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Abstract

Keratinocyte migration is vital in the re‐epithelialisation of the skin during wound

healing. Multiple factors conspire to impair closure of chronic wounds such as

diabetic foot ulcers, venous leg ulcers and pressure wounds. Despite deep me-

chanistic understanding of microRNA (miRNA) biogenesis and function, the trans-

lational potential of these small genetic molecules has not been exploited to

promote wound repair. In this review, I focus on miRNAs whose importance for

wound healing stems from their impact on epidermal keratinocyte behaviour. These

include miR‐21‐5p, miR‐31‐5p, miR‐132‐3p, miR‐19b, miR‐20a, miR‐184, miR‐129‐
5p and miR‐335‐5p which regulate diverse aspect of keratinocyte biology such as

migration, proliferation, differentiation, inflammation and wound closure. A combi-

natorial approach where two or more miRNA mimics targeting distinct but com-

plementary wound healing processes is proposed as this may enhance wound repair

more effectively than any single miRNA mimic alone.
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1 | INTRODUCTION

Despite significant advances in understanding the multiple factors

associated with chronic wounds, there remains a significant unmet

need for therapeutic interventions to promote wound healing. With

the ageing population and associated rise in the incidence of dia-

betes, pressure ulcers, venous leg ulcers and diabetic foot ulcers, the

clinical and socioeconomic challenges presented by nonhealing

wounds are likely to persist, exerting enormous pressure on health

services in both industrialised and developing nations (Eming

et al., 2014; Nunan et al., 2014; Whittam et al., 2016). Estimates put

the costs of managing wounds and associated comorbidities at £5.3

billion annually in the United Kingdom and a staggering $25 billion in

the United States (Guest et al., 2015; Sen et al., 2009). Four therapies

have received been approved by the Food and Drug Administration

for chronic cutaneous wounds: a bioengineered human skin equiva-

lent, two dermal substitutes, and recombinant human platelet de-

rived growth factor, this is despite healing rates of only 30% to 56%

(Hamdan et al., 2017). Furthermore, the number of diabetics

worldwide is projected to approach 630 million by 2045, hence the

need for fundamental and translational research to drive the devel-

opment of wound healing and wound care products in support of

multi‐disciplinary care pathways (Uckay et al., 2015).

The roles of microRNAs (miRNAs) in health and disease have

been researched intensively for almost two decades. These small

genetic molecules are ~22 nucleotides long and generally influence

cell fate by reducing gene expression through mechanisms that

converge on degradation of mRNA transcripts, thus lowering the
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protein output (Bartel, 2018). A given miRNA can regulate numerous

mRNAs, and consequently miRNAs function as master regulators of

the molecular status of the cell. As a result, miRNAs represent at-

tractive potential therapeutic targets for complex diseases with

multiple pathological features, such as chronic wounds.

As the skin is constantly exposed to potential injury, wound

healing is a fundamental physiological process required to maintain

the integrity of the skin after trauma. It consists of a series of suc-

cessive overlapping phases spanning haemostasis, inflammatory,

proliferative and remodelling phases (Baltzis et al., 2014; Gonzalez

et al., 2016). These stages are driven co‐ordinated activity of diverse

cell types including keratinocytes, fibroblasts, endothelial cells and

infiltrating immune cells, of which keratinocyte replication and mi-

gration during the proliferative phase drive the re‐formation of the

epidermis to secure wound closure (Gonzalez et al., 2016; Martin &

Nunan, 2015).

Recent years have seen significant growth in our understanding

of miRNA function in keratinocyte migration and as candidate tar-

gets for the development of novel therapies for wound healing

(Mulholland et al., 2017). In addition, long noncoding RNAs (lncRNA),

which are broadly defined as >200 nucleotides, have recently been

implicated in wound repair, wound and keratinocyte migration‐
associated long noncoding RNA 1 (WAKMAR1) and WAKMAR2

being notable examples (Herter et al., 2019; D. Li et al., 2019). Here, I

introduce mechanisms of miRNA expression and function briefly,

then focus on miRNAs that have translational promise for wound

repair through elevated expression, for instance through miRNA

mimics that stimulate keratinocyte migration and other aspects of

wound healing.

