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ABSTRACT 

 

The work presented in the thesis is focused on developing effective data-led 

simulation approaches for studying the behaviour and properties of auxetic 

structures and crystals with a particular focus on the Poisson’s ratio, auxeticity 

and anisotropy. Python based parametric programs are developed and 

integrated with Finite element modelling (Abaqus) and ab initio quantum 

mechanical programs (Materials Studio CASTEP) for structure development 

and data processing.  

A range of auxetic structures have been studied including missing rib 

structures in tension, missing rib and mixed cellular structures in compression 

and self-similar hierarchical structures in compression. A Python program is 

also developed for calculating and tracking of the area changes for cellular 

structures under compression and tension loads. The use of Python programs 

in developing Voronoi random structures and random structures with auxetic 

behaviors is also presented. The models are used to establish the effect of key 

dimensional parameters on the deformation process, Poisson’s ratio and 

stability of auxeticity. The results show that the area analysis is effective in 

studying the changes in cell shape and area; the areas of the missing rib and 

honeycomb cell follows a more uniform cell deformation trend in tension than 

in compression. The area changes of the missing rib model under compression 

reflect the main deformation stages including the corner edge-cell wall 

contact. The work shows that deformation and instability auxeticity of normal 

missing rib structure and mixed structures are associated with the corner edge 

wall contact. The mixed model showed different beam–wall contact patterns, 

which contributes to the much higher critical strain of stable auxeticity and 

overall shape stability.   

The work with ab initio quantum mechanical program (Materials Studio 

CASTEP) is focused on developing a Python-based data system for 
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systematic crystal structure processing and establishing the link between 

crystal structures and key ground state properties of crystals based on first 

principle calculations with Materials Studio. A range of ground state 

properties (e.g., elastic constants (Cij), bulk modulus (K), Young’s modulus 

(E), shear modulus (G), Poisson’s ratio (v), etc.) have been studied with a 

particular focus on the Poisson’s ratio and anisotropy. The correlation 

between the ground state elastic parameters and other properties are analysed. 

Some typical results on key engineering carbides including simple cubic 

systems (TiC, VC and NbC) are presented together with the mathematical 

operation to calculate the K, E, G, v.  3D surface constructions of the ground 

state parameters including anisotropic features are presented with an 

integrated program. The Python graphical user interface developed is 

effective for systematic calculation and visualization of the key structures, 

properties and anisotropy features.  The relationship between maxima and 

minima of Poisson’s ratio and the anisotropy index of a range of carbides 

showed a good agreement with the other published data based on a large 

quantity of data. Some compounds with low or negative Poisson’s ratio were 

identified and detailed structures and properties data are given. The data 

highlighted the source of uncertainty in Poisson’s ratio and the link between 

property data. The Data for structures with Negative Poisson’s ratio is briefly 

presented and analysed including links between the auxetic crystal structure 

and some macro lattice structure with auxetic behaviors. The procedure for 

modelling surface energy, oxygen reduction reaction (ORR), crystals with 

doping elements and the effect of temperatures are also presented and showed 

a good agreement with published works.  Future use of the framework 

developed, and main research focuses in both FE modelling and ab initio 

quantum mechanical simulation are discussed.   
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1.1 Introduction 

Poisson’s ratio is an important material property reflecting the ratio between 

the lateral strain and axial strain when the material is under tension or 

compression loads. Most conventional materials have a positive Poisson’s 

ratio, the material exhibits shrinking in the lateral direction in tension and 

expanding under compression. Auxetic (also called a negative Poisson’s ratio 

material) are a relatively new group of materials, exhibiting lateral expansion 

when being stretched and shrinking when being compressed (Gaspar et al., 

2005; Mousanezhad et al., 2015). Their unique properties opened a window 

towards a wide range of potential applications in biomedical applications, 

sport, and engineering applications such as membrane filters with variable 

permeability, personal protective equipment (e.g., shin pad, etc.) and smart 

implant (Sanami et al., 2014; Darwish and Aslam, 2014; Mousanezhad et al., 

2015). There are many mechanisms/structures that have been identified or 

developed to generate negative Poisson’s ratio behaviours, such as missing 

rib structure, re-entrant structures, self-similar hierarchical honeycombs, 

chiral structures, rotating rigid/semi-rigid units, and angle ply laminates 

(Kolpakov, 1985; Gibson, 1982; Grima et al., 2012; Brely et al., 2015; 

Prawoto and Alias, 2015; Ho et al., 2016; Lake, 2017). These established 

structures have opened the possibility of developing material systems with 

designed Poisson’s ratio suitable for different applications. Auxetic 

behaviours may exist at different scales at macrolevel as well as atomic and 

microlevels (Lake, 2017) and the understanding of Poisson’s ratio and 

auxeticity with other features such as anisotropy of crystals is gaining more 

and more research attention with the support of large-scale data from 

physical-based modelling such as first principle calculations (Farhadizadeh et 

al., 2017). A detailed understanding of the deformation modes under different 

loading modes or strain levels and systematic data for establishing the effects 

of key design parameters on the material behaviour at different scales are very 

important.  

 



  

 

24 

 

The development in numerical modelling (e.g., finite element modelling (FEM) 

and physical modelling (molecular and atomic) has improved the understanding 

of structure-property relationships of many materials. It has offered an opportunity 

in materials development linked to Poisson’s ratio and auxeticity with systematic 

tools. As a flexible open-source program, Python program integrated with 

numerical modelling could provide an important tool for both research and 

development in auxetic materials, applications, and related areas. Python plug-in 

with graphical user interface (GUI) for modelling the auxetic structures in model 

building, simulation and data analysis will make the numerical modelling much 

more efficient. Such a program will also help test the effect of factors such as 

sample size, lattice patterns as well as establishing the effects of the key design or 

materials parameters. This is particularly relevant to the missing rib (MR) auxetic 

models and self-similar Hierarchical honeycombs. MR auxetic structures have 

attracted much research attention recently (Figure 1.1a). (Remennikov et al., 

2019; Koudelka et al., 2016; Gaspar et al., 2009; Adorna et al., 2018; Farrugia 

et al., 2018; Jiang et al., 2019; Mizzi et al., 2018; Mizzi et al., 2020). The 

structure was initially developed mainly for tension models (Gaspar and Ren 

et al 2005, but recently, many of the applications are intended for under in-

plane compression loads (Remennikov et al., 2019). It is important to 

establish a detailed understanding on the deformation process, in particular 

the contact between the edges and cell walls at high strains for normal missing 

rib and mixed structures. The edge-cell wall is a unique feature of missing rib 

models, which could significantly influence the mechanical behaviours and 

the stability of cell and samples. Mixed structures of regular auxetic structure 

or random structures could offer opportunities to further enhance the freedom 

in structures design. It is important to establish the detailed deformation 

mechanisms, properties, and stabilities. The hierarchical structures (Figure 1.1b) 

can undergo different deformation modes, resulting in different shapes and 

Poisson’s ratios at different compressive levels (Haghpanah et al., 2013).  This 

gives more options for materials design and development.  A parametric program 

to build the structures and simulate its deformation would help to establish its 

deformation mechanism and the effect of key dimensional parameters such as the 

order of hierarchical levels, and the ratio between the edge length of the hexagons 
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at different levels.  

 
 

(a) A typical 4-4 lattice pattern 

structure of missing rib 

structure. 

(b) Self-similar hierarchical structure. 

Figure 1.1 Typical missing rib (a) and self-similar hierarchical structures. 

 

The ground state properties of crystals (e.g., bulk modulus (K), Young’s 

modulus (E), shear modulus (G) and Poisson’s ratio) are important property 

data for design, materials selection and processing. Most of the crystals at 

small scales are anisotropy, their properties are different over different 

crystalline planes or direction. Some of these anisotropies can be established 

through experimental testing, but in some cases, it is difficult to establish the 

full distribution of the anisotropy. This is particularly complicated for the 

Poisson’ ratio. For example, the Young’s modulus can be defined based on 

one direction, but the way Poisson’s ratio is defined make it more to represent 

the anisotropy. In addition, recent work shows that many crystal structures 

can exhibit negative Poisson’s ratio in some directions (Lake, 2017). It is 

important to establish these features and include the information associated 

with anisotropy such a range of the properties and potential auxeticity for the 

data of material groups, which may provide useful information for 

understanding the properties and manufacturing processes. For example, for 

developing the data system for stainless steels, there are many precipitated 

phases such as carbides (TiC, NbC, VC) or nitrides (TiN) in stainless steels 

or welded structures, these precipitates are very small in size, some properties 

of which could not be physically tested. But their structural, properties and 

anisotropy data may not only affect the mechanical properties but also 

influence the grain structure formation in manufacturing and treatment 

process. For example, many carbides can act as the nucleation agent for 



  

 

26 

 

metallic phases (Ferrite, Austenite) or more complex carbides such as M(Fe, 

Cr)7C3 carbides. So, developing detailed data for these compounds is essential. 

First principle calculation is increasingly used in predicting crystal structure, 

electronic, physical, and elastic properties of materials. Materials Studio is a 

complete modelling and simulation environment to predict and understand 

the relationships of a material's atomic and molecular structure with its 

properties and behaviour.  First principle calculation is a method to calculate 

physical properties which based on the principle of quantum mechanics. 

Typical relevant data from first principles calculation covers elastic constants, 

physical properties, thermal properties, interface between different phases, 

electrochemical oxygen reduction reaction, corrosion, etc. (Sun et al., 2010; 

Cuppari et al., 2016; Wen et al., 2018). The computerised calculation process 

and subsequent large data analysis could generate a detailed source of 

materials data for establishing more detailed understanding of material 

parameters and their correlations. For analysis of mechanical properties, the 

prediction of the elastic properties involves the mathematical approximation 

combining the Voigt, Reuss and Hill bounds of bulk and shear moduli (Voigt, 

1928; Hill, 1929; Reuss, 1929). In addition, the data from first principle 

calculation and subsequent analysis also provide the means to estimate the 

properties such as Vickers hardness based on the ground state elastic 

parameters/properties (Chen et al., 2011; Tian et al., 2012). As materials 

informatics is increasingly being applied in engineering analyses and design 

of complex materials systems, data from physical modelling also offers new 

opportunities in further understanding of the correlation between different 

sets of properties with more details. In addition, by integrating first principle 

calculation with data analysis, it is possible to establish data for enhancing 

the visualization of the difference of properties in different crystal planes or 

directions, which could be a useful tool for training use. The data from both 

macro and molecular level are increasingly providing information through 

different scales. This is an important future direction.  
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1.2 Aims and Objectives 

This work aims to develop an effective framework integrating Python based 

programming with Finite element (FE) modelling for studying the 

deformation of auxetic structures and ab initio quantum mechanical 

calculations/First principle calculation (Materials Studio CASTEP) for 

establishing detailed data anisotropy of ground state structural and 

mechanical properties.  

  

The main objectives are: 

• To develop a parametric numerical modelling approach for simulating 

deformation of two key auxetic structures (missing rib and self-similar 

honeycombs) and establish the effects of key dimensional parameters.  

• To develop an effective approach to measure and monitor the dynamic cell 

area change during in-plane deformation and correlate the cell area changes 

with the key deformation stages of regular honeycomb and auxetic structures.  

• To evaluate the effects of mixed structures of missing rib models and random 

structures on the Poisson’s ratio and the stability of auxeticity  

• To establish an effective modelling approach for developing data and 

visualisation of the ground state structural, mechanical properties data and 

anisotropy in single crystal compound and establish the link between 

Poisson’s ratio and anisotropy parameters.   
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1.3 Outline of the thesis 

In Chapter 2, the key concepts associated with Poisson’s ratio and auxeticity 

and their effects on material behaviours in different loading conditions is 

reviewed together with research methods. Materials property data together 

with approaches for representing nonlinear mechanics and strain energy 

functions of materials in finite element modelling are presented. Main related 

research works and mechanisms of auxetic structures at different length scales 

are reviewed. The deformation of cellular structure under different loading 

conditions/orientation is reviewed with a particular focus on the main 

deformation stages and effective modelling approaches. Application and 

development of Python scripts in integrated structure/material modelling, key 

focuses, and different approaches are outlined. Recent works in modelling 

crystal structures and data of ground state properties are briefly reviewed, the 

potential use of the data in material research and development is highlighted. 

Challenges and significance of developing effective modelling at different 

scales and systematic data are reviewed and discussed.  

  

Chapter 3 outline the main research works including the parametric numerical 

modelling of missing rib and self-similar hierarchical structures, 3D printed 

samples and programs used in first principles calculation of the ground state 

properties. The focus of the parametric program development is explained 

with reference to key data in finite element modelling with Abaqus. The main 

process and functions of Materials studio CASTEP is introduced. The key 

feature of the Python program and its feature used in this work is described 

together with its use in image processing and area measurement.  

Chapter 4 presents the work on parametric modelling of the deformation of 

different auxetic structures under tension and compression loading using 

Abaqus. Part of the focus is on the development of Python based numerical 

models of typical auxetic structures. The models are used to investigate their 

deformation behaviours and establish the effect of key dimensional 

parameters on the deformation process, Poisson’s ratio and stability of 
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auxeticity. Python program is integrated with the FE models used to automate 

building models of different structures and to calculate/analyse key 

parameters and results. A range of auxetic structures has been developed with 

a particular focus on missing rib models in tension, missing rib and mixed 

cellular structures in compression, self-similar hierarchical structures in 

compression, calculation and tracking of the area changes for cellular 

structures under compression and tension loads. The discussion covered the 

key affecting factors on cellular materials deformation, the stability of 

Poisson’s ratios, and the design of the random structures with auxeticity.   

  

Chapter 5 summarizes the main work and key results on developing data for 

analysing the data and link between crystal structures and key ground state 

properties of crystals based first principle calculation with Materials studios. 

The main parts of a Graphical User Interface for processing the data and 

properties is briefly explained. Some typical results on key engineering 

carbides including simple cubic systems (TiC, VC and NbC) are presented 

together with an explanation of the mathematical operation to calculate the K, 

E, G, v and function for 3D surface constructions of the ground state 

parameters including anisotropic features. The structure of a Python 

Graphical User Interface developed for systematic calculation and 

visualization of the key structures, properties and anisotropy features is 

explained in detail. The structure and properties of a range of carbides were 

analysed with a particular focus on the link between the range of Poisson’s 

ratios and anisotropy parameters. In the discussion section, the key factor 

affecting the accuracy and efficiency of first principle calculation when 

dealing with data of different material system is outlines. The uncertainty in 

Poisson’s ratio and the link between property data is discussed. The Data for 

structures with Negative Poisson’s ratio is briefly presented and analysed 

including link between the atomic structure and some macro structure with 

auxetic behaviours. Some typical data when evaluating the use of materials 

studio in simulating other properties and processes is also briefly presented 

and discussed including surface energy, oxygen reduction reaction (ORR), 

structures with doping elements and the effect of temperatures. The overall 
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use of the system and future work in data development is also discussed.    

  

In Chapter 6, overall conclusions are given, and future work is recommended.  
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CHAPTER TWO 

BACKGROUND AND 

LITERATURE REVIEW 
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2.1 Introduction 

In this chapter, the key concept of Poisson's ratio and measurement method 

with different loading conditions are reviewed. The materials property data 

and Poisson's ratios of different materials are presented. A review of 

mechanisms of auxetic structures at different length scales is investigated.  

The deformation of the regular honeycomb structure in finite element 

modelling with different key deformation stages is reviewed. The different 

material models in finite element modelling are presented. The application 

and development of Python scripts in structure integrating and key focus 

outlined. The recent work on modelling at different scales and data 

development is presented. Challenges and significance of developing 

effective modelling at different scales and systematic data are reviewed and 

discussed. 
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2.2 Poisson’s ratio and measurements.  

Poisson’ ratio is an important material property. It is expressed by the negative 

value of the ratio between the transversal strain and axial strain when the 

material is being stretched (Figure 2.1). The Poisson’s ratio is determined by 

the ratio of the transverse strain and axial strain (loading direction) (Equations 

1-3).  

𝑣 = −
𝜖𝑥

𝜀𝑦
                                                            (2.1) 

𝜖𝑥 =
∆𝑥

𝑥0
                                                       (2.2) 

𝜖𝑦 =
∆𝑦

𝑦0
                                                             (2.3) 

Where v is Poisson ratio, 𝜀𝑥 is transverse strain (lateral direction) and 𝜀𝑦 is 

strain at the loading direction, ∆𝑥 is deformation in the transverse direction; 

𝑥0  is the original width (diameter for a round cross-section). ∆𝑦  is the 

deformation in the loading direction, 𝑦0 is the original length of the sample 

in the loading direction.  

 
 

(a) Tension (b) Compression 

 

Figure 2.1 The deformation of a sample under tension or compression. 
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For an isotropic linear elastic, this leads to the following notation of Hooke’s 

law, 

                               (2.4) 

Where E is the Young’s Modulus, v is the Poisson’s ratio and G is the shear 

modulus. 

There are many different testing methods used to measure the Poisson’s ratios 

such as contact-extensometers, non-video extensometers, video imaging 

correlation, full field strain correlation (Kumpenza et al., 2018). Figure 2.2a 

shows a typical contact extensometer, in which the deformation of the sample 

is monitored by the relative movement between two pins/edges in a tight 

contact with the sample surface (also called a clip-on). Both the axial 

displacement (loading direction) and lateral deformation of the sample is 

measured, then the axial and lateral strain is determined and used to measure 

the Poisson’s ratio following equations (1-3). Figure 2.2b shows the set-up of 

typical non-contact methods with laser extensometer and video extensometer 

(Kumpenza et al., 2018). A video extensometer is a non-contact measurement 

device, in which the relative displacement between the two markers are 

monitored. It is a convenient method where it is impractical to use a feeler 

arm or contact extensometer. The monitoring of the sample deformation can 

be performed based on laser, which can perform measurements of the 

displacement or strain on materials with clean surface. In the test, the 

specimen surface is normally illuminated with a laser and the reflections from 

the specimen surface are then received by a CCD (charge-coupled device) 

camera. One significant advantage of a laser extensometer lies in the fact that 

markers to the specimen is not completely necessary, this makes the testing 

much easier. Figure 2.2c is a typical example of full field mapping method 

(Wen et al., 2019). In this work, fluorescent digital image correlation (FDIC) 
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is used to measure the in-plane deformation of a film specimen. The process 

works by tracking speckle pattern in the reference and the deformed images 

during the loading process. This normally requires a computer algorithm to 

match the points based on the pixel/grey scales (Hu et al., 2017). The digital 

image correlation technique allows measurement of the full-field 

displacements with sub-pixel accuracy. A precondition is that speckle patterns 

are formed using Fluorescent particles to track movement of material points 

in the film under deformation.  

 

 
 

(a) Contact extensometer 
https://www.epsilontech.com/product

s/transverse-and-diametral-

extensometer-model-3575/ 

(b)  Non-contact measurement. The 

laser extensometry and video 

extensometry system. (Kumpenza et 

al., 2018) 
 

  

(c) Full field mapping method 

(Wen et al., 2019) 

(d) Marker position for testing the 

in-plane Poisson’s ratio. (Gaspar and 

Ren et al., 2005) 

Figure 2.2 Different approaches of testing and analysis of Poisson’s ratio. 

 

https://www.epsilontech.com/products/transverse-and-diametral-extensometer-model-3575/
https://www.epsilontech.com/products/transverse-and-diametral-extensometer-model-3575/
https://www.epsilontech.com/products/transverse-and-diametral-extensometer-model-3575/
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For the video-based method, normally, special reflective markers or markers 

made of pens that distinguishes the marker from the specimen base colour 

and texture in the captured image are required. The distances between these 

markers are constantly tracked in the captured video in the captured image, 

while the specimen under test is stretched or compressed. Calculation can be 

done easily with the photo if an object (such as a ruler/scale or a feature with 

known dimensions) is in the photo taken in similar conditions, at both axial 

and lateral direction. For Poisson’s ratio measurement, the position of the 

markers could affect the measurement results directly. For 2D material such 

as a sheet or mesh or honeycomb, the marks could be placed close to the edge 

of the sample rather than using the markers on the edge to avoid the boundary 

effect. A typical setting used by Gaspar and Ren et al (2005) shown in Figure 

2.2d is widely used. The set-up was used to measure the Poisson’s ratio of 

several thin auxetic honeycombs with positive or negative Poisson’s ratios. In 

the test, the samples (e.g., honeycomb, meshes, thin sheet) were clamped at 

both ends and subjected to a strain along one axis, three pairs of markers were 

used in both longitudinal and lateral directions, located approximately at 1/4; 

1/2 and 3/4 of the length and width. The sample under strain was imaged and 

digitized. The changes of the separation between the markers in the two 

directions (longitudinal and lateral) were measured from the digitized images 

and the axial strains were calculated. With the development of imaging 

technologies, this approach is becoming very popular. The image can be done 

with CCD, optical cameras or other imaging equipment. Increasingly, mobile 

phones are being used to capture images in materials testing (Chen et al., 2017; 

Yelleswarapu et al., 2019). In this approach, smart phones are used to capture 

images in a much more flexible way, then the image is correlated by frame by 

frame. For example, in the work by Chen et al (2017), the contour of a pendent 

droplet is captured by a smart phone, then an algorithm is used to calculate 

the contour and calculate the surface tension. This is particularly convenient 

for materials such as foams or materials under complex/non homogenous in-

plane or out-of-plane deformations. For cellular materials, the regular 

connection points could naturally form points for measurement. The 

development of an imaging analysis program is also relevant to the Poisson’ 
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ratio measurement. Instead of expensive specialized image analysis software, 

many other image analysis methods (such as ImageJ (Sheffield, 2007), 

Potrace (Selinger, 2003) can be used to either measure the deformation from 

images under different strains, and/or tracking the distance between markers 

on the sample being tested. These will provide more data for materials testing 

and analysis of Poisson’s ratio, the measurement of which is more 

complicated than other materials properties such as Young’s Modulus. The 

Young’s Modulus can be measured by recording the force and displacement, 

then converting the force into stress and displacement into strain.  
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2.3 Materials property data and Poisson’s ratios 

of different materials.  

Poisson’s ratio is one of the most important material parameters, and it 

influences the mechanics of materials and many other functional properties 

(Evans, 1991). This is evident in the key mechanic formula when the material 

is under both well-defined loading conditions (compression, tension, and 

shear) and non-standard loading conditions (such as indentation, bending etc.). 

When a material is under plane stress conditions (very thin sample), the stress 

in the thickness direction is zero. The shear modulus G, which is the 

indication of the resistance of the material to shear loading, is related to 

Young’s modulus (E) and the Poisson’s ratio by the following equation:  

G =
E

2(1+𝑣)
                                                          (2.5） 

For a free block of the material that is in stable equilibrium, the elastic 

modulus E and shear modulus G must be positive, therefore the Poisson’s 

ratio must be equal to or larger than > – 1. (Lakes and Witt, 2002).  The bulk 

modulus, the relative change in the volume of a body due to a compression or 

tensile stress acting uniformly over its surface, is linked to the Poisson’s ratio 

and Young’s modulus of the substance by  

K =
E

3(1−2𝑣)
                                                        (2.6） 

As K is a physical property, the bulk modulus K has to be a positive value, so 

0<v<0.5 (Lake and Witt, 2002). So, for a material to be stable, the rule is -1< 

v <0.5. 

The Poisson’s ratio also affects the deformation when the material is under 

complex loading. For example, for localized loading such as indentation, 

where an indenter is pressed into a material, the effect of the Poisson’s’ ratio 

is dependent on the indenter shapes. The analytical solution (Equation 2.7) 

for flat-ended cylindrical indentation on a homogeneous material is (Aw et al., 

2015). 
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P =
2bE∆

(1−𝑣2)
                                                    (2.7)   

Where ‘P’ is the load on the indenter, ‘b’ is the radius of the cylindrical 

indenter; ‘E’ is the Young’s Modulus of the matrix. ‘v’ is the Poisson’s ratio 

of the matrix. ‘Δ’ is the displacement of the indenter. For indentation of a thin 

membrane, the analytical solution force-displacement is represented by Aw et 

al (2015).  

 ∆= 𝑓(𝑣)𝑎(
𝑝

𝐸𝑎𝑡
)
1

3                                             (2.8)     

   

In equation (2.8), ‘a’ is the dimension of the chamber supporting a thin 

membrane; p is the load on the indenter and t is the sample thickness. These 

equations show the Poisson’s ratio has a complex influence on the material 

behaviour. Other works also show that the Poisson’s ratio could influence the 

materials deformation, for example thin sheet embedded in an elastic matrix 

(Li et al, 2017), liquid droplet impact onto soft materials (Al-Badani, 2020).  

For material properties such as Young’s Modulus or shear modulus, their 

value is always positive. But the values for Poisson’s ratio could be positive 

or negative. As shown in Figure 2.3, for a positive Poisson’s ratio, the material 

shrinks upon being stretched, and gets expand when being compressed, while 

with a negative Poisson’s ratio materials, the materials expand when being 

stretched. The material shrinks when being pressed. The finding of negative 

Poisson’s ratio material (also termed Auxetic materials, which is derived from 

the Greek word αὐξητικός (auxetikos) which means "that which tends to 

increase") has its root in the word αὔξησις, or auxesis, meaning "increase" 

(noun) (Evans and Alderson, 2000). Auxetic materials are attracting 

significant attention from researchers from different fields (Gaspar et al., 

2005; Mousanezhad et al., 2015). Apart from its unique mechanical 

behaviours, Poisson’s ratio can also affect many functional properties, for 

example, the wave propagation (Ungureanu et al., 2015). Ungureanu reported 

that wave propagation through a class of mechanical metamaterials opens 

unprecedented avenues in seismic wave protection based on spectral 

properties of auxetic-like metamaterials. The elastic parameters of these 
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metamaterials like the bulk and shear moduli, the mass density, and even the 

Poisson’s ratio, can exhibit negative values. Numerical data showed that there 

is a big difference in behaviour between the propagation of seismic waves 

through a homogeneous isotropic elastic medium (concrete) and an auxetic-

like metamaterial plate. This novel class of seismic metamaterials opens band 

gaps at frequencies compatible with seismic waves when they are designed 

appropriately, what makes them interesting candidates for seismic isolation 

structures. 

 
 

(a) Deformation of a Non-auxetic 

material in tension. 

(b) Deformation of an auxetic material 

in tension. 

Figure 2.3 Schematics showing the different behaviour of Non-auxetic and 

Auxetic Materials in tension and compression. 

 

Figure 2.4 shows the Poisson’s ratio of different material groups, its effect on 

bulk and shear moduli. The data shows that most materials have a positive 

Poisson’s ratio. For example, metals (e.g., steel, copper, aluminum) have a 

Poisson’s ratio between 0.2-0.3; ceramics have a Poisson’s ratio range 0.1-

0.2, while the Poisson’s ratio for polymers varies from 0.3 (for engineering 

plastics) to 0.5 for rubber or gels (representing in-compressibility, i.e., no 

volume change when deformed). Concrete and bone have a relatively low 

Poisson’s ratio. It has been known for a long time that Cork has a very low 

Poisson’s ratio, which makes it ideal for application as a wine bottle stopper, 

being easier to put in and out due to the low lateral deformation. Some 
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representative groups with auxetic behaviours relevant to engineering include 

carbon nano tubes sheets (Scarpa et al., 2010; Baimova et al., 2017), re-

entrant foams (Spagnoli et al., 2015; Duncan et al., 2018), laminates (Lim et 

al., 2009; Milton et al., 1992), and colloidal crystals (Tretiakov et al., 2014). 

The honeycomb quoted in the figure 2.4 is a designed honeycomb with a low 

in-plane Poisson’s ratio (Grima et al., 2010). Regular honeycomb (with a cell 

wall of 120 degree) has a Poisson’s ratio close to 1 (Hoffman, 1958; Papka 

and Kyriakiudes, 1994). The figure also shows that the Poisson’s ratio is 

loosely correlated to the ratio between the shear modulus (G) and the bulk 

modulus (K) but follows a different trend at different G/K ranges.  

  

  

Figure 2.4 Poisson’s ratio of different material groups and its link with bulk and 

shear modulus. (Greaves et al., 2013) 
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2.4 Mechanisms of auxetic structures at different 

length scales.  

The factors influencing the Poisson’s ratio of a material have been the topics 

of intensive research and development, in which many different investigative 

approaches were being used including theoretical, experimental and more 

recently computational, evident from a recent review and several other review 

papers (Greaves et al, 2012; Lakes, 2017, Duncan et al, 2018). Analytical 

works involve mechanical analysis of the deformation, movement/rotation of 

beam or cell walls under simplified loading conditions (Gaspar and Ren, 2005; 

Lake, 2017). The computation works involve both numerical modelling and 

molecular simulation (Yao et al., 2016; Mizzi et al., 2018). Many factors may 

affect the Poisson’s ratio and the auxeticity, among which geometry at 

different scales are the main factors (Selvadurai, 2009; Mitschke et al., 2016). 

The research and development work has established many different 

mechanisms which may lead to auxetic behaviours, which has opened up more 

opportunities to develop negative Poisson’s ratio materials at different length scales 

(Riccardi and Montanari, 2004; Selvadurai, 2009; Shariatmadari, English and 

Rothwell, 2010; Sissler et al., 2013; Wafai et al., 2015; Yu et al., 2008). Table 

2.1 lists some selected structures with auxetic behaviours.  In the re-entrant 

structure (Table 2.1a), one of the points for a regular hexagonal auxetic is pointed 

inwards. When a tensile force is applied in the horizontal direction, the ribs move 

outward and the structure expands in a vertical direction giving rise to auxetic 

behaviour. In other words, in a Re-entrant honeycomb cell, bendable ligaments 

give rise to a negative Poisson's ratio. The extent of the auxetic behaviour depends 

on the length of horizontal rib, length of inclined rib, thickness and depth of ribs, 

and angle of inclined rib with the vertical axis. As shown in the chiral structure 

(Table 2.1b), the six ligaments are attached tangentially to each rigid ring, when a 

load is applied in one direction, it causes the rotation of rings which gives rise to 

auxetic behaviour in the transverse direction. Chiral honeycombs display the 

auxetic effect for both in-plane and bending loads, which is achieved by arranging 

the cylinders on the base of a re-entrant structure (Rad et al., 2014). In the missing 
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rib model (Table 2.1c), the model is based on a network of ribs with bi-axial 

symmetry, and the “auxetic” form is a similar network but with a proportion of cell 

ribs removed (Smith et al., 2000). The auxetic behaviour is obtained by selective 

removal of ribs from hexagonal structure without changes in the internal angles. 

The Hierarchical honeycomb structure (Table 2.1d) involves replacing the varieties 

of a regular hexagonal lattice with smaller hexagons. This can be repeated to 

different levels by repeating the operation of replacing the varieties and forming a 

hierarchy of different orders (e.g., 1st, 2nd, 3rd). The origin of this behaviour is 

linked to the added hexagonal features within the hierarchical structure which 

make the instabilities occur at smaller compressive strains compared to the original 

non-hierarchical structure leading to auxetic behaviour (Mousanezhad et al., 

2015). The rotating rigid/semi-rigid units (Table 2.1e) are formed by connecting 

straight ligaments (ribs) to central nodes which may be circles or rectangles or 

other geometrical forms (Grima et al., 2012). Table 2.1f is a buckling of 

connecting model. There are also other models which have been covered by 

several reviews (Duncan et al., 2019; Lake, 2017) 

Table 2.1 Typical mechanisms of structure with auxetic behaviours.  

Mechanism/ 

principles 

Typical Structure Mechanism/ 

principles 

Typical Structure 

(a)Re-entrant 

structures 

(Gibson et al., 

1982) 

 

(b)Chiral 

structures 

(Grima et al., 

2008b)  

(c)Missing 

Rib 

(Gaspar et al., 

2005) 

 

(d)Hierarchical 

honeycomb  

(Mousanezhad 

et al., 2015) 

 

(e)Rotating 

units 

(Grima et al., 

2006) 

 (f)Buckling of 

connecting   

(Cabras and 

Brun, 2014) 
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The negative Poisson’s ratio could change the material behaviour in different 

loading conditions. Their unique properties opened a window towards a wide 

range of applications such as the design of novel fasteners, biomedical 

applications, energy-absorbing devices, acoustic dampers, membrane filters 

with variable permeability, personal protective equipment (e.g. shin pad, etc.) 

and smart implant (Sanami et al, 2014; Darwish and Aslam., 2014; 

Mousanezhad et al., 2015; Aw et al., 2015; Lake, 2017; Duncan et al., 2018). 

From the natural definition of the material, the material expands under tension, 

this could lead to applications such as novel bandage, seat belt (Sanami et al., 

2014). For application such as novel bandage or seat belt, as the materials are 

getting wider rather than thinner under tension, this could avoid the loss of 

shape and maintain uniform pressure. Under indentation the material with a 

negative Poisson’s ratio tends to move in rather than move away from under 

the indenter (Figure 2.5 a &b). Negative Poisson’s ratio also affects the 

doming of structure, which is relevant to applications such as helmet (Mir et 

al., 2014; Lake, 2017; Duncan et al., 2018). Doming is caused by axial (due 

to loading) and lateral (due to Poisson’s ratio) extension on the upper surface 

combined with equivalent contractions on the lower surface. Negative 

Poisson’s ratio materials will contract laterally on the upper surface and 

expand laterally on the lower surface. The auxetic materials have a natural 

tendency in bending to form dome-shaped doubly curved (synclastic) 

surfaces (in Figure 2.5c&d), unlike conventional materials which tend to form 

saddle-shaped surfaces (Mir et al., 2014). Figure 2.5 (e&f) shows the sample 

used in application of auxetic in filtering applications. Figure 2.5 (e) is a 

conventional structure design, Figure 2.5 (f) is an auxetic structure. The work 

used small-sized glass beads initially resting on the membrane then stretched 

the sample and observed the opening of the cells (Alderson et al., 2000) The 

work showed that the auxetic sample opens more to allow the beads to pass 

through the membranes. The work also modelled the pore-opening properties 

of both types of membranes, and the observed behaviour for the auxetic 

membrane is consistent with the model. For more complex filtering 

applications, the filter needs to release particles/components with selected 

dimensions because of the enlargement of its unit cells when swollen by a 
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liquid. Conversely, auxetic porous filters could absorb liquids at higher 

volume than conventional porous materials (Scarpa et al., 2020).  

 

 

 

 

(a) Deformation of a non-auxetic 

material under the indentation of a 

spherical indenter. (Sanami et al., 

2014) 

(b) Deformation of an auxetic material 

under the indentation of a spherical 

indenter. (Sanami et al., 2014) 

  

(c) Underformed FE modelling of 

Chiral Arrowhead Honeycomb In 

bending (Sanami et al., 2014).  

(d) Deformed FE modelling of Chiral 

Arrowhead Honeycomb in bending 

(Sanami et al., 2014).  

  

(e) Polymeric conventional 

honeycomb membrane. (Alderson et 

al., 2000) 

(f) Polymeric re-entrant honeycomb 

membrane. (Alderson et al., 2000) 

Figure 2.5 Deformation of auxetic materials under different loading 

conditions and applications.  
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Different forms of auxetic materials such as Polymer foams, Honeycomb, 

Tubes, Fibres, Shell/Membranes and spheres can be produced (Liu et al, 2010; 

Mir et al., 2014; Lake, 2017; Ren et al., 2018).  These developments in 

research methods and techniques, wide ranges of mechanism discovery and 

establishment, manufacturing methods (both conventional and 3D printing) 

have greatly enhanced the understanding of Poisson’s ratio, auxeticity. and 

potential applications. The work on auxeticity has also opened up many 

design ideas and brought new direction and requirements for modelling and 

development of data systems of which previously Poisson’s ratio was not a 

main focus. One major area is in cellular structures as an active development 

area both in design and applications. The structure, deformation mechanic and 

main Auxetics structures are to be briefly introduced in the next section in 

comparison with research into conventional honeycomb structures with a 

particular focus on structure and their effect on the deformation process.  
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2.5 Regular honeycomb structure, FE modelling 

and key deformation stages. 

