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Abstract  

Adverse outcome pathways (AOPs) and their networks are important tools for the development of 

mechanistically based non-animal testing approaches, such as in vitro and/or in silico assays, to assess 

toxicity induced by chemicals. In the present study, an AOP network connecting 14 linear AOPs related 

to human hepatotoxicity, currently available in the AOP-Wiki, was derived according to established 
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criteria. The derived AOP network was characterised and analysed with regard to its structure and 

topological features. In-depth analysis of the AOP network showed that cell injury/death, oxidative 

stress, mitochondrial dysfunction and accumulation of fatty acids are the most highly connected and 

central key events. Consequently, these key events may be considered as the rational and 

mechanistically anchored basis for selecting, developing and/optimising in vitro and/or in silico assays 

to predict hepatotoxicity induced by chemicals in view of animal-free hazard identification. 

Key words 

Adverse outcome pathway; predictive toxicology; network derivation; hepatotoxicity. 

Abbreviations 

ACC-1 Acetyl-CoA carboxylase; AO Adverse outcome; AOP Adverse outcome pathway; AKT2 RAC-β 

serine/threonine-protein kinase; BSEP Bile salt export pump; CAR Constitutive androstane receptor; 

CD36 Cluster of differentiation 36; FA Fatty acid; FXR Farnesoid X receptor; GR Glucocorticoid 

Receptor; HSC Hepatic stellate cells; KE Key event; KER Key event relationship; MIE Molecular 

initiating event; LXR Liver X receptor; OECD Organisation for Economic Cooperation and 

Development; OSTα/β Organic solute transporter α/β; PXR Pregnane X receptor; ROS Reactive 

oxygen species; SCD-1 Stearoyl-CoA desaturase-1; TG Triglyceride  

1. Introduction 

The adverse outcome pathway (AOP) is a conceptual framework used to aggregate and organise 

biological knowledge, which can be employed to translate mechanistic data into outcomes relevant 

to chemical safety assessment (Ankley et al. 2010). AOPs are modular and consist of a molecular 

initiating event (MIE), one or more key event(s) (KEs) and an adverse outcome (AO), which represent 

responses at different levels of biological organisation. Key event relationships (KERs) specify the 

causal linkages between each KE across multiple biological levels of organisation (Vinken 2013; Vinken 

et al. 2017). In 2012, the Organisation for Economic Cooperation and Development (OECD) launched 
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a programme for the development of AOPs, and later developed a guidance document to standardise 

the construction and assessment of AOPs (OECD 2017). The OECD, along with a number of other 

stakeholders, also introduced the AOP Knowledgebase (https://aopkb.oecd.org/), which serves as the 

primary repository for AOPs. The AOP-Wiki (https://aopwiki.org/) represents one of the five modules 

of the AOP Knowledgebase. At present, the AOP-Wiki contains 320 AOPs, more than 1390 KEs and as 

many as 1860 KERs.  

Although AOPs are assumed to be chemical agnostic, they can support the use of a mode (and/or 

mechanism) of action basis for understanding adverse effects of chemicals and other stressors. In 

recent years, emphasis has been placed on AOPs as a conceptual support in the construction of 

mechanistically based non-animal testing approaches consisting of a combination of in vitro and in 

silico methods (Burden et al. 2015; Kleinstreuer et al. 2016; Sakuratani et al. 2018; Vinken 2018; Parish 

et al. 2020). The general principle of the use of these approaches is that a limited set of (measurable) 

KEs can sufficiently describe or predict a toxicological response (Worth and Patlewicz, 2016). If AOPs 

are to be useful for safety assessment purposes, rather than merely serving hazard identification or 

characterisation, it is crucial that the KERs in an AOPs reflect quantitative elements of the toxicity 

pathway (Carusi et al. 2018; Sewell et al. 2018). However, linear AOPs may be of limited use for the 

purpose of safety assessment, as biological processes are in most cases complex (Sewell et al. 2018). 