1.1 | MicroRNA biogenesis and function

The canonical pathway for miRNA biogenesis involves transcription from

diverse genomic loci including introns, exons and intergenic regions to

generate primary (pri‐miRNA) (Finnegan & Pasquinelli, 2013). Sub-

sequent processing of the pri‐miRNA transcripts into ~70 nt precursor

miRNA (pre‐miRNA) hairpin loop structures appears to be almost com-

pletely dependent on DROSHA, a nuclear ribonuclease (RNAse) III en-

zyme that functions as a complex with the protein product of DiGeorge

syndrome critical region gene 8 (DGCR8) (Denli et al., 2004; Gregory

et al., 2004; Han et al., 2004; Landthaler et al., 2004; Lee et al., 2003). The

pre‐miRNAs are transferred from the nucleus into the cytoplasm via the

Exportin 5 complex with RanGTP (Bohnsack et al., 2004; Lund

et al., 2004; Yi et al., 2003). However, genetic ablation of the XPO5 gene

that encodes Exportin‐5 only reduced miRNA maturation modestly, in-

dicating the existence of alternative pathways for pre‐miRNA translo-

cation (Y. K. Kim et al., 2016). Once in the cytoplasm, each pre‐miRNA is

processed into a mature miRNA duplex by the RNAse III enzyme DICER,

which contributes to the biogenesis of several small regulatory RNAs

(Song & Rossi, 2017). One strand of the duplex is loaded into Argonaute

(AGO) proteins to form the RNA‐induced silencing complex (RISC),

strand selection by AGO depending on 5′ nucleotide identity and the

relative thermodynamic stabilities of the two ends of the miRNA duplex

(Meijer et al., 2014; Sheu‐Gruttadauria & MacRae, 2017). The guide

stand is stabilised within AGO and targets the RISC to mRNA transcripts,

while the other, minor species (the passenger strand, or miRNA*) is

usually degraded (Bartel, 2018). However, both strands can accumulate

F IGURE 1 Schematic depiction of the canonical pathway of
miRNA biogenesis. After transcription from diverse genomic loci, the
primary miRNA transcript (pri‐miRNA) is cleaved by the DROSHA/
DGCR8 microprocessor complex, yielding pre‐miRNA which is
exported from the nucleus to the cytoplasm predominantly by the
Exportin‐5 Ran‐GTP complex. After processing by DICER to form a
mature miRNA duplex one strand from the duplex is loaded onto the
AGO family of proteins to form the RISC, while the other strand is
largely degraded. The RISC can repress translation but the dominant
mechanism of silencing involves mRNA destabilization. AGO,
Argonaute; mRNA, messenger RNA; miRNA, microRNA; RISC,
RNA‐induced silencing complex

2 | ROSS



to detectable levels and mediate RISC function, hence mature miRNAs

are designated miR‐#−5p or miR‐#−3p according to the precursor hairpin

arm fromwhich they arise (Guo & Lu, 2010; Marco et al., 2012; Okamura

et al., 2008; J. S. Yang, Phillips, et al., 2011). Such unambiguous nomen-

clature is also pertinent given that the choice of guide or passenger

strand can vary with cell type or under pathological conditions, with very

recent work indicating that the uridylation status of the miRNA strands is

a key factor driving this choice (H. Kim et al., 2020). In any case, the RISC

binds to the 3′ untranslated region (3′ UTR) of target mRNA transcripts

and, in animals, results in abrogation of protein expression through

complex mechanisms dominated by mRNA destabilization rather than

translational repression (whose overall impact is modest) or mRNA

cleavage, which dominates RISC function in plants (Eichhorn et al., 2014;

Fang & Qi, 2016; Iwakawa & Tomari, 2015). Key elements of the cano-

nical pathway of miRNA biogenesis are summarised in Figure 1, but it

should be noted that several pathways of miRNA biogenesis are known

to bypass Drosha or Dicer processing, and these noncanonical mechan-

isms have been reviewed critically elsewhere (Bartel, 2018; Treiber

et al., 2019).

