either single cue alone1 and results in increased precision
when cues are combined.

To capture combination of two cues in a behavioral task,
precision is measured using each cue alone and compared
with a measurement of precision using both cues together
(e.g., Ernst & Banks, 2002). A significant increase in
precision using both cues compared to the best single cue
illustrates a combination effect and suggests Bayes-like cue
combination. If c1 is the best single cue, the maximum
size of the combination effect (or reduction in variance,
analogous to the gain in precision) is

E = σ 2
1 − σ 2

1 σ 2
2

σ 2
1 + σ 2

2

= σ 4
1

σ 2
1 + σ 2

2

. (1)

The optimality of the combination can be quantified by
comparing measured precision using both cues to the

1

σ 2
1 σ 2

2

σ 2
1 + σ 2

2

= σ 2
1 − σ 4

1

σ 2
1 + σ 2

2

< σ 2
1 .
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optimal prediction according to precision measured using
each cue alone—a test of optimality.

To capture cue combination in continuous responses,
a researcher must be sure that they can recover a
cue combination effect. Statistical power for recovering
this effect depends on the maximum possible gain in
precision (Scarfe, 2020) and the effect may be masked,
reducing statistical power, by other aspects of perception
and decision-making. For example, the maximum gain
in precision (or size of the combination effect) offered
by a reliability-weighted average is only guaranteed if
the single cue estimates are unbiased (no constant error),
have independent Gaussian noise distributions, and are
unaffected by other types of perceptual, decision, or
response biases. Other authors have addressed cases where
single cue estimates are biased (Scarfe & Hibbard, 2011)
or where the estimates from different cues have correlated
noise distributions (Oruç et al., 2003). In the former case,
it is possible to define when optimal cue combination
continues to benefit the observer based on the amount of
bias between the single cue estimates (Scarfe & Hibbard,
2011). In the latter, it is possible to refine the weights placed
on each single cue estimate to account for correlated noise
(Oruç et al., 2003). However, to our knowledge, there has
been no previous account of the effect that central tendency
biases (Hollingworth, 1910; Huttenlocher et al., 2000) can
have on combined cue estimates, or how to account for them
when measuring a combination effect or computing optimal
predictions.

In continuous response data, the response on trial t can
be modeled as rt = ct + εt , where ct is the internal estimate
on trial t (either from a single cue, c1 or c2, or both cues, cc,
depending on cue availability), and εt ∼ N (0, σ 2

n ) captures
any additional response noise (motor noise, for example).
The most obvious way to calculate an estimate of variability
(or precision) is to take the variance over all errors for a
given trial type. For example, if there were N trials where
only cue 1 was present, the variability of responses using
cue 1 could be defined as

σ 2
m1

=
∑N

t=1(et − ē)2

N − 1
, (2)

where et is the error on trial t and we use the subscript m1

to denote measured variability2. Our estimate, σ 2
m1

, will not

2Note that we make an assumption throughout that the text that
single cue estimates are unbiased in the sense that they are free from
constant error. Equation 2 would remain the best estimate of variability
in the case of biased cues, as a constant bias preserves variability.
However, the maximum gain in precision, Eq. 1, would not be the
same (see Scarfe and Hibbard (2011) for a full treatment of biased
cues). Of course, other types of bias could be present in the data, such
as different constant errors for different stimulus values. A central
tendency bias can cause such an effect and we discuss how to account
for this later in the text.

be an estimate of σ 2
1 , but will be an estimate of σ 2

1 + σ 2
n , as

it encompasses the additional response noise that is added
to the internal estimate. However, it can be shown that this
preserves the size of the combination effect as3

σ 2
m1

− σ 2
mc

= σ 2
1 + σ 2

n −
(

σ 2
1 σ 2

2

σ 2
1 + σ 2

2

+ σ 2
n

)

= E. (3)

However, if the assumptions made above do not hold
(for example, if a central tendency is present) the above
equations may not be true, and the size of the combination
effect that can be measured from calculating estimates of
variability in the way described above may change.

Before we formally derive the effect of a central tendency
bias on the size of the combination effect, we consider some
hypothetical data to illustrate the effect visually. Suppose
six different observers generate the data in Fig. 1. Each
panel represents data from a separate, hypothetical observer
completing a task where they must find a hidden object
(along a horizontal axis) using two cues, such as an auditory
and visual cue. In the figure, we plot targets on the x-axis
(the true location of the hidden object) and the observers’
responses on the y-axis. Along the top row, a simple fact
is made plain by inspection of the scatterplots: the leftmost
observer issues the most precise responses, followed by the
middle, followed by the rightmost. The leftmost observer
has their responses tightly clustered around the correct
target (i.e., a line from the bottom left to the top right of
the panel), while the relation between target and response is
much looser for the rightmost observer.

It is fairly easy to see how, using Eq. 2, we could create
a measure of variability that would reflect the differences
across the top row. This would result in variances of 4, 16,
and 36 for the leftmost, middle, and rightmost top figures,
respectively. This captures the intuition that was created by
simply inspecting the graphs.