Indeed, interaction and crosstalk between biological pathways are acknowledged to be the norm 

rather than the exception. So-called AOP networks provide the actual tools for real-life applications of 

AOPs, as they more realistically represent interactions occurring in a systems biology context 

(Villeneuve et al. 2014). An AOP network is defined as an assembly of two or more linear AOPs that 

share one or more KEs, including the MIE and AO. In an AOP network, KEs represent nodes, while KERs 

are reflected as directed edges that link those nodes together (OECD 2018). AOP networks open the 

possibility of linking toxicological pathways, thus highlighting areas where one assay could predict 

multiple outcomes or converge multiple MIEs (Knapen et al. 2018). Network science provides the 

means to quantitatively analyse AOP networks and identify such KEs of interest (Sturla et al. 2014; 
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Hartung et al. 2017; Villeneuve et al. 2018). In this respect, an AOP network for neurotoxicity was 

previously introduced (Spinu et al. 2019) based on established guidelines regarding AOP network 

derivation, characterisation and analysis (Knapen et al. 2018; Villeneuve et al. 2018). In the present 

study, a similar exercise was undertaken focused on hepatotoxicity with the aim to identify relevant 

KEs that could form the basis for setting up a battery of in vitro and/or in silico assays for predictive 

toxicity screening of chemicals. 

2. Materials and Methods 

2.1. Data set 

The OECD AOP-Wiki 2.0 was manually searched to identify linear AOPs related to hepatotoxicity and 

to derive the AOP network according to previously published criteria (Spinu et al. 2019). For each 

individual AOP, the following information was extracted: KE title, KE type (i.e. MIE, KE, AO), KER (i.e. 

linkage between upstream and downstream KEs), adjacency of the relationship between a pair of KEs, 

qualitative weight of evidence (WoE) (i.e. low, moderate, high), AOP development stage as reported 

by the AOP developer, and progress through the OECD review and endorsement processes. The 

information regarding individual AOPs was extracted 1 September 2020. All data collected are 

available as supplementary material (Appendix 1). 

2.2. AOP network derivation 

The process of deriving the hepatotoxicity AOP network was performed following four steps as 

described elsewhere (Spinu et al. 2019). 

Step 1 - Definition of purpose 

The present study aimed to identify the most common and the most highly connected KEs in a 

hepatotoxicity AOP network that could be measured in in vitro assays to assist in the prediction of 

adverse effects of chemicals on the liver. Accordingly, the scope of the study included AOPs developed 

for hepatotoxicity and published in the AOP-Wiki. 
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Step 2 - Definition of criteria for AOP selection 

AOPs were selected based on the following criteria: the taxonomic applicability and the AOP 

development stage in terms of the progress of the AOP through the OECD review and endorsement 

processes. Taxonomy was considered the main criterion for collecting individual AOPs (i.e. those 

applicable and relevant for humans). The AOP development stage was considered, as it indicates the 

level of maturity of the AOPs used to derive the AOP network. The difference between adjacent KERs 

and non-adjacent KERs, previously termed “indirect KERs”, was taken into consideration. Additionally, 

the WoE for the relationships between the KEs, which relied on the assessment performed by the AOP 

developers, described as low, medium or high, was considered. 

Step 3 - Identification of appropriate AOPs from the AOP-Wiki and data curation 

AOPs identified according to the criteria in step two were evaluated and collected manually in an Excel 

spreadsheet. In the cases where KEs were given different titles, while having the same meaning and/or 

referring to the same process, they were grouped and renamed under a common KE title. Wherever 

possible, abbreviations have been used. All amendments to KE titles are described in the Excel 

spreadsheet available as supplementary material (Appendix 1).  

Step 4 - Generation and analysis of the network 

Cytoscape 3.8.0 (https://cytoscape.org/), which is an open source software platform, was used to 

model the AOP network. NetworkAnalyzer 4.4.6 App, pre-installed in the Cytoscape software, was 

used to analyse the derived network. The nodes (i.e. KEs) were manually positioned to maximise 

readability. Information regarding WoE, adjacency and type of KE were added to further define the 

visual attributes of the AOP network. KERs shared by more than one AOP are represented by a single 

arrow, though such multiple relationships between KEs were considered during network analysis. 