1.2 | Enhancing miRNA levels for wound healing:
A focus on keratinocytes

The formation of new epidermal tissue over the denuded wound

surface is fundamental to the completion of wound healing. Kerati-

nocytes migrate from the wound edge to repopulate the exposed

extracellular matrix but in chronic wounds, such keratinocyte mi-

gration is impaired (Usui et al., 2008). Diverse cytokines and growth

factors promote keratinocyte migration, and early work by Woodley

and colleagues found transforming growth factor α (TGFα) was the

most potent stimulator of keratinocyte migration among a panel of

11 cytokines and growth factors, while transforming growth factor β

(TGFβ) was the weakest (Y. Li et al., 2006). Nonetheless, several

TGFβ‐induced miRNAs, including miR‐21‐5p, miR‐31‐5p and miR‐
132‐3p that have emerged as key miRNAs whose elevation drives

keratinocyte migration, re‐epithelialisation and other elements of

wound healing (Table 1), while the impact of TGFα on miRNA ex-

pression and function in keratinocytes remains obscure.

1.3 | MicroRNA‐21‐5p in keratinocytes

Early studies demonstrated miR‐21‐5p induction by TGFβ in HaCaT

keratinocytes (X. Yang, Wang, et al., 2011). Antisense inhibition of

miR‐21‐5p slowed TGFβ‐dependent migration of these cells in

scratch assays, while a miR‐21 mimic significantly enhanced HaCaT

keratinocyte migration (Ahmed et al., 2011; X. Yang, Wang,

et al., 2011). In mouse wounds, miR‐21‐5p appears as one of the

most elevated miRNAs during the proliferative granulation formation

stage, and antisense inhibition of miR‐21‐5p impaired re‐
epithelialisation of murine skin wounds while a pre‐miR‐21 plasmid

enhanced granulation tissue formation and wound contraction (T.

Wang, Feng, et al., 2012). A miR‐21 mimic was also recently shown to

accelerate wound closure (Simões et al., 2019). Interestingly, down-

regulation of miR‐21‐5p in cutaneous diabetic mouse wounds was

associated with delayed wound healing, although a causal relation-

ship was not established (Madhyastha et al., 2012). Together, these

rodent studies suggest abrogation of miR‐21‐5p activity impairs

wound healing while enhancement of pre‐miR‐21 accelerates wound

repair. On the other hand, topical application of a miR‐21‐5p mimic

inhibited re‐epithelialisation in ex vivo human skin wounds and re-

duced granulation tissue formation and re‐epithelialisation in a rat

model (Pastar et al., 2012). Thus, while a very recent study showed

that keratinocyte‐derived microvesicles carrying miR‐21‐5p po-

tentiate fibroblast and endothelial cell wound healing functions in

diabetic rats (Q. Li et al., 2019), the translational potential of miR‐21‐
5p in wound healing remains an open question. The ability of miR‐21‐
5p to enhance dynamic inflammatory processes such as infiltration of

immune cells (Pastar et al., 2012) or the secretion of cytokines and

chemokines (Guinea‐Viniegra et al., 2014; Q. Li et al., 2019) also

needs further investigation to establish their roles in wound repair.

Furthermore, unlike miR‐31‐5p and miR‐132‐3p (see below), miR‐21‐
5p does not appear to stimulate keratinocyte proliferation, at least as

measured in HaCaT cells (Ahmed et al., 2011; X. Yang, Wang,

et al., 2011), although a recent study suggests otherwise (Simões

et al., 2019).

Recently, Wang and colleagues also observed that miR‐21‐5p was

reduced in aged mouse skin compared to their younger counterparts, and

this was associated with impaired wound healing in the aged mice (Long

et al., 2018). The delayed wound closure was reversed in aged miR‐21
knock‐in mice or by intradermal injection of a pre‐miR‐21 plasmid.

However, although miR‐21 was depleted in aged mouse skin (12‐month

vs. 2‐month‐old mice) in the Wang study, Botchkarev and co‐workers
found miR‐21‐5p was elevated in aged mice (2‐year vs. 8‐week‐old mice)

(Ahmed et al., 2019). Hence, the dynamics of miR‐21 expression in aged

murine skin require further clarification, as do the mechanisms under-

pinning alterations in miR‐21 levels in aging skin.