A problem with over-estimation presents itself when
we consider the observers along the bottom row. These
observers are subject to a central tendency bias. This

3It does not preserve equivalence between the optimal prediction and
measured variability using both cues where the optimal prediction is
calculated from the measured single cue variabilities as

σ 2
m1

σ 2
m2

σ 2
m1

+ σ 2
m2

= (σ 2
1 + σ 2

n )(σ 2
2 + σ 2

n )

σ 2
1 + σ 2

2 + 2σ 2
n

<
(σ 2

1 + σ 2
n )(σ 2

2 + σ 2
n )

σ 2
1 + σ 2

2 + σ 2
n

= σ 2
1 σ 2

2

σ 2
1 + σ 2

2 + σ 2
n

+ σ 2
n

<
σ 2

1 σ 2
2

σ 2
1 + σ 2

2

+ σ 2
n = σ 2

mc
.

In summary, the calculated optimal prediction will imply that the
observers can be more precise than is actually possible.
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Fig. 1 Example responses from six hypothetical observers making
perceptual judgements to illustrate the potential issues around calcu-
lating sensory variability from continuous responses. In the top row
are three observers who do not apply a central tendency bias to their
responses, but have varying levels of sensory uncertainty (variabilities

of 4, 16, and 36 degrees from left to right). In the bottom row, the
observers have the same level of sensory uncertainty as the hypothet-
ical observers above them, but also apply a central tendency bias to
their responses

is an extreme example for illustration purposes, where
the observers display a strong central tendency bias. The
observers in these examples equally weight the sensory
information and the central stimulus value. In practice, this
moves their estimates 50% of the way towards the central
value. We model this as a two-step process, where observers
first combine all of the relevant sensory information,
forming a sensory estimate of the stimulus they must
judge, before taking a weighted average of that sensory
estimate and the central value to produce their response, or
behavioral estimate. Our two-step model is supported by
empirical findings that central tendency biases arise during
reconstruction (or decoding), not encoding of stimulus
features (Crawford et al., 2000) and, more importantly, by a
model comparison suggesting that multisensory integration
precedes a central tendency bias (Murai & Yotsumoto,
2018).

Returning to our hypothetical data, if we again take the
variance of the errors, but this time for the observers in the
bottom row, it does not capture sensory variability in the
desired way. We get a result over 150 for all three observers.
In this case, despite the bottom leftmost observer giving
very systematic and predictable responses (always near half
of the real distance to the center), the raw errors are still very
large. For a target at -40, they responded at -19.5 (error of
+20.5). For a target at +40, they responded at +21 (error of
-19). These systematic biases would become a large part of

the calculations. If the variance of the raw errors were used
as a measure of sensory variability, it would be an enormous
over-estimate that mainly reflected the size of the central
tendency bias.

The opposite problem presents itself if we are overzeal-
ous in discounting the bias. Instead of looking at the
variance of the responses around the correct target, one
might look at the variance of the responses around the best
fit regression line. However, in the presence of a central
tendency bias this will actually give an under-estimate of
sensory variability, as biasing responses towards the central
stimulus value increases the precision of those responses
about the biased estimate (likely the reason why the per-
ceptual system adopts a central tendency bias; Huttenlocher
et al., 2000). The top leftmost and bottom leftmost observers
are generated with the same underlying sensory variability,
but after the bottom leftmost observer biases their estimates
towards the center, the responses become compressed closer
to each other. Subsequently, the variance of the regression
residuals is 4 for the top leftmost observer, but only 1 for
the bottom leftmost observer. The remaining pairs have 1/4
of the variance in the top row as well.

We propose a solution that balances between the over-
estimate given by the variance of the errors and the under-
estimate given by the variance of the regression residuals.
In short, our solution regresses responses, rt , on targets,
st , to estimate α and β such that rt = βst + α + εt . We
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propose that the variance of the residuals, εt , divided by the
squared slope of the regression line, β2, is the best estimate
of sensory variability that can be recovered from the data.
In our example above, this assigns a sensory variance of 4,
16, and 36 to both members of the leftmost, middle, and
rightmost columns, respectively. As desired, this is neutral
to the fact that members of the bottom row have a central
tendency bias and members of the top row do not, capturing
the underlying sensory variance that was used to generate
the examples. Below, we justify this in detail with a formal
mathematical treatment of the issue.

Following our two-step model, responses corrupted by a
central tendency bias can be modeled as a weighted average
of (combined) sensory estimates, ci , and the center (or
mean) of the stimulus distribution, μ. Single and combined
cue behavioral estimates are then

c1b
= (1 − wp1)c1 + wp1μ + ε (4)

c2b
= (1 − wp2)c2 + wp2μ + ε (5)

ccb
= (1 − wpc)(w1c1 + w2c2) + wpcμ + ε, (6)

where wpi
is the weight placed on the center of the stimulus

distribution relative to the sensory estimate. The variabilities
of the behavioral estimates, c1b

, c2b
, and ccb

, are (1 −
wp1)

2σ 2
1 +σ 2

n , (1−wp2)
2σ 2

2 +σ 2
n , and (1−wpc)

2w2
1σ

2
1 +(1−

wpc)
2w2

2σ
2
2 +σ 2

n , respectively. This reduces the measurable
size of the combination effect as

Eb = (1 − wp1 )
2σ 2

1 + σ 2
n −

(
(1 − wpc )

2w2
1σ 2

1 + (1 − wpc )
2w2

2σ 2
2 + σ 2

n

)
(7)