The properties of a cellular structure are controlled by the structure, material 

and manufacturing process. The most common one is the regular honeycomb 

structure, which has a basic cell of hexagonal shape with 120-degree wall 

angle, normally the length of the beam is much bigger than the thickness of 

the shell. Honeycomb is manufactured via the expansion process and the 

corrugation process as shown in Figure 2.6 (Tian, 2012; Kaman et al., 2010; 

Rebhi et al., 2016). The in-plane and out of plane deformation of honeycomb 

has been subject of many studies. (Papka and Kyriakides, 1994; Wilbert et al., 

2011; Sorohan et al., 2016; Ajdari et al., 2011). One particular focus of these 

works is the deformation stages of the cellular structures. Wilbert et al (2011) 

studied a lateral compressive response of hexagonal honeycomb panels from 

the initial elastic regime to a fully crushed state. Figure 2.7a shows the mesh 

used and loading conditions. The work used shell elements and the load is 

applied from the top (out of plane direction). The work used the nonlinear FE 

code ABAQUS using S4 shell elements, which is a fully integrated 4-node 

element that allows for finite membrane strains. As shown in Figure 2.7b the 

nonlinear deformation is associated with initial elastic buckling, then inelastic 

collapse leads to the localization occurring at a higher load. It is also reported 

by the authors that imperfections also influence the collapse stress. As shown 

in the figure 2.7, an imperfection reduced the stress to reach the collapse stage. 

Figure 2.7c&d shows the full deformation stages. As shown in Figure 2.7c, 

the numerical model is able to predict the trend of the full deformation process 

and all the main stages as indicated by the numbers (0-9). As shown in Figure 

2.7d, the crushing involves contact between folds of adjacent cell walls as 

well as self-contact. In the FE model, contact was assigned for both sides of 

the cell walls (Abaqus ‘‘all exterior’’ parameter). This process ensures that 

contact occurs at the actual surface of the walls since shell elements was used. 

The calculated crushing response is shown to resemble measured deformation 

reasonably well and the average crushing stress can be captured with a 

https://www.researchgate.net/scientific-contributions/2009589490_Mete_Onur_Kaman
https://www.researchgate.net/scientific-contributions/2100138596_Lamine_Rebhi


  

 

48 

 

reasonable accuracy (Wilbert et al, 2011).   

   

Figure 2.6 Manufacturing processes of hexagonal cell type honeycomb core 

(Tian., 2012). 

  

(a) Mesh of a single unit of aluminum 

honeycomb. 

(b) Stress-strain data for aluminum 

honeycomb with imperfect and lateral 

deformation. 

 

 

 
 

(c)Comparison of a crushing response 

from unit cell calculation and 

experimental one. 

(d) Deformation of the unit cell 

honeycomb at different stages during the 

crushing process. 

Figure 2.7 FE models and typical results of a laterally loaded honeycomb. (Wilbert 

et al., 2011) 
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Papka and Kyriakides (1994) presented a systematic study on In-plane 

compressive response and crushing of honeycomb combining experiment and 

mechanical analysis. A typical result comparing the analysis and experimental 

data is shown in Figure 2.8a. In the experiments, an in-plane compression was 

applied on an aluminium (AI-5052-H39) honeycomb specimen along the 

direction of the members with double wall thickness (as the corrugated sheets 

are bonded together to form corrugated blocks in the manufacturing process 

as shown in Figure 2.6). In the work, a test specimen with a 9-6 lattice was 

compressed from a displacement controlled, quasi-static experiment ("strain" 

rate of 2.6 x 10-3 s-1). The specimen has a periodic microstructure, as shown 

in the figure, the effective stress-strain data exhibits a relatively sharp initial 

rise to a load maximum, then followed by a load plateau, then a sharp rise in 

load is followed. The stress is calculated by reactive force divided by the 

cross-sectional area perpendicular to the loading direction. The strain is 

displacement divided by the original height. As shown in Figure 2.8b, the 

material deforms essentially in a uniform fashion (stable) for the first part of 

stress-strain curve (Stage (1). Then the deformation starts to become highly 

confined after the load maximum, it localizes to one row of cells, the cells 

collapse (accompanied by dropping overall load) until the walls of each cell 

come into contact. Once the cell walls are in contact, the deformation is spread 

to the adjacent/next rows. As it is done with displacement-control, this way 

of deformation (i.e., row by row collapse) continued, there are relatively 

limited changes in the load/stress. After the whole specimen is collapsed, all 

the cells are in contact (densification), the load starts to increase more 

stiffly/sharply. These simulated key stages showed a reasonable agreement 

with experiment images.  
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Figure 2.8 Comparison of measured and calculated force-displacement 

responses of a honey-comb specimen and calculated collapse configuration. 

(Papka and  Kyriakides, 1994) 

 

The loading of hexagonal honeycomb has also been studied by experimental 

and numerical modelling. (Ajdari et al., 2011; Baumgart et al., 2018). Ajdari 

et al (2011) used dynamic explicit solver with general frictionless contact 

available in ABAQUS to simulate the in-plane dynamic response of the 

honeycombs under impact and crushing. In the work, the general contact 

option available in ABAQUS was used, the geometrical model was extruded 

normal to its cross section to create three dimensional models of honeycomb. 

The model was meshed with 4-node shell elements and plane strain condition 

was imposed on the model by constraining the out of plane degrees of 



  

 

51 

 

freedom along the edges of the cell walls. A mesh sensitivity analysis was 

carried out to ensure that the results are not sensitive to the mesh size. The 

work tested many different loading rates and established a deformation map 

for regular honeycomb structures subjected to dynamic crushing depending 

on the crushing rate and honeycomb relative density of the structure. A recent 

work (Habib et al., 2017) studied the in-plane energy absorption of 3D printed 

polymeric honeycombs. The material properties of Nylon 12 were used in 

finite element analysis (FEA) simulations. The deformation of 3D printed 

plastic samples was established, and the typical deformation mode and data 

are shown in Figure 2.9. Figure2.9a shows the deformation stages of FEA 

honeycomb structure under quasi-static compression. Figure 2.9b shows the 

effect of the wall/shell thickness on the deformation and stress level. The 

honeycomb structures become unstable at around 10% strain, and reach 

densification at around 70%. The overall stress-strain curve shape is similar, 

but the stress is higher for a thicker shell. The critical strain for reaching the 

densification stage for a thinner shell is slightly higher. In general, the FE 

modelling is able to predict the force-displacement data with shell element.  

Many papers have also studied different shapes and mixed structures such as 

triangle, square, diamond, (Ren et al., 2010; Habib et al., 2017; Langrand et 

al., 2017). For example, in a recent work, Baumgart et al (2018) studied the 

effect of honeycomb cell geometry on compressive properties through Finite 

element analysis and experimental verification. In the work, FE shell mode 

was used to establish the deformation of Kagome lattices at two different 

loading directions and square lattice. A typical set of data is shown in Figure 

2.10. The Kagome lattices are described as intersecting webs of corner-

sharing triangles or an ordered sequence of hexagons and triangles. As shown 

in Figure 2.10a, the pattern of deformation is clearly different. The Kagome 

lattice is much more stable than the square lattice, the square lattice has 

clearly lost its shape stability. The FE modelling is able to establish the 

difference in the deformation stages and pattern as well as force-displacement 

data between these structures. These works on modelling and experiments 

have laid a good foundation for modelling auxetic and mixed structures.    
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(a) Sequential screen shots of a honeycomb specimen of t = 0.450 mm 

under quasi-static compression simulation in direction X1 using 

ABAQUS/Explicit 

  

(b) Comparing experimental and numerical stress–strain diagrams when 

the honeycombs compressed in X1 direction 

Figure 2.9 FE modelling of honeycomb with different dimensions. 

(Habib et al., 2017). 
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(a) Different structure and Deformation of lattice at different strains. 

 
(b) Force displacement data of a Kagome (at two different orientations) 

and Square lattice. 

Figure 2.10 Typical data showing the effect of honeycomb cell 

geometry on compressive response of Kagome (at two different 

orientations) and Square lattice. (Aumgart et al., 2018) 
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2.6 Experimental and numerical research in 

auxetic structures.  

The deformation of porous materials under a compression load over large 

strains is more complex than simple uniaxial tension loading. The 

deformation of different auxetic structures under compression has been 

increasingly studied (Bertoldi, 2018; Yang et al., 2018; Cui et al., 2018; Dong 

et al., 2019; Hedayati et al., 2018; Wang et al., 2018; Remennikov et al., 2019; 

Hanifpour et al., 2017; Tanaka et al., 2016; Meena and Singamneni, 2019) 

such as negative Poisson’s convex-concave foams (Cui et al., 2018); re-

entrant unit cell (Dong et al., 2019; Hedayati et al., 2018; Wang et al., 2018; 

Remennikov et al., 2019); disordered auxetic metamaterials (Hanifpour et al., 

2017); cellular structures (Tanaka et al., 2016); arrowhead structures (Yang et 

al., 2018) and missing rib auxetic structures (Meena and Singamneni, 2019; 

Smith et al., 2000; Gaspar et al., 2003; Adorna et al., 2018; Farrugia et al., 

2018; Jiang et al., 2019; Koudelka et al., 2016; Remennikov et al., 2019). 

Yang et al (2018) studied the behaviour of auxetic structures under 

compression using both static model and dynamic model. The results showed 

that auxetic materials could be effective in reducing the shock forces. The 

properties such as stiffness, Poisson’s ratio, and efficiency in shock 

absorption were found to be dependent on the structure and material 

combination. Dong et al (2019) studied the compressive mechanical 

properties of the metallic auxetic re-entrant honeycomb. The work found that 

the modelling results are affected by the number of cells used in the finite 

element model. Wang et al (2018) compared the characterization of composite 

three-dimensional re-entrant auxetic cellular structures made from carbon 

fibre reinforced polymer and single materials. The composite 3D re-entrant 

auxetic structure showed the potential to significantly increase the specific 

stiffness of the structure. Remennikov et al (2019) studied the quasi-static 

compression and drop hammer impact tests of sandwich panel design with re-

entrant honeycomb design. The results suggest that sandwich panels with a 

re-entrant honeycomb core have a strong potential for lightweight impact-
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resistant protective systems. Apart from research on single mechanism 

structures, several works have been reported exploring the use of mixed 

structures which combined auxetics materials with different mechanisms 

(Cabras and Brun, 2014; Fozdar et al., 2011; Hedayati et al., 2018; Hu et al., 

2019; Meena and Singamneni, 2019; Nika and Constantinescu, 2018; Strek 

et al., 2017; Yang et al., 2015). All these have opened up opportunities in 

design materials with auxetic structures.  

In all these cases, the use of auxetic structures showed significant potential 

benefits on the functional performances such as improved impact energy, 

resistance, and acoustic properties (Lakes, 2017; Ren et al., 2018). The work 

also shows that the influence of auxeticity could be highly structure and 

materials dependent. Factors such as sample size may directly affect the 

material deformation and stability of the key properties (e.g. auxeticity) for 

some structures. This is an important issue for design and manufacture of 

auxetics structures or mixed-structure systems (Jiang et al., 2019). 

Furthermore, if the auxeticity effect is induced by instability in porous 

materials and lattice structures (Babaee et al., 2013; Shim et al., 2013; Duncan 

et al., 2018; Zhang et al., 2015), the instability at cell level may cause loss of 

symmetric structures at a macroscale, thus directly influencing the shape of 

deformation process of the cell and the samples. Missing rib auxetic structure 

is one of the most active research topics. (Smith et al., 2000; Gaspar, Smith 

and Evans, 2003; Gaspar et al., 2015; Adorna et al., 2018; Farrugia et al., 2018; 

Jiang et al., 2019; Koudelka et al., 2016; Remennikov et al., 2019). The basic 

structure (as shown in the previous section (Table 2.1 (c)), consists of both 

vertical and horizontal columns that potentially could lead to auxetic 

behaviours pending on the angles and beam lengths (Gaspar et al., 2005). The 

original model developed has been expanded to some new structures. Soman 

and Chen (2013) discussed the use of missing rib structure in projection 

printing of three-dimensional tissue scaffolds with tunable Poisson's ratio. In 

the work by Koudelka et al (2016), the compressive properties of missing rib 

structure made by acrylic material were studied. Remennikov et al (2019) 

reported a recent work on using 3D printed missing rib structures for 

protective systems. Farrugia et al (2018) studied the different deformation 
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mechanisms leading to auxetic behaviour in missing rib structures. A 

parametric analysis using finite element analysis revealed that two 

mechanisms can act, one involving the bending of the ligament and the other 

the bending of the crossed ligaments. The results indicate that the former leads 

to a more negative Poisson's ratio than the latter. Zhu et al (2020) reported a 

recent work on enhanced hexa-missing rib auxetics for achieving targeted 

constant negative Poisson’s ratio and in-plane isotropy at finite deformation. 

These works show that it is important to establish a detailed understanding on 

the deformation process, in particular the contact between the edges and cell 

walls at high strains for both normal missing rib models and mixed structures, 

which are relevant to the mechanical behaviours and the stability of samples. 

Mixed structures (missing rib model with different angles or mixtures of 

missing rib model with other structures) could offer opportunities to further 

enhance the freedom in structures design.  
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2.7 Different materials models in finite element 

modelling   

Apart from an effective modelling method, the properties of the solid material 

in building the foam or cellular material are also important for understanding 

the performance of cellular structures. This includes density, thermal 

conductivity, stiffness, yielding. The materials can have different materials 

models to describe their stress strain curves, which can influence the linear 

and nonlinear behaviour of cellular structure (such as the initial linear part, 

the buckling, instability, and the densification process as shown in Figure 2.7, 

2.8, 2.9). Many materials have been used such as steel, stainless, Titanium, 

Plastic, Rubber (Duncan et al., 2018; Lekesiz et al., 2017; Kolken and 

Zadpoor, 2017) in developing cellular structures, these materials need to be 

simulated in different material models (Abaqus Manual Version 2017). 

Figure 2.11 shows schematically the main type of stress strain relationships 

of materials, this is relevant to modelling the solid of the beam or wall 

materials used in building the cellular. Figure 2.11a is linear elastic, Figure 

2.11b is elastic plastic, Figure 2.11c is hyperelastic or hyper foam. As shown 

in Figure 2.11a, for an elastic material, the stress is proportional to the strain 

and the strain is recoverable if the stress is removed, i.e., the specimen returns 

to its original dimensions. This occurs in the initial linear region of the stress-

strain curve of plastics, rubber, flexible foams (open cell foam). The linear 

material behaviours can be represented by the slope of the stress-strain (i.e., 

E) for an isotropic material. But for an anisotropic material, the stiffness may 

be affected by the Young’s modulus in different directions.  

Figure 2.11b shows a typical stress-strain curve of elastic–plastic material 

(such as steel and plastics), Nylon. The engineering stress and strain, denoted 

as 𝜎𝑒 and 𝜀𝑒  respectively, are determined from the measured load and 

material deformation against the original specimen cross-sectional area. In 

the elastic portion of the curve, many materials obey Hooke’s law; stress is 

proportional to strain with the constant of proportionality being the modulus 

of elasticity or Young’s modulus is defined as the ratio of the stress over the 
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strain.  

 
 

 

(a)Linear Elastic (b)Elastic Plastic (c) hyperelastic.  

  

Figure 2.11 Different stress strain curves for linear elastic, elastic-plastic 

materials (metal and plastics) and hyperelastic material behaviours. 

 

The plastic behaviour is normally described by the three-parameter power-

hardening rule commonly used as: 

𝜎 = 𝜎𝑦 + 𝐾𝜖𝑛                                                   (2.10) 

where ‘𝜎𝑦 ’ represents the yield stress, ‘𝜀 ’ represents the plastic strain, ‘K’ 

represents the strength coefficient and ‘n’ represents the strain hardening 

exponent. In Abaqus, the input of plastic properties is the plastic stress and 

strain data in a tabular form (Abaqus 2017 User’s Manual).   

For hyperelastic behaviour as shown in Figure 2.11(c), the initial part is close 

to a linear relationship, then the stress reaches the plateau stage showing 

limited change with increasing strain. Many different function/materials 

models have been developed to describe different materials (Abaqus 2017 

User’s Manual). Mooney-Rivlin model in terms of strain energy can be used 

for rubber. Equation 2.11 is the initial proposed linear form of strain energy 

functions as: 

𝑊 = 𝐶1(𝐶1 − 3) + 𝐶2(𝐶2 − 3)                              (2.11)  

In the equation, C1 and C2 are constants I1 and I2 are the first and the second 

invariant of the unimodular component of the left Cauchy–Green deformation 

tensor: 

𝐼1 = 𝐽−2/3𝐼1; 𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2; 𝐽 = det⁡(𝐹)          (2.12)                                 

𝐼2 = 𝐽−4/3𝐼2; 𝐼2 = 𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆3
2𝜆1

2                (2.13)                                  
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The Mooney-Rivlin material was originally developed for rubber, but it is 

applicable to many incompressible rubber-like materials. This equation gives 

a marginally better fit to some of the experimental data of rubber than pure 

elastic models with suitable choices of C1 and C2.  

Neo-Hookean form model  

The form of the neo-Hookean strain energy potential is given by 

𝑈 = 𝐶10(𝐼1 − 3) +
1

𝐷1
(𝐽𝑒𝑙 − 1)2                            (2.14)                                                        

where 𝐶10 and⁡𝐷1 are temperature-dependent material parameters, 𝐼1 is the 

first deviatoric strain invariants;  𝐽𝑒𝑙 is the elastic volume ratio. 

  

 

Ogden form models  

This model is used to describe the non-linear stress-strain behaviours of 

complex materials such as rubbers, polymers and biological tissue.  

  

Equation 2.15 shows the shear modulus and bulk modulus for small strains 

based on the Ogden form (Ogden et al., 2004) 

𝜇0 = ∑ 𝜇𝑖
𝑁
𝑖=1 , 𝐾0 = 𝐾1                                 (2.15) 

U is a function of the principal values b1, b2, b3 of B. 

𝑈 = ∑ (𝜇𝑛/𝛼𝑛)(𝑏1
𝑎𝑛 + 𝑏2

𝑎𝑛 + 𝑏3
𝑎𝑛 − 3)𝑛             (2.16)                                

Where μn is constants, and αn is not necessarily integers and may be positive 

or negative. B is left Cauchy-Green strain tensor, 

𝐵 = 𝐹𝐹𝑇                                                          (2.17)  

and b1, b2, b3 are principal values of B.  

The general form of the Ogden strain energy potential is shown in Equation 

2.18 

𝑈 = ∑
2𝜇𝑖

𝛼𝑖
2

𝑁
𝑖=1 (𝜆1

𝑎𝑖
+ 𝜆2

𝑎𝑖
+ 𝜆3

𝑎𝑖
− 3) + ∑

1

𝐷𝑖
(𝐽𝑒𝑙 − 1)2𝑖𝑁

𝑖=1   (2.18) 

Where 𝜆𝑖 are the principal stretches;⁡𝜇 and 𝛼𝑖 is a material constant; and Di 

are temperature-dependent material parameters (ABAQUS user Manual 
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2017). There are several parameters in the Ogden model, so a complex testing 

approach is required to determine these parameters. Normally, tests with 

different stress strain condition need to be performed, then the parameters can 

be determined by a curve fitting process. Some tests are shown in Figure 2.12. 

In a modelling process, the test data of different forms can be input in the 

materials module in Abaqus then the program will work out the parameters 

through fitting the curves and then identify the materials parameters which 

give the best overall match to the data.  

  

 

 

 

(a) Deformation modes of various 

experimental tests for defining 

material parameters (ABAQUS User 

Manual 6.14). 

(b)Typical stress strain curves of 

rubber materials under different 

testing models (“White paper – 

Nonlinear finite element analysis of 

elastomers”, MSC Software 

Corporation.) 

Figure 2.12 Testing methods for defining material parameters used in 

Abaqus (a) and typical data of different stress strain curves of Rubber from 

different type of tests (b). 
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2.8 Application of Python scripts in structure 

/material modelling and data analysis.  

As shown in the sections above, FE modelling is an important method for 

studying the deformation of cellular materials. A range of modelling software 

has been used by various researchers. For example, Abaqus, Ansys, LS-

DYNA, Solidwork and Hyperwork. Among which, Abaqus is the most widely 

used. A useful research tool to aid the development of an analysis is to develop 

a Python-based program linked with Abaqus for model development and data 

analysis. Python's open-source pedigree is a major advantage over other 

programs, it is becoming increasingly popular and is aided by a large user and 

developer base in industry as well as the sciences. Python is a modern, 

interpreted, object-oriented, open-source language used in different kinds of 

software engineering. Python language is interpreted, development is much 

easier, and a compiler and linker are not needed thus saving time and 

resources. Python code is more robust, and less brittle supported by modern 

data structures and the object-oriented nature of the language. The developer 

can take advantage of different open-source Python packages. These cover 

works in visualization, numerical libraries, interconnection with compiled 

and other languages, memory caching, web services, mobile and desktop 

graphical user interface programming, and others. There are some 

disadvantages of Python. For example, pure Python code runs much more 

slowly than compiled code, and the number of scientific libraries is relatively 

limited compared to Fortran.  

Python is used in image analysis, (Gostick et al., 2019; Putanowicz, 2015). 

One active application area of Python is developing Plug-in with numerical 

simulation such as Abaqus, which can be used for parametric model building 

as well developing systematic data for analysis or in structure optimization, 

which is relevant to the modelling of cellular structures including studying 

Poisson’s ratio and auxetic structures. Plug-in has been used in design. For 

engineering applications, Python is used in conjunction with other 

engineering software to create a Graphical User Interface (GUI). Creating a 
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GUI via a plug-in allows the user to input all analysis information in an 

intuitive way. The information input by the user through the plug-in will 

automatically configure both the subroutines and the model itself so that an 

analysis can be performed, using a single procedure, allowing much of the 

required data to be input using a simple text file rather than changes to the 

code itself. This automation removes many of the sources of error, whilst at 

the same time providing a more convenient and faster way. Finite Element 

package ABAQUS/CAE has an application called GUI Toolkit, which has 

been widely used in parametric research studies. Design process and 

optimization have been important area in early work on Python (Nesládek et 

al., 2016; Li et al., 2015). For example, Winkler et al (2005) created plug-ins 

to generate spur and worm gear models as shown in Figure 2.13. This paper 

reported a method of parametrically modelling spur and worm gears with spur 

or helical gear teeth. The program considered assembly deviations such as 

centre distance error or shaft angle error and defining standard load cases to 

be analysed and evaluated using the finite element package Abaqus. In more 

recent works, Li et al (2015) developed a plug-in for FE modelling of large 

H-beam hot rolling in ABAQUS. The program consists of thermal analysis 

and elastic-plastic properties. It also included embedding re-meshing 

algorithm and subroutines. The key design component and function is shown 

in Figure 2.14. The plug-in covered Roller modelling interface, pre-

processing interface, Abaqus kernel and post-process. The model building 

and extracting simulation results during post-processing can be automatically 

performed. The re-meshing algorithm and the information transfer method of 

the clearance between two passes are synthetically used to ensure the 

continuous simulation of multi-pass hot rolling process and improve the 

accuracy of simulation results. The system allows the automatic input of the 

dimensional data (Figure 2.14b) and materials properties (Figure 2.14c) 

including density, thermal, mechanical, etc. The integrated system is effective 

in collecting all the key data as well as the real-time detection of internal 

information for H-beam and deformable roller in the rolling process, which 

is difficult to be realized.  
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Figure 2.13 ABAQUS CAE Plug-in toolkit, used by Winker et al., (2005) to 

generate gear models. 

  

(a) The overall structure of the 

integrated simulation system. 

(b) Modelling dialog box. 

 

(c) The dialog box of the high-pressure water descaling before the rough rolling 

Figure 2.14 Typical simulation system for large H-beam hot rolling. (Li., 

2015) 
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Li et al (2018) developed a Python based Abaqus plug-in to systematically 

study the effect of shell depth and Poisson’s ratio of the matrix on the 

indentation resistance based on a dynamic FE model. Figure 2.15 shows the 

main factors considered when designing the user interface for modelling 

indentation of an embedded shell within an elastic matrix. The program 

allows users to select indenter shapes (Flat-ended, spherical, etc.), the position 

of the indenter (Indenter height) at the original position and indenter speed (at 

the original position). The user can input the position of the embedded shell 

(of different thickness) in the matrix. One feature of the user interface is the 

selection of indenter shape through a Really Simple GUI (RSG) window. 

Another key issue is the partition of the embedment and interaction between 

the matrix and embedment. Partition is needed in thin embedment modelling 

so that the high-quality hex mesh can be applied to achieve a more efficient 

model. The model has been successfully used in studying the effect of 

auxeticity of the matrix on the indentation resistance, which shows that an 

auxetic matrix could enhance the indentation resistance (Li et al., 2018). 

Recently, the model was extended to study the effect of the negative Poisson’s 

ratio on the interaction between water droplets during impact (Al-Badani, 

2020). In the work, the indenter is replaced by a liquid droplet (the coordinates 

were taken from Ansys Fluent simulation), impacting onto materials of 

different Young’s Modulus, the reaction force and spreading of the liquid on 

the surface were simulated. Plug-in is also widely used in welding process, 

for example Nguyen et al (2017) reported the use of a parametric Python 

program for Predicting Temperature in a Fillet Weld T-Joint used in Welding 

Simulation; Parmar 2016 (2016) reported a work of simulation of a Multi-

Pass Dissimilar Metal Nozzle to Pipe Weld Using Abaqus 2D Weld GUI and 

Comparison with Measurements. Norbury (2017) also used Plug-in to study 

the mechanical and thermal performance of sheathed thermocouples.  

Python is also increasing in developing tools for the multiscale modelling 

including structure generation (Das et al., 2018; Barrett et al., 2018; Malians 

et al., 2016; Omairey et al., 2018; Riaño and Joliff, 2019; Nguyen et al., 2017; 

Parmar et al., 2016). Das et al (2018) reported work on modelling drag and 
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heat transfer closures for realistic numerically generated random open-cell 

solid foams using an immersed boundary method; Barrett et al (2018) 

reported a work on automated procedure for geometry creation and finite 

element mesh generation: Application to explicit grain structure models and 

machining distortion; Riaño et al (2018) reported an Abaqus™ plug-in for the 

geometry generation of Representative Volume Elements (RVE) with 

randomly distributed fibres and interphases; Malians et al (2016) reported a 

work on random lattice structures modelling of their mechanical response and 

effective properties. An RVE can be used to obtain homogenized material 

properties from a smaller scale model considering the structure details, then 

use the properties in a macro scale model. This can avoid the problem with 

meshing a large system. Obtaining homogenized properties involves 

performing an analysis from which the homogenized properties can be 

determined as well as post processing to calculate the homogenized material 

properties (Omairey et al., 2018).  

 

Figure 2.15 Typical Abaqus Plug-in showing the main functions and 

parameters used to study the effect of the negative Poisson’s ratio matrix on 

the indentation resistance. (Li, 2018)  

https://www.researchgate.net/profile/Sadik_Omairey
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One typical application of Python based program with RVE is to determine 

the effective properties of materials with non-homogeneous structures, such 

as composite. The process involves building FE models considering the 

microstructure, then estimating an effective material parameter, which can 

represent the behaviour of the materials based on stress-strain data, energy, 

etc. The effective property data can be isotropic data (E, G, v) or highly 

anisotropic i.e. (full property matrix data in materials module for simulation). 

For example, when the homogenization method is applied to fibre reinforced 

composites, the RVE is modelled as a homogeneous orthotropic medium with 

certain effective properties that describe the average material properties of the 

composite (Bensoussan et al., 1979). The effective Macro stress and 

macrostrain data of the materials can be obtained by averaging the stress and 

strain tensor over the volume of the RVE in order to describe the 

macroscopically homogeneous medium. Figure 2.16 shows the data flow of 

a python program for estimating the effective materials properties. The first 

stage is building an FE model based on the real structure and materials 

properties for each constituent (e.g., in the case the fibre and matrix will have 

different properties), the periodical boundary condition is applied. As shown 

in the figure 2.16, the key data such as stress, strain and strain energy (U) 

stored in the heterogeneous RVE of the volume VRVE can be calculated the 

stiffness tensor (Cij), which can then be used to determine the compliance 

tensor (Sij) as the inverse of the stiffness tensor (Cij). The properties such as 

directional Young’s modulus (Eij) and Poisson’s ratio (vij) can be derived. 

Both the Cij data or the (Eij, vij) data can be used as inputs in the FE modelling.  
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Figure 2.16 The computation flow to estimate the effective elastic properties 

based on representative volume element (RVE) approach. (Wu et al., 2014) 

 

Periodic boundary conditions (PBC) are a set of boundary conditions that can 

be used to simulate a large system (i.e., bulk material) simply by modelling a 

finite representative volume element (RVE). Periodic boundary conditions 

are commonly applied in molecular dynamics, dislocation dynamics and 

materials modelling to eliminate the existence of surface and avoid a huge 

number of molecules or large size of simulation box (Wu and Owino, 2014). 

A simple case is Applying Periodic Boundary Conditions in Finite Element 

Analysis as shown in Figure 2.17 (Wu and Owino, 2014). Figure2.17a is a 3D 

cube element, in the model, a strain is applied to left-right direction, while the 

relative displacement between the top and bottom face is determined through 

the equation. In this case, the relative strain/ displacement of the top and 

bottom surface is set to be the ‘0’, in other words, the two surfaces will move 

in the same way in the u2(or y axis direction). Figure2.17b shows the stress 

distribution, the equation (𝑈2
𝑇𝑜𝑝 −𝑈2

𝐵𝑜𝑡𝑡𝑜𝑚 = 0) will ensure that the u2 for 

nodes on the top 31-36 is identical to that of 1-6, respectively. This reflects in 
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the situation that the material is sample fraction in a larger sample. 

 

 

 

   

(a) A 3D RVE with nodes on left 

and right-side surfaces 

(b) A 1×1 RVE model and stress 

contour with strain controlled PBC 

Figure 2.17 Typical boundary conditions of a representative volume element 

model and deformed shapes. (u1 is strain in ‘x’ direction, u2 is strain in the 

‘y’ direction). (Wu et al., 2014) 

 

One key work for multiscale modelling is setting the boundary conditions 

(identify the corresponding nodes and apply the equation), in particular the 

use of periodic boundary is particular useful for multiscale modelling of 

materials at small scales. (Meza et al., 2017; Omairey et al., 2018). A typical 

example of ABAQUS plug-in tool for periodic RVE homogenization is 

shown in Figure 2.18 (Omairey et al., 2018). In the theory of composite 

materials, the representative elementary volume (also called the 

representative volume element (RVE) or the unit cell) is the smallest volume 

over which a measurement can be made that will yield a value representative 

of the structures of the materials (Gitman et al., 2007). As shown in Figure 

2.18a, the RVE shall be selected/modelled such that duplicating it provides 

sufficient accuracy of representing the material’s larger scales. During the 

RVE homogenization process, the imposition of uniform strains on a 

microscale RVE to compute the effective elastic properties was carried out 

(Figure 2.18b. The program is developed in Python (EasyPBC) and worked 

as an ABAQUS CAE plug-in developed to estimate the homogenised 

effective elastic properties of user created periodic representative volume 

element (RVE), all within ABAQUS without the need to use third-party 

software. As shown in the flowchart in Figure 2.18c, the first phase 
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determines RVE’s geometrical dimensions, identifies boundary surfaces, 

creates nodal sets, creates node-to-node constraint equations, and applies the 

required displacement boundary conditions. Whereas the post-processing 

phase handles stress–strain calculations, and other operations related to 

estimating.  

 

 

 

(a) Illustration of periodical RVEs 

build-up before and after loading. 

 

 

(b) Illustration of the nodes on one 

surface for applying the 

displacement boundary conditions 

required to estimate the effective 

elastic properties.  

(c) Processing flowchart written in 

Python for estimating the effective 

elastic properties.  

Figure 2.18 Key structure of an ABAQUS plug-in tool for periodic RVE 

homogenisation and the node sorting process. (Omairey et al., 2018). 

 

As shown in the flow chart in Figure 2.18c, two key stages are “the create and 

order node set” and “generate PBCs constraints for opposite /associated 

nodes”. This involves complex operation/programming with internal 

ABAQUS environments after the model is meshed. In this process, the nodes 

are sorted into an order on the paired surfaces, the equation can be set for 
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corresponding nodes. This is similar to the operation on the nodes in Figure 

2.17 (e.g., 1 to 31) but much more complicated in processing in order to 

facilitate the linking of nodal degrees of freedom of the nodes. To achieve this, 

for each node in associated sets/pairs, the code identifies its corresponding 

node in the opposite set when the coordinate difference between the two 

nodes is smaller than a specified mapping accuracy. The default value of 

mapping accuracy was set as 1E-7 mm in the program. When the difference 

in each component of the coordinate (in the x,y, z directions separately)  is 

within this limit, the program will assume the mesh structure is nearly 

identical on opposite sides of the RVE. From the original code, this value can 

be adjusted depending on the mapping accuracy required by the user.  

For porous structures, this could be more complicated due to contact. Figure 

2.19 shows a typical example of combined structure generation and FE 

modelling considering the contacts. (Malians et al., 2016). The key stages in 

the solid modelling procedure are shown in Figure 2.19a including Voronoi 

cells, then extracted edges and solid model. Voronoi tessellation (or Voronoi 

diagram) is based on a space partitioning method to create polyhedral in 2D 

or 3D geometry. In this procedure, several random space points will be 

generated randomly then linked to a 3D Voronoi structure. With the automatic 

structure building procedure, it is able to generate CAD geometry with 

controllable structural parameters, such as porosity, cell number and strut 

thickness, then transfer to FE modelling in Deform 3D FEA software. A 

typical example of Figure 2.19b shows the deformation and stress strains. The 

stress is the force divided by the overall area perpendicular to the loading 

direction. The program is able to evaluate the effect of materials properties 

and loading rate as well as identify the initial contacting point. This is a good 

example, showing that integrating structure generation and FE modelling is a 

useful development. With such a program, many different structures and 

properties can be produced.  
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(a) The modelling procedure to solid 

  

  

(b) Developed FEA model and applied rate dependent material properties for 

stainless steel 304. 

Figure 2.19 Combination of Python and FE modelling in studying random 

lattice structures. (Malians et al. 2016) 
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2.9 Modelling at different scales and data 

development  

As shown in early sections (Figure 2.20) computer modelling is an important 

part in materials data development. Molecular simulation is a very active area 

analysing materials/compound in different forms. It allows the analysis of 

fundamental materials parameters and provides guidance in materials design, 

and applications. Materials Studio 

(https://www.3dsbiovia.com/products/collaborative-science/biovia-aterials-

studio/) is one of the most widely used software (Xie et al., 2015; Guo et al., 

2016; Yang et al., 2009; Benyelloul and Aourag, 2013). Materials Studio is a 

simulation software that can be run on a computer by ACCELRTS for 

researchers in the field of materials science and structural chemistry. 