2.3. Network analysis 

The derived network was analysed using Cytoscape NetworkAnalyzer 4.4.6 App. The level of degree, 

betweenness centrality and eccentricity were used to characterised the network analytically due to 
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their ability to quantify the position of a KE in relation to its neighbour KEs in the network (Spinu et al. 

2019). By analysing the network as a directed graph, the level of indegree and outdegree was used to 

identify points of convergence and divergence, as well as to analyse the overall connectivity of the KEs 

across the network. The most upstream and downstream KEs were assessed based on the analysis of 

the eccentricity and betweenness centrality. With the non-directed analysis of the AOP network, the 

eccentricity was used to identify the most central KEs in the AOP network. The combined 

consideration of all parameters was used to identify the most highly connected and central KEs. 

3. Results and discussion 

3.1. Derivation of an AOP network for human hepatotoxicity 

By manually searching the AOP-Wiki, 30 AOPs related to human hepatotoxicity were identified. Of 

those, 16 were considered suitable to be included in the network based on the defined criteria. As 

AOP ID 58 (NR1I3 (CAR) suppression leading to hepatic steatosis) was believed to be a more 

comprehensive version of AOP ID 34 (LXR activation leading to hepatic steatosis), it was decided to 

exclude the latter from the data set. Detailed information on the included AOPs is provided in Table 

1. To aid readability, only the AOP ID and a note to indicate the MIE (i.e. AOP ID 58/CAR) will be used 

throughout the text. Differences in KE annotation (i.e. discrepancies between KE titles albeit the action 

refers to the same process) was previously identified as a challenge in the development of AOP 

networks (Spinu et al. 2019). In the present study, multiple KEs relating to the same process were 

identified, albeit being titled differently. In this respect, KE 327 (accumulation, fatty acid), KE 838 

(induction, microvesicular fat) and KE 1305 (increase, cytosolic fatty acid) all refer to the accumulation 

of fatty acids (FAs), but they are titled differently. These inconsistencies in KE annotation were 

expected to have a major impact on the construction of the AOP network. For this reason, 

discrepancies in annotation have been reviewed and KEs addressing the same process have been 

grouped or renamed under common KE titles. Annotation changes are provided in the supplementary 

material (Appendix 1).  
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Non-adjacent KERs describe the relationship between KEs that are not next to one another in the 

sequence defined for the AOP and help to more thoroughly capture the WoE supporting an AOP while 

maintaining the modular structure (Villeneuve et al. 2018). Non-adjacent KERs have been reported 

likely to be associated with more than one biological process (Spinu et al. 2019). Hence, an AOP 

network containing both adjacent and non-adjacent KERs implies more connections, thereby 

representing a higher level of biological complexity. However, inclusion of non-adjacent KERs in the 

analysis of an AOP network has been suggested to inflate node degree and betweenness centrality or 

deflate distance-based calculations like eccentricity (Villeneuve et al. 2018). Moreover, if a KE is to be 

useful for the prediction of adverse effects and be fit to serve as a basis for in vitro and/or in silico 

assay selection and/or development, a detailed quantitative description of the relationship between 

KEs is required (Carusi et al. 2018). Consequently, it is called for that the AOP network relies on directly 

connected KEs to facilitate an accurate quantitative simulation of the AOP network. The difference 

between adjacent and non-adjacent KERs was considered accordingly and a total of nine non-adjacent 

KERs from five different AOPs, including AOP ID 38/PROTEIN ALKYLATION, AOP ID 58/CAR, AOP ID 

60/PXR, AOP ID 220/CYP2E1 and AOP ID 278/IKK, were excluded. In addition, one AOP (AOP ID 62 

AKT2 activation to steatosis) containing (solely) three non-adjacent KERs was omitted from the 

dataset. Due to the removal of the non-adjacent KERs, including AOP ID 62, there was a discrepancy 

of four KEs between the two AOP networks, namely, activation of RAC-β serine/threonine-protein 

kinase (AKT2), chronic inflammation, increased tumour necrosis factor α (TNFα) and liver cancer. 