Some aspects of keratinocyte migration during wound healing,

such as the reduction of cell–cell and cell–matrix adhesion overlap

with features of epithelial mesenchymal transition (EMT) (Haensel &

Dai, 2018). Conflicting observations have been reported in relation

to the impact of miR‐21‐5p on EMT in HaCaT keratinocytes: work by

Su and colleagues suggest modulation of miR‐21‐5p had limited im-

pact on EMT whereas recent studies by Qian and co‐workers found

miR‐21 mediates TGF‐β1‐dependent mesenchymal transition (J.

Wang et al., 2016; T. Wang, Zhang, et al., 2012). In any case, it will be

important to establish the impact of miR‐21‐5p on EMT in primary

keratinocytes and ex vivo human skin to verify the physiological

significance of these observations.

1.4 | MicroRNA‐31‐5p in keratinocytes

Studies in both human and mouse skin have implicated miR‐31‐5p in

re‐epithelialisation (D. Li et al., 2015; Shi et al., 2018). The expression
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of miR‐31‐5p was strongly induced in skin at the wound edge and

was predominantly expressed in keratinocytes (D. Li et al., 2015; Shi

et al., 2018). In early work from the Sonkoly group, TGFβ1 and

TFGβ2 induced miR‐31‐5p modestly in primary human keratinocytes,

whereas tumour necrosis factor α (TNF‐α), interleukin (IL)−22, IL‐6,
interferon γ (IFNγ), and other agents had little effect (D. Li

et al., 2015; Xu et al., 2013). In contrast, later work from Wang and

colleagues found IL‐6 evoked a fourfold increase of miR‐31‐5p in

primary human keratinocytes, as well as modest induction by IL‐22,
IFNγ and TNF‐α (Yan et al., 2015). More notably, IL‐6‐dependent
elevation of miR‐31‐5p was mediated by the transcription factor NF‐
κB, and similar observations have been made recently in murine

keratinocytes and HaCaT keratinocytes (Shi et al., 2018). Whether

signal transducer and activator of transcription 3 (STAT3), a primary

mediator of IL‐6 signalling, drives miR‐31‐5p expression is less clear:

at least in HaCaT keratinocytes, a STAT3 inhibitor did not impair IL‐
6‐dependent miR‐31‐5p expression (Yan et al., 2015) whereas si-

lencing of STAT3 with short‐interfering RNA (siRNA) abrogated both

TNF‐α‐ and IL‐6‐mediated miR‐31 induction (Shi et al., 2018).

Conditional deletion of miR‐31 from murine epidermis impaired

keratinocyte proliferation and delayed wound closure (Shi et al., 2018).

Conversely, a miR‐31 mimic increased the rate of wound closure in a

mouse skin wound‐healing model (Chen et al., 2019). Further, exogenous

miR‐31‐5p mimics enhanced proliferation and migration of human ker-

atinocytes by silencing epithelial membrane protein 1 (EMP‐1) and ne-

gative regulators of the RAS/MAPK pathway, including RASA1, SPRED1,

SPRED2 and SPRY4 (D. Li et al., 2015; Shi et al., 2018). Of these targets,

RASA1 (also known as p120RasGAP) is particularly interesting because it

was also downregulated in keratinocytes loaded with pre‐miRNA‐132
(see supplementary tab. 1 in D. Li et al., 2015) and has been confirmed as

a miR‐132‐5p target in fibroblasts (X. Li, D. Li, Wikstrom, et al., 2017) and

endothelial cells (Anand et al., 2010). Studies in the context of psoriasis,

an immune‐driven epidermal disorder have revealed repression of pro-

tein phosphatase 6 (ppp6c) as a further mechanism through which miR‐
31‐5p promotes keratinocyte proliferation (Yan et al., 2015).

1.5 | MicroRNA‐132‐3p in keratinocytes

Inflammation is an essential early stage of wound healing that supports

the generation of a provisional extracellular matrix for subsequent pha-

ses and helps neutralise infectious agents and remove debris (Zhao

et al., 2016). However, prolonged inflammation is detrimental to wound

healing, which is where the translational utility of miR‐21‐5p and miR‐31‐
5p becomes equivocal as they direct axes of epidermal inflammation

associated with psoriasis, through tissue inhibitor of metalloproteinase 3

(TIMP3) and serine/threonine kinase 40 (STK40), respectively (Guinea‐
Viniegra et al., 2014; Xu et al., 2013).