Materials Studio offers validated, efficient, and user-friendly quantum 

mechanical applications based on Density Functional Theory (DFT), hybrid 

QM/MM and semi-empirical methods. Quantum mechanical methods yield 

accurate thermodynamic, kinetic, and structural results, providing an efficient 

adjunct to experiment. (https://www.3dsbiovia.com/products/collaborative-

science/biovia-materials-studio/quantum-catalysis-software.html). DFT is a 

computational quantum mechanical modelling method used in physics, 

chemistry and materials science to investigate the electronic structure (or 

nuclear structure) (principally the ground state) of many-body systems, in 

particular atoms, molecules, and the condensed phases. Using this theory, the 

properties of a multi-electron system can be determined by using functionals, 

i.e., functions of another function. In the case of DFT, these are functionals of 

the spatially dependent electron density. DFT is among the most popular and 

versatile methods available in condensed-matter physics, computational 

physics, and computational chemistry 

(https://en.wikipedia.org/wiki/Density_functional_theory). The DFT is an 

effective approach to compute the electronic structure of matter and its 

application ranges from atoms, molecules and solids to nuclei and quantum 

and classical fluids. (Bultinck and Carbó-Dorca, 2005). Materials Studio 

https://www.3dsbiovia.com/products/collaborative-science/biovia-materials-studio/quantum-catalysis-software.html
https://www.3dsbiovia.com/products/collaborative-science/biovia-materials-studio/quantum-catalysis-software.html
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supports a variety of operating platforms (for example Linux, Windows) to 

enable researchers in materials science to establish three-dimensional 

molecular models and analyse in-depth inorganic crystals, organic crystals, 

polymers, and amorphous materials (Xie et al., 2015) more easily. Materials 

Studio software enables every researcher to achieve world-class material 

simulation level. The content of the simulation includes the most important 

topics in the fields of materials science and chemical research, such as organic 

matter, polymers, catalysts, crystallography, solid chemistry, power 

diffraction, and material characteristics (Hall et al., 2008). 

  

Figure 2.20 Different research approaches as shown by the growth of publications 

involving Poisson's ratio. (Greaves et al., 2013). The white, grey and black bar 

mean different published statistics sources. 

 

One active area is in materials data and materials discovery. Typical 

application includes property polymer modelling (Chenoweth et al., 2005), 
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reaction prediction (He et al., 2018), physical property calculation (Guo et al., 

2016; Shi et al., 2011; Liu et al., 2014; Chong et al., 2017), and X-ray 

diffraction simulation (Guo et al., 2016; Yang et al., 2009). The most used is 

the first-principles calculation simulation package CASTEP which is a 

calculation module in the Materials Studio software package. The CASTEP 

is an acronym for Cambridge Sequential Total Energy Package and is a 

quantum mechanics program based on first principles. It is a powerful tool 

that uses plane wave pseudopotential basis sets combined with density 

functional theory to study and design the physical properties of materials. 

CASTEP is mainly used in the calculation of solid-solid related properties in 

solid physics. (Clark et al., 2005). In recent years, more and more researchers 

have used CASTEP for the simulation prediction, calculation, and synthesis 

of chemical substances, which has improved the efficiency of chemical 

research and reduced the research time, thus making CASTEP more widely 

used. Yang et.al (Yang et al., 2009) calculated elastic properties and hardness 

of TiC and TiN. The elastic constant of results is close to experiment data. 

Benyelloul and Aourag (Benyelloul and Aourag, 2013) calculated the elastics 

constant of face centred cubic austenitic stainless steel. The CASTEP code 

page is used to run mechanical simulation by efficient strain–stress method 

of generalized gradient approximation (GGA). And an artificial neural 

network (ANN) is also used in propagation algorithm training of correlation 

between the elastic properties and composition. The three different elastics 

constants c11, c12 and c44 were employed as outputs. Elastic constants 

obtained from ANN models were compared with those obtained from 

quantum mechanical simulation and with those reported in the literature. The 

prediction results obtained by the two methods showed a reasonable 

agreement. Guo et al (2016) calculated the local electron work function, 

surface energy, adhesive force, modulus and deformation of ferrite and 

austenite phases in a duplex stainless steel by CASTEP. The results are 

matched well with experiment data and the work function modulus and 

adhesive force of austenite is higher than ferrite. The mechanism behind was 

explained by first-principles calculation. The results show that the difference 

in properties between austenite and ferrite is intrinsically related to their 



  

 

75 

 

electronic work functions. Liu et al (2014) used first-principles calculations 

to study the lattice parameters, stability, mechanical properties, and 

anisotropic sound velocity of hexagonal and orthogonal diamond Cr7C3. The 

cohesive energy and enthalpy of formation of these compounds indicate that 

they have a thermodynamically stable structure. The stress-strain method and 

Voigt-Reuss-Hill were used to approximate the elastic constant and 

mechanical modulus of these compounds. In addition, the sound velocity 

anisotropy and mechanical anisotropy of Hexa-Cr7C3 and adjacent Cr7C3 

were also studied. Tokmakova (2005) studied the direction of the Poisson's 

ratio with extreme values in the direction of the cubic diagonal extension in 

the crystal, and the corresponding lateral strain on the orthogonal cubic 

diagonal and cubic axis are considered. A stereo projection of Poisson's ratio 

of a group of natural lenses with cubic, hexagonal, and single-slope symmetry 

was calculated. From these stereoscopic projections, the Poisson's ratio of any 

possible tensile and lateral strain directions in the crystal was calculated, and 

the directions of the tensile and lateral strain with the extreme value of 

Poisson's ratio were obtained. It reveals crystals with bulging behaviour. The 

directions of the tensile direction and the lateral strain direction (with negative 

values of Poisson's ratio) were determined. One important conclusion is that 

stretching of material with negative Poisson's ratio leads to an unexpected 

transverse expansion. Stretching of anisotropic material can cause expansion 

in one direction and contraction in another direction 

  

In recent work, physical simulation has been used in material data 

development as well as materials discoveries including auxetic materials. In 

materials data development, a large amount of modelling is conducted 

automatically for a particular materials group through materials mining and 

discoveries (Dagdelen et al., 2017). The work by Dagdelen et al (2017) 

reported a large-scale work to accelerate the discovery of materials with target 

properties, such as auxetics, by using high-throughput computations and open 

databases. As part of the materials data development, the Poisson’s ratios 

were derived from the calculated elastic tensor of each material in this 

reduced set of compounds. And compounds with special properties including 
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negative Poisson’s ratio are identified. The characterization of the mechanical 

properties of crystalline materials is nowadays considered a routine 

computational task in DFT calculations (Gaillac et al., 2020). The framework 

of the work and key results is shown in Figure 2.21. The work combined 

materials simulation and supervised machine learning to investigate the 

materials parameters, error range and the effect of machining learning on the 

efficient (time saving) in property prediction. As shown in the figure, the work 

used data generated in molecular simulation to generate data, then used the 

data to predict the materials with different positive or negative Poisson’s ratio. 

As illustrated in Figure 2.21b, the descriptors are used as entries in the 

machine learning process. The program scanned through a large number of 

structures to identify if the structure is stable based on the energy. The work 

used supervised training, the main principle is to create a predictor by training 

an algorithm on two sets of variables in the training data set: some simple 

geometric descriptors of each material, obtained at low computational cost, 

and the required property that one wants to predict (calculated at a higher 

level of theory). The trained machine learning algorithms, as implemented in 

the scikit-learn Python library to create three predictors based on regression 

methods, targeting the average, minimum, and maximum values of the 

directional Poisson’s ratio, the work is able to identify potential Auxetic 

structures (as shown in Figure2.21c).  
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(a) Description of the modelling strategy and different zeolite subsets used 

in the present work. BKS：a Beest–Kramer–van Santen (BKS) potential. 

 

 

(b) Summary of the descriptors used 

as entries in the machine learning 

process classified in local 

properties, global properties, and 

porosity-related properties. 

(c) Data used in machine learning to 

predict potential structure with 

negative Poisson’s ratios. vDFT is 

calculated Poisson’s ratio. vGBR is 

parameter of GBR method. 

Figure 2.21 Use of materials simulation data with machine learning to 

analyse the distribution of Poisson’s ratio and Auxeticity in Zeolite system. 

(Gaillac et al., 2020) 
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2.10 Main issues and challenges.  

The development in numerical modelling and physical modelling has 

improved the understanding of structure-property relationships of many 

materials. It has offered an opportunity in materials development linked to 

Poisson’s ratio and auxeticity.  There are some key issues that need to be 

addressed:  

One is the development of a Python-based program integrated with numerical 

modelling which could provide an important tool for both research and 

development in auxetic materials, applications, and related areas. Python 

plug-in for modelling these structures including automatic model building 

and data analysis will make the FE modelling much more efficient. Such a 

program will also help test the effect of factors such as sample size, lattice 

patterns as well as establishing the effects of the key design or materials 

parameters. This is particularly relevant to the missing rib (MR) auxetic 

models. MR auxetic structures have attracted much research attention recently. 

(Remennikov et al., 2019; Koudelka et al., 2016; Gaspar et al., 2019; Adorna 

et al., 2018; Farrugia et al., 2018; Jiang et al., 2019; Mizzi et al., 2018; Mizzi 

et al., 2020). Many of the applications are intended for application under in-

plane compression loads, and it is important to establish a detailed 

understanding of the deformation process, in particular, the contact between 

the edges and cell walls at high strains for normal MR, which are directly 

relevant to the mechanical behaviours and the stability of the cell and overall 

sample deformation. Many of the applications are intended for application 

under compression loads, it is important to establish a detailed understanding 

on the deformation process, in particular the contact between the edges and 

cell walls at high strains for normal missing rib and mixed structures, which 

are relevant to the mechanical behaviours and the stability of cell and samples. 

Mixed structures with MR models could offer opportunities to further 

enhance the freedom in structures design. It is important to establish the 

detailed deformation mechanisms, properties, and stabilities. For the 

hierarchical structures, the structure can undergo different deformation modes 
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and result in different shapes (Haghpanah et al., 2013). This gives more 

options for materials design and development. 

  

First principle calculation is increasingly used in predicting crystal structure, 

electronic, physical, and elastic properties of ceramics (e.g., carbides, nitrides, 

and multicomponent carbides). First principle calculation is a method to 

calculate physical properties directly from basic physical quantities (such as 

the mass and charge, and coulomb force of an electron, etc.) based on the 

principle of quantum mechanics. It naturally links multidisciplinary research 

areas and data in physics, chemistry, materials, and processing. Typical 

relevant data from first principles calculation covers elastic constants, 

physical properties, thermal properties, interface between different phases, 

electrochemical oxygen reduction reaction, corrosion, etc. (Sun et al., 2010; 

Cuppari et al., 2016; Wen et al., 2018). The computerised calculation process 

and subsequent large data analysis generate a rich source of materials data for 

establishing more detailed understanding of material parameters and their 

correlations. For analysis of mechanical properties, the prediction of the 

elastic properties involves the mathematical approximation combining the 

Voigt, Reuss and Hill bounds of bulk and shear moduli (Voigt, 1928; Hill, 

1952; Reuss, 1929). In addition, the data from first principle calculation and 

subsequent analysis also provide the means to estimate the properties such as 

Vickers hardness based on the ground state elastic parameters/properties 

(Chen et al., 2011; Tian et al., 2012). As materials informatics is increasingly 

being used in engineering analyses and design of complex materials systems, 

data from physical modelling also offers new opportunities in further 

understanding of the correlation between different sets of properties with 

more details. It provides a mean to establish systematic data of the key elastic 

properties bulk modulus (K), Young’s modulus (E), shear modulus (G), as 

well as the Poisson’s ratio. In addition, by integrating first principle 

calculation with data analysis, it is possible to establish data for enhancing 

the understanding and visualization of the difference of properties in different 

crystal planes or directions. The systematic data in anisotropy is often 

challenging, or in some cases very difficult, to be established through pure 
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experimental means for secondary particles in steel and welded structures. 

With the development of modelling at both macro and crystal structure or 

molecular levels, the data from both levels are increasingly providing 

information through different scales, this is an important future direction. 
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CHAPTER THREE 

EXPERIMENTALS, 

NUMERICAL MODELLING 

AND DATA ANALYSIS 

PROGRAMS 
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3.1 Introduction and main research works 

Figure 3.1 shows the overall research structure and key approach. The main 

research work of experiment, numerical modelling and data analysis program 

is shown in table 3.1. The material characterisation is focused on measuring 

the key material parameters and calibration procedures related to auxetic 

behaviour. This includes using a 3D printed experiment sample, set-up 

procedures and comparison with numerical data. Details of the work are 

presented in section 4.3-4.5. The experiment data is helping to validate the 

accuracy and reliability of the numerical study. The parametric numerical 

modelling investigated the modelling parameter effect on two auxetic 

structures - missing rib structure and self-similar hierarchical honeycomb 

structure. The different modelling parameters including beam length, beam 

angle and lattice pattern are evaluated for the effect on Poisson’s ratio. During 

the parametric study, a large number of simulations are investigated. Hence, 

a Python based Abaqus plug-in is developed to improve the effectiveness and 

efficiency of the numerical study.  In the self-similar hierarchical honeycomb 

structure, the modelling is much more complete than in the missing rib 

structure especially in the high order model. A Python program is developed 

to build parametric self-similar hierarchical honeycomb by multiple nested 

loops.  

A Computational quantum chemistry Analysis software, Materials Studio 

V2017, is used for crystal structure modelling and calculating elastic stiffness 

constant Cij, the elastic stiffness constant and its inversion value, elastic 

compliance constant Sij, are used to calculate ground state property included 

bulk modulus, Young’s modulus, Shear modulus, Poisson’s ratio and 

anisotropy of those ground state properties. To visualize the anisotropy of 

ground state properties, a Python program is developed to plot 3D surface 

construction and 2D plane projection. 12 carbides are selected to study the 

relation between anisotropy index and ground state property. Three crystal 

structures with negative Poisson’s ratio are investigated.  
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Table 3.1 Main Research Works 

Parametric study of Missing Rib structure (Chapter 4) 

➢ Development of Python program for parametric modelling of missing rib structures 

➢ Comparison between numerical model, published data and experiment data. 

➢ Evaluation of effect of beam length, beam angle, lattice pattern number on 

Poisson’s ratio. 

➢ Development of mixed structure and initial contact under compression. 

Parametric study of self-similar hierarchical honeycomb structure  

➢ Development of Python program for parametric modelling of self-similar 

hierarchical honeycomb structure. 

➢ Comparison between numerical model, published data and experiment data. 

➢ Evaluation of effect of order number, beam length between higher and lower order 

and lattice pattern number on Poisson’s ratio. 

Discussion 

➢ Evaluation of effect of different modelling approaches and sample size of auxeticity 

➢ Development of complex beam shapes and patterns with Voronoi and new random 

approach 

➢ Comparison of different approaches for evaluating the accuracy and feasibility of 

area calculation 

➢ Factors affecting the area analysis, comparison with other approaches and use in 

other fields. 

Numerical study on different crystal structures (Chapter 5) 

➢ Numerical modelling and calculation of elastic stiffness constant. 

➢ Calculation of anisotropic parameters of different carbides. 

➢ Graphical user interface of ground state property calculation and Visualization 

➢ Correlation between the ground state properties and anisotropy data. 

Discussion 

➢ Correlation between the Poisson’s ratio and other properties. 

➢ Crystal structure with Negative Poisson’s ratio. 

➢ Evaluation of effect of temperature on ground state property. 

➢ Evaluation of other properties from Materials Studio 
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Figure 3.1 Overall research structure and key approach   
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3.2 FE modelling and structures. 

The Finite Element modelling and parametric program development is 

focused on auxetic structures and related systems, including the missing rib 

models and self-similar hierarchical structures. The deformation of the 

structures under compression and tension is investigated. Some typical 

examples produced by 3D printing to assess the FE modelling and structure 

development are shown in Figure 3.2. The 3D printing was conducted on a 

Prusa I3 Mk2 3D printer. The main material used in 3D printing is 

Thermoplastic elastomer (TPE) plastics (supplied by Verbatim). TPE is a 

class of copolymers or a physical mix of polymers. The Young’s Modulus is 

22 MPa and the Poisson’s ratio is 0.3. The property was checked by Shore D 

hardness tests and a MT2000 micro bending tests (Deben Vertical 3/4 Point 

Bending Stage).    

  

 
 

(a)Missing rib with a beam angle 90 

degree.  

(b)Missing rib with a beam angle 

60 degree.  

 

 
 

(c)Wider sample (7-3 lattice pattern) (d) Self similar hierarchical 

structure 
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Figure 3.2 Some typical 3D printed Auxetic samples. 

The FE modelling is performed using ABAQUS (version 2017), which is a 

general finite element simulation package (Abaqus User’s Manual 2017).   

The ABAQUS scripting interface is an object-based program library, 

embedded in the scripting language Python, and provides a set of application 

programming interfaces (APIs) to operate ABAQUS/CAE to achieve 

modelling/post-processing functions. The programming uses Python syntax 

to write scripts. In the secondary development of ABAQUS, the pre-

processing modelling and post-processing analysis can be achieved through 

kernel (Python) scripts, and an Abaqus plug-in through the graphical user 

interface can be created through GUI scripts (PYQT5) to interact with users. 

Figure 3.3. shows Abaqus working flow and Python application. The user can 

set a simulation setting though Abaqus Graphical User Interface (GUI), 

command line interface (CLI), Python script and Python Plug-in. Those 

operations are sent to Python interpreter to process Abaqus input file(.inp) 

and Abaqus input file is sent to Abaqus solver to solve the case. The result of 

simulation is storage in the ODB file. Then Python can be used to collect the 

data from the ODB file and post-processing the data. In addition to research 

and development works, the use of parametric programs and GUI make it 

easier to generate systematically and manage large quantities of data with 

different formats (numerical, image, animation, etc.) which can be used for 

research and training.  

 

Figure 3.3 Abaqus working flow and application of Python in different 
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parts. (Zhang et al., 2016)  

 

 

Python programs and GUI scripts are used to create new graphical user 

interfaces for simulating known auxetic structures and identifying new 

structures with auxeticity. In this work, the Abaqus Graphical user interface 

(GUI) Toolkit is used to Create a new GUI module, which is a grouping of 

similar functionality. A GUI toolkit is also used which contains more specific 

functionality that may be used by one or more GUI modules.  The parametric 

functions can be used to control many factors in the geometry, loading, 

boundary, meshing, choice of solution models, selection of static or dynamics 

approaches. It can also be used in post-process, to combine data, calculation 

of specific data which is not readily available. For example, Poisson’s ratio 

of a structure is not readily available, so a program function is implemented 

to track the axial and lateral displacement of the sample edge, then calculate 

the strain to determine the Poisson’s ratio-strain data.  Main numerical works 

include modelling the deformation of the structures under compression and 

the tension load with a particular focus on the deformation modes, Poisson’s 

ratios and auxeticity (negative Poisson’s ratio). The Python script and Abaqus 

plug-in presented in this thesis included Missing Rib parametric models 

(section 4.2 and 4.4), self-similar hierarchical honeycomb parametric 

modelling (section 4.2 and 4.5), area calculation from ODB (section 4.6), 

random structure modelling (section 4.7). Limited work has also been 

performed on other structures such as regular honeycombs for validation and 

comparison purposes. Figure 3.4 shows a typical case of GUI used in this 

thesis. The GUI is built by RSG dialogue builder, which is one of the inbuilt 

tools in Abaqus, the dimensions of which can be automatically changed 

through user input.  The variables include the beam length, beam thickness, 

lattice pattern (the way the unit cell is repeated to form a large sample) and 

other parameters.  
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Figure 3.4 Typical case of Abaqus Plug-in graphical user interface (GUI) 

of missing rib parametric modelling.  
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3.3 Materials studios 

The molecular simulation was performed in Materials Studio 2017. Materials 

Studio is developed by BIOVIA (formerly Accelrys) for computational 

chemistry, bioinformatics, cheminformatics, molecular dynamics simulation, 

and quantum mechanics (Farhadizadeh et al., 2017).  The main components 

of the materials studio used in this work is CASTEP (Cambridge Serial Total 

Energy Package), which is widely used to predict electronic, optical, and 

structural properties for lattice parameters of single crystals or molecules. 

CASTEP (www.castep.org) is a leading code for calculating the properties of 

materials from first principle calculations. Using density functional theory 

(Bao et al., 2019), it can simulate a wide range of properties of materials 

proprieties including energetics, structure at the atomic level, vibrational 

properties, electronic response properties etc.  In the simulation, the main 

inputs are atomic number and crystal structure, which can determine the 

structure and the properties of the materials.  The focus of this work is to 

develop a Python program to process the CASTEP simulation results from 

crystal geometry optimisation and properties (mainly energy and elastic 

constants) to systematically calculate the bulk modulus, young’s modulus, 

shear modulus and Poisson’s ratios, hardness and establish data reflecting the 

anisotropic features of the key properties. Other work also covered such areas 

as surface energy of crystals and effect of temperature on the ground state 

properties, anisotropy, and Poisson’s ratio, including crystals with auxetic 

behaviours.  The program is used for systematic research as well as 

visualization of the anisotropy in 3D surface and 2D plane projections.  A 

range of materials has been involved with the focus on analysis of some key 

monocarbides (TiC, NbC and VC), and some crystals with auxetic behaviours. 
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3.4 Python program and key developments in 

the work 

Python program is becoming more and more important in materials and data 

led research. Python is a widely used interpreted, advanced programming, and 

general-purpose programming language. The design philosophy of Python 

emphasizes the readability and concise syntax of the code. Python has wide 

applications such as Artificial intelligence, machine learning, big data, robots, 

and graphic design applications, etc. Compared to other programming 

languages (C, C++, or Java), Python has a lot of advantages such as large 

standard libraries. Several extensive libraries are used in this thesis such as 

NumPy, Panda, scikit-learn, etc; Python is easy to use, Python allows 

developers to express ideas with less code which is easier to program 

especially for Programmers from other fields. And the libraries and clean 

object-oriented designs also increase two to tenfold the programmer’s 

productivity while using languages like Java, VB, Perl, C, C++, and Python 

has powerful control capabilities as it calls directly through C, C++, or Java 

via Python. Python also processes XML and other mark-up languages as it 

can run on all modern operating systems through the same byte code. An open 

source Voronoi library based on C++ language is written to a Dynamic link 

library file(.pyd) which can directly call this to generate Voronoi structure in 

this work.  

  

Apart from the use of Python integrated with FE modelling and processing 

data from materials studio simulations, Python is also used in image analysis 

for some relevant functions, such as the area analysis and the measurement of 

Poisson’s ratio also related to image analysis. In the early stage of the work, 

an OpenCV program (OpenCVopencv.org) and ImageJ 

(https://imagej.nih.gov/ij/) is used to assess the accuracy of the area program 

developed. ImageJ can display, edit, analyse, process, save and print 8-bit, 

16-bit and 32-bit images. It can read a wide range of image formats including 

TIFF, GIF, JPEG, BMP, DICOM, etc. It supports "stacks", a series of images 

https://imagej.nih.gov/ij/
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that share a single window. OpenCV refers to Open-Source Computer Vision 

Library, which is a cross-platform computer vision library. OpenCV can be 

used to develop real-time image processing, computer vision, and pattern 

recognition programs. Two programs developed in this work used OpenCV, 

one program is Poisson’s ratio calculation from experiment videos, in which 

the program automatically tracks the distance between markers and calculates 

the Poisson’s ratio. The program of Poisson’s ratio calculation from 

experiment video can track the key measurement points by colour differences. 

This provides additional data for cross checking the Poisson’s ratio 

measurement as a comparison to the frame-to-frame analysis. OpenCV is also 

evaluated for area measurement in the early stage of the work as a comparison 

to the main area calculation program based on coordinates of each cellular 

cell integrated in Abaqus. Details are to be presented in Sections 4.6 and 4.7.   
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CHAPTER FOUR 

NUMERICAL STUDY ON 

AUXETIC STRUCTURE 
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4.1 Introduction and main research works 

As listed in Table 4.1, this chapter details the work on simulation of different 

auxetic structures under tension and compression loading using Abaqus. The 

work will concentrate on the development of Python based numerical models 

of typical auxetic structures. The models are used to investigate their 

deformation behaviours and establish the effect of key dimensional 

parameters on the deformation process, Poisson’s ratio, and stability of 

auxeticity. Python program is integrated with the FE models used to 

automatically build models of different structure and to calculate/analyse key 

parameters and results. A range of auxetic structures has been developed, this 

chapter will be focused on missing rib models in tension (section 4.3), missing 

rib and mixed cellular structures in compression (section 4.4), self-similar 

hierarchical structures in compression (section 4.5), calculation and tracking 

of the area changes for cellular structures under compression and tension 

loads. The approach is also used to establish the key affecting factors on 

cellular materials deformation, the stability of Poisson’s ratios, and the 

prediction of the structures for the targeted property (4.7 Discussion).  

As listed in Table 4.1, section 4.2 introduces the main structure and functions 

of the Abaqus program and Graphical user interface (GUI) developed and 

used for building auxetic and related structures. The input of the Python 

program for building different structures is explained. Section 4.3 reports the 

FE models and typical results for missing rib (MR) structures under uniaxial 

tensions. The numerical results are compared to analytical solution and 

experimental data. The effect of sample sizes and cell numbers on the 

Poisson’s ratio are studied based on the parametric FE models. Models with 

different beam angles are developed and the effect of the beam angles on the 

deformation modes, Poisson’s ratio and auxeticity is presented. The effect of 

the ratio of the beam length is also studied and data is established 

systematically. Apart from the data for Poisson’s ratios with different beam 

angle and length ratios, the stability of the Poisson’s ratio of missing rib 

models and the critical strain levels for stable auxeticity is also established 
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based on systematic data. 

Section 4.4 described experimental and numerical modelling of missing rib 

structures under in-plane compression. Parametric numerical models have 

been developed and correlated to testing data on structures of different beam 

angles, sample sizes/aspect ratios. The modelling results are also compared 

to other published experimental data of a different material. The key edge-

wall contact stages in samples of different sizes and their effects on the 

structure deformation were investigated and analysed. The deformation of 

auxetic structures with different beam angles is established with a particularly 

focus on the corner edge-wall contact and the deformed shapes at the full 

contact stage under compression. The deformation of mixed structures with 

alternating columns of different directions are studied experimentally and 

numerically; the Poisson’s ratio and its stability are established. The influence 

of corner-edge and beam wall contacts on the overall structural deformation, 

critical strain range for auxeticity and stability of the structures is discussed. 

Section 4.5 presents the parametric program for modelling self-similar 

hierarchical honeycombs and typical results, including the deformation of 

self-similar honeycombs with different orders, effect of cell numbers and the 

ratio between the edge length of different ordered structures. 

Section 4.6 presents a work in calculating the areas of individual cells in 

different cellular structures under loads in Abaqus. The approach used in area 

calculation and the function of the Python program is introduced. The area 

calculation program integrated with Abaqus models is presented and the key 

functional operation of the program is briefly introduced. Some typical data 

of cell area changes in regular and auxetics honeycomb structures is presented 

and analysed, and the results are correlated to the influence of the negative 

Poisson’s ratio behaviours. 

Section 4.7 discussed the effect of key results from the FE modelling of the 

missing rib models and key factors (such as beam angles, samples sizes, etc.)  

influencing the Poisson’s ratio， deformation modes and areas changes. The 

effect of different modelling approaches and mesh sensitivity in different 

structures are also analysed, supported by selected data. The use of periodic 

boundary conditions is described, and the results are compared to data based 
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on full boundary/loading conditions presented in the main sections. Factors 

affecting the area analysis with different approaches and use of the program 

in random structures generation is also presented. The Development of mixed 

structures of regular shapes/patterns with a targeted Poisson’s ratio and other 

targeted properties is discussed and a new approach in developing random 

structures with more freedom to produce structures with auxetic behaviour is 

presented and key results presented and its advantage in producing auxetic 

structures over other methods (e.g., Voronoi method) is outlined. The use of 

data systems for future works for user interface is also outlined.  

Table 4.1 Main Research Works 

Python based parametric Finite Element models and Abaqus plug-in GUI 

for building different cellular structures and typical structures studied in 

this work  

FE modelling of the deformation of missing rib models in tension 

➢ FE modelling of auxetic structures in tension and comparison with 

analytical and experimental data 

➢ Effect of sample size on the Poisson’s ratio and stability of auxeticity 

➢ Effect of beam angles and the beam length ratio on the Poisson’s 

ratio and auxeticity 

Deformation mechanism of missing rib models under compression 

➢ Main deformation stages and contact formation of regular 

missing rib structures with a beam angle of 90. 

➢ Deformation and Poisson’s ratio of missing rib structures with 

different beam angles. 

➢ Deformation of the mixed structures and Poisson’s ratio under 

compression 

➢ Effect of the sample size on the initial contact and Poisson’ ratio 

of missing rib structures 

FE modelling of Hierarchical honeycomb. 
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➢ Parametric program for building self-similar hierarchical 

structure FE models and approaches used for studying Poisson’s 

ratio and auxeticity.  

➢ Deformation of self-similar hierarchical honeycomb of different 

hierarchical orders     

➢ The effect of the beam length ratios between hexagons at 

different structural levels on the auxetic deformation. . 

Modelling and analysis of cell area changes of regular and auxetic 

honeycomb. 

➢ Area calculation program development and integration with FE 

modelling. 

➢ Typical data showing the cell area changes of regular 

honeycomb, missing rib structures and self-similar hierarchical 

structure in single cell model and multiple cell models.  

➢  

Discussion. 

➢ Main factors influencing the deformation stages and Poisson’s 

ratio of auxetic structures 

➢ Use of parametric modelling in assessing the influence of 

different modelling approaches and mesh sizes   

➢ Comparison between different area calculation and program 

approaches and typical use of the area calculation in 2D random 

Voronoi structure generation.   

➢ Development of mixed structures of regular shapes/patterns of 

auxetic structures  

➢ Development of more complex beam shapes and patterns  

➢ Use of data system and user interface and future works 
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4.2 Program development in Abaqus for 

building different structures. 

This section mainly introduces the main structure and functions of the Python 

program and graphical user interface (GUI) developed to build regular 

honeycombs, missing rib structures, self-similar hierarchical honeycomb 

structures, random cellular structures, and mixed structures. Detailed FE 

modelling for each structure will be presented in the results and discussion 

sections 4.3-4.7.  

Parametric modelling-based approach is an effective research method, in 

which the key dimensional/materials variables can be parameterized, so it can 

be changed systematically. Abaqus provides Python language interface for 

secondary development users. Parametric modelling can be integrated into 

any of the main stages of finite element simulation including pre-

possessing/modelling building, simulation, post-processing, and data analysis 

(Abaqus User’s Manual 2017). As outlined in the literature review, there are 

many structures with auxetic behaviours, which are of different patterns, so a 

program to automatically build the structures is an important starting point 

for research and development on auxetic cellular structures. A parametric 

program in building the structures will also provide a structured framework 

to develop more complex functions/programs relevant to Poisson’s ratio and 

auxetic behaviours. It will also provide systematic data for establishing the 

effect of key design or material parameters such as sample size, cell size, 

mixed structures, etc. 

  

Regular Honeycomb Structure 

Figure 4.2.1 shows a simple GUI for regular honeycomb. It is mainly 

developed to assess the structure building process and validate the modelling 

approaches, as regular honeycomb has been widely studied experimentally 

and numerically (Papka and Kyriakides, 1994). The main GUI is shown in 

Figure 4.2.1. The main window of the GUI is highlighted with a red-dotted 

line box. The key functions of an ABAQUS CAE window are also shown for 
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the processing. The program can build the structures automatically based on 

input of the length of the beam, number of cells in the horizontal and vertical 

direction. The building program starts from a single cell. The points were 

generated thorough a loop operation start from p0 to P5 (Figure 4.2.1a). Then 

the single cell is repeated based on the cell numbers designed by the user 

(xCopy and yCopy). The dimension of the honeycomb model shown in Figure 

4.2.1 is adapted from published work by Papka and Kyriakides (1994). The 

program is able to provide efficient data for validation of the model building 

process as well as evaluating different modelling approaches, meshing etc. It 

also provides detail on the deformation process. Regular honeycomb also has 

a detailed analytic solution on the deformation and forces, which is important 

for validating the modelling approaches.  
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(a) The GUI of regular honeycomb Plug-in.   

   

(b) A typical shell model build by 

Plug-In. (XY In-plane) 

(c) Oblique view of the model 

showing the (out-of-plane 

dimension or extrusion 

depth) 

Figure 4.2.1 A Plug-in GUI for building a regular Honeycomb (a); and typical 

example (b). The dimension and lattice pattern are adapted from Papka and 

Kyriakides (1994) for validation purposes.  
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Missing Rib Auxetic Structure  

  

Figure 4.2.2 shows the structure of the missing rib auxetic model, which is 

the main focus of this work. The original model is proposed by Smith et al 

(2000) then later developed by Gaspar and Ren et al (2005). The missing rib 

structure and related system has attracted many research works in different 

forms. As shown in GUI, the initial input can be geometric inputs such as the 

length of the Beams (L1, L2), the angles between the beams (a1 and a2), the 

number of the repeating units, CopyNumX and CopyNumY, which is the 

repeating number of columns in the horizontal direction and the vertical 

directions, respectively. Depth refers to the out-of-plane extrusion depth (Z 

direction). The size of the sample can also be modified by two special scaling 

functions design. One is Scale area; one is for Scale Volume. These functions 

can further change the size of the structures to different aspect ratios, size and 

density. These are useful functions for quantitatively comparing structures to 

ensure they have the comparable dimensions or area or density. Similar to the 

missing rib models, other structures and more complex structures are also 

developed, as illustrated by the modules such as re-entrant structure, 

randomly generated cellular structures and mixed structures between missing 

rib and other structures (Figure4.2.3). Details of which will be presented in 

each individual section, including the modelling approach and key results in 

sections 4.3-4.7.  
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(a) Main input for building missing rib structures.  

   

(b) A typical 4-4 

lattice pattern 

structure. 

(c) A typical 4-4 lattice 

pattern structure with a 

beam angle (a1, a2) of 

60.  

(d) Typical 4-4 lattice 

pattern structure with 

different beam length 

ratio (L1/L2).  

Figure 4.2.2 Typical simple input GUI for building missing rib auxetic 

models of different angles (a1, a2) and beam lengths (L1, L2) in Abaqus.  
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Self-similar hierarchical honeycomb 

 

A self-similar hierarchical honeycomb is generated based on a regular 

hexagonal honeycomb structure. The modification consists of replacing each 

three-beam joint with a small hexagon, aligned parallel to the original 

honeycomb. The key procedures for building the hierarchical structures in 

this work is illustrated in Figure 4.2.3. It involves building the unit cell first 

then repeating the units and positioning them in a corresponding position. A 

loop operation is used to create the 6 points for the first hexagon edge points 

as shown in Figure 4.5.2a. In step 2, the vertices are replaced by a smaller 

hexagon, which is built with the replaced vertices at the centre point. A ratio 

between higher order hexagon edge length and lower order hexagon edge 

length is defined to control the size of the higher order hexagon in the program 

(d2/d1 in Figure 4.2.3b), which is designated as ‘S’) following the approaches 

conventionally used (Mousanezhad et al., 2015; Zhang et al., 2016). The 

thickness of the beam is kept as the same between the hexagons of different 

orders.  The parametric program can change the ratio, the thickness, and 

properties. 