= (1 − wp1 )
2σ 2

1 −
(
(1 − wpc )

2w2
1σ 2

1 + (1 − wpc )
2w2

2σ 2
2

)
(8)

= (1 − wp1 )
2σ 2

1 − (1 − wpc )
2

(
σ 2

1 σ 2
2

σ 2
1 + σ 2

2

)

(9)

= (1 − wp1 )
2σ 4

1

σ 2
1 + σ 2

2

− ((1 − wpc )
2 − (1 − wp1 )

2)σ 2
1 σ 2

2

σ 2
1 + σ 2

2

, (10)

and, Eb < E as, in the case of a non-negligible weight on
the center of the stimulus distribution (i.e. wp1, wpc > 0),
(1 − wp1)

2 < 1 and wp1 ≥ wpc implies (1 − wp1)
2 ≤

(1−wpc)
2, so the first term is smaller than E and the second

term is greater than or equal to zero. Empirical evidence
(Olkkonen et al., 2014; Olkkonen & Allred, 2014) and
Bayesian models of central tendency biases (Huttenlocher
et al., 2000; Jazayeri & Shadlen, 2010; Cicchini et al., 2012;
Sciutti et al., 2014; Krügel et al., 2020) imply that the
strength of the bias (or weight on the central value) will
increase with increasing sensory uncertainty or variability.
This satisfies our above assumption that wp1 ≥ wpc , as
sensory uncertainty should be reduced following reliability-
weighted averaging of sensory information.

We have already alluded to a distinction between
sensory variability (or sensory precision) and behavioral
variability (or behavioral precision), but we will make
that distinction explicit here. As central tendency biases

appear to be introduced after the sensory estimate is
formed (Crawford et al., 2000; Murai & Yotsumoto, 2018),
comparing the variability of behavioral responses across
different experimental conditions (e.g., when observers use
their best single cue compared to multiple cues) will not
reflect the reduction in variance, or gain in precision, that
is afforded from taking a reliability-weighted average of
sensory information, or the underlying combination effect E
(Eq. 1). Instead, an analysis that uses behavioral variabilities
may fail to find a combination effect because the behavioral
gain in precision, Eb, will be smaller than the sensory
gain, E, if estimates are centrally biased (Eqs. 8-10)4. We
would like a method for analyzing the behavioral responses
that recovers a measure of sensory rather than behavioral
precision; that is what we offer here.

Accounting for central tendency biases
in continuous responses to recover cue
combination effects

Previously, we modeled continuous responses as rt = ct +
εt , where εt ∼ N (0, σ 2

n ). When a central tendency bias is
present, ct is replaced with ctb and the response on trial t

becomes rtb = ctb + εn. Assuming that ct ∼ N (st , σ
2
i ), we

can rewrite this as

rtb = (1 − wpi
)st + wpi

μpi + εt (11)

= st + wpi
(μp − st ) + εt , (12)

where i = 1, 2, or c depending on trial type. For each
pairing of trial type and stimulus, st , the biasing part of
the equation, wpi

(μpi − st ), is a fixed constant error.
This constant error must be calculated for each stimulus
independently and subtracted from all responses to that
stimulus before Eq. 2 can be applied to calculate behavioral
precision. Alternatively, the experimenter could calculate an
estimate of behavioral precision by regressing responses on
the true stimulus values and taking the variance of the fitted
residuals. We will adopt this approach here as it can always
be used while the former is only possible if each stimulus
value is tested multiple times.

To calculate an estimate of sensory precision, we must
consider Eq. 11. The second term in this equation is fixed
for each trial type, allowing us to model all responses
for a given trial type as rtb = βst + α + εt , making
it clear that the constant term, wpi

μpi , only changes the

4Measures of behavioral variability also lead to invalid optimal
predictions. This can be seen by trying to predict the theoretical multi-
cue variability from the theoretical single-cue variabilities. It can be
shown that

(1 − wp1 )
2σ 2

1 (1 − wp2 )
2σ 2

2

(1 − wp1 )
2σ 2

1 + (1 − wp2 )
2σ 2

2

�= (1 − wpc )
2

(
σ 2

1 σ 2
2

σ 2
1 + σ 2

2

)

.
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intercept of the regression line relating the responses to
the true stimulus values. Importantly, the fitted coefficient,
β, which represents the slope of the line and captures the
level of bias (lower values for β imply less weight on the
stimulus and, thus, more bias), is an estimate of (1 − wpi

).
Since our measure of behavioral precision is an estimate
of (1 − wpi

)2σ 2
i , we can divide by the square of the fitted

coefficient, β2, to gain an estimate of the underlying sensory
precision.

Note that if β is approximately 1, as is the case when
the strength of the bias is negligible or there is no bias at
all (wpi

= 0), sensory precision is identical to behavioral
precision. This also makes it clear that if β is greater than
one its value should be ignored. In practice, when applying
the analysis method to the simulated and empirical data
later in the text, we account for this by only applying
the correction if the fitted coefficient, β, is significantly
less than one at the 5% significance level. This makes the
proposed analysis method flexible, as a central bias in the
data will only be accounted for if it is present.