A network of 14 AOPs (Table 1), all of which were found to share common KEs, was ultimately derived 

(Figure 1). A hepatotoxicity AOP network including all KERs (i.e. non-adjacent KERs and adjacent KERs) 

is available as supplementary material (Figure S1, Appendix 2). The derived hepatotoxicity AOP 

network consists of 14 linear AOPs related to various AOs, including cholestasis (1), steatosis (4), 

fibrosis (3), steatohepatitis (1), liver injury, described as the altered state of the liver wherein the 

normal homeostasis of all processes in the liver are perturbed, (3) and hepatotoxicity, defined as cell 

death (1). Not surprisingly, there is no adjacent relationships between any KE and the AO cancer (AOP 
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ID 220/CYP2E1). Therefore, albeit AOP ID 220/CYP2E1 is present in the network, its AO, defined as 

liver cancer, lost its connection to the network as it is connected to the upstream KEs (i.e. increased 

reactive oxygen species (ROS), cell injury/death and sustained cell proliferation) exclusively through 

non-adjacent KERs. For this reason, the AO liver cancer is not present in the network containing only 

adjacent KERs (Figure 1). 

3.2. Characterisation and analysis of the AOP network for human hepatotoxicity 

AOP networks can contribute to the knowledge regarding interactions among linear AOPs and analysis 

thereof can reveal unexpected or overlooked connections between toxicity pathways. The analysis 

was performed on the derived AOP network for hepatotoxicity involving 14 AOPs (Table 1) with a total 

of 82 unique KEs and their adjacent relationships (Appendix 1). No single KE was present in all 14 AOPs. 

The most common KE across all AOPs is cell injury/death, which is shared by six out of the 14 AOPs 

(i.e. AOP ID 36/PPAR, AOP ID 144/LYSOSOMAL UPTAKE, AOP ID 209/SREBF2, AOP ID 220/CYP2E1, AOP 

ID 273/MITOCHONDRIAL INHIBITION and AOP ID 278/IKK) (Figure 2a&b), thereby connecting linear 

AOPs leading to steatosis, fibrosis, hepatotoxicity, cancer and liver injury. In the network, cell 

injury/death is triggered by multiple mechanisms, including perturbation of cholesterol, altered 

glutathione homeostasis, protein alkylation, mitochondrial dysfunction, increased ROS, impaired 

proteostasis and activation of the caspase 8 pathway. Perturbation of this KE leads to tissue resident 

cell activation, release of pro-inflammatory mediators, sustained cell proliferation and presence of 

necrotic tissue. 

FA accumulation, decreased β-oxidation and steatosis are all shared by five AOPs (Figure 2a&b). 

Steatosis and decreased β-oxidation are shared by the same five AOPs (i.e. AOP ID 36/PPAR, AOP ID 

58/CAR, AOP ID 60/PXR, AOP ID 213/Β-OXIDATION and AOP ID 318/GR). Of those, steatosis is the AO 

in all but one AOP (AOP ID 213/Β-OXIDATION) in which the AOP is defined as steatohepatitis. In the 

network, steatosis is prompted by increased triglyceride (TG) formation, FA accumulation, and 

decreased β-oxidation. In AOP ID 213/Β-OXIDATION, decreased β-oxidation is considered the MIE. 
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Additionally, decreased β-oxidation is triggered by decreased 3-hydroxyacyl-CoA dehydrogenase type-

2 activity, downregulation of CPT1A, activation of glucocorticoid receptor (GR) and decreased PPAR-α 

activation. Downstream KEs include FA accumulation and steatosis. FA accumulation is present in AOP 

ID 36/PPAR, AOP ID 58/CAR, AOP ID 60/PXR, AOP ID 130/PHOSPHOLIPASE A and AOP ID 213/Β-

OXIDATION. It is not surprising that FA accumulation is a common event, since it is a hallmark of 

hepatic steatosis (Ipsen et al. 2018) which is the defined AO in four AOPs, and a KE in one AOP, included 

in the network. FA accumulation is prompted by increased de novo FA synthesis, increased FA influx 

and decreased β-oxidation all of which are indicative of disruption of the FA metabolism (Alves-