As shown in the Figure, the key process for the self-similar Table 4.5.1 shows 

the code in setting the input parameters. One key parameter is S, which is 

used to control the size of the higher order hexagon in the program (d2/d1 in 

Figure 4.2.3). The dimensions are based on the edge length of the original 

hexagon, then the size of the smaller hexagon is controlled by the S value 

assigned. The remaining are mainly geometrical operations when building the 

unit cell. Then the number of repeating units are controlled by ‘xNum’ and 

‘yNum’. Table 4.5.2 illustrates the code of generating the nodes. It is based 

on a Loop operation when replacing the original vertices by the smaller 

hexagon. When generate the repeating structures (i.e., based on ‘xNum’ and 

‘yNum’), a rotation operation is required to ensure that all the edges and 

points are aligned properly.    
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Table 4.2.1 Main input for building self-similar hierarchical structures 

wd1= 'F:/temp'                                     # Abaqus work director 

#Model parameter----------------------------------------------------------------------------------------- 

lengths = [10]                                      #Beam length of lowest order Beam 
widths = [50]                                       #Extruded depth 

scarps = [3]                                        #Ratio between higher beam length and lower beam 

length6666666 
roots = [2]                                         #The order number of self-similar hierarchical honeycomb 

igsName = 'Hierarchicalhoneycomb'                     #Model name 

xNum = 3                                          #Cell number in X direction (lateral) 
yNum = 3                                          # Cell number in Y direction (Vertical) 

shellThick = 1                                      #Shell thickness 

#Materials properties for the solid material----------------------------------------------------------- 
elastic = 1.7                                        #Young’s modulus 

poisonRatio = 0.3                                   #Poisson’s ratio 

density = 1e-9                                      #Density 
havePlastic = 0                                     # Elastic or Perfect elastic plastic (0= Elastic,1= Perfect 

elastic plastic) 

plasticStress = 10                                   #Yield stress 
fraction = 0.2                                      #Fraction Coefficient  

#Mesh and boundary condition------------------------------------------------------------------------- 

meshSize = 1                                       #Global mesh size 
loadStrain = 0.3                                     #Maximum load strain 

loadTime = 1                                       #Total load time 

#Post Processing--------------------------------------------------------------------------------------------- 

numIntervals=100                                   # Number of output animation frames 

figureOutputVals = ['Mises','U1','U2']                    # Image output parameters, 

optional:'Mises','U','U1','U2','U3' 

figureOutputAngs = ['Iso','Front']                       # Image output angle, optional:' 

Iso','Front','Left','Right','Top','Bottom' 

aviOutputVals = ['Mises','U1','U2']                      # Animation output parameters 

aviOutputAngs = ['Iso','Front']                         # Animation output angle 

aviRate = 2                                        # Animation frame rate 

  

Table 4.2.2 Codes for building the structure based on the midpoint 

approaches. 

  def getLevelLines(self,cent,d,edgelen):                   # Nested function, used to get the edge 

information under the current level 

        if d==edgelen:                                  # Determine whether the current is the lowest order 

hexagon or not 

            points = []                                  
            for i in range(6):                                #Cycle to calculate six corner points of hexagon 

                x = cent[0]+d*sin(i*pi/3.0)                    #X coordinate of corner point 

                y = cent[1]+d*cos(i*pi/3.0)                    # Y coordinate of corner point 

                points.append([x,y])                          # Storage point information 

                if i>0:                                       

                    self.lines.append([points[i-1],points[i]])      #Store line segment information 
            self.lines.append([points[-1],points[0]])               

        elif d>edgelen:                                      # Next order cycle judgment 

            dr = d*cos(pi/6.0)                                # Distance from center to side 

            ang = atan(edgelen/2.0/dr)                         # Angle between edges 

            dcen = sqrt(dr**2+edgelen**2/4.0)                   # Beam actual radius 

            newD = d/float(self.scarp)                         # New hexagon beam length in the next order 

            newEdgelen = newD-(d-edgelen-2*newD)            # New actual beam length in the next order 

            for i in range(6):                                 # Loop to obtain line data, and solve the next 

order at each corner 
                x = cent[0]+d*sin(i*pi/3.0)                    # X coordinate of center point 

                y = cent[1]+d*cos(i*pi/3.0)                    # Y coordinate of center point 

                x1 = cent[0]+dcen*sin(i*pi/3.0+pi/6.0+ang)        # X coordinate of left point of actual beam  
                y1 = cent[1]+dcen*cos(i*pi/3.0+pi/6.0+ang)        # Y coordinate of left point of actual beam 

                x2 = cent[0]+dcen*sin(i*pi/3.0+pi/6.0-ang)         # X coordinate of right point of actual beam 
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                y2 = cent[1]+dcen*cos(i*pi/3.0+pi/6.0-ang)         # Y coordinate of right point of actual beam 

                self.lines.append([[x1,y1],[x2,y2]])                
                self.getLevelLines([x,y],newD,newEdgelen)        

    def lineRotate(self,lines,angle):                             # Rotation function 

        newlines = [] 
        theta = angle/180.0*pi 

        for line in lines: 

            newline = [] 
            for node in line: 

                newline.append([node[0]*cos(theta)+node[1]*sin(theta), 

                    node[1]*cos(theta)-node[0]*sin(theta)])             # Two-dimensional coordinate 

transformation formula 
            newlines.append(newline) 

        return newlines 
  

 

 

Step-1, drawing the edge points

 for a single regular hexagon.  

(b)Step-2, Drawing edge points for the 

higher order hexagon.  

  

(c)Step-3, Link the points to fo

rm a single Cell of hierarchical

 honeycomb. 

(d)Step-4, Repeat the unit cell to form an 

array of the structures and extrude the 2D 

structure to form a cellular hierarchical 

honeycomb structure.  

Figure 4.2.3 Key procedures to build a 1st order self-similar hierarchical

 honeycomb. 
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Voronoi random structure 

Apart from the structures with auxetic behaviours, limited work was also 

conducted on random structures based on the Voronoi approach. Figure 4.2.4 

shows the GUI for generating random Voronoi structures. The Voronoi 

diagram is a partition of a plane into regions call Voronoi cells. In the simplest 

case, these objects are just finitely many points in the plane (called seeds, 

sites, or generators). For each seed there is a corresponding region consisting 

of all points of the plane closer to that seed than to any other. To do this, 

individual seed points are positioned across the surface and the Voronoi 

algorithm is used to partition the surface into individual cells, separating each 

seed point from its neighbour with a cell wall positioned halfway between the 

two seed points (Alsayednoor and Harrison, 2016). In this work, a python 

program is built to generate the 2D Voronoi shell structure, the two-

dimensional Voronoi polygon information is generated by Voro++ which is 

an open sourced Voronoi algorithm library.  

  

As shown in Figure 4.2.5, the first step of the program is generating the grid 

from random point, the grid size is the model overall size divided by the axial 

grid number (Step 1). The third step is randomly picking the grid point by 

control randomness (control size regularity of the cells) (Step 2). Then Step 3 

and Step 4 are connecting the random point to a triangle and reconnecting the 

midpoint of the triangle beam to a Voronoi 2D sketch. These processes are 

operated by Voro++ library (https://www.nuget.org/packages/voroplusplus/). 

In step 5 the sketch is extruded to a cellular structure by controlling the 

extrusion depth for further FE modelling.   

  

  

https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Plane_(geometry)
https://www.nuget.org/packages/voroplusplus/


  

 

106 

 

 

 

 

 

 
 

(a) GUI for building random cellular 

structure.  

(b)Typical random structure.  

Figure 4.2.4 GUI for building Voronoi random cellular structure. 

 

 

Figure 4.2.5 Main process and data in building random cellular structures 

based on the Voronoi approach. 
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Mixed Structures 

Like the missing rib models, other mixed structures are also developed to 

study their effect on the Poison’s ratios. Some typical examples are shown in 

Figure 4.2.6. Figure 4.2.6a is a mixed structure formed by missing rib models 

with alternating columns of opposite angles. Figure 4.2.6b is a mixed 

structure of alternating orientation at both row and column. Figure 4.2.6c 

shows a structure between regular and random structures.    

  

(a) A typical mixed Missing Rib 

structures with alternating 

columns.  

(b) A typical mixed missing rib 

structures with alternating rows and 

columns. 

 

 

(c) Mixed random and regular structure.  

Figure 4.2.6 Typical structures studied in this section.  

 

The Python-based program is integrated in Abaqus for finite element analysis. 

As explained in the section above, it can generate different structures 

including missing rib structures of different beam angles, length ratio, etc. 

The program for the self-similar honeycomb can be used to automatically 
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produce structures of different hierarchical orders as well with different 

length scales by altering the S values (Figure 4.2.3). The Python program in 

itself can be used as a stand-alone program for designing the structures. 

Details of finite element modelling will be presented in each individual 

section, including the modelling approach and key results in section 4.3-4.7 

together with details of the meshing, boundary/loading conditions in Finite 

element models and typical results focused on the Poisson’s ratio and 

auxeticity. 
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4.3 Deformation of missing rib models in tension. 

This section reports on the FE models and typical results for missing rib (MR) 

structures under uniaxial tensions. The numerical results are compared to 

analytical solutions and experimental data. The effect of sample sizes and cell 

numbers on the Poisson’s ratio are studied based on a parametric FE model.  

Models with different beam angles are developed and the effect of the beam 

angles on the deformation modes and Poisson’s ratio is presented. The effect 

of the ratio of the beam length is also studied and systematic data is 

established. Apart from the data for Poisson’s ratios with different beam 

angles and length ratios, the stability of the Poisson’s ratio of MR models and 

the critical strain levels for stable auxeticity is established based on systematic 

data.  

4.3.1. FE modelling of auxetic structures in tension and comparison with 

analytical and experimental data 

Figure 4.3.1 shows models of two typical honeycomb structures. Figure 4.3.1a is 

a unit cell designated as the centrosymmetric missing rib model, and Figure 4.3.1b 

is a unit cell designated as the axisymmetric missing rib model, which has the same 

dimensions as Figure4.3.1a but at a different orientation. Typical larger models 

consisting of a lattice pattern of 4x4 (axial x transverse direction) units are shown 

in Figures 4.3.1c&d. For the model presented, the beam length is 10mm, beam 

thickness is 1mm.  As shown in Figures 4.3.1a there are four main geometrical 

variables where ‘L1’, ‘L2’are the length of the first and second-line segment, φ is 

the angle between ‘L1’ and ‘L2’, ζ is the angle of between ‘L1’ and adjacent side 

of ‘L1’.  Figure 4.3.2 shows the mesh, boundary and loading conditions of FE 

models. The FE model is built with ABAQUS. The extrusion depth of the shell is 

10mm for the model presented. The shell element is used with the thickness of 

shells set at 1 mm. There are 5 integration points through the thickness. Mesh 

sensitivity has been performed to determine an accurate result with optimum 

computational resource used. As shown in Figure 4.3.2c&d, the displacement is 

applied on the top of the model with the left and right sides being free to move. An 

ENCASTRE condition is applied on the fixed end of the structures with all the 
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degrees of freedom (DOFs) set as zero. The resultant axial and lateral 

displacements are used in the calculation of the transverse strain and the Poisson’s 

ratio. The lateral displacement is based on the displacement of the points at the 

edge. The materials property used is E=22 MPa and v=0.3 in the simulation.  

  

(a) Structure with a Centrosymmetric 

missing rib model. (shell 

thickness=1mm) 

(b) Structure with an Axisymmetric 

missing rib model. (shell 

thickness=1mm） 

  

(c) Centrosymmetric missing rib 

honeycomb. (lattice pattern:4-4) 
(d) Axisymmetric missing rib 

honeycomb. (lattice pattern:4-4).  

Figure 4.3.1 Centrosymmetric (a&c) and Axisymmetric (b&d) missing rib 

models used in the FE analysis.  
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(a) Mesh of a unit cell for Centro- 

symmetric model.  

(b) Mesh of a unit cell of Axisymmetric 

model.  

 
 

(c) Boundary and loading condition 

of a 4-4 Centrosymmetric model  

(d) Boundary and loading condition of 

4-4 Axisymmetric model.  

Figure 4.3.2 Mesh, boundary and loading conditions of FE models of missing rib 

models in tension.  

 

The Poisson’s ratio of the structures is determined by the ratio of the transverse 

strain and axial strain (loading direction) (Equations 4.3.1-4.3.3).  

𝜀𝑥 =
𝑥𝑙𝑎𝑜𝑑

𝑥0
                                  (4.3.1) 

⁡𝜀𝑦 =
𝑥𝑟𝑖𝑔ℎ𝑡−𝑥𝑙𝑒𝑓𝑡

𝑦0
                            (4.3.2) 

𝑣 =
𝜀𝑥

𝜀𝑦
                                                   (4.3.2) 

Where v is Poisson’s ratio, Ɛx is transversal strain and Ɛy is axial strain, 𝑥𝑙𝑎𝑜𝑑 is 
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displacement of loading points on axial direction, 𝑥0 is the original length on axial 

direction. 𝑥𝑟𝑖𝑔ℎ𝑡 and  𝑥𝑙𝑒𝑓𝑡 are displacement at traversal direction. Figure 4.3.3 

a&b shows the deformation (displacement) of the auxetic samples in tension. The 

contour plots are for lateral displacement U1. As shown in the Figures, these two 

structures have different deformation patterns, but both show a clear lateral 

expansion under tension, exhibiting auxetic behaviours.  

  

(a) Deformed shape of a 4-4 

Centrosymmetric model. (E=22MPa, 

v=0.3, beam wall thickness, t=1). U1 

is the lateral displacement. 

(b) Deformed shape of a 4-4 

Axisymmetric model. (E=22MPa, 

v=0.3, beam wall thickness, t=1). U1 

is the lateral displacement. 

Figure 4.3.3 Deformed shape and lateral displacement field of the auxetic 

samples in tension. (a) 4-4 Centrosymmetric model; (b) 4-4 Axisymmetric 

model. 

 

Figures 4.3.4 shows the comparison between the Poisson’s ratio obtained from FE 

modelling, analytical and experiments. Figures 4.3.4a is for the centrosymmetric 

missing rib structure, Figures 4.3.4b is for the Axisymmetric model. As shown by 

the bar chart, the FE data of Poisson’s ratio are in a reasonable agreement with the 

analytical result and the experimental data. The analytical procedure was adapted 

from Gaspar and Ren et al (2005), which calculates the axial and transverse strain 

and the Poisson’s ratio based on the key geometrical features including the beam 

length (r) and the beam angles (  and ) and the angles were labelled in Figure 

4.3.1a. 
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(a) Comparison between the Poisso

n’s ratio from FE modelling, analyt

ical data (Gaspar et al., 2005) and 

experiments of the centrosymmetric

 model. 
 

(b) Comparison between the Poisso

n’s ratio from FE modelling and ana

lytical data (Gaspar et al., 2005) of t

he Axisymmetric model. 
 

Figure 4.3.4 Comparison between the Poisson’s ratio from FE modelling, 

analytical and experiments of the two missing rib models. 

 

 

For the centrosymmetric missing rib structure, the calculation was carried out 

using the following equations:  

                                       (4.3.4)       

                                                        (4.3.5) 

                 (4.3.6) 

  

For Axisymmetric model, the calculation of the strains and the Poisson’s ratio is 

based on the following equations:  

                                  (4.3.7) 

                                                     (4.3.8) 
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              (4.3.9) 

In formula, x and y are traversal displacement and axial displacement, r is length 

of single beam, v is Poisson’s ratio and 𝑘 =
∆𝜉

Δ𝜑
  is relative deformation. These 

equations are based on beam mechanics (considering bending and rotation 

deformation), they are valid for relatively small deformations (Gaspar and Ren et 

al., 2005). The experimental data in Figure 4.3.4 is based on samples of different 

materials, including EVA foams, injection moulded plastics (Gaspar and Ren et al., 

2005) and silicone rubber (Li, 2018). The error bar represented the values scatter 

from different sources. As shown in the figure, the FE result shows a good 

agreement with the analytical prediction. The average experimental data is slightly 

higher than the analytical solution and the FE model, but in general these are in 

reasonable agreement. The close agreement suggests that the FE model is 

sufficiently accurate.  
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4.3.2 Effect of sample size effect on the Poisson’s ratio and stability of 

auxeticity 

To analyse the effect of cell numbers on the modelling results, especially in 

Poisson’s ratios and the stability of the auxeticity (i.e., the Poisson’s ratio 

remains negative stably over a range of strain level), it is important for 

practical design applications. If the Poisson’s ratio changes, it will affect the 

materials selection and design. A Python program is developed to 

automatically generate the structures. Some typical structures are shown in 

Figure 4.3.5 (a-d). The material properties used are: Young’s modulus (E) is 

set as 22 MPa and Poisson’s ratio of the material is set as 0.3. And beam length 

is 10mm. That series of models with different unit cell numbers are used to 

establish the effect of cell number on the simulation results. For convenience, 

the different lattice pattern is designated based on the number of repeating 

units (in both in-plane horizontal and vertical directions). For example, a 

missing rib model with 7 repeating units is named as MR-7-7. Mesh size 

effect was analysed by changing the mesh size until the modelling results 

showed limited changes with a further increase of the mesh density on the 

force and the Poisson’s ratio. As the repeating unit/cell number is increased, 

the number of elements increased significantly. The study of the cell number 

effect is important as the number of cells may affect the effective deformation 

mechanism for cells at different positions. For a model with smaller cell 

numbers, the boundary effects will be more significant. In the model, a 

tension displacement load is applied from the top end and the bottom line is 

fixed for all degrees of freedom (U1=U2=U3=0, UR1=UR2=UR3=0). Some 

typical results are shown in Figure 4.3.5e&f. Figure 4.3.5e shows the lateral 

strain vs. the axial strain (loading direction). Figure 4.3.5f shows the 

Poisson’s ratio v. the axial strain. As shown in Figure 4.3.5e, in all the cases, 

the lateral strain followed the axial strain close to a linear relation up a strain 

of about 25%.  The effect of the cell numbers is shown in Figure 4.3.5f more 

clearly, when the cell number is over 4-4, there is no significant difference in 

the Poisson’s ratio (Figure 4.3.5e), in other words, when the cell number is 

over 4-4, the boundary effect on the predicted Poisson’s ratio is 

limited/negligible. Figure 4.3.5f also shows that the sample has a relatively 
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stable negative Poisson’s ratio up to a strain level of about 35% (as indicated 

by the dotted line), beyond which, the Poisson’s ratio is increased quickly 

towards the positive domains. This strain level is termed as the critical strain 

for stability of the auxeticity. This is important data for auxetic materials, as 

a stable auxeticity over a larger strain range is essential for applications with 

controlled properties. As shown by the dotted line, there is a slight difference 

in the critical strain for stable auxeticity among the models with different cell 

numbers, but difference is not significant.  

    

(a) Single unit cell 

(2-2）. 

(b) 4-4 cell 

structure. 

(c)7-7 cell 

structure. 

(d) 10-10 cell 

structure. 

   

(e) Lateral strain vs axial strain (load 

strain). 

(f) Poisson’s ratio vs axial strain 

(load strain). The dotted line 

indicates the critical stain for stable 

auxeticity.  

Figure 4.3.5 Structures with different cell numbers used to study the 

sample size effect. The models are designated based on the number of 

repeating rows and columns. (Shell thickness=1mm, Material properties: 

E=22MPa, v=0.3)  
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4.3.3 Effect of beam angles and the beam length ratio on the Poisson’s 

ratio and auxeticity  

Effect of the beam angles 

Figure 4.3.6 shows structures with different beam angles. The angle was 

automatically changed in the Python programs and number of cells can also 

be changed in the program. The beam length was kept the same (l=10mm). 

Models with varying beam angles between 60° and 120° were developed and 

analysed, as shown in the figure. For each angle, the images show the original 

model of the undeformed model (top row), deformed model (second row) and 

enlarged view (third row) of a deformed cell taken from the corresponding 

large sample. As the beam angle increases, the overall sample size gets 

smaller. The deformed shapes at 20% load strain of the cells of different 

angles (70, 80, 90, 100, 110 degrees) are shown in the Figure. Under tension, 

all the samples showed clear expansion in the lateral direction showing clear 

negative Poisson’s ratio behaviour. Figure 4.3.7a shows the lateral strain vs. 

axial strain (loading direction). All the data followed a similar trend, each 

curve consists of a stable/close-to-linear relationship, then lost the linearity at 

a certain stain point. The data shows that the structure with a lower beam 

angle undergoes much higher strain before losing the linear relationship 

between axial and lateral strain, which indicates the stability of the Poisson’s 

ratio and reflects the critical strain for auxeticity. For example, the model with 

an angle of 60 degrees can maintain its stable Poisson’s ratio up to a strain 

over 50%, while the model with an angle of 120 degrees has a critical strain 

for auxeticity just about 10%. Detailed data of Poisson’s ratio over axial strain 

is shown in Figure 4.3.7b. For all the models, the Poisson’s ratio is relatively 

stable over different strain levels, indicating a clear difference in the stability 

of the auxeticity. Figure 4.3.8a shows the effect of the beam angles on the 

initial Poisson’s ratio of the structures. All the models have a negative 

Poisson’s ratio, and the absolute values are increased with the beam angle. 

Figure 4.3.8b shows the critical strain for auxeticity, i.e., the strain level at 

which the Poisson’s ratio lost it stability. The data shows a significant effect 

of the beam angles on the critical strains. These data are important for 
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understanding the behaviour of the structure as well as offering a potential 

way to control/design the Poisson’s ratio through changing the angles.  

 

 

 

 

 

 

 

 

 

 

 

  
   

      

(a)Beam 

angle 70° 

(b)Beam 

angle 80° 

(c)Beam 

angle 90° 

(d)Beam 

angle 100° 

(e)Beam 

angle 110° 

Figure 4.3.6 Models and deformed patterns of auxetic structures at 20% 

load strain with different beam angles.  
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(a) Lateral strain vs. Axial strain for 

missing rib structures with 

different beam angles (60°-

120°) 

(b)Poisson’s ratio vs. axial strain for 

missing rib structures with different 

beam angles (60°-120°) 

Figure 4.3.7 Poisson’s ratio and its stability over different strain level for 

missing rib auxetic structures with different beam angles. 

  

(a)Initial Poisson's ratio for structures 

with different beam angles (60° to 

120°) 

(b) Critical strain for stable 

auxeticity for structures with 

different beam angles (60° to 

120°). The data was taken from 

Figure 4.3.7(b).  

Figure 4.3.8 Data showing the effect of the beam angles on the Poisson’s ratio 

and critical strain for auxeticity. 
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Effect of the beam length Ratio on the Poisson’s ratio and auxeticity 

Beam length ratio is a ratio connecting beam length divided by rotating beams 

length. The beam length ratio refers to the ratio between L1/L2. (as explained 

in Figure 4.3.1). Figure 4.3.9 shows some example of MR structures with 

beam length ratio of 1/3, 1/2,1, 2, 3, respectively. All these models of this 

study were set to the same overall size (200mm*200mm) and width(7mm).  

 

Figure. 4.3.10 shows the models and deformed shapes of 10-10-unit models. 

As shown in the model, all the structures show lateral expansion under an 

axial tension load, indicating negative Poisson’s ratio. From the deformed 

shapes, there is a significant difference between the structures as the beam 

length ratio is increased from 1/3 to 1, then to 3.  

     

 

     

 
    

     

(a)Beam 

length 

ratio1/3 

(b)Beam 

length 

ratio1/2 

(c)Beam 

length 

ratio1 

(d)Beam 

length ratio 

2 

(e)Beam 

length 

ratio3 

Figure 4.3.10 Figures showing the effect of the beam length ratio on 

deformation patterns of missing rib structures. 

 

As shown in Figure 4.3.11a, all the lateral strain vs. axial strain data showed 

linear trend stages, then the lateral strain decreases significantly. As shown in 
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Figure 4.3.11b, the beam length ratio showed significant effect on the value 

of the Poisson’s ratios as well as the critical strain for auxeticity. 

  

(a) Lateral strain vs. Load strain of 

structures with different beam length 

ratio.  

(b) Poisson’s ratio vs. load strain 

data for structures with different 

beam length ratio.  

Figure 4.3.11 Data showing the effect of beam length ratio on the Poisson’s 

ratio and its stability. (See Figure 4.3.9 for details of the models). 

Figure 4.3.12 shows the initial Poisson’s ratio (at small strain) of the 

structures of different beam length ratios. The Poisson’s ratio changes from -

0.14 to -0.83 when the beam length ratio changes from 1/4 to 4. The data for 

the critical strain for Auxeticity is increased from beam length ratio of ¼ to a 

beam length ratio of 1, then decreased when the beam length ratio is further 

increased. The data suggests a structure beam-length ratio of 1 (i.e., the 

regular missing rib model) has the best stability, in other words, a wider strain 

range for maintaining auxeticity. Another parameter for Poisson’s ratio is the 

Poisson's ratio stability (△v) (Zhang et al., 2016) which is also analysed. It 

represents the variation of the Poisson’s ratio. A low value of the Poisson’s 

ratio stability indicates a more constant Poisson’s ratio value. It is solved by 

using the LINEST function to solve the Poisson's ratio curve by a one-variable 

quadratic equation, and then deriving the equation twice to obtain the 

Poisson's ratio stability coefficient. The LINEST function uses the least 

squares method to perform a best straight line fit on known data and returns 

a function describing this line. The data is shown in Figure 4.3.12. The data 

shows that structures with a beam length ratio of 1 also has the best stability 

of the Poisson’s ratio. 
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(a) Initial Poisson's ratio for 

structures with different 

beam length ratio (R1/4 – R4) 

(b) Critical strain for stable 

auxeticity of structures with different 

beam length ratio (R1/4 – R4).  

Figure 4.3.12 The effect of the beam length ratio on the Poisson’s ratio and 

critical strain for stable auxeticity.  
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4.4 Deformation mechanism of missing rib 

models under compression 

In this section, the deformation of missing rib auxetic structures and mixed 

structures are studied experimentally and numerically. The first part of the 

work is focused on experimental and numerical modelling of missing rib 

structures of 3D printed Thermoplastic Elastomers (TPE) samples. 

Parametric numerical models have been developed and correlated to testing 

data on structures of different beam angles, sample sizes/aspect ratios. The 

modelling results are also compared to other published experimental data of 

a different material. The key edge-wall contact stages in samples of different 

sizes and its effects on the structure deformation were investigated and 

analysed. The deformation of auxetic structures with different beam angles is 

established with a particular focus on the corner edge-wall contact and the 

deformed shapes at the full contact stage under compression. The deformation 

of mix structures with alternating columns of different directions are studied 

experimentally and numerically; the Poisson’s ratio and its stability are 

established. The influence of corner-edge and beam wall contacts on the 

overall structural deformation, critical strain range for auxeticity and stability 

of the structures is discussed. 

 

4.4.1 Structures, Experimental and Modelling Approaches  

Figure 4.4.1 shows some typical structures studied experimentally and 

numerically. Figure 4.4.1a is a normal missing rib auxetic structure with a 

beam angle of 90 degrees. Figure 4.4.1b is a typical missing rib auxetic 

structure with a beam angle of 60 degrees. In the work, models with different 

beam angles have been studied (e.g., 60, 70, 80 and 90 degrees). Samples of 

different sizes including much larger samples are systemically studied in 

order to establish the deformation mechanisms, and the effective stable 

Poisson’s ratios with a particular focus on the cell wall/edge contact, localised 

deformation and structure/shape stability. Figure 4.4.1c is a typical example 
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structure of wider samples. The example shown in Figure 4.4.1d is with a 10-

10 lattice pattern. In the finite element model, a Python program is developed 

which is able to automatically vary the key parameters including the beam 

length (l), thickness (t), sample size and depth (out-of-plane sample 

dimension) as well as studying the effect of mesh size, friction and material 

models). Use of the Python program allows the mapping of potential effects 

of sample dimensions and sizes on the deformation process, deformed 

patterns, key properties, such as stress-strain data, Poisson’s ratio and their 

stabilities. Figure 4.4.2 shows the models of the structures in Oblique side 3D 

view.  

 
 

 

 

 

(a)Missing rib 

auxetic structure 

with a 90-degree 

angle (MR-90(4-

4)). 

(b) Missing rib 

auxetic structure 

with a 60-degree 

angle (MR-

60(4-4)). 

(c) Typical wide 

MR sample with a 

90-degree beam 

angle (MR-90 (7-

3)). 

(d) Typical 

larger MR 

sample with a 

90-degree beam 

angle (MR-

9010-10)). 

Figure 4.4.1 Typical structures studied.  

 

    
(a)Missing rib 

auxetic structure 

with a 90-degree 

angle (MR-90(4-

4)). 

(b) Missing rib 

auxetic structure 

with a 60-degree 

angle (MR-60(4-

4)). 

(c) Typical wide 

MR sample with a 

90-degree beam 

angle (MR-90 (7-

3)). 

(d) Typical larger 

MR sample with a 

90-degree beam 

angle (MR-90 (10-

10)). 

Figure 4.4.2 Typical models of studied in Oblique side 3D view.  
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Most of the numerical modelling is based on the FE model with as-testing full 

boundary conditions of a uniaxial compression test (Figure 4.3.3), while 

additional representative volume element (RVE) approach-based analysis has 

also been performed on selected samples as a comparison. The boundary and 

loading condition for the FE model with a full boundary condition is 

schematically shown in Figure 4.4.3. In the model, a uniaxial velocity (V2) 

load (1mm/s, same as the test) is applied on the top loading surface and an 

encastre fix condition (U1=U2=U3=UR1=UR2=UR3=0, all degrees of 

freedom are fixed) is applied on the bottom surface. U1 is lateral in-plane 

displacement, U2 is vertical displacement, and U3 is the out of plane 

displacement. URs1-3 are the rotational degrees of freedom). Figure 4.4.3 

also shows the close-up view of the typical meshing scheme used in the finite 

element analysis. The element type used in the simulation is S4R which is a 

4 node, quadrilateral, stress/displacement shell element. Detailed mesh 

sensitivity tests have been conducted. For compression tests with a particular 

focus on the contact and deformation pattern, the mesh sensitivity is crucial 

in particular for the post-contact stage. In the mesh sensitivity tests, the 

convergence of the simulation is depicted through the reaction force, and the 

deformed shape of the beams. The final mesh size selected is 1 mm, which 

give a ratio of element size of 1 and sufficiently accurate results within the 

strain range and contacting stage studied. Similar meshing conditions have 

been used in other published works of cellular structures (Imbalzano et al., 

2018; Liu et al., 2015). Self-contact is defined with a fitted plastic-plastic 

friction coefficient of 0.35 being used in the model. In the simulation, force-

displacement is recorded, the deformation of the structures under 

compression is analysed, and the central points of the outermost left-right 

columns are recorded for calculating the Poisson’s ratio from the captured 

images. The process excluded the two points immediately next to the fixed 

and loading end to reduce the uncertainty with the boundary effect. This gives 

the overall Poisson’s ratio of the structure studied and provides a mean for 

studying the sample size (cell number) effects on Poisson’s ratio.   

  



  

 

126 

 

 

 

Figure 4.4.3 The load and boundary conditions in the finite element mo

del and RVE model using a regular missing model MR-90 (4-4) as an e

xample. 
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4.4.2 Deformation of normal missing rib structures with a beam angle of 

90 (MS-90).  

Figures 4.4.4a compared the stress strain data of a normal missing rib model 

with a beam angle of 90 degrees (MR-90) from the experiments and 

numerical modelling. The stress is the overall force divided by the effect area 

of the sample; the strain is calculated by the overall displacement divided by 

the original height of the sample. The deformed structures at different stages 

are presented in Figure 4.4.4b. As shown in Figure 4.4.4a, the numerical data 

showed a good agreement with the experimental stress-strain curve. The 

experimental data is based on the average of three test data. There is some 

scattering of the data at high strains, but in general, the numerical result 

followed the trend of the testing data well. Point 1 is the initial unreformed 

stage, point 2 represents the initial corner edge-cell wall contact stage, point 

3 represents the point when all the corner edges are in contact with the cell 

walls in the sample. Point 4 is the further deformation of the locked/contacted 

structure. As shown in Figure 4.4.4b, the simulated deformation patterns 

resemble the images from the test for all the key stages including the initial 

corner edge-wall contact ((2) and (5)), the location of the contact is 

highlighted in the red dotted circle. The structure when full contact is formed 

((3) and (6)) also showed a reasonable resemblance. The stage shows the full 

corner edge-wall contact also shows a reasonable agreement between the 

modelling and the test, but this is not the focus of this report as it is subject to 

more complex modelling and testing with different materials. The results 

show that the relatively small sample size with a 4-4 lattice pattern is effective 

in capturing the key deformation stages. The simulation and testing also 

shows a skewing from left to right in this case. This is probably a specific 

feature for the missing rib type of structures. To study the potential effect of 

the sample size, both numerical and experiments have been conducted on a 

wider and shorter sample with a lattice pattern of 7-3. The lattice structure of 

the model is shown in Figure 4.4.1e, the results are presented in Figure 4.4.5.  
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(a) Numerical (solid line) and experimental (open symbols) Eng. 

stress-strain data of MR-90 (4-4) sample. The stress is calculated 

by the force divided by the overall area. The strain is calculated 

by the displacement by the original sample height.  

    
(1) Point1(FE) (2) Point2(FE) (3) Point3(FE) (4) Point4(FE) 

    

(5) Point 1 

(Test) 

(6) Point 2 

(Test) 

(7) Point 3 

(Test) 

(8) Point 4 

(Test) 

(b) Deformation and contact in the structure at different stages. 

Figure 4.4.4 Numerical and experiment stress-strain data and 

deformation of MR-90(4-4) 

Figure 4.4.5a shows the Eng. stress strain for the wider sample processed with 

the same material and processing method in this work. The sample consists 

of 7-3 cells; the beam length is ~9.57mm, the wall thickness of 1.5 mm, the 

thickness of the sample is 30mm and the overall height of the sample is 

82.5mm. The dimension is selected in order to assess the potential effect of 

the sample aspect ratio on the beam-wall contact and change of the stress-

strain due to the contacts. As shown in the Figure 4.4.5a, the testing data and 
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the numerical results show a reasonable agreement. Figure 4.4.5b shows the 

comparison between numerical modelling results with published force-

displacement data of a different material. The beam wall thickness is 1.5mm, 

the out-of-plane sample thickness is 50 mm (Remennikov et al., 2019). The 

overall sample height is the same as in Figure 4.4.5a of 82.5mm. The material 

used is Nylon with a Young’s Modulus of 597MPa, Poisson’s ratio is 0.33, 

and density of 1140 kg/m3. Both elastic and elastic plastic models have been 

evaluated based on the stress-strain data provided, there is no significant 

difference in the modelling results within the strain range studied. Only the 

results with an elastic model are shown in Figure 4.4.6.  

 

(a) Comparison between numerical and testing data (MR-90 (7-3)) (Beam 

length: 9.57mm, wall thickness: 1mm, sample depth: 30, overall sample 

height: 82.5mm. Material: TPE). 

  

(b)Full contact at point 3 (FE). (c) Full contact at point 3 

(Experimental) 

Figure 4.4.5 Comparison between numerical and testing data (MR-90 (7-

3)) (Beam length: 9.57mm, wall thickness: 1mm, sample depth: 30, overall 

sample height: 82.5mm. Material: TPE). 

 

As shown in the Figure4.4.6, the FE modelling data is in a reasonable 
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agreement with the published data in terms of the key stages. For a wider 

sample, as shown in both Figure 4.4.5 and Figure 4.4.6, the overall sample 

deformation and key stages of the stress strain curves are similar to the key 

stages of the smaller square 4-4 structure presented in Figure 4.4.4. The wider 

model showed more significant plateau stages (circled in Figure 4.4.6) than 

the 4-4 model in Figure 4.4.4b. The deformation at the later stage showed 

certain diversion between the testing and modelling data, but the overall trend 

of the stress-strain curve over the contact stages is similar among these three 

set of data (Figures 4.4.4a, 4.4.5a and 4.4.6). Figure 4.4.6 used force-

displacement data to preserve the feature of the original published 

experimental data (Remennikov et al., 2019). A key point of focus, the strain 

for reaching the first slope increase point on the stress-strain curves among 

these samples is similar, which is observed to be correlated to the first corner 

edge-wall contact in all the cases. The association of this with the overall 

Poisson’s ratio and its stability is to be analysed based on data of different 

structures and sizes and is to be discussed in later sections in comparison with 

other structures (structures with different beam angles and mixed structures).   