We note that the measure of behavioral precision (the
estimate before the correction) is an estimate of (1 −
wpi

)2σ 2
i + σ 2

n , and so our estimate of sensory precision is
an estimate of σ 2

i +σ 2
n /β2. This changes the maximum size

of the combination effect we can detect as

σ 2
1 + σ 2

n

β2
1

−
(

σ 2
1 σ 2

2

σ 2
1 + σ 2

2

+ σ 2
n

β2
c

)

= E +
(

σ 2
n

β2
1

− σ 2
n

β2
c

)

. (13)

Under the assumption that the central tendency bias
increases with decreasing sensory precision (Olkkonen
et al., 2014; Olkkonen & Allred, 2014; Huttenlocher et al.,
2000; Jazayeri & Shadlen, 2010; Cicchini et al., 2012;
Sciutti et al., 2014; Krügel et al., 2020), βc > β1, and
the second term on the right side of Eq. 13 is greater than
zero, increasing with increasing σn. In other words, there are
certain circumstances where the additional noise, σn, and
the difference between the strength of the bias when using
the best single cue alone, β1, and both cues together, βc, are
large enough that this method not only recovers statistical
power for detecting a combination effect, but can enhance
the effect and increase statistical power over and above what
recovery of raw sensory precision would allow.

We argue that as the intention of the proposed analysis
is only to uncover potentially hidden combination effects in
continuous response data, not to provide an exact estimate
of the size of the combination effect, then this is a positive.
The reader may of course worry that it will lead to reports
of combination effects that are not actually there. This is
not the case if the strength of the central tendency bias
is determined by the level of sensory precision. Without
an improvement in sensory precision using multiple cues
compared to the best single cue (i.e., E = 0), βc = β1 and

the second term on the right side of Eq. 13 is exactly zero.

An illustration with simulated continuous
responses

We simulated data from an optimal Bayesian model of
cue combination, where an observer takes a reliability-
weighted average of multiple cues to maximize their gain
in precision and, hence, their combination effect. However,
the observers that we simulated were subject to a central
tendency bias (Eqs 4-6). For these simulations, we assumed
that all stimulus values were in the range of 0-1 (other
ranges can easily be mapped here) and used targets, s, of
0.15 to 0.85 in steps of 0.02. We generated five responses
for each target and each trial type (cue 1 only, cue 2 only,
both cues) for every observer that we simulated.

The simulated observers differed in their cue reliability
ratios and the strength of their central tendency bias. We
fixed the reliability of the best cue, cue 1, so that σ1 = 0.01,
and varied the reliability ratio so that σ2/σ1 was one of
twenty log-spaced values between 1 and 10. To vary the
strength of the central tendency bias, we varied the weight
that each observer placed on the center of the stimulus range
in Eq. 6 by setting wpc equal to one of twenty log-spaced
values between 0.01 and 1. As the strength of the central
tendency bias can vary within an observer according to
the reliability of the sensory evidence, we defined wp1 and
wp2 as (wpcσ

2
1 )/(σ 2

c + wpc(σ
2
1 − σ 2

c )) and (wpcσ
2
2 )/(σ 2

c +
wpc(σ

2
2 −σ 2

c )), respectively, so that the weight on the center
of the stimulus range increased as the reliability of the
sensory information decreased. These equations are chosen
so that our simulations are in line with Bayesian accounts of
central tendency biases (see Discussion). For each pairing
of reliability ratio and strength of the bias, we simulated
1000 data sets at five different additional noise levels, σn =
0, 0.005, 0.01, 0.015, or 0.02, i.e., no additional noise, or
additional noise at 0.05, 0.1, 0.15, or 0.2% of the stimulus
range.

We calculated statistical power for detecting a gain in
precision, or a combination effect, when multiple cues were
present by comparing response variability with both cues
to response variability with the best (lowest variability) cue
alone using a one-tailed Wilcoxon signed-rank test (α =
0.05) for three different sample sizes (n = 10, 20, or
30). To do so, for each pairing of reliability ratio and bias
strength, each additional noise level, and each sample size,
we took 100 randomly sampled data sets of size n from
the 1000 relevant simulations. For each randomly sampled
data set, we calculated estimates of variability when using
each single cue alone and when using both cues for each
simulation in that set. To calculate the estimates we fit a
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regression line to the responses with true stimulus value as
the independent variable. The variance of the fitted residuals
provides an estimate of behavioral precision that does not
account for any central tendency bias in the responses.
Alternatively, dividing the variance of the fitted residuals by
the square of the fitted slope “corrects-out” any precision
that is gained by applying a central tendency bias to recover
an estimate of sensory precision, the value that is of interest
to us.