In contrast, miR‐132‐3p is distinguished by the ability to decrease

inflammation while concomitantly stimulating keratinocyte proliferation

and re‐epithelisation during wound healing (D. Li et al., 2015; X. Li, D. Li,

Wang, et al., 2017). Using surgical abdominal wounds, Landén and col-

leagues identified miR‐132‐3p as a dynamically regulated miRNA in

human skin (D. Li et al., 2015). Among multiple stimuli, only TGF‐β1, and
TGF‐β2 induced miR‐132‐3p in primary keratinocytes. Transcriptomic

profiling and gene ontology analysis of pre‐miR‐132 loaded keratinocytes

found high enrichment of downregulated immune response genes (D. Li

et al., 2015). Crucially, pre‐miR‐132 expression in keratinocytes reduced

transcription of chemokines (IL‐8, CXCL5, CXCL1, CCL20) and cytokines

(IL‐1α, IL1βb, TNF‐α) and decreased chemokine secretion into culture

medium, which impaired induction of adhesion molecules E‐selectin and

vascular cell adhesion protein 1 (VCAM1) on human endothelial vein

endothelial cells (HUVEC). This in turn blunted the ability of conditioned

supernatant to recruit neutrophils and mononuclear cells. Mechan-

istically, the attenuation of chemokine production by pre‐miR‐132 was

associated with impaired activation of the transcription factor NF‐κB
pathway in keratinocytes.

The other key finding from the gene ontology analysis was that

genes whose expression was elevated in the pre‐miR‐132 trans-

fected cells were enriched for processes associated with the cell

cycle (D. Li et al., 2015). Indeed, pre‐miR‐132 enhanced keratinocyte

proliferation by increasing the activation of EGFR and its down-

stream targets STAT3 and ERK.

The anti‐inflammatory and proliferative impacts of miR‐132 were

attribute to the ability of miR‐132‐3p to repress heparin‐binding epi-

dermal growth factor (HB‐EGF). Reporter assays along with analysis of

HB‐EGF levels upon modulation of miR‐132 expression all confirmed

regulation of HB‐EGF by miR‐132 (D. Li et al., 2015). Further, silencing of

HB‐EGF with siRNA phenocopied the effects of pre‐miR‐132 on kerati-

nocytes, including inhibition of NF‐κB and accentuation of EGFR signal-

ling. However, studies with target site blockers to specifically block miR‐
132‐3p binding to the 3′ UTR of HB‐EGF are needed to clarify the

relative contribution of HB‐EGF to pre‐miR‐132 effects on inflammation

and proliferation as other pathways may be involved. For instance, miR‐
132‐3p potentiates cholinergic anti‐inflammatory responses in macro-

phages and other cell types by targeting acetylcholinesterase (AChE),

leading to impaired NF‐κB activation (Liu et al., 2015; Shaked et al., 2009)

and epidermal keratinocytes have long been known to express AChE

(Grando et al., 1993).

More importantly, depletion of miR‐132 delayed wound closure

in mouse skin while a miR‐132‐3p mimic promoted wound healing in

leptin receptor‐deficient diabetic (db/db) mice (D. Li et al., 2015;

X. Li, D. Li, Wang, et al., 2017). Similarly, in human ex vivo skin

wounds, inhibition of miR‐132 abrogated re‐epithelialisation, while a

miR‐132‐3p mimic enhanced this process (D. Li et al., 2015; X. Li, D.

Li, Wang, et al., 2017). Because miR‐132 was under‐expressed in

diabetic foot ulcers compared with wounded healthy skin, these

findings together suggest elevation of miR‐132 holds strong trans-

lational potential for treatment of chronic wounds.

1.6 | MicroRNA‐19a/b and microRNA‐20a in
keratinocytes

Very recently, the Landén group has also identified a further set of

miRNAs that dampen inflammation in wound healing. The six
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miRNAs encoded by the miR‐17~92 cluster (miR‐17, miR‐18a, miR‐
19a, and miR‐19b, miR‐20a, miR‐92) were depleted in chronic

wounds compared to wounded healthy skin, with miR‐19a, miR‐19b
and miR‐20a specifically downregulated in the epidermis (D. Li

et al., 2020). Wound closure was delayed in mice with keratinocyte‐
specific miR‐17~92 conditional knockout mice, especially when dia-

betes was induced experimentally by streptozocin injection.