 

 

 

Figure 4.4.6 Comparison between numerical and published force-

displacement data (MR-90 (7-3) sample) (Remennikov et al., 2019). 
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4.4.3 Deformation of missing rib structures with different beam angles. 

 

Figure 4.4.7 shows typical simulation and test data of missing rib auxetic 

structures with different beam angles. For each model, the beam length is the 

same (l=10mm), so the sample size is reduced as the angle is changed from 

90 to 60 degrees. From geometry analysis, when the angle changes, the 

distance between the corner edge and the opposite wall is changed 

accordingly for a fixed beam length and thickness, this directly affects the 

contacting situations. Experimental tests have been performed on the sample 

with an angle of 60 degrees, which is presented together with the testing data 

of the normal missing rib model with an angle of 90 degrees (open symbols). 

In general, the FE modelling and experimental data show a good agreement. 

As shown in the close- up view (dotted box), in the initial stage, the stress for 

the model with a higher beam angle is higher, the slope of the stress-strain 

data decreases as the angle is varied from 90 to 60 degrees. This is because 

the beam is tilting more in the structure with a smaller beam angle, the beam 

is much easier for the wall to bend. The data shows clearly that the critical 

strain for reaching the corner edge-wall contacting point for lower angled 

structure (for example the 60-degree model) is much lower due to the 

geometrical effect, and the stress increased significantly once the full corner 

edge–wall contact stage is formed. The typical deformed structure captured 

from the test and FE simulation is shown in Figure 4.4.7b&c. Comparing this 

with features for the 90-degree model (Figure 4.4.5&4.4.6), there is less 

bending of the beam wall for the 60-degree structure at the full corner edge-

wall contact stage. The results (Figure 4.4.7b&c) also show that the full 

contact (or locked) structure has more corner edge-wall contacting points than 

the 90-degree structure (Figure 4.4.5&4.4.6). This is probably the main 

reason for the much stiffer stress-strain data for the 60-degree structure after 

contact. As shown in Figures 4.4.7b-e, the shape of the cells and the number 

of contacting points changes as the beam angle is increased and fewer contact 

points are formed, which would directly affect the stiffness of the structure.  
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(a) Eng. stress-strain data of missing rib auxetic structures with different beam 

angles (4-4 model). The symbols are experimental data, the solid lines are FE data. 

(Beam length=10mm, wall thickness=1mm, Out-of-Plane sample thickness 

=30mm). 

    

(b) Deformed st

ructure with the

 corner beam i

n full contact 

with the opposi

ng wall. (Beam 

Angle=60) (Exp

erimental) 

(c)Deformed struct

ure with the corn

er beam in full c

ontact with the op

posing wall. (Bea

m Angle= 60) (F

E model) 

(d)Deformed struct

ure of model (70-

degree beam angl

e). 

(e)Deformed stru

cture of model 

(80-degree beam 

angle). 

Figure 4.4.7 Simulation and experiment results of structures with different beam 

angles. 
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4.4.4 Deformation of the mixed structures and Poisson’s ratio under 

compression 

Figure 4.4.8 shows two typical mixed structures studied. The main idea is 

changing the pattern of the column to control the rotation of the beam (Figure 

4.4.8a. Figure 4.4.8b shows mixed structure-1 which consists of alternating 

single column of normal missing rib model in opposite directions. As shown 

in the figure, cell columns in green are regular normal missing rib cells, and 

columns in blue are opposite normal missing rib cell. Figure 4.4.8e designated 

as mixed structure 2, contains two columns of normal missing rib model in 

opposite directions. Samples of different sizes, including much larger samples, 

are systematically studied to establish the deformation mechanisms, and the 

effective stable Poisson’s ratios with a particular focus on the cell wall/edge 

contact, localized deformation, and structure/shape stability.  

 

(a) Diagram illustrating the concept of designing mixed structures by 

control the rotation.  

    

(b) Mixed stru

cture 1 (MS-1)

 (4-4 model). 

(c) Mixed struc

ture 2 (MS-2). 

(4-4 model) 

(d) Mixed struc

ture 1 (MS-1). 

(10-10 model) 

(e) Mixed struc

ture 2 (MS-2). 

(10-10 model) 

Figure 4.4.8 Typical mixed structures studied.  

Mirror  Alternating Missing Rib Classical Missing Rib 

rectangle 
Mix 

Mirror 

MS2 MR-90(4-4) 
Single Cell of Mixed structure 

MS1 
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Figure 4.4.9 compared the Eng. stress strain for the mixed structures (MS-1 

and MS-2) with the normal missing rib structure (MR-90). As shown in data, 

the slopes of the initial stages are similar between these structures up to a 

strain level. However, the localised contact situation is much different. As 

shown in Figure 4.4.9b(i-iii), at a strain of ~20%, the corner beam-wall 

contact starts to form for the normal missing rib model Figure 4.4.9b(i), 

however, no contact is formed for the mixed structure at this stage for the 

mixed structures (Figure 4.4.9b(ii&iii)). The connecting point between the 

columns with different angles restrains the rotation of the unit, which changes 

the strain to reach the corner edge-wall contact, as well as the formation of 

the contact. Another significant difference is the in-plane deformation 

between the three structures. The mixed structure-1 and mixed structure-2 

structures are much more stable than the normal missing rib model. Both 

mixed structure-1 and mixed structure-2 exhibit clear inward lateral 

displacement under compression, suggesting that the structure has maintained 

the auxeticity of the missing rib model.  

 

  

(i) MR-90 (ii) MS-1 

 

(iii) MS-2 

(a) Engineering stress-strain of mixed 

structures. 

(b) Typical deformed shape at 

strain 20%. 

Figure 4.4.9 Numerical and experimental data of normal missing rib (i) and 

mixed missing rib structures: MS-1(ii)&MS-2(iii). 

 

A series of FE models have been developed with much larger sample sizes to 

further establish the effect of the mixed structure on the Poisson’s ratio and 

the stability of the sample shapes. Some typical examples are shown in Figure 
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4.4.10. As shown in Figures 4.4.10a, the critical strain range for a stable 

Poisson’s ratio corresponds to the corner beam-wall contact point (as marked 

by the dotted line in Figure 4.4.10a). The stress-strain curves for mixed 

structure-1 and mixed structure-2 are similar between the 4-4 and 10-10 

models, but there is a clear difference between the 4-4 and 10-10 for the 

normal missing rib models (MR-90). Figure 4.4.10(b) plots the Poisson’s ratio 

of the structures. Also plotted (open symbols) on the Figure 4.4.10b are the 

experimentally measured Poisson’s ratio. As shown in Figure 4.4.10b, there 

is a slight difference in the value of the Poisson’s ratio, but all structures are 

in the negative Poisson’s ratio domain at small strains. The effective Poisson’s 

ratio of the mixed structure-1 is similar/identical to the value for the normal 

missing rib model (MR-90), but the critical strain within which the Poisson’s 

ratio is stable is much higher. The Poisson’s ratio of mixed structure-2 is even 

lower indicating a stronger auxeticity, the stability range of the Poisson’s ratio 

for mixed structure-2 is like that for mixed structure-1, much higher than the 

normal missing rib model. Figure 4.4.10c compared the deformed shape of 

the mixed structure and normal missing rib structures (10-10 structure) at a 

strain level of ~20%. At this strain level, the normal missing rib model has 

lost its stability of the auxeticity, the normal missing rib model shows a clear 

unstable deformation, and the Poisson’s ratio becomes unstable. While both 

mixed structure-1 and mixed structure-2 have maintained a relatively stable 

structure, the contour of the lateral displacement (U1) is indicative of clear 

auxeticity. This may also have contributed to the difference in data from 

sample sizes. The image also shows that the large sample (10-10) could not 

form a fully contacted structure. The top and bottom sections formed a full 

contact pattern (box in dash line). This may have contributed to the difference 

in stress-strain data between the 4-4 and 10-10 normal missing-rib structures. 

This suggests that the mixed structure offers similar Poisson’s ratio/auxeticity 

level with better shape stability and less sensitivity to the cell numbers under 

compression.  
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(a) Eng. Stress strains of different 

structures simulated with different 

cell numbers (4-4, 6-6, 10-10). 

(b) Comparison of Poisson’s ratio 

mixed structures and normal 

missing rib auxetic structures. 

   

(i) Deformation of MR-

90. 

(ii) Deformation of 

MS-1. 

(iii) Deformation of 

MS-2. 

(c) Deformed shape of the mixed structure and normal missing rib 

structures at 20% strain. (the color band for U1 is applicable to all the 

figures (i-iii) 

Figure 4.4.10 Stress-strain, Poisson’s ratio and deformed shape of the 

mixed structures.  
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4.4.5 Effect of the sample size on the initial contact and Poisson’ ratio 

The experimental and corresponding numerical data showed that the contact 

between the corner edge and the opposite wall in the missing rib model played 

a significant role in the deformation mode of the structure and the Eng. Stress-

Strain curve. Models with a larger beam length to thickness ratio (l/10) and a 

relatively soft material provided an effective experimental set-up to study the 

deformation mechanism in detail. The work on samples of different sizes 

reveals that once the corner edge-wall contact is initialised, the stress is 

increased slightly, once a full contact position is formed, the structure 

becomes much stiffer. Figure 4.4.11 presents the initial corer edge-wall 

contact for different structures and sample sizes (4-4 and 10-10 lattice pattern). 

There is a clear difference between the three structures. For the normal 

missing rib models, the corner edge-wall contact starts at a diagonal corner. 

This is due to the shear point and the intrinsic angle of the structure. While 

for the mixed structures of different sizes as shown in Figure 4.4.11b&e for 

mixed structure-1 and Figure 4.4.11c&f for Mixed structure-2, the position of 

the initial contact is different, and the contact was at different orientations due 

to the rotation of the cells. This has probably contributed to improvement of 

the shape stability.  

   

(a) Initial contact 

pattern of 4x4-MR-90 

(b) Initial contact 

pattern of MS-1-4x4. 

(c) Initial contact pattern 

of MS-2-4x4. 

   

(d) Initial contact 

pattern of 10x10-MR-

90. 

(e) Initial contact 

pattern of MS-1-10x10. 

(f) Initial contact pattern 

of MS-2-10x10. 

Figure 4.4.11 Initial corner edge-wall contact position and deformed shapes 

(U1: Lateral displacement). 
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For auxetic structures, the stability of the Poisson’s ratio and the auxeticity is 

also very important. The work shows that the critical strain for a stable 

Poisson’s ratio is associated with the starting of the corner edge-wall 

contacting points. Figure 4.4.12a shows the Poisson’ ratio of the normal 

missing rib model with different cell numbers. In all the cases, the Poisson’s 

ratio at lower strain levels is negative reflecting an auxetic behaviour. In 

general, the value of the Poisson’s ratio is close, but there are still differences 

in the values. When a small number of cells is used, the absolute value is 

relatively low. The Poisson’s ratio is like other reported values (Jiang et al., 

2019). Despite the difference in the Poisson’s ratio values, the critical strain 

for stable Poisson’s ratio among the samples of different sizes is only slightly 

increased as the number of cells is increased. The effect of the cell number 

agrees with the observations by others (Dong et al., 2019; Jiang et al., 2019; 

Mizzi et al., 2018; Mizzi et al., 2020). The influence of the edge might be 

associated with constraints of the edge on the operative deformation modes 

including potential shear induced deformation. In simulation and 

experimental studies on the tensile behaviour of tetrachiral honeycombs 

(Mizzi et al., 2018; Mizzi et al., 2020), it was found that the auxeticity of the 

system decreases upon increasing the number of repeating units in the system. 

This behaviour was found to be associated with the tendency of the tetrachiral 

systems to undergo shear deformation upon uniaxial loading, which is 

blocked by the edge effects at the regions where the geometry is being fixed. 

Similar process on the shear deformation can be observed under compression 

load as well. Further work will try to quantify the contribution of such a 

mechanism on the auxeticity of missing rib models under uniaxial 

compression. Figure 4.4.12b shows the Poisson’s ratio of the mixed structures 

of different sizes. The Poisson’s ratio values are all in a similar range. The 

Poisson’s ratio for mixed structure-1 is similar to the normal missing rib 

model, while the Poisson’s ratio for mixed structure-2 is lower and there is 

limited effect from the sample sizes (cell numbers). In every case, the critical 

strains for a stable Poisson’s ratio of the mixed structures are higher than the 

normal missing rib model (Figure 4.4.11a). For compression loading, out of 
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shape in-plane deformation has also been observed by other experimental and 

numerical works in compression tests of missing rib and other auxetic 

structures (Cui et al., 2018; Dong et al., 2019; Jiang et al., 2019; Zhao et al., 

2019; Wu et al., 2018), which may have an adverse effect on the design 

uncertainty and shape control processes. So, the improvement in the stability 

of the structures mixed structure-1 and mixed structure-2 could be a beneficial 

advantage to the structure design and development depending on the 

application. Also plotted on Figure 4.4.12b are the Poisson’s ratios calculated 

by the RVE approach. The decreasing trend of the Poisson’s ratio is similar to 

that from the FE models of the full boundary model for both mixed structure-

1 and mixed structure-2. This has probably benefited from the stability of the 

two mixed structures.  

  

(a) Poisson’s ratio of normal missing 

ribs structure (MR-90) determined 

from different sample sizes. 

(b) Poisson’s ratio of mixed missing 

rib models (MS-1 and MS-2) 

determined from different sample 

sizes. 

Figure 4.4.12 Poisson’s ratio vs Engineer strain of normal missing rib 

structure and mixed structures.  
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4.5 FE modelling of self-similar hierarchical 

honeycombs 

4.5.1 Self-similar hierarchical structures.   

This section presented the parametric program for modelling self-similar 

hierarchical honeycombs and typical results, including the deformation of 

self-similar honeycombs with different orders, effect of cell numbers and the 

ratio between the edge length of different ordered structures. As shown in 

Figure 4.5.1, self-similar hierarchical honeycomb structures are formed by 

replacing the vertices of a regular hexagonal lattice with smaller hexagons. 

(Mousanezhad et al., 2015; Sun and Pugno, 2013; Haghpanah et al., 2013). 

Higher order self-similar structure can be designed by repeating the operation 

of replacing the varieties and forming hierarchy for different orders (e.g., 1st, 

2nd... nth).  A typical example is shown in Figure 4.5.2 in 2D and 3D view. 

Typical target applications include vibration damping, crush resistance, etc. 

(Mousanezhad et al., 2015; Zhang et al., 2016). The focus of the work is to 

develop a parametric program to build a model of different structures for 

studying the deformation of structure of different levels of order and the effect 

of dimensional parameters on the Poisson’s ratio.  

 

 

  
(a) Regular honeycomb.   (b) First order self-similar honeycomb.  

Figure 4.5.1 FE model of Regular honeycomb and 1st order self-

similar hierarchical honeycomb structures. 
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(a) front view of second order 

self-similar hierarchical honeyc

omb 

(b) Oblique side 3D view of seco

nd order self-similar hierarchical 

honeycomb 

Figure 4.5.2 Second order self-similar hierarchical honeycomb. 
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4.5.2 Deformation of self-similar hierarchical honeycomb and FE model 

validation.  

Figure 4.5.3a&b shows the FE models and meshes of a 1st order model in 

comparison with a normal honeycomb model for validating the modelling 

approaches. The effective Poisson’s ratio was calculated based on the average 

lateral displacement over the edge. The dimensions were adapted from 

published works (Mousanezhad et al., 2015) for validation purposes. The 

material property is 5MPa Young’s Modulus and Poisson’s ratio for the solid 

material is 0.3. The meshed element is controlled to 10 elements per beam. 

As comparatively shown in Figure 4.5.3c&d, the regular honeycomb shows 

expansion upon the compression load (c), the self-similar model shows a clear 

inward deformation (d), indicting a negative Poisson’s ratio behaviour.  

 
 

(a) Mesh of regular honeycomb.  (b) Mesh of the first order self-simil

ar hierarchical structure.  

  

(c) Deformed shape of the regular

 honeycomb structure (positive Po

isson’s ratio). 

(d)Deformed pattern of the first order 

honeycomb under compression (negati

ve Poisson’s ratio).  

Figure 4.5.3 FE models of regular and self-similar hierarchical honeyco

mb structure under compression and deformation patterns.  
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Figure 4.5.4a&b compares the deformation of the first order hierarchical 

structure between published experimental image and deformed pattern of the 

FE model. The FE prediction showed a good agreement with the experimental 

data. The deformation of the regular honeycomb is uniform among the cells, 

but the deformation of the hierarchical honeycomb shows a quite different 

deformation pattern among the cells. The deformation of the cell in the middle 

section, as indicated by the box with the dashed lines, shows significant lateral 

deformation. The bending of the vertical beams is much more significant than 

the horizontal beams. This indicates a strong negative Poisson’s ratio 

behaviour for the self-similar hierarchical structure. Compared to regular 

honeycomb and missing rib models, given the difference in the edge size of 

different ordered unit, a mesh control is critical. In each case, a detailed mesh 

sensitivity was performed by changing the mesh size then monitoring the 

force and Poisson’s ratio using a parametric program. The approach used in 

the work is to control the element number for each unit to ensure consistency. 

In the model, each edge is a model with 5 elements. 

  

(a) Deformed shape of first order 

Hierarchical honeycomb at 

engineering stain of 0.266. (width, 

height, depth and beam thickness of 

the sample are 254, 229 and 20mm, 

1mm respectively. (Mousanezhad et 

al., 2015).  

(b) FE simulated deformed shape of 1st 

order Hierarchical honeycomb (this 

work). The FE model has identical 

dimensional and properties as the 

published work (Mousanezhad et al., 

2015).   

Figure 4.5.4 Comparison between FE model predicted deformation pattern and 

published data  
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The parametric is used to generate structures with different length ratios. 

Figure 4.5.5a shows structures with different ratios between the edge length 

of the first order hexagon and beam length of the original hexagon structure. 

As the size of the first order hexagon increases, the overall shape of the 

structure changes significantly. Figure 4.5.5b compares the stress vs. strain 

data from the published experimental works and FE predicted data. It is 

shown that the FE prediction showed a good agreement with the experimental 

data. The data shows that the self-similar hierarchical structure reaches the 

plateau stage much early than the regular honeycomb because of the cell at 

the corners. Figure 4.5.5c plots the Poisson’s ratio of the FE data and 

published experimental and numerical data. The Poisson’s ratio was 

calculated based on the average values of the transverse displacement of the 

external edge points. As shown in the Figure, the trend of the FE data is in a 

reasonable agreement with that of the published data. The Poisson’s ratio 

value for the regular honeycomb also agrees with other published data (Papka 

and Kyriakiudes, 1994). As shown in the figure 4.5.5, the Poisson’s ratio for 

all the structures showed a decreasing trend with increasing stains from a 

positive value, the data for the normal honeycomb remains at positive range 

within the strain level studied, while the Poisson’s ratio of self-similar 

hierarchical honeycombs entered negative Poisson’s ratio domain at a strain 

level around 0.1. Samples with different material have been made in this work 

including PU resin, silicone rubber and 3D printing with Thermoplastic 

elastomer (TPE) materials. A typical example is shown in Figure 4.5.6a. The 

properties of the TPE materials are Young’s modulus E=22MPa, Poisson’s 

ratio of the plastic v=0.3. The deformed shape of the FE model is shown in 

Figure 4.5.6b. In both cases, the overall deformation mode is comparable to 

the experimental image.  The materials show a clear inward deformation 

under compression.  

The test was conducted on a MT2000 micro bending test (Deben Vertical 3/4 

Point Bending Stage). The loading rate is 1mm/min. The force is recorded 

through a load cell as shown in the deformed image.  
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(i)S=0 (ii)S=0.2 (iii)S=0.3 (iv)S=0.5 

(a） Cells of different ratio between the newly added hexagonal edg

e length and length of the regular honeycomb.  

  

(b) Comparison between the FE 

modelling results and the 

published stress-strain data 

(Mousanezhad et al., 2015) for 

different structures.  

(c)  Comparison between the FE 

modelling and experimental Poisson’s 

ratio vs. axial strain data. 

Figure 4.5.5 Comparison between FE model predicted deformation patter

n and Poisson’s ratio of self-similar hierarchical structures with published 

data. 

 

  

(a) Deformed shape of 3D printed 

wider sample. 

(b) Deformed shape at 0.15 

Engineer strain (FE simulation). 

Figure 4.5.6 Result with a 3D printed sample showing negative Poisson’s 

ratio behaviour. 
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Figure 4.5.7 shows FE models of higher order (2nd and 3rd) self-similar 

hierarchical honeycomb and typical deformed shapes. Figure 4.5.7a shows 

the FE model of a 2nd order model and the deformed shape under compression 

is shown in Figure 4.5.7b. As shown in the Figure, the sample showed clear 

inward deformation indicating a negative Poisson’s ratio. A similar trend can 

be observed from the third-order structure as shown in Figures 4.5.7c&d.  

 
 

(a) Second order self-similar 

hierarchical honeycomb structure. 

(b) FE deformed shape of (a) 

showing the shrinking of the sample 

indicating negative Poisson’s ratio.  

 
 

(c) Third order self-similar hierarchical 

honeycomb structure. 

(d) FE Deformed shape of third or

der self-similar showing the shrink

ing of the sample indicating negati

ve Poisson’s ratio. 

Figure 4.5.7 FE result showing deformation of higher order self-similar 

Hierarchical honeycomb structures showing negative Poisson’s ratio 

behaviour. 

 

Figure 4.5.8 plots the Poisson’s ratio vs. the axial strain for regular 

honeycomb and self-similar hierarchical structures (1st, 2nd and 3rd orders). A 

clear difference can be observed in the value and trend of the Poisson’s ratios 

between different structures. The regular honeycomb has a positive Poisson’s 

ratio while the self-similar hierarchical structures started with a positive value, 

then turned into a negative Poisson’s ratio. The higher orders (2nd and 3rd) 
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start to undergo significant drops in Poisson’s ratio at a relative smaller strain 

level (in this case, around 0,03), than the 1st order self-similar structure.  

 
Figure 4.5.8 FE Poisson’s ratio vs. axial strain for different order hierarchical 

honeycomb (S=0.3 L=10) 

 

The parametric program is also used to study the effect of cell numbers on the 

Poisson’s ratio. Figure 4.5.9a shows models with different cell numbers for 

1st order self-similar structures.  The Poisson’s ratio data is shown in Figure 

4.5.9b. As shown in the Figure, there is a clear sample size effect when the 

repeating cell number is 1 or 2, further increase in the cell numbers showed 

relatively limited influence on the trend of the Poisson’s ratio. Compare to the 

missing rib models, the effect of the cell numbers is much more significant 

for the self-similar model. This may be associated with the different 

mechanism of auxeticity. The origin of auxetic behaviour of the self-similar 

hierarchical structure is linked to the added hexagonal features within the 

hierarchical structure which make the instabilities occur at smaller 

compressive strains compared to the original non-hierarchical structure, this 

behaviour could lead to auxetic behaviour (Mousanezhad et al., 2015). Future 

work will use the program to establish systematic data considering both 
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structure and materials issues.  

 

 
(a) Models with different repeating cell numbers.  

 
(b) Poisson’s ratio vs. Axial strain curves for self-similar hierarchical 

structures.  

 

Figure 4.5.9 Effect of repeating cell number on and Poisson’s ratios o

f self-similar hierarchical honeycomb. (S=0.3 L=10) 
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4.6 Modelling and analysis of cell area changes 

of regular, missing ribs and self-similar 

hierarchical honeycomb structure under 

compression and tension.  

This section presents work on developing a program integrated with finite 

element modelling to calculate the areas of cells in different cellular structures 

under tension or compression loads. Different approaches of calculating the 

areas of the cells are compared including point-in-polygon (PIP), Heron's 

formula (HF) and the shoelace method (Ochilbek, 2018). A program based on 

the OpenCV (Open-source computer Vision Library) 

(htttp://OpenCVopencv.org) and Image processing software ImageJ 

(ImageJimagej.net) is also assessed to cross check the python program for 

area calculation. The area calculation program-based HF approach and the 

calculation is presented in the section. The key features and approaches 

implemented in the Python program including mathematical operations and 

key functional parts of the program are introduced. Some typical data of cell 

area changes in regular and auxetics honeycomb structures (missing rib 

structure and self-similar hierarchical structures) in comparison with the data 

for regular honeycomb is presented and analysed. The key features of area 

changes are correlated to the influence of the negative Poisson’s ratio. The 

advantages and disadvantages, including the limitations of different 

approaches (point-in-polygon (PIP), HF, shoelace, open CV and Image J) are 

presented in the discussion section (4.7), together with cases showing the use 

of the area calculation program integrated with finite element modelling.  

4.6.1 Area calculation program development and structures 

From the work presented in the last two sections, foams/cellular structures 

particularly auxetic structures undergoing complex in-plane shape changes 

and the deformation for the cells are different depending on the cell shape and 

location/position of the cells in the samples, detailed data of area changes 
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could offer important information for understanding the deformation 

mechanism of the cells at strain levels and identify weaker/sensitive cells 

within the structures of either a regular pattern or a random pattern. The data 

of area changes will add to the conventional data which can be obtained from 

finite element modelling (such as force, displacement, stress, strains). 

Calculation of the area is also important for parameters such as overall sample 

volume/area changes, reflecting the compressibility of the structure.  

In this section a Python program has been developed to capture the area 

changes when a cellular structure is under in-plane tension/compression loads. 

The data is used to analyse the trend of area change of some typical cellular 

structures (regular honeycomb, missing rib and self-similar hierarchical 

honeycomb). It is firstly used to compare the area changes based on FE 

analysis of single cell models of regular honeycomb and missing rib models 

under tension and compression, then it is used to track the cell shape/area 

changes when a larger sample with multiple cells is being deformed.  

4.6.2 Area calculation approach 

A range of area calculation approaches have been assessed including Heron’s 

formula method, the Shoelace Method (SM), Open CV and Image J programs. 

Some simple approaches such as Paint shop are also analysed in the initial 

program concept evaluation stage. These approaches are used in various 

applications (Huang and Shih, 1997; Braden, 1986)). The Shoelace Method 

(SM) is a method calculating the polygon area based on point coordinates in 

the Cartesian coordinate system. But there are some limitations when it is 

being used with deformed shapes in Abaqus. Preliminary work shows that 

there are circumstances where the algorithm will produce wrong or 

unexpected results, when dealing with data of situations such as self-

intersecting, overlapping or twisting of the lines. Further details will be 

presented in the discussion section (4.7) of the chapter. This section focuses 

on presenting briefly the PIP method for the calculation area or polygon of 

random shapes and Heron’s formula for the area of triangles. The PIP-HF 

approach is integrated with some internal operation functions in Abaqus to 

calculate the cell area changes of cellular structures under in-plane tension 

and compression. 
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Point-in-polygon (PIP) is one of the fundamental operations of Geographic 

Information Systems. Yet nowadays this concept is also getting big attention 

in graphical programming, mobile game programming, and other fields. The 

PIP concept can be applied to any size of polygon (Huang and Shih, 1997). 

The basic concept of the approach is illustrated in Figure 4.6.1 and Figure 

4.6.2.  

 
 

(a) The Positive area (Green 

triangle) and Negative are 

(red triangle) in polygon area 

calculation 

(b)  The convention for positive or 

negative signs for the area to 

calculate the overall area. The 

Counter clock wise is positive 

and clockwise direction is 

negative.  

 

 

 

(c) Calculation of the area of a triangle 

Figure 4.6.1 point-in-polygon (PIP) algorithm to calculate the area of an 

enclosed P1-P7. p is random point.  
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Convex polygon： All the areas 

are positive.  

AODCBA =AOED+AODC+AOCB+A

OBA 

(a) Calculation of a Convex polygon 

with starting point on the curve.  

 

 

Positive area: ODC, OCB: 

Negative area: OAB  

AODCBA =AODC+AOCB-AOAB 

(b) Calculation of a Concave polygon 

with starting point on the curve.  

 

Figure 4.6.2 Diagram showing the point-in-polygon (PIP) approach to 

calculate the area of an enclosed polygon (Convex and Concave).   

 

The overall area of polygon is calculated through a point-in-polygon (PIP) 

problem (Huang and Shih, 1997). In this process, many triangles are formed 

between a main/pivoting point and two points on the perimeter of the polygon. 

This pivoting point can be a separate point as in the case shown in Figure 

4.6.1 or on the perimeter line as shown in cases in Figure 4.6.2. The area of 

polygon can be calculated as (Huang and Shih, 1997):            

𝑆𝑃𝑜𝑙𝑦𝑔𝑜𝑛 = 𝐴𝐵𝑆(∑ 𝑠𝑖𝑔𝑛 ∗ 𝑆𝑛)
𝑛
1                                         (4.6.1)

      

Where n is the number of points in polygon, S is area of every single triangle, 

Sign is Positive and negative area of triangle. 

Figure 4.6.2(b) illustrates the determine the positive or negative signs of 

triangles. When calculating the total area of the polygon, the positive one will 

be added to the sum and the negative one will be deducted from the sum. 

Mathematically, the sign can be determined by the vector based on the 
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coordinates of the three points (Equation 4.6.2),  

vector = (𝑥𝑝1 − 𝑥𝑝0) ∗ (𝑥𝑝2 − 𝑥𝑝1) − (𝑦𝑝1 − 𝑦𝑝0) − (𝑦𝑝2 − 𝑦𝑝2)  (4.6.2) 

The XP1 is the x coordinate of point 1 and Yp1 is y coordinate of point 1and 

so on. When the vector value is negative, the Sign is -1, Conversely Sign is 

+1. 
 
 

The area of the triangles can be calculated based on the Heron’s formula 

(Figure 4.6.1(c)), using the lengths of the three sides of the triangle, Heron's 

formula can be written as: 

𝐴𝐻 = √𝑝(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐)                                  (4.6.3) 

Where a, b, c is the length of side a, b and c of a triangles. p is the half 

perimeter of the triangle: 

𝑝 =
1

2
(𝑎 + 𝑏 + 𝑐)                                                 (4.6.4)                                                       

Figure 4.6.2 shows the case when the main point for drawing the triangles is 

on the Polygon. This is a more convenient approach for calculating the areas 

of cellular structures based on the FE modelling, as the edges are all 

partitioned into nodes. Figure 4.6.2(a) is a convex shape, which is partitioned 

into four areas, then the total area is the sum of the four triangles. The polygon 

in Figure 4.6.1(b) can be calculated by adding AODC and AOCB then remove 

the area for AOAB.  

This calculation is coded in python and combined with some internal 

operation in pre- and post-processing of Abaqus. The details and key coding 

are presented in the next section.  
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4.6.3 Area calculation in finite element modelling and python program  

In finite element modelling (FEM), the model is meshed into several elements 

with 3 nodes (Tri) or 4 nodes (Quad) per element. To tracking the node 

coordinate easily, an area for meshed node set is created which is illustrated 

in Figure 4.6.3. The node set record the node ID which can be read the 

undeformed and deformed coordinate from Abaqus result file(.ODB).  

  

(a) Schematic to show the area 

partition of a hexagonal 

polygon. 

(b) A typical meshed hexagon for a 

regular honeycomb model.  

 
 

(c) Area partition of undeformed 

hexagonal cell showing how the 

nodes on a meshed model are used 

to calculate the area.  

(c) Area partition of deformed 

hexagonal cell under compressions 

showing how the nodes on a meshed 

model are used to calculate the area.  

Figure 4.6.3 The area partition of undeformed and deformed hexagonal cells 

of regular honeycomb model based on the nodes on the edge.  

 

The beam length of triangle can be calculated from the node coordinate: 

𝑙12 = 𝑠𝑞𝑟𝑡((𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2)                               (4.6.5) 

Where x1 is the x coordinate of point1 and y1 is the y coordinate of point1. 
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The area partition of undeformed and deformed model shows on Figure 4.6.3. 

 

Table 4.6.1 Key stages/section/operation of the program for calculating the 

area of cellular structures under in-plane tension of compression.  

Step Step description 

i Identify all the closed geometry from Abaqus part partition, 

Calculate the partitioned area for each partitioned face.  

ii Obtain the nodes coordinates from the partitioned part to original 

model. Create a node set of each close geometry 

iii Run the model, then use the Python program to read the coordinate 
data from the deformed model at every simulation increment. 

iv Sorting the data in order to calculate the area for each closed 

geometry, through a loop operation.  

v Start a loop to go through calculating the area from each face, then 
store the data.  
Calculate the area for all the triangles (based on the number of 
nodes on the line) from each area node set and store the data into a 
Python parameter, make judgement about if it is negative or 
positive, then add the area together, then export to external .csv file.    
This process is repeated until all the faces has been calculated. 

vi Start loop to go through every increment time. 
Output the area data and identification (face id) information (such 
increment time, etc) to a data file (.csv) for analysis.  
The data is also available for viewing in Abaqus view 

  

  

The area calculation is coded in python and combined with some internal 

operation in pre- and post-processing of Abaqus. The overall process is listed 

in Table 4.6.1. The key operation and coding are explained briefly below. As 

listed in Table 4.6.1, the work started by defining the geometry-based data 

sets in the part section (in Abaqus), then the nodes set is developed/defined 

based on the geometry set of lines, then the area for each set is calculated, 

their positive/or negative sign is given for each area, then the overall area is 

calculated by summing all the areas together. Some key operations and the 

coding approach are presented below.  

The Step i of area calculation is to identify all the closed geometry from 

Abaqus part partition, then define the geometry-based set for each area and 
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calculate the original area for each face. To define all the close geometry, a 

new 2D part with same size as the original model is built. The size of 2D part 

is found by Abaqus command ‘getboundarybox’. The new 2D part is partition 

by calculated model. Then the closed geometry form 2D part is automatic 

defined by Abaqus. A node set which found closed geometry is created by 

Abaqus command ’face.getEdges()’. Then a Abaqus 

command ’face.getSize()’ is used to calculate area of undeformed geometry.  

The Step ii of area calculation is obtaining the nodes coordinates from the 

partitioned part to original model. Create a node set of each close geometry. 

A new parameter is created to record all the 2D node coordinates (x,y) from 

every edge of close geometry. And the out-of-plane direction coordinate will 

be added into this parameter. The Abaqus 

command ’edge.findAt(edge.pointon)’ is used to find closed geometry node 

from original model. 

One key operation is the node sorting Table 4.6.1(iii). As shown in Figure 

4.6.1&2, the total area is calculated by adding all the areas of individual 

triangles with a positive or negative sign which can be determined through 

equation3 and executed in the code segment presented above. We used the 

starting point following the numbering from Abaqus. Node sorting: Area 

calculation of Heron's formula requires coordinate points to be arranged 

sequentially. However, the point export form Abaqus may not be arranged 

sequentially. The function of NodeSort is used to sort the nodes to be arranged 

sequentially based on their position (coordinates). The starting point is the 

one with the lowest coordinates number (x, y) for the polygon. The code is 

presented below Nodelabels to sortLabel.  



  

 

157 

 

  

In step (iii), once the data are sorted and coordinates obtained and stored, the 

area for each triangle formed between two adjunct nodes and the pivoting 

point (like P in the point-in-polygon (PIP)) through a Python code designated 

as “getAreaOfPolyGon”.  To obtain the line segment vector for: vecp1p2 = 

[p2 [0] -p1 [0], p2 [1] -p1 [1]], determine the area calculation is positive or 

negative: vecMult = vecp1p2 [0] * vecp2p3 [1]-vecp1p2 [1] * vecp2p3 [0], if 

vecMult is greater than 0, the area is positive, if it is less than 0, it is negative. 