Figure 2 shows power for detecting a combination effect
for different pairs of reliability ratio and bias strength, at
different additional noise levels, and with different sample
sizes using the estimates of behavioral precision. It is
clear from this figure that increasing the reliability ratio,
the strength of the bias, or the level of additional noise
decreases statistical power for detecting a combination
effect. Increasing the sample size recovers some of the
power that is lost by the increase in reliability ratio or
additional noise, but does not help to recover power that is
lost by the increase in the strength of the central tendency
bias. Indeed, once the bias surpasses 0.3, or more than a 30%
shift towards the central stimulus value, our ability to detect
a combination effect in these simulations is effectively
lost, regardless of reliability ratio, level of additional noise,
or sample size. However, Fig. 3, which shows power for
detecting a combination effect when using our proposed
measure of sensory variability that accounts for a central
tendency bias, tells a different story. In this figure, power
is still lost by increasing the reliability ratio or the level
of additional noise, with both partially counteracted by
increasing the sample size, but power does not decrease
as the strength of the bias increases. This is because our
proposed analysis method, which calculates the measure
we refer to as sensory variability, accounts for the central
tendency bias to recover the sensory precisions. Figure 4
directly compares statistical power using the two measures
(behavioral and sensory precision) by subtracting the values
depicted in Fig. 2 from those depicted in Fig. 3. This
figure shows that using our proposed analysis method to
account for a central tendency bias increases statistical
power regardless of additional noise level or sample size
when the strength of the bias is greater than 0.3 and the ratio
of the reliabilities is less than 5. As the level of additional
noise increases, our proposed method begins to increase
power for lower bias strengths.

An example with empirical two-cue
continuous response data

Here, we demonstrate the effect of a central tendency
bias on estimates of the combination effect in previously
published data. We re-analyzed the data from Experiment 1

in an article recently published in Cognition (Negen et al.,
2019). This study presented 77 7- to 10-year-old children
with audio, visual, or audio-visual cues to a horizontal
location. Observers pointed and clicked on the perceived
source of the stimulus. We adopt the same observer
exclusion criteria as in the original publication, leaving us
with 68 observers for our analysis. We will calculate three
separate estimates of the combination effect from the data.
The first will be calculated by estimating precision using
each single cue alone and both cues from the variance of
the raw errors (response-target), as in the original paper.
We will refer to this as a measure of raw precision.
This method does not account for the constant error that
varies across location in the presence of a central tendency
bias, or the extra precision that is gained from applying
a central bias over and above that offered by combining
the sensory information. The second estimate will be
calculated by taking the variance of the residuals about a
fitted regression line that regresses responses on targets;
defined as a measure of behavioral precision earlier in the
text. This measure accounts for the varying constant error
introduced across location by a central tendency bias but
does not account for the added precision. The third estimate,
our measure of sensory precision, will be calculated by
dividing the variance of the fitted residuals by the square
of the target’s coefficient from the fitted regression line.
This estimate “corrects-out” both the constant error and the
added precision from the central bias.

Before we look at how the three measures of precision
differ, we can consider the average slope of the regression
lines to see if there was evidence of a significant central
tendency in these data. If the average slope is significantly
less than 1, then the average weight on the central value
of the stimulus range is significantly greater than zero, and
there is a significant central tendency bias. The average
weight on the cue(s) was significantly less than one in the
visual trials (μ̂ = 0.72, t (67) = −14.59, p < .001), the
audio trials (μ̂ = 0.78, t (67) = −5.81, p < .001), and the
audio-visual trials (μ̂ = 0.88, t (67) = −6.44, p < .001),
illustrating a significant central tendency bias for all trial
types. Moreover, the average weight on the cue differed
significantly across trial types (F(2, 134) = 11.96, p <

.001), with most weight placed on the cue in audio-visual
trials and least in the visual trials. This is in line with
Bayesian theories of a central tendency bias, where the
center of the stimulus range receives more weight as cue
uncertainty increases (Olkkonen et al., 2014; Olkkonen &
Allred, 2014; Huttenlocher et al., 2000; Jazayeri & Shadlen,
2010; Cicchini et al., 2012; Sciutti et al., 2014; Krügel et al.,
2020).

Given the presence of a central tendency bias in the data,
we found varying sizes of the combination effect using
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Fig. 2 Statistical power for detecting a combination effect using mea-
sures of variability (or precision) that do not account for a central
tendency bias. In the text, we refer to this as a measure of behavioral
variability, calculated by taking the variance the fitted residuals, εt ,
when regressing responses, rt , on targets, st , to estimate α and β such
that rt = βst +α+εt . Each panel of the figure is a heat map that shows

how statistical power (estimated by bootstrapping the simulated data
sets) varies with the ratio of the two cues’ reliabilities and the strength
of the central bias for a fixed level of additional noise and a fixed sam-
ple size. The level of additional noise varies across the columns of the
figure and sample size varies across rows

the three different methods to estimate precision. A one-
tailed sign-rank test comparing each observer’s precision
using both cues to that using their best single cue alone
found a significant combination effect regardless of the
calculation that was used to estimate variance (raw: z =
5.15, p < .001; behavioral z = 2.04, p = .02; or sensory
z = 4.55, p < .001). However, the size of the effect varies
widely depending on the analysis that is used. Using the
raw variances, Cohen’s effect size was dr = 0.72, with
78% of observers showing a gain in precision using both
cues. Using behavioral variance, Cohen’s effect size was
db = 0.27, with only 60% showing the effect. Using the
sensory variance, Cohen’s effect size was ds = 0.41, with
82% showing the effect. This clearly illustrates the point
we have already made through an informal example, formal
derivation, and simulation: a central tendency bias reduces
statistical power to detect a combination effect if only the
varying constant error across location that is introduced
by it is accounted for (in the behavioral variance case), or
could cause the effect to be over-estimated if only the raw
errors are considered. Using the sensory variance lands the
estimate of effect size somewhere in the middle of those two
estimates, recovering the underlying estimates of sensory
precision if the process model follows that which we have
laid out above.