Conversely, wound repair was accelerated in diabetic mice with

KC‐specific conditional knock‐in (cKI) of the miR‐17~92 cluster or

miR‐19b alone (D. Li et al., 2020). Based on observations that

damaged cells release endogenous RNAs that activate Toll‐like re-

ceptor (TLR3), the authors tested the impact of miR‐19a, miR‐19b
and miR‐20a on cytokine and chemokine expression in keratinocytes

challenged with a TLR3 agonist. Each miR‐19a, miR‐19b and miR‐20a
mimic inhibited the TLR3‐dependent induction of cytokines and

chemokines in keratinocytes and reduced neutrophil recruitment by

the keratinocyte‐conditioned media (D. Li et al., 2020). Likewise,

chemokine expression and neutrophil infiltration were dampened in

the wound edges of miR‐19b cKI mice. Interestingly, a combination

of miR‐19a, miR‐19b and miR‐20a mimics did not alter keratinocyte

proliferation, even though other investigators have shown that the

miR‐17~92 cluster promotes keratinocyte proliferation and cell cycle

progression, apparently by the co‐ordinated activity of miR‐17,
miR‐18a, miR‐19a, and miR‐19b (Zhang et al., 2018). Thus, elevation

of miR‐19a and miR‐19b alone appears insufficient to phenocopy the

effects of the larger cluster on keratinocyte proliferation. More im-

portantly, although a mixture of miR‐19b and miR‐20 accelerated

wound closure in db/db mice, it may be necessary to combine

miR‐19b/miR‐20 with miRNAs that enhance other aspects of wound

healing such as neoangiogenesis or re‐epithelialisation to maximise

their translational potential.

1.7 | MicroRNA‐184 in keratinocytes

While miR‐31‐5p and miR‐132‐3p drive keratinocyte migration and

proliferation, miR‐184 is distinguished by its ability to stimulate

keratinocyte migration and differentiation (Nagosa et al., 2017;

Richardson et al., 2019, 2020). Mature miR‐184 arises from the 3p

arm of the pre‐miR‐184 duplex and there is no evidence for a minor

miRNA from the 5p arm (see http://www.mirbase.org/). Although

early studies did not detect miR‐184 in proliferating epidermal ker-

atinocytes maintained in monolayer culture, we observed miR‐184
expression in reconstituted human epidermis, which comprises pro-

liferating keratinocytes and differentiating suprabasal cells (Roberts

et al., 2013). This led us to suspect that miR‐184 may play a role in

keratinocyte differentiation. Consistent with this, we and others

recently showed that elevation of extracellular Ca2+, a major inducer

of keratinocyte differentiation, induces miR‐184 in these cells

(Nagosa et al., 2017; Richardson et al., 2020). In addition, we found

that the induction of miR‐184 required Ca2+ entry through the store‐
operated Ca2+ entry (SOCE) channel ORAI1 though strict depen-

dence on the SOCE trigger STIM1 (stromal interaction molecule 1)

has not been verified. Elevation of miR‐184 was associated with a

reduction in keratinocyte proliferation and enhancement of kerati-

nocyte differentiation through the cyclin E:DNA damage and

NOTCH pathways (Nagosa et al., 2017; Richardson et al., 2020).

Given that migration through the suprabasal layers is inherent to

epidermal differentiation, we examined the impact of miR‐184 on

keratinocyte migration (Richardson et al., 2019, 2020). High‐density
scratch wounding of keratinocyte monolayers led to a 50‐fold in-

duction of miR‐184 after 5 days, suggesting miR‐184 may function

critically during the latter phases of re‐epithelialisation. Exogenous
miR‐184 accelerated keratinocyte migration threefold, while a miR‐
184 inhibitor dampened keratinocyte migration threefold

(Richardson et al., 2019, 2020). However, the targets of miR‐184
required for epidermal keratinocyte migration have not been defined

and the impact of miR‐184 on cutaneous wound healing in vivo is not

known. Hence, studies of re‐epithelialisation in miR‐184‐deficient
and miR‐184 transgenic mice, such as those generated by Shalom‐
Feuerstein and colleagues (Nagosa et al., 2017), will be crucial to

deepen our understanding of miR‐184 function in re‐
epithelialisation, along with studies in diabetic mouse models. Fur-

ther studies are also required to establish whether miR‐184 can

promote tissue regeneration in normal human or diabetic wounds

through its effects on keratinocyte differentiation and migration.