As shown in the code, this operation Uses the loop nesting of i at the number 

of points -1. Each triangle counts as triArea = getAreaOfTriangle (p1, p2, p3) 

* sign, and the polygon area is area + = triArea.  
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Most of the operation was done within the internal system and all the data can 

be output into external sources. The accuracy of the program was checked by 

comparing with regular shapes (Sphere, square, etc.) and irregular shapes 

with known areas (based on other imaging programs and the built-in functions 

(area/mass, etc.). The accuracy is also cross compared between shoelace and 

heron model. The accuracy and calculation efficiency are affected by the 

number of points on the lines, and in FE modelling, this corresponds to the 

mesh density. With the mesh used (detailed in Sections 4.3, 4.4 and 4.5) 

sensitivity tests, each beam/edge is meshed with small segments, which give 

sufficient accuracy to calculate the area for both undeformed and deformed 

beams. The preliminary result was not presented to preserve clarity. Some of 

the issues will be discussed in section 4.7.  
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4.6.4 Typical area changes of different cellular structures under tension 

or compression 

Figure 4.6.4 shows the typical structures studied in the area change of 

different lattice structures. Figure 4.6.4a is a normal honeycomb; the beam 

length is 5mm and the beam thickness is 1mm; the depth of the sample is 

10mm. Figure 4.6.4b is multiple cell models of the regular honeycomb. 

Figure4.6.4c&d is single cell or multiple cells models of missing rib structure, 

respectively. The loading conditions are like that presented in sections 4.3-5. 

The bottom side is fixed, and top side is loaded in compression or tension.  

 

  
 

(a) Single cell of 

regular honeycomb. 

(b) Multiple cells 

of regular honeycomb. 

(c) Single cell of missi

ng rib model (beam an

gle =90 degree) 

  
 

(d) Multiple cells 

of missing rib model. 

(e) Single cell of 1st 

order self-similar 

honeycomb model. 

(f) Multiple cells of self-

similar honeycomb 

structure. 

Figure 4.6.4 Typical structure used in the deformation and area changes 

analysis under load.  

 

Figure 4.6.5a&b shows the area changes of the single cell models of different 

structures under tension and compression. All the areas are normalized 

against the original area, which shows that the program is able to capture the 

area change. The data shows that there is a clear difference in area changes 
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between the tension and compressions loads for different structures. The area 

for the regular honeycomb decreased slightly due to its positive Poisson’s 

ratio, then started to increase slightly. The missing rib model shows clear area 

increase due to the expansion of structure; this agrees with the negative 

Poisson’s ratio. Under compression the area is reducing, and the Missing rib 

structure shows a more significant drop than the regular honeycomb structure.  

  
(a) Area change of single cells in 

tension.  

(b) Area change of single cells in 

compression. 

Figure 4.6.5 Area changes of single cell models of the different structures 

(regular honeycomb and missing rib model) in tension and under 

compression. The area values are normalised against the original area of 

the cell (1).  

 

Figure 4.6.6a shows the area change of the multi-cell missing rib models. 

There is a clear difference between the trend of cell area changes in tension 

and compression. Under tension load, every single cell shows a similar area 

change. The area increases with tension; this agrees with the negative 

Poisson’s ratio. As it being stretched, it is expanding laterally. The trend of 

area changes in compression is quite different from that in tension. The area 

in general is decreasing and the trend is different between the cells. For 

example, cells 1, 3, 7 show far fewer area changes than other cells. The curve 

can be described by three stages which are separated by two dotted lines. 

Every single cell shows a similar area change before dotted line1, and after 

dotted line 1, the area changing of cell 2 and 6 drop faster. These two cells are 
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at the same position where the initial corner edge-cell wall contact is formed 

as shown in section 4.4.  There is more intensive deformation in the diagonal 

line as illustrated by a red dotted line. The area changing of cell 2 and 6 drop 

smoothly after dotted line 2(Figure 4.6.6a) due to the contact changing the 

deformation behaviour. The result of the area changing shows a reasonable 

trend with deformation stages reported in Section 4.3 and 4.4. 

 

(a) Area change of different cells in missing rib models. 

 

  

(b) Deformed shapes of the cells 

under compression at 0.2 

engineering strain. (MR 44-90-T1). 

(c) Deformed shapes of the cells 

in tension at 0.2 engineering 

strain (MR 44-90 T1). 
 

Figure 4.6.6 Area changes of the cells in missing rib model under 

compression/tension. (MRS 44-90 t1).  
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(a) Area change vs. axial strain of regular honeycomb cells in tension 

and compression.  

  

(b) Deformed shapes of the cells in 

a regular honeycomb model under 

compression at 0.2 engineering 

strain.  

(c) Deformed shapes of cells in a 

regular honeycomb model in 

tension. at 0.2 engineering strain. 

Figure 4.6.7 Area changes of the cells in regular honeycomb model under 

compression and tension. 
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the arrows.  As shown by the tension data, the deformation of the regular 

honeycomb is different from the missing rib model. There is significant 

difference between the cells for the regular honeycomb model. Some cells 

show increase in the area (e.g., cell 13, 16), while the areas of other cells are 

reducing slightly due to shrinking of the cells (Positive Poisson’s ratio).  

Similar difference can be observed among the cells in compression. As 

indicated by the arrows, some cells show limited area changes (e.g., cells 13, 

6), the cell to the side shows significant area increase (e.g., cells 8-11, 15-18). 

The most significant area changes could be observed with the cells in the 

middle section (e.g., cells 1-4).  There are detailed reasons for the different 

area changes, but these data illustrate that the program is able to record the 

area changes.   

 

Figure 4.6.8 shows the deformation of a 1st order Self-similar hierarchical 

honeycomb model Figure4.6.8a and the area change in compression. Figure 

4.6.8a shows the area changes of the base cells (i.e., cells in the original 

hexagon, while the area changes are plotted in 1st order cells are plotted in 

Figure 4.6.8b. The data shows that the areas of the cells all decrease at high 

strain levels, but the cells of the original hexagon start to change earlier than 

the 1st order cells. The cells of the original hexagon show a different trend in 

area changes. For example, cells 28 and 49 shows the most area reduction. 

These two cells are in the region where the sample showed clear shrinking, 

thus negative Poisson’s behaviour. Cells showing smaller area reductions are 

the cells at the centre of the sample (e.g., cells 18 and 39), these are affected 

by the auxetic behaviours.  

From representative data shown in the three structures, the area data reflects 

the deformation of the cells and it reflects the auxetic behaviour well, 

correlating well with the FE modelling reported in section 4.3 (missing rib 

model in tension), 4.4 (Missing rib in compression) and 4.5 (self-similar 

hierarchical models in compression). The turning point of the area also linked 

to the contact behaviours. The program could be used in future to provide 

more quantitative means to map the deformation of cellular structures.  
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(a) Deformed model showing the deformation of the base cells (cells in the 

original Hexagonal (e.g. 25, 28, 33, etc), and the 1st order cells (cells 

replacing the Vertices, e.g. 22, 23, etc). 

 
 

(b) Area changes vs. Strain of the base 

cells in a 1st order self-similar 

hierarchical hexagonal structure 

(c) Area changes vs. Strain of the 

base cells in a 1st order self-similar 

hierarchical hexagonal structure. 

Figure 4.6.8 Cell area change of self-similar hierarchical honeycomb under 

compression.  
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4.7 Discussion 

4.7.1 Effect of modelling approach and sample size/stiffness 

ratio/Poisson’s ratio on auxeticity of missing rib structure  

The work presented in section 4.2 -4.6 has covered key aspects of modelling 

and testing of cellular structures under in-plane loading with a particular focus 

on Poisson’s ratio and auxeticity. The development of the Python programs 

has made it easier to study the effect of key process and parameters related to 

auxetic structures and applications (Gapser, 2005; Aw, 2017; Li, 2018; Khaled, 

etc.). The program is also being used in other current projects related to 

materials used in medical and orthotics (Zevallos Herencia, 2020; current 

PhD project). The selected cases and typical results show that the parametric 

FE program is effective in studying the deformation of structures, the 

Poisson’s ratio, the stability of the auxeticity and related properties. Sections 

4.3 and 4.4 have been focused on the missing ribs model, which is the subject 

of many recent works (Farrugia et al., 2018) both in tension and compression 

loads. Based on the three cases presented, the parametric program developed 

allows systematic studies on the effect of beam angles, sample size, beam 

length ratios and the effect of the size ratio of structure at different levels on 

the deformation behaviours of missing ribs and self-similar hierarchical 

honeycomb structures, which are important for their design and applications. 

The results have shown a good agreement with experimental and analytical 

data including cross comparison with other published data. The works show 

that Python based parametric modelling is an effective way for modelling, 

data analysis of these auxetic structures and future development. The new 

development of integrating the area calculation in FE modelling for 

quantifying the change of areas has laid a good effective framework for 

further data development. The data shows that the changes of areas under 

tension and compression load is different for the missing rib models (Figure 

4.3.3 and Figure 4.4.4). The program is also able to identify difference of the 

area changes for cells at different positions, reflecting different deformation 

modes. The strain levels reflecting significant area changes of the missing rib 
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model correlate with the deformation stages established for missing rib model 

under compression. For example, the initial contact of missing rib structures 

also can be reflected by the area changes which show on Figure4.6.4 (the 

dotted line 1). The detailed understanding on the deformation process of 

samples of different sizes (as shown in Figure 4.3.5, 4.4.11and 4.5.9) could 

be important for structure design and application. The key results in section 

4.4 clearly show that the contact between the corner edges and cell walls at 

high strains for normal MR and MS directly influence the mechanical 

behaviours, the Poisson’s ratio, and stability of the auxeticity. The main data 

presented in this chapter is to demonstrate the use of the modelling 

approaches and Python-based data processing in research auxetic structures 

under in-plane loading. The three main cases (i.e., regular Honeycomb, 

missing ribs, and self-similar hierarchical models) are representative to 

general structures. So, the program can be transferred to other systems (such 

as re-entrant, etc.) and more complex loading conditions to build up 

systematic data for auxetic structures. Several recent works have been 

focused on extending the missing rib models to more complex shapes 

including replacing the vertices with complex shapes such as square, star 

(Farrugia et al., 2018; Jiang et al., 2019; Zhu et al., 2020). The work from the 

missing rib model and self-similar hierarchical honeycomb will naturally 

support the development.  

The FE modelling of compression loading has covered regular missing rib 

models, missing rib structures with different angles and mixed structures. In 

all cases, the FE modelling data showed a good agreement with the testing 

data of 3D printed samples as well as other published data with known 

dimensions and material properties (Figure 4.3.4, Figure 4.4.4 and 4.5.5). The 

effect of angles showed a clear effect on the deformation modes and the 

Poisson’s ratio in both tension and compression. The work for the first time 

established the key stages of deformation of missing rib models under 

compression. The key deformation stages include linear elastic deformation, 

corner edge–cell wall contact stage, full edge corner-wall contact stages and 

further deformation. This deformation process is much more complicated 

than the deformation process of a regular honeycomb, which consists of cell 
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bending, buckling and densification process (Figure 4.4.4) (Pakpka and 

Kyriakides, 1994). The data also shows clearly that the stability of the 

Poisson’s ratio and the critical strain for stable auxeticity is directly linked to 

the initial contact. Once the contact is formed, the structure of the material 

changes and the system loses its auxeticity. The effects of the contact situation 

were also found to be influenced by sample size, beam angles as well as the 

deformation of mixed structures. One of the main advantages with automatic 

structure generation (Section 4.2) and FE modelling (Section 4.3-4.4) is to 

analyse the effect of cell size and numbers under different loading conditions. 

Sample size effect (different in effective stress-strain) is an important issue. 

For porous materials, the effective stress is determined by the overall force 

divided by the overall load bearing area. This value reflects the load resistance 

of the materials used in a design or material selection process. The difference 

in the stress-stain data and Poisson’s ratio observed in a modelling may come 

from different causes, for example the boundary may affect the deformation. 

In the FE modelling and test, the boundary is fixed, and this may affect the 

deformation in the region close to the fixed end. For a smaller sample, this 

will have more significant effects than larger samples. In addition, as the 

sample size changes, the deformation pattern between connected cells may 

also change. This could be an important issue and it varies between different 

structures and loading modes. The boundary effect of structure deformation 

may vary between structures. The parametric program is able to effectively 

study the effect of cell/lattice numbers. As shown in Figure 4.3.5 and Figure 

4.4.12, the sample size effect of missing rib model is different between 

tension and compression load. The cell number has less effect for tension and 

the results follow the analytical solution well. The area analysis also shows 

that the cells change their shape and area in a more uniform way, but for 

compression, the area change between the cells is different. The sample size 

effect is particularly important as missing rib honeycomb used in compression 

normally has far fewer layers, so a parametric FE modelling is important for 

simulating the overall deformation rather than just using a simple stress-strain 

data. The FE modelling is able to establish data for the stability of the 

auxeticity, the data (Figure 4.3.8) shows that the critical strain with stable 
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authenticity is affected by the beam angles and mixed structures. The stability 

data could provide design with more detailed information when using auxetic 

materials. The program could also provide an effective tool for developing 

structures with tunable auxeticity, through mixing either regular structures 

with different Poisson’s ratios or random structures, which is an important 

research direction for material development (Zhu et al., 2020).  
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4.7.2 Effect of different modelling approaches and mesh sensitivity   

The FE model used shell elements which are widely used in modelling 

cellular materials (Schaedler and Carter, 2016). The model was validated 

through various approaches including analytical solution where applicable, 

selected experimental tests and published modelling or test data. The work of 

missing ribs in tension showed a good agreement with the analytical solution 

data. The FE compression model was validated against experimental data on 

3D printed samples in the work and published experimental data on an elastic-

plastic material (Figure 4.4.5). Some preliminary modelling work has also 

been conducted based on published data on regular honeycombs (Pakpka and 

Kyriakides, 1994), as the structure is well understood and well researched, so 

it can provide data for assessing the accuracy and effectiveness of the 

modelling approach in studying the deformation modes and Poisson’s ratio. 

The work on self-similar hierarchical honeycombs showed a good agreement 

with published data (Figure 4.5.5). In preliminary work and previous work, 

the simulation is performed mainly with the ABAQUS explicit analysis. In 

the preliminary work, other modelling approaches have also been evaluated, 

including using 2D solid model with the out-of-plane depth controlled 

through a plane-strain thickness condition (Abaqus User ’s Manual 2017); 

Full 3D solid model of some cases are also evaluated in both Abaqus and 

Solidworks. The results of these approaches were comparable. The shell 

model used is effective in producing accurate results, and in the meantime, 

more efficient in using computation resource in terms of computational time. 

The project is aiming to develop and evaluate a modelling approach with a 

long-term purpose to search for or design new structures with targeted 

Poisson’s ratio, which may result in running a large number of models. For 

example, the random structure of Voronoi model is normally combined with 

progress such as Monte Carlo simulation to assess a large number of 

structures (Chu et al., 2018). So, a computationally fast modelling method is 

important. The shell element approach also makes simulating and tracking the 

area changes much easier as well as the structure design and discovery.  
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(a) 3 elements per 

beam.  

(b) 5 elements per 

beam. 

(b) 10 elements per 

beam.  

  

  

(d) Data showing the effect of element mesh size (no. of elements per beam) 

on the effective stress at 10% strain and Poisson’s ratio. 

Figure 4.7.1 Effect of element number per beam on Engineer stress and 

Poisson’s ratio at 10% Engineer strain. (beam length = 10 mm, the beam angle 

= 90-degree, E=22MPa) 

 

Mesh sensitivity is another important issue for the parametric FE model 

(https://enterfea.com/correct-mesh-size-quick-guide/). The parametric 

program has been used to assess the mesh sensitivities in which the mesh size 

is continuously reduced until the result is not affected by further mesh size 

reduction. The work could monitor the force and the Poisson’s ratio. A typical 

case for the missing ribs model is shown in Figure 4.7.1a. In order to establish 
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a suitable mesh size, two main approaches have been evaluated in the mesh 

sensitivity studies in the parametric models. One is to control the actual size; 

another is to control the number of elements per edge. Figure 4.7.1a shows 

some typical models with different mesh densities (element sizes). The size 

is controlled in the parametric model and the force/stress and Poisson’s ratio 

is monitored. The effective stress is the overall force divided by the overall 

same area in the transverse direction (perpendicular to the loading direction). 

As shown in the figure, when the element per beam reaches 5, there is limited 

effect from the element numbers on both the effective stress and the ratio. So, 

the mesh size is selected as 5 elements per beam as the balance of accuracy 

and efficiency. Another set of typical data of mesh sensitivity study is shown 

in Figure 4.7.2b for a 1st order self-similar hierarchical model. The beam 

length of the corner hexagon is 5.5mm, the edge length of the small hexagon 

to the original hexagon is 1/4 (S value=0.25. the same as in Figure 4.5.5). The 

element size was changed from 1, 1.5, 1.75 and 2mm. It is shown in the data 

that the overall trend of the Poisson’s ratio is similar, the data for 1 and 1.5mm 

element size has no difference but the value for element size of 2.5 is different. 

So, the mesh size is selected as 1mm as the balance of accuracy and efficiency 

One advantage of the parametric program and data analysis is that the mesh 

size sensitivity studies can be processed systematically either through 

controlling the actual size or the number of elements per beam. Some trials 

have been conducted to further improve the mesh by controlling the regional 

mesh through modifying bias of the size, but it is not a major issue for the 

structures studied, but the parametric program could be modified to 

incorporate more complex meshing strategy for large quantity automatic 

modelling. 
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(a) FE model (Self similar 

hierarchical honeycomb) 

(b) Mesh element size =1mm 

(enlarged view) 

 

 

 

 

(c) Mesh element size=2mm 

(enlarged view) 

(d) Effect of the mesh size on the 

Poisson’ ratio.  

Figure 4.7.2 Effect of mesh size of on the Poisson’s ratio of a 1st order self-

similar hierarchical model. Overall sample size: W256-H240-Depth20. 

Beam Length of the small hexagon is 5.5. The hierarchical cell beam length 

ratio, S=1/4, beam thickness=1mm. 
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Comparison between full boundary and modelling with periodic 

boundary conditions 

 

Most of the numerical modelling is based on the FE model with as-testing full 

boundary conditions of a uniaxial compression/tension test. Representative 

volume element (RVE) approach-based analysis has also been performed on 

selected samples as a comparison. The boundary conditions were applied 

using Micromechanics (Abaqus Micromechanics Plugin). After evaluating 

different approaches including EasyPBC, Matlab, etc., the main work was 

conducted with Abaqus Micromechanics Plug-in (Obbink-Huizer, 2020).  

Some typical models used and main equations for the boundary conditions 

are shown in Figure 4.7.3. These models are for evaluation purposes to assess 

the accuracy of the approach in analysing Poisson’s ratios. Figure 4.7.3a is a 

simple isotropic 3D cube model, the material has a known Poisson’s ratio, so 

it can be used to assess the prediction accuracy/effectiveness of the 

representative element volume and periodical boundary conditions.  Figure 

4.7.3b is a model for the regular honeycomb model; the regular honeycomb 

has an established known Poisson’s ratio, so it could provide a means to 

validate the RVE approach for Poisson’s ratio. The size of the cube is 5mm 

*5mm *5mm for the solid cube, the material property used is 22 MPa for 

Young’s Modulus and 0.3 for Poisson’s ratio.  The size of regular honeycomb 

is 4.18 mm beam length, 0.145 mm beam thickness and 15.9 mm of out of 

plane depth. This dimension is adapted from Papka and Kyriakides. (1994) in 

order to compare the prediction with the experimental data. The 

Micromechanics Plug-in will collect all the nodes on the periodic boundary 

and separate the node to 6 node set (front, back, left, right, top, bottom). The 

deformation will be controlled by the RVE equation which is applied on 

Abaqus Keyword dialog by matching node set to node set. The equations 

applied are listed in Figures 4.7.3d&h for the cubic and the regular 

honeycomb model, respectively. In each case, there are 9 equations, for the 

solid cube model, the node set consists of all 

RVE_AG_PosX_RVE_AGSORT and RVE_AG_NegX_RVE_AGSORT 

consists of the nodes on the opposite surface as highlighted in Figure 4.7.3(a) 
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and the first equation (highlighted by the dashed underline). This equation 

forces these two surfaces to have the same displacement, this can be seen in 

Figure 4.7.3b.  

   

(a) RVE FE Cube model (b)  Axial displacement (c) Lateral displacement 

 

(d) Applied equation in Abaqus used to control the displacement of the 

opposite faces/node sets. 

 
 

 

(e) Single cell RVE of 

regular honeycomb.  

(f) Deformed shape and 

displacement.  (U1) 

(g) Deformed shape and 

displacement.  (U2). 

 

(h)Applied equation in Abaqus used to control the displacement of the 

opposite faces/node sets. 

Figure 4.7.3 Solid cube model and regular honeycomb model used to evaluate 

the effectiveness of REV approach with periodical boundary conditions in 

predicting the Poisson’s ratio.   
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As shown in Figure 4.7.3b, the overall deformation is 0.5 in the U1 direction, 

0.15 in the U2 direction, which gives a Poisson’s ratio of 0.3, which matches 

the original material property used. A range of Poisson’s ratio has been used 

with both negative and positive values, in all the cases tested, the RVE model 

is able to produce Poisson’s ratio which matches target value within 1% error. 

In the case of the honeycomb (Figure 4.7.3e), the node set consists of the 

nodes on the edges, RVE_AG_PosX_RVE_AGSORT for the edge to the right, 

RVE_AG_NegX_RVE_AGSORT refers to the edge to left. 

RVE_AG_PosY_RVE_AGSORT refers to the top two edges and 

RVE_AG_NegY_RVE_AGSORT refers to the bottom two edges. 

RVE_AG_PosZ_RVE_AGSORT and RVE_AG_NegZ_RVE_AGSORT 

refers to the all the nodes on the size at the extrusion directions. The deformed 

shape of the models is shown in Figure 4.7.3f&g. The Poisson’s ratio of a 

regular honeycomb is known to be close to a value of 1 (Papka and kyriakides, 

1994). As shown in Figure 4.7.3f&g, the overall displacement at U1 direction 

is 1.54mm, the overall displacement at the U2 direction is 1.59mm, this gives 

a Poisson’s ratio close to 1. These evaluation data show that the REV 

approach is accurate for evaluating the Poisson’s ratios of both homogeneous 

material and cellular structures.  

Figure 4.7.4 shows the REV for the auxetic missing rib models: Figure 4.7.4a 

is a single cell model, Figure 4.7.4b is a 4 cells models. In the mode all the 

edges on one side are grouped into one node set and then the equation is 

applied to the three directions (1,2,3). The beam length is the same as those 

for the model in Figure 4.4.4 (the beam length is 10mm, the beam thickness 

is 1mm. The mesh size is 1mm).  

  

(a) Missing rib model 

(single cell model) 

(b) Applied equation in Abaqus used to control 

the displacement of the opposite faces/node sets. 
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(c) Missing rib model 

(4-4 cell   model) 

(d)Applied equation in Abaqus used to control the 

displacement of the opposite faces/node sets. 

Figure 4.7.4 RVE models with periodical boundary conditions (PBC) of 

normal missing rib structure of different sizes.  

 

Figure 4.7.5 compares the Poisson’s ratio value predicted from the RVE 

models. It is shown that the two RVE models with different sizes have 

identical Poisson’s ratios. The value is close to the data from large models 

with full boundary conditions. The data also shows that the RVE model with 

a periodical boundary condition is not able to predict the turning point of the 

Poisson’s ratio. So, it is only feasible for very small deformation.  

 

 

Figure 4.7.5 Comparison of the Poisson’s ratio of normal missing ribs 

structure (beam angle 90 degree) from the RVE modelling with periodical 

boundary conditions and different sample sizes (4-4, 10-10, 20-20) with 

full load conditions.  
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4.7.3 Factors affecting the area analysis with different approaches and 

use of the program in random structures generation  

As presented in section 4.6, the program for area calculation is effective in 

establishing the area changes of the cells of in-plane deformation of cellular 

structures. The area changes reflect the localised deformation patterns and the 

key deformation stages well. These will provide useful additional data for 

understanding the deformation of the structures. The program is able to study 

different deformation modes and quantify the trend and value of the cell area 

changes between regular honeycomb, missing rib models and self-similar 

hierarchical models. Work has also been done in other honeycomb structures, 

such as re-entrant, etc. (result not shown). As shown in Figure 4.6.6 and 

Figure 4.6.7, the program is able to show more uniform cell deformation in 

tension for the regular honeycomb and the missing rib models, it can also 

show the non-uniform deformation under compression. The uniform cell area 

changes of the missing rib model could be a beneficial material behaviour for 

applications such as filters, etc. The area data is also useful for another project 

on applying auxetic materials in foot orthotics, for which the size of the pore 

of the material affects the breathability of the materials (Zevallos Herencia, 

2020; current PhD project). 

 

Comparison of different approaches for evaluating the accuracy and 

feasibility 

Area measurements and applications is a very active research area. In the 

preliminary works, many approaches are evaluated to assess their suitability 

for studying the area changes in cellular structures. Some other approaches 

also provide useful data to assess the accuracy of the python program 

developed in this work, such as ImageJ and OpenCV program 

(https://opencv.org/). It can display, edit, analyse, process, save and print 8-

bit, 16-bit and 32-bit images. It can calculate area and pixel value statistics of 

user-defined selections. It can measure distances and angles. It can create 

density histograms and line profile plots. It supports standard image 

processing functions such as contrast manipulation, sharpening, smoothing, 

edge detection and median filtering 
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(https://imagej.nih.gov/ij/docs/intro.html). It is widely used in analysing 

images (Dutta et al., 2019). OpenCV (Open-Source Computer Vision Library) 

is an open-source computer vision and machine learning software library. 

OpenCV was built to provide a common infrastructure for computer vision 

applications and to accelerate the use of machine perception 

(OpenCVopencv.org). Some typical data are shown in Figure 4.7.6.  

  

(a) Area calculation by Image-J.  (b)Area calculation python program 

from experiment picture base on Intel 

Open CV. 

 

(d)Area validation of different method. (details of the Abaqus calculation 

can be found in section 4.6) 

Figure 4.7.6 Area calculation of different method and validation based on 

a cell with known area.  

 

Figure 4.7.6a shows the image used to compare the ImageJ, Open CV and the 

approach reported in section 4.6. The area determined from the ImageJ, 

OpenCV and the Python program integrated in Abaqus has a comparable 
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accuracy in comparison with the real area value. Similar tests have been 

conducted on other images; similar accuracy can be achieved with the Python 

program integrated with Abaqus. Both ImageJ and OpenCV will require 

operating on individual images, while the Python program developed is 

integrated in Abaqus, which can record details data of each calculation 

increment or step in Abaqus.   

 

The area calculation of the program presented in section 4.6 is mainly based 

on the point-in-polygon (PIP) approach, which involves generating triangles 

then working out the sum of the area considering the positive or negative 

sings of the triangles based on Heron's formula (HF) (as detailed in section 

4.6). Another commonly used approach directly using the coordinates of the 

polygon is the shoelace Method. The Shoelace Method can be calculated 

based on point coordinates in the Cartesian coordinate system 𝐴 =

1

2
(∑ 𝑥𝑖𝑦𝑖+1 + 𝑥𝑛𝑦1 −

𝑛−1
𝑖=1 ∑ 𝑥𝑖+1𝑦𝑖 − 𝑥1𝑦𝑛

𝑛−1
𝑖=1 ) , Where A is the area of 

polygon and n is the number of sides (or number of vertex) of the polygon. 

(x, y) are the coordinates of the points on the Polygon. The points need to be 

in sequential order based on their position on the Polygon (Ochilbek, 2018). 

In this work, a Python program was developed to calculate polygon area 

based on SM. This method is easier to use and achieve through computation 

as only the coordinates are required while the point-in-polygon requires more 

complex partitioning, point order sorting, etc. But there are some limitations 

for the shoelace approach, which affected the use of this method in calculating 

the area of deformed shapes or complex shapes in Abaqus. There are 

circumstances where the algorithm produces wrong or inaccurate results, such 

as Self-intersecting, overlapping or twist (Figure 4.7.7). If the geometry has 

self-intersection and twist, not a closed curve, the shoelace will end up giving 

a wrong value. In a computerised process, the program will exit with a wrong 

number. The geometry overlapping shows on the red zone of figure(b), The 

shoelace method would calculate the overlapping zone twice, which would 

not be as easy to correct as the point-on-polygon method (section 4.6). As 

detailed in section 4.6, a positive or negative sign was given to the triangles 
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with the Point-on-Polygon approach, which will automatically remove the 

area being counted twice in the calculation.  

   

(a)Self-intersecting (b)overlapping (c)twist 

Figure 4.7.7 Simulation/cases for which the Shoelace Method has 

limitation to deal with when calculate polygon area. 

 

Use of the program for cell size control of random Voronoi structure 

The area is also used in analysing random models in generating random cells 

when combined with the Voronoi structure generation Plug-in. Figures 4.7.8 

shows the Abaqus GUI for generating Voronoi cells and the area distributions. 

Details of the Voronoi structure generation process was presented in section 

4.2. In this program, the area calculation program is linked with the Voronoi 

structure generation and the area for each cell is automatically calculated. 

Both figures 4.7.8a&c have the same number of cells, the area of the cells is 

obtained through the area calculation program (details in section 4.6), the 

distribution of the area values for all the cells generated are plotted in Figure 

4.7.8b&d. The vertical axis is for area values (mm2), the horizontal axis is the 

id of the cells generated. In Figure 4.7.8b the structures are not uniform; this 

is reflected in the high randomness of the cell area values plotted in 

Figure4.7.8c. The structure shown in Figure Figure4.7.8d is much more 

regular, this is reflected by the more uniform area values (Figure4.7.8e). This 

shows that the area calculation program is a useful tool for structure selection 

and modelling. Other detailed data such as the beam length, wall angle can 

also be produced and stored as data for further analysis. 
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(a) Graphic User Input for Voronoi cells generation and cell area 

calculation.  

  

(b) A typical random structure 

produced based the Voronoi 

method.  

(c) cell area distribution showing the 

irregular sizes.  

 
 

(d) A structure with regular cell 

area/size controlled by area rules 

(e) cell area distribution showing the 

regular sizes. 

Figure 4.7.8 Typical random structures produced by the Voronoi method 

and the area   
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4.7.4 Development of mixed structures of regular shapes/patterns with 

targeted Poisson’s ratios and other targeted properties.  

The FE modelling is an effective way to develop mixed structures with 

tunable Poisson’s ratio and auxetic behaviours. Mix structure can 

change/disrupt the deformation mechanism or pattern, thus influence the 

material deformation. For auxetic structures, apart from research on single 

mechanism structures, several works have been reported exploring the use of 

mixed structures which combined auxetics materials with different 

mechanisms (Cabras and Brun, 2014; Fozdar et al., 2011; Hedayati et al.,2018; 

Hu et al., 2019; Meena et al.,2019; Nika and Constantinescu, 2018; Strek et 

al., 2017; Yang et al., 2015). All these have opened opportunities in design 

materials with auxetic structures. As shown in section 4.4, the mixed structure 

designed through altering the orientations of the missing rib columns could 

change the deformation process and the stability of the auxeticity. The mixed 

structure increased the stability of Poisson’s’ ratio and auxeticity of the 

structures. It also makes the model more stable and maintain its shape better. 

Other more complex mixed structures of missing rib models are also explored 

by alternating both the columns and the rows. A typical example is shown in 

Figure 4.7.9. The colour of Blue and green shows the different pattern of the 

structure. Figure (a) is a 4-4 model and Figure 4.7.9b is a larger 10-10 model.  

  

(a) Mixed structure 3 (MS-3) (4-4 

model). 

(b) Mixed structure 3 (MS-3) (10-10 

model). 

Figure 4.7.9 Finite element model of mixed structure with alternating cell 

angles in the rows and columns. 
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Figure 4.7.10a&b shows the deformed shape of the mixed structure under 

compression, which shows clearly that the sample shrinks in the transverse 

direction indicating a negative Poisson’s ratio. Figure 4.7.10c shows the 

Poisson’s ratio vs. axial strain data, which suggests that mixed structure (MS-

3) has a very stable Poisson’s ratio up to a strain level of about 20%, which is 

lower than that for MS-1 and MS-2 (mixed structures with alternating column 

angles only). As shown in Figure 4.7.10d, the values of the Poisson’s ratio 

values for the new mixed structure are much higher than the regular missing 

rib and the column based mixed structures (MS-1 and MS-2).   

  

(a)The deformation of Mixed 

structure 3(MS-3) (4-4 model) at 0.2 

load strain 

(b)The deformation of Mixed 

structure 3(MS-3) (10-10 model) at 

0.2 load strain 

  

(c)Poisson’s ratio vs. axial strain 

data of Ms-3  

(d)Figure comparison the initial 

Poisson’s ratio with different mixed 

structure  

 

Figure 4.7.10 The deformation of Mixed structure with different unit cell 

Poisson’s ratio of mixed missing rib models (MR-3) determined from 

different sample sizes and RVE models.  
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4.7.5 Development of random auxetic structures.  

Mixed auxetic structures presented in section 4.4 and 4.7.4 are based on 

changing the pattern of regular structures, the variables that can be altered are 

relatively limited by the angles and beam lengths. As explained in earlier 

sections (section 4.2 and section 4.7.3), The Voronoi method is able to 

produce random structures but in Voronoi structure generation, not all the 

structures are applicable, i.e., some structures with intersections have to be 

removed (Alsayednoor and Harrison, 2016). In addition, Voronoi structures 

are limited to producing random structures with convex polygons, this 

reduces the possibility of generating negative Poisson’s ratio structures as 

auxetic structures are often associated with concave polygons such as re-

entrant structures, and self-similar hierarchical honeycombs.  

A new random approach is explored involving generating a random point 

based on a predefined grid, the point is generated randomly occupying a 

different grid. The structure is then converted into an FE model (compression) 

to assess its Poisson’s ratio and the new auxetic structure is then selected. The 

main program structure is shown in Figure 4.7.11. The model builder program 

is developed to generate random points in 2D grids with controlled densities. 

The lines are generated from these points. The cells formed by the lines will 

be extruded into a shell model and converted into a finite element model. The 

material properties and the boundary conditions are automatically applied in 

the FE model. One key operation integrated with the FE modelling process is 

to judge the Poisson’s ratio of each newly generated structure by tracking the 

lateral deformation. If the Poisson’s ratio is negative, the structure and the FE 

file will be stored for further analysis. If the Poisson’s ratio is positive, no 

data will be kept, then the program will go back to the next structure 

generation directly.   
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Figure 4.7.11 Flow chart showing the overall structure of the program for 

identifying structures with a negative Poisson’s a ratio over different strains.  

 

The first part is generating random structure-based grid density and number 

of random points.  Table 4.7.1 list the main steps and operations. Figure 

4.7.12 is GUI of random model builder.  The input parameter is used to 

define the calculation detail include number of models, overall grid size, grid 

density, number of random points on edge, number of random points on grid, 

maximum connect number, connect rate and number lattice pattern. The 

number of models is the number of generated random model, and this 

parameter is used to control the loop time of the program to ensure the number 

of generated random model. The overall grid size is controlled by Lateral grid 

size and Vertical grid size. Grid density is controlled by number of lateral grid 

layer and number of vertical grid layer. The number of random points on the 

edges is used to define how many random points to the structure edge, and 
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the edge points of top line and bottom line, left line and right line. The number 

of random points is the random point on the grid area except points on the 

edges. Maxima connect number is the maximum times that a point can be 

connected to another point. The program will start at creating a grid zone 

which the random point can be selected from the point on grid. Then a random 

module from import python module library is used to randomly select the 

point from grid point (Step 2). Then lines are formed by connect the points 

following connection rules (Step 3) to form a unit cell. Finally, the point 

connected sketch is extruded to form models for finite element simulation 

(Step 4&5). The unit cell can be copied and repeated following the 

lateralLatticeNum. and the verticalLatticeNum, as shown in Figure 4.7.13. 