Central tendency biases lead
to underestimates of cue weightings
in continuous responses to conflicting cues

Thus far, we have only considered how a central tendency
bias may alter estimates of precision in a scenario where
a Bayes-optimal observer is combining two unbiased cues
that are not in conflict. However, in experiments that
study cue combination, the researcher is often interested
in measuring how two cues are weighted relative to each
other. To do this, a researcher designs an experiment so
that the two cues indicate conflicting target values (e.g.,
Ernst & Banks, 2002). If the conflict is kept small enough,
the Bayes-optimal observer should continue to take the
reliability-weighted average of the two cues to maximize
perceptual precision. In the absence of a central tendency
bias, either (a) a multiple regression of responses on
predictors cue 1 and cue 2, or (b) a simple regression of
response bias relative to cue 2 (response-cue 2) on conflict
in the direction of cue 1 (cue 1-cue 2), gives an estimate of
the weight placed on each cue. Using (a) provides a direct
estimate of both weights (weight on cue 1 and on cue 2).
Using (b) only directly estimates the weight on cue 1, but
contains the implicit information that the two weights sum
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Fig. 3 Statistical power for detecting a combination effect using the
measure of variability (or precision) introduced here that accounts for
a central tendency bias. In the text, we refer to this as a measure of sen-
sory variability, calculated by dividing the variance the fitted residuals,
εt , by the square of the fitted gradient, β2, when regressing responses,
rt , on targets, st , to estimate α and β such that rt = βst + α + εt .

Each panel of the figure is a heat map that shows how statistical power
(estimated by bootstrapping the simulated data sets) varies with the
ratio of the two cues’ reliabilities and the strength of the central bias
for a fixed level of additional noise and a fixed sample size. The level
of additional noise varies across the columns of the figure and sample
size varies across rows

to unity. This is not the case in (a) unless constraints are
used when performing the multiple regression. Regardless,
when a central tendency bias is present, the fitted weight
on cue 1 is an estimate of (1 − wp1)w1 rather than w1,
leading to an underestimate of the weight on the cue. To
avoid this issue, one must consider a model of responses that
allows for a central tendency bias (Eq. 6) and estimate the
parameters accordingly. Here, we show how this approach
leads to better estimates of the true sensory cue weightings.

To do so, we again simulated data from a Bayes-optimal
model of cue combination that is subject to a central
tendency bias (see Eqs. 4-6). Again, we assumed that all
stimulus values were in the range 0-1. However, in this set of
simulations, the target indicated by the two cues differed, or
was in conflict. For illustration purposes, the Bayes-optimal
observers that we simulate combine the cues regardless of
the level of conflict between them. We created conflicting
cue pairs by taking all possible pairings of target values 0.4
to 0.6 in steps of 0.025 and allowing all reversals of these
pairings. We generated ten responses for each pair for every
observer that we simulated.

As before, the simulated observers differed in their
cue reliability ratios and the strength of their central
tendency bias with the reliability of the best cue fixed
at σ1 = 0.05. As the procedure we used for fitting

the central tendency bias model was computationally
intensive, we chose to simulate fewer reliability ratios, only
simulating σ2/σ1 as one of five log-spaced values between 1
and 4.18. Similarly, we varied the strength of the central
tendency bias, wpc , as before but allowed it to be only
one of ten log-spaced values between 0.01 and 0.7. For
each pairing of reliability ratio and strength of the bias,
we simulated 100 data sets at three different additional noise
levels, σn = 0.01, 0.015, or 0.02.

For each set of simulated responses, we calculated an
estimate of the weight on cue 1 without taking into account
a central tendency bias by regressing response bias relative
to cue 2 (response-cue 2) on conflict in the direction of
cue 1 (cue 1-cue 2). We will refer to this as the behavioral
weight. We also calculated an estimate of the weight on
cue 1 under the assumption of a central tendency bias. To
estimate parameters of the model (Eq. 6) for each simulated
data set, we used a Gibbs Sampler (JAGS; Plummer,
2003) implemented in MATLAB using the MATLAB-to-
JAGS interface matjags.m. We ran three independent chains,
discarding the first 100 samples of each chain as burn-in,
and recording 1000 samples after the burn-in period, thinned
by recording only every 5th sample. Both fitted weights (w1

and wpc ) were initialized at 0.5 in all chains. The standard
deviation of the additional noise (σn) was initialized at
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Fig. 4 The increase in statistical power for detecting a combination
effect gained by using the measure of sensory variability introduced
here (that accounts for a central tendency bias) rather than, what we
refer to as, a measure of behavioral variability (that does not account
for a central tendency bias). Each panel of the figure is a heat map that
shows how the increase in statistical power (estimated by subtracting

the values depicted in Fig. 2 from those depicted in Fig. 3) varies with
the ratio of the two cues’ reliabilities and the strength of the central
bias for a fixed level of additional noise and a fixed sample size. The
level of additional noise varies across the columns of the figure and
sample size varies across rows

0.01. The resulting estimates were taken as the mean of
the expected values from the three chains. We refer to this
estimate of the weight on cue 1 as the sensory weight.