This is important because it is keratinocyte differentiation rather

than proliferation that appears to be impaired at the edges of chronic

ulcers (Stojadinovic et al., 2008; Usui et al., 2008; Wikramanayake

et al., 2014). Given that terminal differentiation is the ultimate

destiny of epidermal keratinocytes, the ability of miR‐184 to mobilise

differentiation pathways in conjunction with migration may underpin

its translational potential.

1.8 | MicroRNA‐129‐5p and microRNA‐335‐5p in
keratinocytes

The diabetic wound is a highly proteolytic environment where sus-

tained elevation of matrix metalloproteinases (MMPs) contributes to

extracellular matrix degradation, dysregulated inflammation and

impaired wound closure (Ayuk et al., 2016). Increasing evidence

points to MMP‐9 in particular as a key driver of non‐healing wound

pathology (Gao et al., 2015; Gooyit et al., 2014; C. Yang et al., 2009).

Ren and colleagues found that the specificity protein 1 (Sp1) reg-

ulates MMP‐9 expression in HaCaT keratinocytes, and that exposure

to glycated albumin to reproduce the advanced glycation end pro-

duct (AGE)‐enriched microenvironment of diabetic wounds raised

expression of both Sp1 and MMP‐9 in HaCaT and primary kerati-

nocytes (W. Wang et al., 2018). Profiling diabetic patient serum re-

vealed 58 downregulated miRNAs, among which miR‐129‐5p and

miR‐335‐5p stood out as predicted regulators of Sp1, which was

confirmed by luciferase reporter assays and western blot analysis.

More importantly, both miR‐129‐5p and miR‐335 were under-

expressed in diabetic skin wounds from patients and rats, and de-

creased in HaCaT keratinocytes treated with glycated serum
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albumin, establishing a link between miR‐129‐5p and miR‐335‐5p
depletion and elevation of their target Sp1 (W. Wang et al., 2018).

Indeed, AGE‐dependent elevation of Sp1 and MMP‐9 in HaCaT

keratinocytes was completely abrogated by miR‐129‐5p and miR‐
335‐5p mimics. Consistent with this, repeated intradermal injection

of miR‐129‐5p and miR‐335‐5p mimics into diabetic rat wounds

accelerated wound repair, and this was associated with down-

regulation of SP1 and MMP‐9 (W. Wang et al., 2018).

2 | CONCLUSION

It is tempting to speculate that a concomitant or sequential combi-

natorial approach in which miRNA mimics targeting different aspects

of wound repair may yield the best patient outcomes for miRNA‐
directed wound healing. For instance miR‐132‐3p and miR‐184 to

target proliferation, inflammation and differentiation, with the ad-

dition of miR‐129‐5p to target MMP‐9. Given the recent clinical

evaluation of a miR‐29b mimic (remlarsen) for the prevention of

keloids and hypertrophic scars following intradermal injection

(Gallant‐Behm et al., 2019), there appears to be a strong appetite for

exploitation of miRNAs in the context of skin disorders. It will be

crucial to determine the safety of combinatorial miRNA approaches

and to establish which delivery vehicles prove most suitable for

clinical deployment of miRNA mimics (Mandal et al., 2020;

Ross, 2018).

The growing number of miRNAs implicated in keratinocyte

migration and cutaneous wound healing also provide ample op-

portunity for further curiosity‐driven investigations. For ex-

ample, what are the relative levels of these miRNAs in

keratinocytes under resting and migrating conditions? Is there a

relationship between the amount of exogenous mimic loaded per

cell and migration rates, and is this relationship constant for di-

verse miRNA mimics? The impact of exogenous miRNA mimics on

the morphological heterogeneity of cultured keratinocytes from

healthy and diabetic skin would also be of interest given recent

advances in image processing tools (Driscoll et al., 2019; Wu

et al., 2020). Finally, given the asymmetric distribution of mRNA

and proteins in polarised migrating cells (Liao et al., 2015), it

would be interesting to assess the subcellular localisation of

miRNAs during keratinocyte migration.
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