Some of the typical example of auxetic structure automatically identified 

shows on figure 4.7.14 

  

Table 4.7.1 Main steps and key operation of the program for generating and 

searching random structures with auxetic behaviours.  

 Random 

structure 

generation  

Generate Random Points, Generate Grids, Link points 

Random Points,   

 

FE model 

development 

based on the 

random structure 

automatically 

formed.  

Extrude， assign materials properties, mesh, boundary 

conditions,  

Run the 

simulation  

Run the simulation, obtain the displacement data, then 

convert to strain, calculate the Poisson’s ratio by axial 

strain /lateral strain/transverse. Produce Poisson’s ratio 

vs. Axial Strain data. Controlled increment/steps 

Judge  If the Poisson’s ratio is smaller than 0 at any strain point, 

keep the model and store the FE model/data, Poisson’s 

ratio vs. axial strain data.  
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Move to the next 

cycle  

If the structure has a positive Poisson’s ratio, move to 

the next loop in searching for new auxetic structures.  

Data storage Selected data can be stored for future evaluation and 

analysis.  

  

  

Figure 4.7.12 Abaqus GUI for producing random structures.  

 

The first part is generating random structure-based grid density and number 

of random points.  Table 4.7.1 lists the main steps and operations. Figure 

4.7.12 is the GUI of random model builder.  The input parameter is used to 

define the calculation detail including number of models, overall grid size, 

grid density, number of random points on edge, number of random points on 

grid, maximum connect number, connect rate and number lattice pattern. The 

number of models is the number of generated random models, and this 

parameter is used to control the loop time of the program to ensure the number 

of generated random models. The overall grid size is controlled by the Lateral 
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grid size and Vertical grid size. Grid density is controlled by the number of 

lateral grid layers and number of vertical grid layers. The number of random 

points on the edges is used to define how many random points to the structure 

edge, and the edge points of top line and bottom line, left line and right line. 

The number of random points is the random point on the grid area except 

points on the edges. Maxima connect number is the maximum times that a 

point can be connected to another point. The program will start at creating a 

grid zone in which the random point can be selected from the point on grid. 

Then a random module from the imported Python module library is used to 

randomly select the point from grid point (Step 2). Then lines are formed by 

connect the points following connection rules (Step 3) to form a unit cell. 

Finally, the point connected sketch is extruded to form models for finite 

element simulation (Step 4&5). The unit cell can be copied and repeated 

following the lateralLatticeNum. and the verticalLatticeNum, as shown in 

Figure 4.7.15.   

 

 

Step1 Create the grid 

Step 2 Create the random point on the grid.  

Step 3 Pick up random point from grid point by random function 

as the starting point, then link the interior points to form a 

network (Typical rule: no crossed line is allowed, maximum 

3 connections for each point).  



  

 

189 

 

step4 Connect points on the side of the grid area and internal 

random points  

Step 5 Extrude the sketch to form a honeycomb structure.   

Figure 4.7.13 Main steps in building the random structures.  

 

  

(a) A typical example of 

auxetic structure automatically 

identified. (example 1) 

(b) Typical deformed example of auxetic 

structure automatically identified (example 1) 

  

(c) A typical example of 

auxetic structure automatically 

identified. (example 2) 

(d) Typical deformed example of auxetic 

structure automatically identified (example 2) 

Figure 4.7.14 Typical auxetic structures predicted.   
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CHAPTER FIVE 

NUMERICAL STUDY ON 

DIFFERENT CRYSTAL 

STRUCTURES 
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5.1 Introduction and main research works 

This chapter is focused on developing a Python-based data system for 

analysing the data and link between crystal structures and key ground state 

properties of crystals based on first principle calculation with Materials 

Studio. A range of ground state properties including elastic constants (Cij), 

bulk modulus (K), Young’s modulus (E), shear modulus (G), Poisson’s ratio 

(v), etc. have been studied with a particular focus on Poisson’s ratio, 

anisotropy. The correlation between the ground state elastic parameters and 

their link with other properties is analysed. Some compounds with low or 

negative Poisson’s ratio were identified and detailed structures and properties 

data are given. In section 5.2, the basic procedure in first principle calculation 

with Materials Studio and the effect of key operation parameters (such as the 

cut-off energy, density of k-points, etc.) on the energy convergence and the 

accuracy of the calculated elastic constants (Cij) is explained.  The main 

function of a Graphical User Interface for processing the data and properties 

is briefly explained. In section 5.3, some typical results on key engineering 

carbides including simple cubic systems (TiC, VC and NbC) are presented 

together with an explanation of the mathematical operation to calculate the K, 

E, G, v, and function for 3D surface constructions of the ground state 

parameters incorporating anisotropic features. The bulk modulus, Young’s 

Modulus, Shear Modulus, Poisson’s ratio, and anisotropy in these parameters 

are presented and discussed. In section 5.4, the structure of a Python 

Graphical User Interface developed for systematic calculation and 

visualization of the key structures, properties and anisotropy features are 

explained in detail. The structure and properties of a range of carbides are 

analysed with a particular focus on Poisson’s ratios and anisotropy 

coefficients. The key factors affecting the accuracy and efficiency of first 

principle calculation when dealing with data of different material systems is 

discussed. The uncertainty in Poisson’s ratio and the link between property 

data is discussed. The structural data of a few compounds with negative 

Poisson’s ratio is briefly presented, the correlation between the auxetic crystal 
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structure and some macro structures with auxetic behaviours are discussed. 

The procedure and use of materials studio in simulating other properties and 

processes is also briefly presented and discussed including surface energy, 

oxygen reduction reaction (ORR), structures with doping elements and the 

effect of temperatures. The overall use of the system and future work in data 

development is also discussed.    

 

Table 5.1.1 Main research and development works 

Program development and applications 

➢ Python program to automatically generate file for sensitivity studies 

(Cut-off, k-points, etc.) on the energy convergence and simulation 

efficiency in crystal geometry optimization (Lattice constants) and 

property optimisation (elastic constants (Cij) 

➢ Python program to calculate the key elastic properties (K, E, G, v) 

from the (elastic constants (Cij)) and determine the key isotropic 

parameters (Universal and individual property isotropic 

parameters) 

➢ Integrate the calculation, 3D surface construction of key elastic 

properties and projection onto key planes 

➢ Comparative study of the ground state elastic properties and anisotropy 

of simple carbides with first principle calculation. 

➢ Elastic property data and Poisson’s ratio anisotropy in different 

carbides.  

Discussion 

➢ Link between Poisson’s ratio and other properties and the effect of 

anisotropy 

➢ Data and analysis of compounds with low or negative Poisson’s ratios. 

➢ First principle calculation data for more complex cases: surface energy, 

energy, oxygen reduction reaction (ORR), structures with doping 

elements 

➢ Use of the program to study the effect of temperatures on the elastic 

properties and anisotropy.  
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5.2 The main process and data in first principle 

calculation of ground state properties  

Materials Studio is widely used in predicting material properties from atomic 

number and crystal structure, as atomic number and crystal structure being 

the input (Farhadizadeh et al., 2017). Materials Studio CASTEP is an ab initio 

quantum mechanical program that was developed based on density functional 

theory (DFT) to simulate the properties of solids as well as characteristics of 

interfaces and surfaces. First principle calculation is able to calculate physical 

properties directly from basic physical quantities (such as the mass and charge, 

Coulomb force of an electron, etc.) based on the principle of quantum 

mechanics.  

 

 

Figure 5.2.1 Typical operation in Materials Studio process ground property 

simulation process.  

 

As shown in Figure 5.2.1, the main input is the crystal structure in the form 

of lattice parameter and the space group. One main step is determining the 

crystal geometry though energy convergence studies, i.e., identify the lattice 

parameter which gives the lowest energy. Based on the optimised geometry, 

the elastic constants can be calculated. Other structure parameters such as X-
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Ray powder diffraction, electrical band structures, Density of state can also 

be determined. Other parameters can also be calculated with the geometry 

optimisation including band structure, core level spectroscopy, density of 

states, electron density difference, electron localization function, electronic 

excitations, Optical properties, phonons, polarizability, Raman spectra, 

population analysis. These are not the main research focus of this work, but 

the data could provide a means to cross check the results where data is 

available. As shown in Figure 5.2.1, the data starts from a crystal structure 

building, and then after optimisation, it can be stored in a crystallographic 

database. The optimised crystal geometry can be used to calculate elastic 

stiffness constant, which can then be used to calculate the ground state 

property of the crystal. 

 

Figure 5.2.2 shows the key procedures of dynamic molecular simulation, 

property calculation and data analysis. The first key procedure is building a 

crystal structure. Building a crystal structure in Materials Studio (version 

2017) requires lattice parameter (cell size (a,b,c),cell angle (α，β，γ),space 

group) and atom information(atom name, atom position, atom number). The 

second key procedure is geometry optimisation which can optimise the cell 

size (positions of the atoms) by first principle calculation to determine the 

structure with the lowest energy. Density functional theory (DFT) was used 

in calculation. The Generalized gradient approximation (GGA) with Perdew-

Burke-Ernzerhof function (PBE) was applied by the CASTEP code package. 

There are a few simulation parameters which will affect the accuracy of 

results. The cut-off energy and k-point have the greatest impact on energy 

convergence and accuracy of simulation results. So, a convergence test is 

required in which, the value for the cut-off energy and the k-point is changed 

until the energy of the system becomes stable.  The third main procedure is 

elastic constant (Cij) calculation by CASTEP.  These steps are performed in 

Materials Studio CASTEP. A Python program has been developed to calculate 

elastic stiffness constant (Sij), and determine ground state properties (bulk 

modulus, Young’s modulus, shear modulus, Poisson’s ratio, anisotropy, 

hardness). Python program is also used to construct the surface plots of key 



  

 

195 

 

properties and the anisotropy parameter as shown in Figure 5.5.2. The details 

of the calculation and use of the program is to be presented in the sections 

5.3-5.4 together with typical results.  

  

 

(a) Flow chart of ground state 

calculation 

 

(b) Open sourced crystal database 

 

(c) Materials Studio interface 

 

(d)Interface of ground state property 

calculation and data Visualisation 

Figure 5.2.2 Flow chart show Data and key procedure of molecular 

dynamic simulation data analysis/ property calculation.  

  



  

 

196 

 

 

5.3 Calculation of anisotropic parameters and 

monocarbides  

The ground state structural, mechanical property data of different carbides 

(e.g., TiC, VC and NbC) are important for material development and 

processing. Carbides are widely used in key engineering ceramics and 

manufacturing tools.  Carbides also exist as secondary particles in steels, the 

structure, and properties of which may affect the stiffness, strength, hardness, 

toughness as well as the grain structures and manufacturability of the material. 

This is particularly relevant for materials with complex alloying systems such 

as stainless steels and welded structures (Guo et al., 2016). An in-depth 

understanding of the crystal structures, the mechanical and physical 

properties of these phases is important for the prediction of their deformation 

and performance in service. Detailed data of these high melting point phases 

are also relevant to other processes such as nucleation and growth of metallic 

phases as well as other complex carbides (e.g., Ferrite, Austenite, M7C3) 

(Montanari and Varone, 2019; Yu et al., 2016; Xiong et al., 2018). 

In this section, first principle calculation is used to establish systematic data 

of three typical cubic binary monocarbides (TiC, VC and NbC). The key 

elastic constants are obtained from the first principle calculation. The bulk 

modulus, Young’s modulus, shear modulus, and Poisson’s ratio are 

determined from the Voigt-Reuss-Hill approximation method and compared 

with other published data. The micro-Vickers hardness is also predicted and 

compared to published data.  The anisotropy in elastic properties of the 

carbides is studied through calculating the universal elastic anisotropic index, 

percentage anisotropy in compressibility and shear as well as the shear 

anisotropic factors on the specific crystal planes. A Python-based program is 

developed and used to integrate first principle calculation (using Materials 

Studio CASTEP) and data processing to establish the elastic properties in 3D 

space and projection on key crystal planes. The plane projection of the elastic 
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properties on the (001) plane based on the maximum, minimum and averaged 

values approaches is used to present and compare the anisotropy feature of 

the carbides. The data for E，G and Poisson’s ratio is comparatively analysed 

and discussed, and future direction in developing systematic data through 

physical modelling is discussed.  

5.3.1 Computational Method and data integration 

Figure 5.3.1 shows the crystal structures of carbides TiC, VC and NbC. TiC 

is a binary carbide of group VI metal, while the VC and NbC are binary 

carbides of Group V metal. These carbides are widely used in making key 

engineering ceramics. In addition, as secondary phases, their structures and 

properties are also critical for high alloy steels and welded structures. It 

affects the strength, hardness, and thermal stability, as well as the micro-

structures (e.g., the nucleation of ferrite/austenite). These carbides were also 

reported to have refinement functions on other more complex 

multicomponent carbides systems such as M(Fe,Cr)7C3 carbides (Liu et al., 

2017; Buytoz, 2006). All these three carbides follow a cubic structure. The 

carbide for Ti has only one main form (TiC) while Niobium and Vanadium 

may form carbide of different formulas and compositions (NBC and NB2C 

for Nb; V8C7, V6C5, V4C3, V5C3, V2C for V) (Wu, 2013; Hamblyn and 

Reuben, 1975). The results presented in this paper are focused on data for the 

simple form of the carbides and anisotropy in the elastic properties analysed 

through the general anisotropy index and directional anisotropy through 3D 

surface configuration and plane projections.  

 

 

 

 

 

 
Titanium Carbide 

(TiC) 

(b)Vanadium carbide 

(VC) 

(c) Niobium Carbide 

(NbC) 

Figure 5.3.1 The crystal structure of TiC, VC and NbC(Edstrom.D et al 

2018; Cuppari and santos, 2016) 
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(a) Change of finial energy with 

increasing cut-off energy.  

(b) Change of finial energy with 

increasing K point values.   

  

(c) Change of elastic stiffness 

constant with increasing cut-off 

energy. 

(d) Change of elastic stiffness 

constant with increasing K point 

values. 

Figure 5.3.2 Effects of the cut-off energy and K-point on finial energy and 

elastic stiffness constants of Titanium carbide. (lattice parameter 

4.35*4.35*4.35, Space group: Fm-3m) 

During the geometry optimisation process, the effect of the cut-off energy and 

the K-Monkhorst Pack grid (k-point) are important, which affects the 

accuracy and the calculation efficiency. The cut-off energy is the plane wave 

representing how much energy is taken after the plane wave is unfolded. The 

cut-off energy is the energy that separates the valence state electrons from the 

core (core state) electrons in the calculation of the pseudopotential. The 

purpose of the pseudopotential is to get a potential to best describe its 

behaviour on valence electrons, so the valence state and the core state has an 

essential effect on the pseudopotential behaviour. K-points control the 

Brillouin zone sampling directly. You can either specify a grid, or a desired 
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separation between k-points. Cut-off energy is an important parameter which 

affects the time to convergence (Basiuk et al., 2013; Bigelow, 2019; Hu et al., 

2017; Kitchin, 2012;). Figure 5.3.2 shows the typical data for the sensitivity 

of TiC. Figure 5.3.2a&b shows the effect of cut-off energy and the k point, 

respectively. Figure 5.3.2c shows the cut-off energy on the Cij values. The 

best parameters are decided by the point over which the energy is not affected 

significantly. In this case, cut-off is selected as 520eV, and the K-point value 

is selected 10*10*10. The same convergence procedure has been applied to 

all the crystals studied.  

 

Figure 5.3.3 shows the data flow and main works integrating the calculation 

in Materials Studio CASTEP, ground state property estimation and anisotropy 

analysis. As shown in Figure 5.2.1, the main functions in the Materials Studio 

for calculating the mechanical properties is the geometry optimisation and 

elastic constants prediction, this procedure can optimise the cell size (Lattice 

parameters) by identifying a stable structure with lower total energy. The 

Generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof 

function (PBE) was applied by the CASTEP code package. The main data 

output from the process is the lattice parameters including the lattice constants 

and the angles. Then the elastic stiffness constants are determined and output 

in a matrix form. As shown in Figure 5.3.3, in the second stage, a Python 

program is developed to calculate the compliance tensors (Sij), which is the 

derivative of strain with respect to stress. Then the ground state elastic 

properties are calculated based on the Voigt–Reuss–Hill (VRH) equations 

(Bao et al., 2019). The theoretical hardness of the carbides is also determined 

from the bulk and shear modulus. The general anisotropic index of the crystal 

is calculated, which represents the difference in the values of K, G and E. The 

data is a generalised property without considering the actual anisotropy at 

different directions. In the third part, a more complex program and data 

analysis is performed to plot the elastic properties in spherical coordinates to 

visualise the data of K, G, E and v in 3D, which provides a mean to analyse 

the directional anisotropy in E, G and Poisson’s ratio and their projections on 

key crystal planes. This provides a more detailed way to quantify and 

https://www.researchgate.net/profile/Vladimir_Basiuk2
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visualise the anisotropy in different elastic properties.  

 

 
 

 

Figure 5.3.3 Main programs integrating Materials Studio data, property and 

anisotropy analysis.  
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5.3.2 Elastic constants and ground elastic properties  

The elastic constant and structures optimisation were performed in Materials 

Studio.  The generalized gradient approximation (GGA) with Perdew-

Burke-Ernzerhof function (PBE) was applied by the CASTEP code package 

(Bao et al., 2019; Wang et al., 2018; Liu et al., 2017). The key calculation 

parameters (e.g., the cut-off energy and the k-points) were selected based on 

systematic convergence analysis. In the test, the cut-off energy and the k-

points values were systematically changed until the variation of the energy 

becomes negligible. The final cut-off energy used is 520V. The SCF tolerance 

was set as 1e-6 eV/atom, and for the Brillouin-zone sampling, Monkhorst-

Pack mesh was set as 10x10x10 k-points. One key output data used to 

calculate the ground state elastic properties are the elastic constants from 

CASTEP. It involves calculating stress strain response of the crystal under 

several different strain patterns based on Hooke’s law. Due to symmetry of a 

cubic crystal, the related elastic constants can be expressed as in Equation (1) 

                 (5.1) 

The relationship (σi = Cij εj) is for small stresses. Where  is the normal stress, 

τ is the shear stress, ε is the normal strain, γ is the shear strain. The elastic 

properties of solid material are calculated from stiffness constant Cij 

(obtained from the first principle calculation) and elastic Compliance 

Constants Sij (Nye, 1985). The compliance constants Sij can be determined as 

the inverse matrix of the elastic stiffness matrix Cij ([Sij] = [Cij] −1). As for 

simple cubic lattice symmetry, there are three independent variables in [Cij] 

and [Sij], “C11 C12, C44” and “S11, S12, S44”, respectively. The Voigt‐Reuss‐Hill 

(VRH) approximation is an effective way of converting anisotropic single‐

crystal elastic constants into effective isotropic (polycrystalline) elastic 

moduli (Chung et al.,1968). The Voigt approach sets the upper bound, the 
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Reuss approach sets the lower bound of the elastic properties while the Hill 

values takes the average between the Voigt and Reuss predictions (Voigt, 1928; 

Hill, 1952; Reuss, 1929). The approach provides a mean to calculate the 

average properties, the calculation also produces data showing potential 

difference in properties through comparing the upper and lower limit of the 

material’s properties. Details of the theoretical background can be found in 

[7-9]. The bulk modulus can be calculated from the elastic constants Cij as:  

𝐾𝑉 = 2(𝐶11 + 𝐶12 +
𝐶33

2
+ 2𝐶12)/9                                  (5.2) 

𝐾𝑅 = 1/[(𝑆11 + 𝑆22 + 𝑆33) − 2(𝑆12 + 𝑆23 + 𝑆31)]                   (5.3) 

𝐾𝐻 = (𝐾𝑉 + 𝐾𝑅)/2                                         (5.4) 

The effective shear modulus can be written as: 

𝐺𝑉 = [(𝐶11 + 𝐶22 + 𝐶33) − (𝐶12 + 𝐶23 + 𝐶31) + 3(𝐶44 + 𝐶55 + 𝐶66)]/15     

(5.5)    

𝐺𝑅 = 15/[4(𝑆11 + 𝑆22 + 𝑆33) − 4(𝑆12 + 𝑆23 + 𝑆31) + 3(𝑆44 + 𝑆55 + 𝑆66)      

(5.6)                                                                                          

𝐺𝐻 = (𝐺𝑉 + 𝐺𝐻)/2                                                (5.7) 

The most common equation to estimate the Young’s Modulus was based on 

the Hill bulk modulus (K) and shear modulus (G) with the following equation: 

𝐸𝐻 = 9𝐾𝐻𝐺𝐻/(3𝐾𝐻 + 𝐺𝐻)                                           (5.8) 

The effective Poisson’s ratio of the crystal can be obtained from bulk modulus 

and shear modulus. When the Hill model is used，it can be written as: 

𝑣𝐻 = (3𝐾𝐻 − 2𝐺𝐻)/(6𝐾𝐻 + 2𝐺𝐻)                             (5.9) 

The Vickers hardness can be calculated following the formula for theoretical 

hardness prediction from the bulk modulus (K) and shear modulus (G):  

Tian’s Model (Tian et al., 2012): 

𝐻𝑣 = 0.92(
𝐺

𝐾
)1.137𝐺0.708                                   (5.10) 

Chen’s Model (Chen et al., 2011): 

𝐻𝑣 = 2(
𝐺3

𝐾2)
0.585

− 3                                         (5.11) 

Table 5.3.1 Calculated values of bulk modulus (K). Young’s modulus (E), 

shear modulus(G), Poisson’s ratio(v) based on the Reuss, Voigt and Hill 

models. (the Unit for K, E, G is GPa)   
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 K(H) K(V) K(R) E(H) E(V) E(R) G(H) G(V) G(R) v(H) v (V) v(R) 

TiC 252 252 252 427 428 427 175 176 175 0.217 0.217 0.217 

VC 306 306 306 501 504 498 204 205 203 0.227 0.226 0.228 

NbC 300 300 300 484 493 476 197 201 192 0.23 0.226 0.235 

 

Table 5.3.1 lists the key values for K, G, E and Poisson’s ratio(v) based on 

the Voigt–Reuss–Hill (VRH) models (Equations 5.2-5.9). The averaged 

values (Hill model) are comparable to published works (Gilman et al., 1961; 

Kim et al., 2012; Liu et al., 2008; Wang et al., 2013; Sun et al., 2010; Brown 

et al., 1966; Brenton et al., 1969; Gao et al., 2014). As shown in the data, the 

bulk modulus of the crystals determined by the Voigt, Reuss and Hill method 

are identical, the VC and NbC has much higher compressibility than TiC 

based on the values of K. The E(V) and E(R) is slightly different for TiC and 

VC, but there is a clear difference in the Young’s modulus of NbC, the Voigt 

model gives a value of 493GPa and the Reuss model gives a much lower value 

of 476 GPa. There is limited difference between the data for the shear 

modulus between the upper (G(V)) and lower bounds (G(R)) for each of the 

carbides. The calculated values for the Poisson’s ratio (v(V), v(R), v(H)) are 

also similar for each material.  

  

(a) Comparison between the 

predicted ground state elastic 

properties (B, E, G, v) of the 

carbides. K, E, G uses the left axis 

and Poisson’s ratio uses the right 

axis 

(b) Comparison between the 

predicted and published Vickers 

hardness data of the carbides. The 

minimum hardness shows on the 

green bar and the maximum hardness 

shows on green value.  

Figure 5.3.4 Predicted elastic properties and Vickers hardness of the carbides. 
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Figure 5.3.4a presents the calculated bulk modulus, Young’s modulus, shear 

modulus and Poisson’s ratio (average values based on the Hill model). The E 

and G values for VC are slightly higher than those for NbC and TiC. The bulk 

modulus of NbC is comparable to that of VC, both are higher than the K value 

of TiC. The Poisson’s ratios for the carbides are all comparable between the 

model calculations with the v(H) being slightly higher. The predicted data of 

the modulus shows a good agreement with the published experimental and 

other theoretical data, for example, TiC (Gilman et al., 1961; Kim et al., 2012; 

Török et al.,1987); VC (Liu et al.,2008; Sun et al.,2010). NbC (Brown et al., 

1966; Brenton et al., 1969; Gao et al 2014). Other data sources used included 

Matweb (http://www.matweb.com/) and CRC Materials Science and 

Engineering Handbook. The Reuss, Voigt and Hill data also provide a means 

to estimate the hardness (equations 5.10 & 5.11) from the bulk and shear 

moduli. The data for these carbides is shown in Figure 5.3.4b together with 

the range of published data. The different colour (yellow and green) 

represents the maximum and minimum among the reported values over 

different sources. It illustrates that, the predicted Vickers hardness values 

from both models are close to the average of published data based on a mix 

of reference including material data base (e.g., Yang et al., 2009; Edström et 

al., 2008). 
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Anisotropy in the ground state elastic properties   

For ceramics, the anisotropy in elastic properties can influence the formation 

and prorogation of micro cracks and reduce the mechanical durability. The 

hardness and wear resistance are also related to the anisotropy of the crystal 

(Ren et al., 2002). The anisotropy in crystals is normally represented by 

anisotropy indexes such as the universal elastic anisotropic index (AU) 

(Ranganathan and Ostoja-Starzewski,2008), percentage anisotropy in 

compressibility and shear (Acomp and Ashear) (Chung et al., 1968), and the shear 

anisotropic factors on the (100), (010), and (001) planes (A1, A2 and A3) of 

cubic crystals (Ravindran et al., 1998; Liu et al.,2019). The equations are:  

𝐴𝑈 = 5𝐴𝐺𝑉 𝐺𝑅⁄ + 𝐾𝑉 𝐾𝑅⁄ − 6                                 (5.12) 

𝐴𝐶𝑜𝑚𝑝 = (𝐾𝑉 − 𝐾𝑅)/(𝐾𝑉 + 𝐾𝑅)                            (5.13) 

𝐴𝑠ℎ𝑒𝑎𝑟 = (𝐺𝑉 − 𝐺𝑅)/(𝐺𝑉 + 𝐺𝑅)                           (5.14) 

For cubic structure, A1=A2=A3=𝐴1 = 4𝐶44/(𝐶11 + 𝐶33 − 2𝐶13)    (5.15) 

For an elastically isotropic solid, AU=AShear=0； A1=1.  Larger values for 

AU and (1-A) indicates more elastic anisotropy.  

  

(a) Universal elastic anisotropic 

index and percentage anisotropy in 

shear of the carbides.  

(b) Shear anisotropic factor on the (0 

0 1) plane of the carbides 

Figure 5.3.5 Anisotropy index data of the carbides. 

 

Figures 5.3.5a&b plot the universal elastic anisotropic index (AU), and 

percentage anisotropy in shear (Ashear). It is clearly shown that the AU for TiC 

and VC is relatively low with TiC (0.01) and VC (0.066), both are close to 

isotropic conditions, but NbC has a higher AU value of 0.21. The values for 

0

0.005

0.01

0.015

0.02

0.025

0

0.05

0.1

0.15

0.2

0.25

TiC Vc NbC

A
sh

ea
r

A
U

Au

Ashear

0

0.2

0.4

0.6

0.8

1

TiC Vc NbC

Sh
ea

r 
an

is
o

tr
o

p
ic

 f
ac

to
r 

o
n

 (
0

 0
 1

) 
p

la
n

e 



  

 

206 

 

Ashear of the three carbides are all very low with TiC (0.001), VC (0.006) and 

NBC (0.021). The shear anisotropic factors on the (001) plane is represented 

by the A1 values (Figure 5.3.5d). The values are lower than 1 for all the 

carbides, indicating anisotropic characteristics on the (001) plane.  The A1 

value for TiC is closer to 1, suggesting low anisotropy, VC, NbC shows a 

much stronger anisotropy with A1 value of about 0.8 and 0.65, respectively. 

The data shows that the percentage anisotropy in shear (Ashear) seems to be a 

clearer indicator for anisotropy for the carbides. Both AU and Ashear are 

generalised values, data for directional anisotropy is required to establish 

more detailed data and present the anisotropy in a better visualisable way for 

both materials research, development, teaching and training.  
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5.3.3 Directional anisotropy data of elastic properties based on 3D 

surface construction and plane projection 

  

In order to establish and visualise anisotropy of elastic properties in further 

details, a python program is developed to calculate the 3D directional 

distribution of the E, G and Poisson’s ratio in spherical coordinate system. 

The process involves calculating the directional dependence of K, E, G and v 

in spherical coordinate to establish the 3D surface construction (Liu et al., 

2017). Details of the theory can be found in Luan et al (2018) and details of 

the implementation in Python can be found in section 5.4.2  

In order to establish and visualise anisotropy of elastic properties in further 

details, a python program is developed to calculate the 3D directional 

distribution of the E, G and Poisson’s ratio. In 3D coordinate system 

(Cartesian coordinate system), The corresponding elastically distortion can 

be represented by a point on unit sphere with two angles. The buck modulus 

and young’s modulus can be descripted by the first unit sphere ‘a’ which is 

defined by angle θ (0 to ᴨ) and ϕ (0 to 2ᴨ) (Figure 5.3.6a). The shear modulus 

and Poisson’s ratio need second unit sphere ‘b’ which is perpendicular to unit 

sphere ‘a’ and it is defined by an angle χ (0 to 2ᴨ). (Marmier et al., 2010) 

The first unit sphere can be written as: 

















=

3

2

1

l

l

l

a                                                         (5.16) 

Where ‘l1, l2, and l3’ denote the direction cosines with respect to the a, b, and 

c directions of the lattice. And the equation can be written as: 

 cossin1=l                                                    (5.17)                    

 sinsin2=l                                                    (5.18) 

cos3=l                                                         (5.19) 

spherical coordinate system (Figure 5.3.6).  

The process involves calculating the directional dependence of K and E to 

establish the surface plot cubic crystals based on the following equations: 
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The second unit sphere can be written as: 




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cossin

sincoscossincos

sinsincoscoscos

b                                   (5.22) 

The process involves calculating the directional dependence of G and v to 

establish the surface plot cubic crystals based on the following equations: 

),,(4

1
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'

66 XS
G


 =                                         (5.23) 
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                         (5.24) 

 

Where s’11, S’12 and S’66 are fourth order Components in the sub vectorial 

space. 

  

Figure 5.3.6 Euler angles and geometrical reference frame. (adapted from 

Britton et al. 2016; Turley and Sines, 1971). 

 

In general, an elastically isotropic solid has a spherical 3D surface 

construction of elastic parameter. A non-spherical 3D surface construction 
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indicates an elastically anisotropic solid. The more deviation the 3D surface 

construction from a sphere reflects a higher degree of elastic anisotropy is. 

(Bao et al, 2019). On a crystal plane (e.g. (001)), the degree of anisotropy can 

be represented by the closeness of the iso line to a circular shape.  For cubic 

structure, the (001), (100) are identical anisotropy. So, the data on (001) is 

representative to the anisotropy feature including maximum and minimum 

values.  

Figure 5.3.7 shows the surface construction and plane projection of the bulk 

moduli. For all the carbides, the surface plot of the bulk modulus is spherical, 

indicating isotropic distribution.  This corresponds to the isotropic parameter 

of compression being ‘0’ (Equation 5.13). 

   

(a) Surface construction 

of bulk modulus of TiC 

(b) Surface construction 

of bulk modulus of VC 

(c) Surface construction 

of bulk modulus of NbC 

   

(d) Plane projection of 

bulk modulus of TiC 

(e) Plane projection of 

bulk modulus of VC 

(f) Plane projection of 

bulk modulus of NbC 

Figure 5.3.7 Surface construction and plane projection of Bulk modulus of the 

carbides 

 

Figure 5.3.8 shows 3D surface constructions of young's moduli for the 

carbides, which is the main indication of stiffness. The Young’s Modulus of 

TiC has a near-spherical 3D graph, the projection on (100) is approximately 

circular indicating limited anisotropy. The Young’s modulus for VC is 

deviated away more from near spherical, while the contour for NbC shows 
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significant anisotropy. The plane projection on (001) shows more clearly the 

directional anisotropy. The data indicate that TiC has limited anisotropy while 

NbC shows clear visible anisotropy with a high value at [110] direction.  

   

(a)Surface construction 

of Young’s modulus of 

TiC 

(b)Surface construction 

of Young’s modulus of 

VC 

(c)Surface construction of 

Young’s modulus of NbC 

   

(d)Plane projection of 

Young’s modulus of TiC 

(e)Plane projection of 

Young’s modulus of VC 

(f)Plane projection of 

Young’s modulus of NbC 

Figure 5.3.8 Surface construction and plane projection of Young’s modulus of 

the carbides 

 

Figure 5.3.9 shows the 3D surface constructions and (100) plane projection 

of the shear moduli of TiC, VC and NbC. Different from the data for the 

Young’s modulus in Figure 5.3.8, there are two surface plots (two sets of data), 

one is based on the maximum value (in Purple) and the other one is based on 

the minimum values (in green). This reflects the complex nature of the plane 

and direction of the shear modulus. The 3D construction of G for TiC is close 

to a spherical shape indicating isotropic, the surface for VC shows some 

increased anisotropy as the shape of the 3D surface has deviated from a 

perfect spherical shape. The shear modulus of NbC shows a stronger 

anisotropic, but the scale of anisotropic is not as significant as that for the 

Young’s Modulus. The plane projections of shear modulus show the 

anisotropy more clearly as shown in Figures 5.3.9d&e&f based on the isolines 
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of the maximum values (in orange); minimum values (in grey line) and an iso 

line representing the average value (in blue). This approach could indicate 

more clearly the nature and scale of anisotropy. The iso lines on the plane 

projection show clearly that the higher G values are at the [110] direction.  

   

(a)Surface construction 

of shear modulus of TiC 

(b)Surface construction 

of shear modulus of VC 

(c)Surface construction of 

shear modulus of NbC 

   

(d)Plane projection of 

shear modulus of TiC 

(e)Plane projection of 

shear modulus of VC 

(f)Plane projection of 

shear modulus of NbC 

Figure 5.3.9 Surface construction and plane projection of shear modulus of the 

carbides 

 

Figure 5.3.10 shows 3D surface constructions and plane projection of 

Poisson’s ratio of TiC, VC and NbC. The same colour code and approach is 

used for presenting the anisotropy in the Poisson’s ratio. In general, all the 

three carbides showed clear anisotropy in the Poisson’s ratio, a much higher 

Poisson’s ratio exists in [110] direction.  

Figure 5.3.11 shows the anisotropy of elastic property(E,G,v) based on the 

ratio between maximum and minimum property value. In TiC,VC and NbC, 

The anisotropy of Poisson’s ratio is greater than anisotropy of shear modulus 

and anisotropy of Young’s modulus.   The Anisotropy of NbC is greater than 

is greater than VC and TiC. 
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(a)Surface construction of 

Poisson’s ratio of TiC 

(b)Surface construction 

of Poisson’s ratio of VC 

(c)Surface construction 

of Poisson’s ratio of NbC 

   

(d)Plane projection of 

Poisson’s ratio of TiC 

(e)Plane projection of 

Poisson’s ratio of VC 

(f)Plane projection of 

Poisson’s ratio of NbC 

Figure 5.3.10 Surface construction and plane projection of Shear modulus of 

the carbides 

 

 

Figure 5.3.11 Anisotropy of elastic properties(E,G,v) based on the ratio 

between maximum and minimum property value (Max/Min). 
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5.4 GUI for building crystal structure and 

systematic study of ground proprieties, 

anisotropy, Poisson’s ratios of large number of 

carbides 

  

5.4.1 Data for crystals structure  

A GUI interface has been developed for processing the crystal structure input 

and analysing the data. This can be used as a tool to produce consistent crystal 

structures for visualisation and automatically generate files for Materials 

Studio studies. In addition, this also provides a tool to study large scale data 

through a consistent system.  Data from different sources may have 

uncertainties, so it is important to process all the crystal data in the same 

procedure to avoid error when analysing the properties. For data from 

different sources, the program will run the energy optimisation, then store 

them in the database.   