Figure 5 illustrates that the weight on the best cue
is underestimated when we estimate weights from the
simulated data using a method that does not allow for
a central tendency bias (the behavioral weight) if the
reliability ratio is large enough and the central bias is strong
enough. The size of the underestimation does not depend
on the level of additional noise. However, when we estimate
weights from the simulated data using a method that allows
for a central tendency bias (the sensory weight), the error in
the estimated weight is zero (on average) regardless of the
reliability ratio or strength of the bias. Thus, by estimating
cue weightings according to our proposed methods, the
estimated weights will remain good estimates of the true
weightings of Bayesian observers, even if the observers
apply a strong central bias to their responses.

An example with empirical conflicting
two-cue continuous response data

Here, we demonstrate the effect of a central tendency bias
on estimates of cue weights in data previously presented

at an international conference (Aston et al., 2020). We re-
analyzed the data from this study where 30 adult observers
were presented with intrinsically noisy audio, visual, or
conflicting audio-visual cues to horizontal location and
freely moved a mouse to respond. We ignored the trials
featuring extrinsic noise.

We will first test the hypothesis that observers signifi-
cantly mis-weight the cues without allowing for a central
tendency bias to be present in any of the analysis. To do so,
we estimate the optimal weights according to measures of
behavioral precision using the audio and visual cues alone.
We compare the estimates of the optimal weights to mea-
sures of the behavioral weight placed on each cue in the
audio-visual trials. These are found by regressing response
bias relative to cue 2 (response-cue 2) on conflict in the
direction of cue 1 (cue 1-cue 2). We will then test the same
hypothesis using weights that are estimated from the data
under the assumption of a central tendency bias. Here, the
optimal weights are estimated according to measures of sen-
sory precision using each cue alone. They are compared to
estimates of the weights used by observers that come from
modeling responses as in Eq. 6 and estimating the param-
eters of this model according to the procedure described in
the previous section.
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Fig. 5 The error in the recovered weight on the best cue estimated
from simulated data using a model of responses that accounts for a
central tendency bias (the sensory weight) and using a model that does
not account for a central tendency bias (the behavioral weight). Each
panel of the figure shows how the error in the recovered sensory and

behavioral weights varies with the strength of the central bias (on a log
scale) for a fixed level of additional noise and a fixed reliability ratio.
The reliability ratio varies across the columns of the figure and the
level of additional noise varies across rows. Error bars are ±1 standard
deviation

In calculating estimates of behavioral and sensory
precision, we regress responses on targets, with the slope
of the line providing a measure of the strength of any
central tendency bias that is present. Similar to the previous
empirical data that we considered, we find evidence of a
significant central tendency bias (slope less than 1) using
both the auditory and visual cues alone (μ̂ = 0.62, t (29) =
−7.49, p < .001 and μ̂ = 0.85, t (29) = −24.15, p <

.001, respectively). Our measure of bias strength for the
audio-visual cue condition comes from the model fit (it is
the fit parameter wp) and is also significant (μ̂ = 1 −wp =
0.80, t (29) = −10.16, p < .001). Taken together, these
results point towards the presence of a central tendency
bias.

Subsequently, we find a significant difference between
the behavioral and sensory weight estimates, z = 2.36, p =
.019. We find no evidence that observers significantly mis-
weight the cues regardless of whether we use the behavioral
or sensory weights to test the hypothesis. However, the
test is closer to significance when behavioral weights are
used (z = 1.76, p = .079, 67% underweight the cues)
than when sensory weights are used (z = −1.45, p =
.147, 43% underweight the cues), as expected according
to our simulations if these observers are in fact taking a
reliability-weighted average of the cues.

Discussion

Central tendency biases have been demonstrated for a wide
range of perceptual judgements about stimuli that come
from a predefined range or that are uniformly distributed
(Ashourian & Loewenstein, 2011; Duffy et al., 2010;
Huttenlocher et al., 2000; Riskey et al., 1979; Roberson
et al., 2007; Huttenlocher et al., 2000; Jamieson, 1977;
Jazayeri & Shadlen, 2010; Ryan, 2011; Olkkonen et al.,
2014; Olkkonen & Allred, 2014). Subsequently, central
tendency biases are likely to be found in tasks that aim to
capture cue combination. We have explained how this type
of bias (a bias towards a specific point in the stimulus–
response space) results in increased behavioral precision,
which does not capture the measure of sensory precision
that would reflect a sensory cue combination effect. Put
simply, the analysis method we have proposed “corrects-
out” the added gain in precision that the central tendency
bias affords to recover the underlying sensory measure of
precision that a cue combination researcher is most likely to
be interested in.

Our suggestion for dealing with central tendency biases
when calculating the weight that is placed on each cue is
even more direct than the correction for recovering sensory
precision. To calculate sensory rather than behavioral
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weights we simply suggest that a researcher allows for a
central tendency bias in the response model. If a central
tendency bias is not present in the data, then the parameter
representing the strength of the bias will be small and the
researcher will see no difference in the calculated weights
using either a model that does or does not allow for a central
tendency bias. However, by adopting this approach the bias
will be accounted for if it is there.

The limiting factor in tests of optimality

By carefully working through the details of a Bayes-optimal
observer model completing a continuous cue combination
task, we have shown that researchers are limited in their
ability to test for an optimal gain in precision when
combining cues if the responses are corrupted by additional
sources of noise and/or a central tendency bias is present
(see footnote 3/4 and Eq. 13 showing our method does
not recover the exact combination effect in the case of
non-negligible additional response noise).