Bezerra and Cohen 2018), as well as ballooning and vacuolisation of hepatocytes, and vacuolisation of 

Kupffer and bile duct cells. FA accumulation results in increased TG formation and steatosis. KEs 

shared by three AOPs include fibrosis, liver injury, activation of hepatic stellate cells (HSC), decreased 

PPAR-α activation, increased ROS, release of pro-inflammatory mediators and mitochondrial 

dysfunction. Mitochondrial dysfunction is involved in a feedback loop mechanism together with 

increased mitochondrial ROS (Figure S1, Appendix 2). KEs shared by two AOPs include accumulation 

of collagen, increased de novo FA synthesis, increased FA influx, increased TG formation, presence of 

necrotic tissue, up-regulation of cluster of differentiation 36 (CD36) and up-regulation of stearoyl-CoA 

desaturase-1 (SCD-1).  

The MIE defined as decreased PPAR-α activation is the single MIE shared by multiple AOPs (i.e. AOP 

ID 58/CAR, AOP ID 36/PPAR and AOP ID 318/GR), which all are leading to steatosis. Conversely, several 

AOPs have multiple MIEs (i.e. AOP ID 36/PPAR (2), AOP ID 58/CAR (4) and AOP ID 

273/MITOCHONDRIAL INHIBITION (8)). The latter AOP, ultimately leading to liver injury, stands out in 

terms of number of MIEs, which are all connected downstream to the KE decreased oxidative 

phosphorylation. However, this may be due to an unconventional or even incorrect structure of the 

AOP, rather than a true representation of the pathway. Furthermore, the structure of AOP ID 

209/SREBF2 deviates, as this particular AOP is lacking a defined MIE. Both AOP ID 
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273/MITOCHONDRIAL INHIBITION and AOP ID 209/SREBF2 are currently stated as to be under 

development in the AOP-Wiki. 

By using the edge count, it was found that the most hyperlinked KEs in the AOP network are 

accumulation of FA, cell injury/death, mitochondrial dysfunction, decreased β-oxidation and the AO 

steatosis, with a level of degree of 17, 12, 11, 9 and 9, respectively. The majority of the least connected 

KEs are defined as MIEs. Exceptions include the AO steatohepatitis for which only one AOP exist, and 

the KEs upregulation of acetyl-CoA carboxylase (ACC-1), decreased ketogenesis and sustained cell 

proliferation, all of which were connected to other KEs with non-adjacent KERs that were omitted 

from the analysis. 

The number of shared AOPs by a KE varies between one and six AOPs. The interconnectivity between 

the AOPs in the network is fairly limited, as 78 % of the 82 KEs are included in merely one AOP (Figure 

3a). Nevertheless, 22 % (i.e. absolute number: 18) KEs are shared by two or more AOPs. The directed 

eccentricity score showed that almost half (i.e. 45 %) of the KEs are categorised as downstream KEs, 

whilst 20 % should be regarded as upstream KEs. Accordingly, 35 % of the KEs cannot be categorised 

as either upstream or downstream due to their level of interconnectivity (Figure 3b). 

The point at which the effects of separate stressors may converge to influence a common downstream 

KE can be the basis for predicting multiple stressors jointly, while measuring only one perturbation. 

Vice versa, divergent KEs indicate where AOPs are branching off from a common MIE or KE. Thus, 

identified points of convergence and divergence may indicate the most promising KEs for 

development of in vitro and/or in silico assays that can encapsulate all the pathways upstream from 

that particular KE (Knapen et al. 2018; Villeneuve et al. 2018). Because the KERs in an AOP network 

are directed, the degree of a node in the network (i.e. KE) can be broken down to indegree and 

outdegree, indicating KEs upstream and downstream, respectively, of any specific KE (Knapen et al. 