   

A visualisation of elastic anisotropy program combined with a visualized 

database (VAP) has been developed by Python. VAP has 2 modules: Database, 

and elastic anisotropy calculation. As shown in Figure 5.4.1, the database 

module can collect simulation files at working directory and displayed in 

Graphical User Interface. The crystal structure model builder allows the user 

to identify lattice parameters and generate a crystallographic Information File 

which can be used to submit in Materials Studio.  The main data describing 

a crystal consists of the structural formula, each atom and its number and 

coordinates, space group coding, crystal system, cell angle (alpha, beta, 

gamma) (Figure 5.4.1b), number of atoms contained in the cell, cell size (a, 

b, c), cell volume (volume) and other information (Hall and McMahon, 2006). 

There are two standard crystallographic Information Files which are Cif and 

Xsd. .Cif file is composed of Crystal structure information, symmetry 
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equation and Atomic parameter information. Symmetry equation is mainly 

describing the symmetrical position in the crystal and its coordinate 

information. The .xsd file is a Materials Studio standard file consisting of 

parameter type and crystal structure information. In this work, the input 

crystal data in the GUI was found from published data and open-source 

database (Crystallography Open Database, material project). In some cases, 

the lattice parameter may be slightly different between different sources. This 

crystal structure builder helped with generating consistent structure data 

through systematic geometry optimisation in the Materials Studio. This 

provided more reliable research data for establishing the link between 

properties. 

 

(a) GUI of Crystal structure model builder and optimisation (input: initial lattice 

parameter).  

 
 

(b) Diagram showing the lattice 

parameters and the angles. 

(c) Typical crystal structure data. 

(PbC) 

 

(d) Data flow of crystal structure Database. 
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Figure 5.4.1 GUI of crystallography and main data. 

5.4.2 GUI for calculating ground state mechanical properties 

  

Figure 5.4.2 shows the functions and structure of the main program for 

calculating /determining the K, E, G and Poisson’s ratio and presentations in 

3D surface and 2D plane projection.  

 

(a) GUI of Elastic Anisotropy Calculation module 

 
  

(b) GUI of Histogram (c) 3D surface construction 

Figure 5.4.2 GUI for property calculation and visualisation.   

The program takes input, the elastic stiffness constants matrix (Cij) from 

Materials Studio through the input through a text file (1) or window (2). Then 

execute the calculations (3) (Equations 5.2 to 5.15).  The program will 

automatically calculate the average properties (4), eigenvalues (5) and the key 

ground state material properties including maximum and minimum values for 

E, Linear compressibility, Shear modulus and Poisson’s ratio including the 

anisotropy parameters. (6).  The presentation includes histogram (7), 2D 
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plane projection (8) and 3D surface plot (9). The program is also able to 

present the 3D surface of the K, G, E and Poisson’s ratio, in a similar way as 

shown in the previous section. In this section a Python GUI is developed to 

map the ground state properties of a larger number of carbides.  
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5.4.3 Typical materials (carbides) used, Poisson’s ratio and anisotropy 

data analysis 

  

Figure 5.4.3 shows typical crystal structures of selected carbides studied. 

These data have been cross compared with published data. Table 5.4.2 lists 

the space group of the crystals and the optimised lattice parameters. The data 

was compared to published data sources. All the structures have gone through 

energy convergence test in the same way as illustrated in the procedure for 

TiC (as previously illustrated in Figure 5.3.2). The lattice parameter was used 

as input in the first principle calculation to determine the Cij, then the 

mechanical parameters (K, E, G and v) were determined (following the same 

procedure as presented in section 5.3 for the monocarbides). The key analysis 

is focused on the Poisson’s ratio and its anisotropy and correlation between 

the Poisson’s ratio and other properties (e.g., G/K). The range of the Poisson’s 

ratio is listed in Table 5.4.2. Figure 5.4.4 shows the variation in Poisson’s ratio 

vs. universal anisotropy index (AU) of the carbide in comparison with Figure 

5.4.4b which shows the published data of variation in Poisson’s ratio versus 

AU of other published data. The maximum and minimum Poisson’s ratio data 

versus anisotropy shows a C shaped curve which has the same trend with 

published data. The data also identified a few compounds with negative 

Poisson’s ratio value, which will be discussed in section 5.5 with reference to 

the mechanism of auxeticity.  

 

Table 5.4.2 Optimised lattice parameter used in the ground state property 

analysis.  

Crystal 

Name 

Space 

Group 

a(Å) b(Å) c(Å) v v range Reference 

TiC Fm-3M 3.06 3.06 3.06 0.217 
0.184 to 

0.259 

Edstrom.D et al 

2018 

NbC Fm-3M 3.186 3.186 3.186 0.231 
0.13 to 

0.364 

Cuppari and 

santos.2016 



  

 

218 

 

VC Fm-3M 2.943 2.943 2.943 0.227 
0.168 to 

0.304 

Edstrom.D et al 

2018 

ZrC Fm-3M 3.341 3.341 3.341 0.209 
0.171 to 

0.258 

Fu et al., 2009 

TaC Fm-3M 3.169 3.169 3.169 0.228 
0.114 to 

0.384 

López-de-la-

Torre et al.,2005 

WC Fm3m 3.105 3.105 3.105 0.315 
0.126 to 

0.559 

Wereszcza 2007  

Be2C Fm-3M 4.33 4.33 4.33 
0.085 0.027 to 

0.179 

Joshi KB H, 2016 

SiC Fm3M 2.87 2.87 2.87 
0.206 0.154 to 

0.263 

Belgacem. B et 

al., 2014 

Fe3C Pmnn 4.49 5.03 6.73 
0.338 -0.265 

to 0.985 

Jiang et al., 2008 

Mo2C P63/mmc 4.73 6.02 5.22 
0.274 0.137 to 

0.432 

Liu et al., 2015 

Ni3C R3C 5.05 5.05 5.05 
0.347 0.114 to 

0.599 

Kelling et al., 

2017 

 

  

 
 

 
 

TiC NbC VC ZrC 

 

  
 

SiC Fe3C TaC WC 
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Be2C Ni3C Mo2C  

Figure 5.4.3 Typical crystal structures of selected carbides studied.  

 

  

(a) Poisson’s ratio vs.  Universal 

anisotropy index. (this work). green 

point is Hill’s Poisson’s ratio; 

orange point is minimum Poisson’s 

ratio;  blue point is maximum 

Poisson’s ratio.  

(b) Poisson’s ratio vs.  Universal 

anisotropy index. (Published data) 

(Healy et al., 2019). 

 

Figure 5.4.4 Variation in Poisson’s ratio versus universal anisotropy index.  
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5.5 Discussion 

5.5.1. Correlation between the Poisson’s ratio and other properties.          

This chapter is focusing on developing data for studying the relationship 

between crystal structures and key (ground state/theoretical) properties of 

crystals based on first principle calculation with Materials Studios. The 

properties predicted of TiC, NbC and VC showed a good agreement with 

other published data. The hardness predicted also agrees with some key 

references. The overall trend of the relationship between the maximum and 

minimum of the carbides exhibits a reasonable trend with another data-based 

research. This suggest that the framework used here is accurate and effective. 

The framework can be used in systematically developing data for materials 

systems such as stainless steels and weld hard facing to map out the key 

ground state properties of the carbides and other materials. It can also be used 

to analyse the effect of factors such as temperatures on the properties of 

carbides. Some typical results will be presented in the next section. 

  

The Poisson’s ratio of a crystal may be affected by many factors (Ghosh, 2015) 

which is more complicated for porous materials at macro scales. For cellular 

materials as shown in Chapter4, the Poisson’s ratio is affected by the overall 

structure and the properties of the beams/cell walls. For crystals, the 

interaction between the atom is complicated. It is widely regarded that the 

average Poison’s ratio is correlated with the ratio between the bulk modulus 

and shear modulus.  
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Figure 5.5.1 Correlation between the Poisson’s ratio and K/G and maximum 

and minimum Poisson’s ratio. (Yeganeh-Haeri et al.,1992) 

 

Figure 5.5.1 plots the Poisson’s ratio of the carbides together with other 

compounds including SiO2 of different space groups, which is known to have 

auxetic behaviours (Yeganeh-Haeri et al.,1992). Also plotted are the data for 

BaTiO3, which has also been reported to have auxetic behaviours at certain 

temperature ranges (Lake, 2017). Also plotted in the figure 5.5.1 is the 

Poisson’s ratio vs K/G curve depicted from a published work (Greave, 2012), 

which is based on the generalised equation . As 

shown in the figure 5.5.1, the average Poisson’s ratio data followed the 

theoretical v vs /G curve in both the domain with Positive Poisson’s ratio and 

the domain with negative Poisson’s ratios curves.  The Poisson’s ratio 

gradually increases when the K/G is over 1. when the /G is less than one, the 

Poisson’s ratio changes with K/G rapidly. In addition, when K/G is lower than 

1, the minimum Poisson’s ratio is either very low or in the negative range. 
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The average data of the Poisson’s ratio reflects that the Poison’s ratio is 

associated with K/G ratio. However, when consider the maximum and 

minimum values, the correlation is less strong/clear. There is clear scatter 

when K/G is around 2.7. Future work is required to link these to the more 

detailed electronic and other properties. Several compounds have a positive 

Poisson’s ratio overall, but the minimum values are in the negative range. 

This has been predicted by Lake (2017). The data for BaTiO3 is also included, 

which is one of the most extensively studied ferroelectric materials. On 

cooling, it undergoes successive structural phase transitions with its 

symmetry changing from cubic (Pm3m) to tetragonal (P4mm), then to 

orthorhombic (Amm2) and finally to rhombohedral (R3m) (Li et al., 1994). 

The negative Poisson’s has been reported including a recent materials 

discovery project (Dagdelen et al., 2017). The Poisson’s ratio range of the 

compounds with negative Poisson’s ratio is relative narrow such as SiO2. The 

Be2C also shown to have a potential structure with negative Poisson’s ratio. 

The minimum value is clearly in the negative range. Interestingly, a recent 

work by Qian et al (2018) shows that Two-Dimensional Be2C has a negative 

Poisson’s Ratio. These data suggest that the ratio between the K/G could be 

used to explore auxetic effect. The ground state of a quantum-mechanical 

system is its lowest-energy state; the energy of the ground state is known as 

the zero-point energy of the system. Most of the data are calculated at 0K 

which is a condition mostly used (Haj Hassan and Akbarzadeh, 2006). The 

data for TiC, VC and NbC at different temperatures (273K to 800K) also 

shows that the data at high temperatures also in general follow the general 

relationship between Poisson’s ratio and the ratio between the bulk and shear 

modulus. The temperature effect is an important issue, and some detailed data 

from this work and some published experimental and simulation data are 

presented in the next section.  
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5.5.2 Effect of temperature on the Poisson’s ratio and anisotropy data of 

simple monocarbides.   

The effect of temperature on the ground state properties and the anisotropy is 

an important (Hao et al., 2015). The properties at different temperatures 

(273K-800K）were focused on three simple monocarbides: TiC, VC and NbC. 

The basic procedure by material studio CASTEP Module is similar to the 

procedure detailed in section 5.3. But the calculation was performed in the 

dynamic module in Materials Studio (Material studio 2017 user manual). The 

process is much more consuming on computation resources, about 10 times 

longer than ground state simulation at 0K. The main change of elastic 

property at different temperatures is caused by lattice parameter change 

(Volume change) (Liu, 2018; Wang et al., 2013). The structures with different 

temperatures are to calculate the elastic stiffness constant (Cij) by Elastic 

constant calculation in CASTEP, then bulk Modulus, Young’s Modulus, Shear 

Modulus, Poisson’s ratio, and the anisotropy was calculated following the 

procedures in section 5.3. The details of the procedure are not repeated here, 

the key data presented and discussed in comparison with other published 

calculation and experimental data (Muchiri, 2019).   

  

The data for high temperature for TiC and VC are available for comparison 

(Chong et al., 2016; Dang et al., 2014). Only limited simulation is conducted. 

As evaluation of the procedure is one key part of the work, both the elastic 

constant and properties are compared between results from this work and 

published data where available.  
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Figure 5.5.2 Comparison of the elastic constant C11 of TiC from this work 

and published simulation data and experimental data.  

 

Figure 5.5.2 shows a typical example. As shown int he data, the C11 value 

from this work showed a good agreement with the published simulation data 

and experimental work (Dang et al., 2014). Only a few limited experimental 

data are available, and the trend is very good. The result from this work is 

almost identical to the published simulation data of TiC.  
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(c) Shear modulus at different 

temperatures (TiC). 

(d) Poisson’s ratio at different 

temperatures. (TiC) 

Figure 5.5.3 Typical elastic property data of TiC at different temperatures 

in comparison with published data. (Dang et al., 2014) 

 

Figure 5.5.3 shows the comparison of the calculated K, E, G and Poisson’s 

ratio values with published data of TiC. All data are in a good agreement. 

Similarly, the figure 5.5.4 predicted work for VC also resembles closely 

published data. These show that the procedure is sufficient to analyse the 

effect of temperatures. As this work is part of an effort to develop data for 

special applications, the presentation of comparison with published data is 

important. The properties of ceramics at these temperature ranges are 

important as it was reported that ceramics could start undergoing plastic 

deformation at 0.1-0.2 melting temperature (Tm). For example, it is reported 

that the critical temperature for plastic deformation in Alumina is within 0.1-

0.2Tm. The melting temperature is around 2072°C. (Zarudi et al., 1998). It 

was also important for future studies on the potential effect of impurity 

interactions and dislocation at critical temperatures as highlighted by Amodeo 

et al (2018). The good agreement from this work and published work at TiC 

and VC also give the confidence to use the procedure to study other less 

known material systems and the anisotropic features.    
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(a) Bulk modulus at different 

temperatures. (VC） 

(b) Young’s modulus values at 

different temperatures. (VC） 

  

(c)Shear modulus values at 

different temperatures. (VC） 

(d) Poisson’s ratio at different 

temperatures. (VC） 

Figure 5.5.4 Typical elastic property data of VC at different temperatures 

in comparison with published data. (Chong et al., 2016) 

  

As presented in section 5.3, the data for NbC showed more significant 

anisotropy than TiC and VC. Given the high anisotropic feature of NbC, more 

detailed data on NbC is conducted at different temperatures (273, 400, 500, 

600, 700 and 800K). Typical data was illustrated in Figures 5.5.5 - 5.5.7. 

Figure 5.5.5 shows the temperature effect on cell volume of NbC. The cell 

volume increases from 91.4 Å to 94.8 Å3 while the temperature is increased 

from 293k to 800K in the simulation.  
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Figure 5.5.5 The Cell volume change and elastic property change with 

different Temperature. 

 

The effect of the temperature on the elastic properties is shown in Figure 

5.5.6a. The solid lines are CASTEP calculation data, and the open symbols 

are published experiment data (Cuppari, 2016; Jun and Shaffer, 1971). Also, 

the data plotted on the figure 5.5.6(a) are some published modelling data of 

K, E, G of NbC at 273K (Hua and Li, 2015). In all the cases, the elastic 

modulus decreases with the temperature. The calculated data of bulk modulus 

is in a very good agreement with other modelling data at 273K. There is a 

slight difference between the simulation experiment data at lower temperature 

ranges, the data at higher range temperature showed a good agreement. Both 

Young’s and shear modulus follows a similar trend as published experiment 

data, the shear modulus shows the better agreement with the testing data than 

of the bulk modulus and Young’s modulus. Figure5.5.6b shows the minimum 

and maximum value of Young’s Module and shear Modulus ratio of NbC with 

different temperatures. It is can be seen that all the min and max value of 

Young’s Modulus and shear Modulus decrease while temperature is increased, 

and the max value of Young’s Modulus and shear Modulus decrease more 

than the min value. Figure 5.5.7a shows the universal anisotropy index of 

NbC. The data for TiC and VC is also plotted as a comparison, both showed 

limited change in comparison with the data for NbC. Figure 5.5.7b plots the 

anisotropy data of E, G and Poisson’s ratio of Nb. It shows that the change of 

anisotropy in the Poisson’s ratio is much stronger than that for E and G as the 

temperature is increased from 273K to 800K. More detailed data of the 
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minimum and maximum Poisson’s ratio is shown in Figure5.5.7c&d. It is 

noticed that both the min value and maximum values of Poisson’s are is 

increased with the temperature. The main direction is [110].  

 

(a) Comparison elastic modulus with published experiment and modelling 

data at different temperature (Jun and Shaffer, 1971). 

 

(b) Minimum and maximum value of Young’s Module and shear Modulus 

ratio of NbC with different temperatures. 

Figure 5.5.6 Temperature effects on the elastic modulus of NbC 
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(a) Universal anisotropy index of 

NbC at different temperatures. The 

data for TiC and VC is plotted as a 

comparison. 

(b) Anisotropy index of the E, G and 

v for NbC at different temperature 

showing more significant change in 

the anisotropy of v. 

  

(c) 2D plane projection of 

Minimum value Poisson’s ratio 

(NbC) 

(d) 2D plane projection of 

maximum value Poisson’s ratio 

(NbC). 

Figure 5.5.7 Temperature effect on the Anisotropy of NbC. 

(Cuppari, 2016; Jun and Shaffer, 1971). 
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5.5.3 Use of Material Studio in studying other material properties and 

processes 

Apart from the work with ground state properties, as explained in section 5.2, 

there are other important study has been evaluated including Surface energy, 

oxygen reduction reaction (ORR) and element doping effects. These are 

essential for developing complex data from the first principle calculating for 

different applications. Some procure, key result and validation is briefly 

presented below.  

  

Surface Energy of metal crystals 

Surface energy is an important parameter, which is the excess free energy per 

unit area of a particular crystal face which is one of the basic quantities in 

surface physics (Tran et al., 2016). The balanced shape of the microscopic 

crystal can be used to determine the surface energy. The data of surface energy 

are important for the understanding of roughening, crystal growth phenomena 

and surface segregation (Vitos et al., 1998). There is main situation between 

metal and ceramics where the surface energy of the material phase is essential 

(Zhao et al., 2018; Liu et al., 2018). The work in modelling the surface energy 

of Ferrite (α-Fe, alpha iron) is briefly presented to illustrate the nature of the 

procedure and data. To calculate the surface energy of ferrite, a crystal 

structure of ferrite was built with 2.8664Å*2.8664Å*2.8664Å and Im-3M 

space group (Figure and optimized lattice parameter with lowest energy. The 

crystal structure is close with other published data. (Woodward et al., 2003). 

The first principle calculation of ferrite surface energy based on density 

function theory (DFT) by using CASTEP code in Material studio. OTFG 

Ultra-soft pseudopotential is based on generalized gradient approximation 

(GGA) - Perdew–Burke–Ernzerhof (PBE) exchange correlation 

approximation is used in the calculation. In the surface energy calculation of 

Ferrite, Plane wave truncation Cut off energy is 520 eV, convergence accuracy 

during iteration is 5 × 10-6 eV / atom. The max force is 0.01 eV/, max stress 

is 0.02 GPa, Max distance is 5e-4Å. The crystal structure was cleaved to three 

different surface which are (100), (110) and (111) plane (Figures 5.5.8b). To 

avoid the interaction between the two ends of the model, several models with 
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different vacuum thickness have been built and used to test surface energy 

convergence. After the convergence test, vacuum slab with distance of 10 Å 

was used in further calculation and the optimised structure for different planes 

are shown in Figures 5.5.8c&d. The surface energy (Esurf) is calculated 

following Equation 5.1(Ji et al., 2016)  

𝐸𝑠𝑢𝑟𝑓 = (𝐸𝑡𝑜𝑡𝑠𝑢𝑓 − 𝑁𝐸𝑠𝑙𝑎𝑏)/2𝐴                                       (5.5.1)
 

Where the Esurf is the surface energy; Etotsuf is the calculated Total energy of 

the slab; E slab is the energy of one crystal; N is the number of crystals used 

in the slab; A is the surface area. The data of the surface energy calculated for 

(100), (110) and (111) of the is shown in Figure 5.5.8f. The result is in a good 

agreement with other published data (Guo et al., 2016). The surface energy 

of Ferrite is following the order: Esuf100>Esurf111>Esurf110.  

 

 

(a)Crystal 

structure of ferrite 

(b) Main calculated crystal planes 

   

(c) 100 plane 

(front view and 

Top view) 

(d) 110 plane (front view 

and Top view) 

(e) 111 plane (front 

view and Top view) 
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(f)The calculate Ferrite surface energy with (100),(110),(111) plane and 

other published data(Guo et al., 2016). 

Figure 5.5.8 The crystal structure of Ferrite with different plane and 

Calculation of the surface energy of Ferrite 
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Oxygen reduction reaction (ORR) 

An oxygen reduction reaction (ORR) is another important area which can use 

Material studio density functional theory (DFT) computations. The procedure 

of the modelling oxygen reduction reaction is evaluated based on the typical 

data of an oxygen reduction reaction (ORR) of boron nitride nano-sheets. The 

calculation will be performed by Material studio DMol3 Module, and a 

functional of Perdew–Burke–Ernzerh (PBE) is used to treat generalized 

gradient approximation. The basis set of calculation is DNP with 3.5 basis file. 

The reactant and product of ORR need optimize the geometry with lowest 

energy first. The global orbital cut-off is 4.1 Å and the K-points is 6*6*1 with 

actual spacing of 0.026077 1/Å,0.026077 1/Å,0.074627 1/Å. The transition 

state search protocol of ORR step is Complete LST/QST. The atom match 

between Reactant and Product of ORR is manually select from material studio 

reaction preview tools (Wen et al., 2018). Typical data and results are shown 

in Figure 5.5.9. The reactant and product of pathway (OOH+H+ +e→2OH) 

are built which shows on figure 5.5.9a&b. In reactant, the distance between 

O1 and B is 1.567Å and the distance of O-O bond is 1.46Å while the distance 

between O1 to H2 is 2.35Å. The figure 5.5.9b is the product of this ORR. The 

distance between O1, O2 and B is 1.504 Å and 1.531 Å. The transition state 

was found by TS search task of DMol3 Module which show in Figure 5.5.9c. 

The energy barrier of reaction to transition state is 0.712 eV and the released 

energy is -3.669 eV. Those energies are matched with published data.  
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(a) Reactant (b) Product 

 

 

 

(c)Transition state  (d)Comparison between the released 

energy 

Figure 5.5.9 Crystal geometries of reactants, transition states, and products 

for oxygen reduction reaction (ORR) of boron nitride nano-sheets 

(OOH+H+ +e→2OH) (Wen et al., 2018) 
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5.5.4 Link between properties at crystal and Poisson’s ratio of materials 

at different scales 

As shown in the results section 5.4 and the cases discussed in section 5.5.3, 

the first principle calculation is an effective tool in predicting materials 

properties and characteristics in different conditions such as surface, chemical 

reaction etc. (Hua and Li, 2015; Wen et al., 2018). One potential use of the 

integrated data analysis program is for develop data of materials group. For 

example, in stainless steels, there can be many types of carbides, nitride. 

Systematic data including anisotropy of these secondary particles and their 

interface with other phases are important for understanding the mechanical, 

thermal, and manufacturing processes (Cuppari, 2016; Jun and Shaffer, 1971). 

One advantage of first principle calculation in establishing systematic data of 

the ground state properties lies in the fact that it is based on input data of the 

atoms and crystal structures. In addition, it can predict some detailed 

properties (e.g., full anisotropy data) that cannot be fully established by 

experimental methods. Many data sharing sources are being developed and 

becoming openly accessible recently, such as Materials projects 

(https://materialsproject.org/), chemical crystallography 

(http://www.xtl.ox.ac.uk/crystals.1.html), Crystallography Open Database 

(Gražulis et al., 2018). These data sources will provide support for data led 

research and development works for materials studies. The presentation and 

visualisation of the data are also important for knowledge sharing and training 

purposes. As shown by Graphical User Interface developed in this work and 

typical results presented in this thesis, Python based program could provide 

an effective frame for the data input, integration, cross-comparison, 

visualisation, and analysis. Apart from the elastic properties presented, other 

properties such as the sound velocity and Debye temperature can also be 

directly included which are linked to the elastic constants and anisotropy of 

the crystal.  

  

The work presented is focused data of simple carbides including the cross 

examination of the procedure and results, which is important for practical 

application of the data. Despite the wide applications of first principle 



  

 

236 

 

simulations, it is still important to understand the potential cause of error or 

uncertainty in the results due to variation of input lattice parameters and the 

calculation parameters (e.g., cutting off energy, K-point etc. as illustrated in 

section 5.3) (Gaudoin and Foulkes, 2002; Ahmad and Viswanathan, 2016). 

The development of the python program integrating all the calculations will 

make it easier to assess the results and cross-compare them with other sources 

including published data. Python program is very flexible, some simple 

practical operation such as taking average data for the lattice parameters, 

assess the effect of the cutting off energy, curve fitting, etc. are useful for 

practical applications of large-scale systematic data. The procedure of the 

work can be extended to other carbides, nitrides, including more complex 

systems such as multiple-elements carbides. For example, the work is being 

used to study the anisotropy of for M7C3 carbides, where M can be a mixture 

of Fe, Cr, Mn,Mo, W element (Guo, 2020; EU IF project report, in process). 

The establish the anisotropy data at different temperature also offer than the 

potential new details for studying the function of TiC/VC/NbC as the 

nucleation agent for M7C3 carbides and Ferrite.   

Among the elastic properties, the data for Poisson’s ratio, auxeticity and 

anisotropy are relatively less known previous than the data for K, E and G, 

but are gaining increased research attention (Kelkar et al., 2020). Some of the 

ground state properties determined by atomic simulation such as Young’s 

modulus are directly linked to macro scale properties as the Young’s modulus 

is mainly determined based on the inter-atomic forces (Greaves et al., 2013). 

The bulk modulus, shear modulus of the material studied also showed a good 

agreement with properties of single crystals. For polycrystalline materials, the 

overall properties may be affected by the grain structures and other 

parameters, but the ground state properties still offer guidance on the 

properties. As illustrated in section 5.4 and 5.5.1, the detailed anisotropy 

coefficients offer effective data to analyse the correlation data between the 

Poisson’s ratio (including the maximum, minimum and average values) and 

the bulk modulus-shear modulus ratio. Even though the data fits the 

theoretical relation but the trend at negative Poisson’s ratio range is different 

from the trend in the positive Poisson’s ratio domain. At a negative Poisson’s 
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ratio, the slope of the curve showing much steeper variation of the Poisson’s 

ratio with the K/G ratio. More detailed data at a larger scale need to be 

developed to explore the role between link of Poisson’s ratio and K/G values. 

This may provide a mechanism for materials develop with targeted Poisson’s 

ratios or K/G values.  

  
  

(a)FE Modelling of a structure based 

on molecular structure in Abaqus 

(b) Molecular simulation in Material 

studio. 

 
(c) The Poisson’s ratio from FE modelling and molecular modelling of a 

1-4 (n-m) structure. The number ‘n’ is the number of acetylene links on 

the traversal direction branches and ‘m’ is the number of link on the axial 

direction branches. 

Figure 5.5.10 Comparison of Poisson's ratio with FE modelling and molecule 

modelling. (Hua and Li, 2015; Wen et al., 2018) 

 

As covered in Chapter 2, negative Poisson’s ratio could be caused by many 

mechanisms (Gibson et al., 1982; Grima et al., 2008; Gaspar et al., 2005; 
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Mousanezhad et al., 2015; Lake, 2017).  The parametric modelling of the 

auxetic behaviours at macro scales (Chapter 4) and Poisson’s ratio/anisotropy 

at crystal structure level (Chapter 5) could contribute the understanding of the 

interlink between auxetic behaviours. Auxeticity is normally associated with 

high anisotropy (Gaspar et al., 2009; Lake, 2017). Preliminary works of this 

project on modelling 2D structure has found that the FE model built based on 

the scaled dimensions form an auxetic molecule in tension has a similar level 

of Poisson’s ratio. A typical result is shown in Figure 5.5.10.  Figure 5.5.10 

compared the Poisson’s ratio of a 1-4 (n-m) structure predicted by the 

Molecular simulation in Material studio. and an FE model (ABAQUS) based 

on the dimension and scale (aspect ratio) (a stable structure) from the 

Molecule model. The number ‘n’ is the number of acetylene links on the 

traversal direction branches and ‘m’ is the number of links on the axial 

direction branches. The molecular structure resembles a re-entrant 

honeycomb structure. As shown in figure 5.5.10c, the Poisson’s ratio from 

these two approaches is in a similar range, which also close to published data. 

This is an interesting finding as the FE is used Young’s Modulus while the 

Molecular simulation is based on electronic force between atoms. Further 

work could be performed to further explore the use of this approach to identify 

structures of auxetic behaviours, which will benefit from detailed property 

data in particular data in anisotropy and parametric FE modelling.  

Linking molecular simulation at different scales supported by more powerful 

data analysis is a potentially useful approach in structure design (Dagdelen et 

al., 2017; Gaillac et al., 2020). Some of the data in this work also indicates 

the link between structures at different length scales. An interesting example 

is Be2C, the crystal showed a very low Poisson’s ratio.  

As shown in Figure 5.5.11a, the unit cell of Be2C consists of 12 tetragonums 

and forms a cage structure. The two-Dimensional Be2C with Octa coordinate 

Carbons has been reported to have a Negative Poisson’s Ratio (Qian et al., 

2018). It also interesting to compare the Be2C structure with some macro 

structure.  The overall format of Be2C resemble the auxetic hexagonal 

dodecahedron reported previously by. (Grima et al., 2012). This clearly 

reflects the link between auxeticity at crystal levels and macro levels.  These 
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interesting data supports the overall research effort to use data from molecular 

structure (in whole or partially in 3D or 2D) as a blueprint in the design, 

synthesis and/or manufacture of man-made multifunctional materials, which 

may be constructed at the macro-scale, micro-scale as well as at the nanoscale 

using, for example, micro-fabrication techniques such as 3D printing and 

additive manufacturing (Grima et al., 2012; Lake, 2017). It will also be 

interesting try to link FE modelling and first principle calculation to explore 

the detailed mechanisms. For a pure mechanical system (in finite element 

modelling), the energy is mainly associated strain energy, while with the 

molecular simulation the energy is a mixture of mechanical and magnetic-

electrical forces. It is difficult to directly compare them quantitatively. Further 

work will explore the potential link through in-depth data analysis, which will 

benefit from the python program for parametric FE modelling and integrated 

data analysis for FE modelling and first principle simulation. 

 
 

(a) Crystal structure of 

Be2C. 

(b) The hexagonal dodecahedron and two-

dimensional projections. (Grima et al., 2012) 

Figure 5.5.11 Crystal structure of Be2C and hexagonal dodecahedron 
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CHAPTER SIX  

CONCLUSIONS AND 

FUTURE WORK 
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6.1 Summary  

This work focused on developing effective data-led simulation approaches 

for studying the behaviour and properties of auxetic structures and crystals 

with a particular focus on the Poisson’s ratio and auxeticity. Several Python 

parametric programs were developed for structures and data processing 

integrated with Finite element modelling (Abaqus) and ab initio quantum 

mechanical program (Materials Studio CASTEP).  The parametric FE 

modelling studies is concentrated on the development of Python based 

numerical models of typical auxetic structures. The program is integrated 

with the FE models to automatically build models of different structures and 

to calculate/analyse key parameters and results. The models are then used to 

investigate their deformation behaviours and establish the effect of key 

dimensional parameters on the deformation process, Poisson’s ratio and 

stability of auxeticity. A range of auxetic structures has been studied including 

missing rib models in tension, missing rib and mixed cellular structures in 

compression, self-similar hierarchical structures in compression. A program 

is also developed for calculating and tracking of the area changes for cellular 

structures under compression and tension loads. The behaviours of mixed 

structures and use of Python program in developing Voronoi random 

structures and random structures with auxetic behaviours is also presented. 

The area analysis is effective in studying the cell shape and area changes and 

the data shows that that the areas of the missing rib and honeycomb show 

much more uniform cell deformation in tension than in compression. The area 

changes of the missing rib model under compression reflect the main 

deformation stages including the corner edge-cell wall contact. The work 

shows that deformation and instability auxeticity of missing rib structures are 

associated with the corner edge wall contact. The mixed model showed 

different beam–wall contact patterns, which contributes to the much higher 

critical strain of stable auxeticity and overall shape stability.  The work with 

ab initio quantum mechanical program (Materials Studio CASTEP) is 

focused on developing a Python-based data system for analysing the data and 
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link between crystal structures and key ground state properties of crystals 

based on first principle calculation with Materials Studio. A range of ground 

state properties including elastic constants (Cij), bulk modulus (K), Young’s 

modulus (E), shear modulus (G), Poisson’s ratio (v), etc. have been studied 

with a particular focus on Poisson’s ratio, anisotropy. The correlation between 

the ground state elastic parameters and their link with other properties is 

analysed. Some compounds with low or negative Poisson’s ratio were 

identified and detailed structures and properties data are given. Some typical 

results on key engineering carbides including simple cubic systems (TiC, VC 

and NbC) are presented together with the mathematical operation to calculate 

the K, E, G, v and functions for 3D surface constructions of the ground state 

parameters including anisotropic features. The Python Graphical User 

Interface developed is effective for systematic calculation and visualization 

of the key structures, properties, and anisotropy features.  The structure and 

properties of a range of carbides showed a good agreement with the other 

published data mining programs. The data highlighted the source of 

uncertainty in Poisson’s ratio and the link between link between property data. 

The Data for structures with Negative Poisson’s ratio is briefly presented and 

analysed including the link between the atomic structure and a macro 

structure with auxetic behaviours. The procedure for modelling surface 

energy, oxygen reduction reaction (ORR), structures with doping elements 

and the effect of temperatures are also presented and showed a good 

agreement with published works.  This laid a good foundation for future use 

of physical modelling in materials research.  
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6.2 Recommendations for further works  

This work has established a framework for modelling auxetic structures and 

studying the anisotropy and auxeticity of materials.  The work can be 

extended into the following areas. 

Convert the model into an open-source program with parametric interfaces 

for studying auxetic structures. The framework established can incorporate 

other auxetic structures such as re-entrant. This will help the application of 

materials. As part of another project, the use of missing rib structures and 

other auxetic structures are being explored in orthotics. The parametric 

program will help to optimise the dimensions and materials used by students 

not from medical backgrounds.  The work on mixed structures and random 

structure can used in design structures for targeted properties. These are 

increasingly important areas, such as a parametric program that can help make 

the design process more efficient.  

The work used a high beam length-to-wall thickness ratio, and this offered a 

case to study the initial contact patterns in detail and to evaluate the 

deformation, properties, and stability of missing rib structures and mixed 

structures. Future more quantitative work will systematically investigate the 

effect of angle and beam lengths on the deformation of different complex 

material systems at higher strains. The development of 3D additive printing 

and joining technologies has opened the path to produce complex structures 

with both plastics and metals stainless steels and titanium alloys and high 

entropy alloys 

The work on ab initio quantum mechanical program (Materials Studio 

CASTEP) has established the modelling and data processing for the ground 

state properties and the anisotropy. The program is being used to map the 

compounds in stainless as part of another project. This will help the 

development of the database for materials groups. The effect of the 

temperature effect on the lattice parameters and properties of high 

temperature carbides will be used to study the nucleation of metallic phase or 

other complex carbides (such as M (Fe, Cr) 7C3) on precipitated carbides    
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