This is an important observation in a research climate
that is actively debating the optimality of perception and
decision-making processes (Rahnev & Denison, 2018).
Clearly, we must be careful in setting the optimal criteria
that we compare behavior against. In footnote 3, we show
that regardless of whether a central tendency bias is present
or not, non-negligible additional response noise will lead
to a definition of optimal precision that is impossible for
observers to achieve. We encourage researchers to think
carefully about models of behavior across a variety of tasks
where additional sources of noise, or other common features
of perception such as a central tendency bias, may lead to
optimal predictions that do not reflect what can actually be
achieved by the observers.

Quantitative computational models can be used to isolate
specific factors in a decision-making framework (Odegaard
et al., 2019; Jones et al., 2019), including central biases, but
this is as of yet not a method that is readily available for
experimental researchers.

The proposed analysis is consistent with Bayesian
accounts of a central tendency bias

Huttenlocher and colleagues developed the category adjust-
ment model (CAM) as an account of central tendency biases
(Huttenlocher et al., 2000). The CAM proposes that stim-
ulus properties are coded hierarchically at two levels. One
is defined as the fine-grained stimulus level (a sensory esti-
mate), that provides an inexact (noisy) but unbiased estimate
of the stimulus property. The second is the category level,
where the stimuli are encoded as a category prototype,
providing a more stable but biased estimate. The combina-
tion is a reliability-weighted average, identical to the way

estimates from multiple cues are integrated in the Bayes-
optimal cue combination model. Later accounts of central
tendency biases take a similar approach, expressing central
tendency biases within a Bayesian framework (Jazayeri &
Shadlen, 2010; Cicchini et al., 2012; Sciutti et al., 2014;
Krügel et al., 2020). Recent publications question the abil-
ity of CAM, or Bayesian models more generally, to explain
central tendency biases in perceptual judgements, suggest-
ing instead that central tendency biases are the manifestation
of a recency bias rather than a central bias (Duffy & Smith
2018, 2020b) but the debate is ongoing (Crawford, 2019;
Duffy & Smith, 2020a).

Our approach to modeling central tendency biases is
consistent with the Bayesian framework if we express
the category level representation as a Bayesian prior that
encodes the mean of the stimulus range as the category
prototype (the expected value of the prior) and changes in
(un)certainty about category membership (the variability of
the prior) across the stimulus range. There are two ways we
can frame the combination of stimulus and category level
information in the Bayesian framework. The options are
to combine each individual cue estimate with the category
prototype during encoding, before the individual estimates
are combined, or to bias the combined estimates during
decoding. Crawford et al. (2000) found that estimates of
line length in the Müller–Lyer illusion were only subject to
a central tendency bias when estimates were made after a
delay, interpreting this as evidence that the central tendency
bias occurs during decoding to account for uncertainty.
This is supported by the findings of Olkkonen and Allred
(2014) who found that adding either internal or external
noise increased the magnitude of a central tendency bias for
estimates of color, also suggesting that the bias is introduced
during reconstruction from memory. Our model is in line
with these results where the bias towards the mean of the
stimulus range is applied after combination, while being
agnostic regarding the mechanism.

Extending themethod tomodel central tendency
biases in tasks where one of the cues is prior
knowledge

Closely related to cue combination tasks are tasks where
observers are encouraged to combine a single cue with prior
knowledge to optimize perception and decision-making.
Everything we have discussed could be framed in terms
of a cue-prior combination task rather than a cue-cue
combination task by letting all parameters that represent
one of the cues in each of our equations represent the
prior knowledge instead. For example, many of the studies
focusing on integration of sensory and prior information
require observers to estimate the location of a hidden target,
on a continuous scale, using an uncertain sensory cue and
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prior knowledge of the target distribution (e.g., Berniker
et al., 2010; Tassinari et al., 2006; Vilares et al., 2012;
Chambers et al., 2018; Kiryakova et al., 2020; Bejjanki
et al., 2016). In some cases, when the target distribution is
centered on the middle of the stimulus–response range, it
would be difficult to parse how much of the central bias is
due to a reliance on prior knowledge or a central tendency
bias. However, if the center of the target distribution is offset
from the center of the stimulus–response range then it may
be possible to separate the two factors by using a response
model that allows for a central bias as we have done for the
two-cue case.

Conclusions

We have presented a new method of analysis that accounts
for central tendency biases in continuous response data to
recover estimates of what we define as sensory rather than
behavioral precision. We have also suggested a method
for modeling a central tendency bias when estimating
cue weightings from continuous responses. We illustrated
theoretically, through simulations, and through empirical
examples, that the application of the new method is
necessary and that these biases exist in previously presented
cue combination data. The analysis for computing sensory
precision is simple and easy to apply. It boils down to
dividing the variance of the residual behavioral errors, a
measure of behavioral precision, by the squared slope of
a regression line that regresses the responses on the true
stimulus values. It is also flexible in the sense that a bias in
the data will only be accounted for if it is present. If there
is no central tendency bias, then the fitted slope value will
be approximately 1, and sensory precision is approximately
equal to behavioral precision. Thus, the analysis can always
be used, even if the data is free of a central tendency bias.
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