2018; Villeneuve et al. 2018). By using the ratio between the indegree and outdegree, KEs can be 

attributed to be either convergent or divergent. In the derived hepatotoxicity AOP network, 
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accumulation of FA is the KE with the highest number of connections to upstream KEs with a value of 

11, while being connected to six downstream KEs. This suggests that FA accumulation is a point of 

convergence, which demonstrates the importance of metabolism and transport in liver disease 

aetiology. As a matter of fact, FA accumulation is one of the KEs with the highest number of 

downstream relationships albeit being a point of convergence. Again, this makes sense, as steatosis is 

the defined AO in several AOPs in the network. Similarly, cell injury/death is a highly connected KE and 

point of convergence, with seven upstream and five downstream connections. The AO steatosis is 

regarded as a point of convergence as AOP ID 213/Β-OXIDATION, leading to steatohepatitis, uses this 

AO as a KE. In contrast, activation of the liver X receptor (LXR), defined as a MIE, has one upstream 

and six downstream connections, of which all ultimately lead to steatosis, and therefore identified as 

a point of divergence. Mitochondrial dysfunction, shared by AOP ID 144/LYSOSOMAL UPTAKE, AOP ID 

130/PHOSPHOLIPASE A and AOP ID 273/MITOCHONDRIAL INHIBITION, is a diverging KE triggered by 

four upstream events, including disruption of lysosomes, inhibition of phospholipase A, decreased 

oxidative phosphorylation and increased levels of mitochondrial ROS. Mitochondrial dysfunction leads 

to cell injury/death, vacuolisation of hepatocytes and Kupffer cells, ballooning of hepatocytes, 

increased levels of mitochondrial ROS and impaired proteostasis. 

The eccentricity of a node in a directed graph measures the maximum distance from one node to any 

other node in the network. A lower eccentricity score implies a more downstream KE and vice versa. 

Conversely, in a non-directed analysis of a network, the eccentricity score depicts the distance from 

the centre of the network to that of a given node. Here, a low eccentricity score in an undirected graph 

therefore implies a more central KE, which in turn indicates what KEs are most easily influenced by 

other KEs with which they are interconnected. The calculation of eccentricity depends on path length, 

which is to some extent a subjective result of the number of KEs the AOP developer decides to include. 

This could vary depending on the AOP’s level of maturity and detail. This means that the results can 

be misleading if the AOPs included in the network vary greatly in length (i.e. the numbers of KEs 

included in the network) (Villeneuve et al. 2018). The non-directed eccentricity score suggests that 
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cell injury/death, mitochondrial dysfunction, FA accumulation, bile accumulation, increased ROS, 

collagen accumulation, Mallory body formation, liver fibrosis and perturbation of cholesterol are the 

most centrally located KEs in the network with the score of seven (Figure S2, Appendix 2). The most 

upstream KEs, and therefore least sensitive to influence, are decreased oxidative phosphorylation and 

inhibition of N-linked glycosylation with a score of 12. Similarly, betweenness centrality measures the 

number of shortest paths between any KEs in the AOP network that passes through a particular KE, 

and thus could help to identify important KEs in the network. The KEs with the highest betweenness 

centrality scores were cell injury/death, steatosis, increased ROS, release of pro-inflammatory 

mediators, mitochondrial dysfunction and FA accumulation with scores of 3.71, 2.97, 2.96, 1.91, 1.78 

and 1.59, respectively (Figure S3, Appendix 2).  

The combined consideration of all parameters included in the topology analysis suggested that cell 

injury/death, increased ROS, mitochondrial dysfunction and FA accumulation are highly connected 

and central KEs in an AOP hepatotoxicity network. Table 3 provides an overview of available assays 

that can be used to measure endpoints, as well as a selection of representative stressors, associated 

with these four KEs. 

All derived networks, including AOP networks, are sensitive to errors in the data underlying the 

network, which can affect the analysis and thus the conclusions drawn. A network with a high level of 

qualitative and quantitative evidence will contribute to the confidence in the selected in vitro and/or 

in silico assays used to predict hepatotoxicity. Therefore, the qualitative level of understanding of the 

relationship between pairs of KEs in the network was examined in the present study. The level of 

understanding, as reported by the AOP developers, is described as to be moderate or higher for 65 % 

of the KERs in the network. The qualitative level of understanding for 57 % of the KERs in the network 

is high (Figure 4). One AOP, AOP ID 130/PHOSPHOLIPASE A, which is still under development in the 

AOP-Wiki, stands out among the KERs described as low. Indeed, this particular AOP contributes to 20 

out of the 22 KERs where the level of understanding is low. Moreover, the AOPs in the AOP-Wiki may 
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at a given time be at different stages of development, and thus some AOPs may be only partially 

complete. It has been demonstrated that the user-defined fields, such as title and description in the 

majority of the AOPs, KEs and KERs in the AOP-Wiki are only partially complete (Pollesch et al. 2019). 

AOPs, KEs and KERs only contained on average information in 49.2%, 47% and 26.3%, respectively, of 

the possible fields. The fields with the lowest amount of information were those associated with 

describing the supporting evidence. In the derived hepatotoxicity AOP network, AOP ID 209/SREBF2, 

AOP ID 273/MITOCHONDRIAL INHIBITION and AOP ID 285/GLYCOSYLATION, which are all under 

development in the AOP-Wiki, contain most cases (i.e. 23 out of 26) where the qualitative evidence is 

unspecified. Nevertheless, all AOPs, regardless of their stage of development, were included in the 

network characterisation and analysis. 

4. Conclusions  

Next generation non-animal safety assessment of chemicals is focused on hypothesis-driven 

approaches tailored to the characteristics and intended use of the chemical compound of interest. 

This paradigm shift in toxicology implies a need to move towards pathway-based strategies that are 

based on knowledge of the biological mechanisms underlying toxicity in potentially exposed 

organisms (Mahony et al. 2020). In this context, AOP networks, rather than individual linear AOPs, 

have emerged as tools for real-life applications, as they provide a more reliable reflection of the 

mechanistic complexity underlying chemical adversity (Edwards et al. 2016; Sakuratani et al. 2018; 

Sewell et al. 2018; Coady et al. 2019; Hecker and LaLone 2019). However, a detailed molecular 

understanding of all possible adversities may not be necessary, nor practical, in chemical safety 

assessment. Apart from highly specifically acting chemicals, the majority of chemical compounds are 

likely to perturb more than one AOP. AOP networks are therefore envisaged to be the functional units 

of prediction for most chemically induced AOs (Worth and Patlewicz, 2016). Hence, it appears logical 

to make use of KEs that are crucial and conserved across multiple AOPs related to the organ system 

of interest. In the current study, a previously introduced workflow to develop and analyse an AOP 
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network for neurotoxicity (Spinu et al. 2019) was applied to the case of hepatotoxicity. Although the 

derived AOP network almost certainly does not contain all underlying mechanisms of hepatotoxicity, 

this exercise provided guidance for the prioritisation of KEs for testing. A testing strategy derived from 

AOP networks includes in vitro and/or in silico assays that address the KEs capable of serving as 

alternatives to the measurement of apical AOs in animals. There is a large variety of mechanisms 

known to be involved in hepatotoxicity (Jaeschke et al. 2002; Russmann et al. 2009; Vinken et al. 

2013b) which is reflected in the limited interconnectivity within the derived AOP network in the 

present study. Analytical characterisation of the AOP network based on individual AOPs currently 

available in the AOP-Wiki suggests that cell injury/death, increased ROS, mitochondrial dysfunction 

and FA accumulation are the most highly connected and central KEs. As such, these KEs may be 

considered for selecting, developing and optimising in vitro and/or in silico assays to predict 

hepatotoxicity induced by chemicals. It should be noted that in vitro assays must be selected carefully 

as overlap and redundancies between assays may exist. Nevertheless, there are AOPs that do not pass 

through any of these most common KEs. Thus, AOP ID 318/GR (GR activation leading to hepatic 

steatosis) is connected to the network solely through its AO steatosis. However, one may argue that 

FA accumulation always occurs prior the development of steatosis (Ipsen et al. 2018), even though FA 

accumulation is not present as a KE in AOP ID 318/GR. This may be attributed to the varying level of 

detail in the linear AOPs included in the network. Another AOP that does not pass through the 

identified KEs is AOP ID 285/GLYCOSYLATION (Inhibition of N-linked glycosylation leads to liver injury), 

which is connected to the AOP network through the KEs activation HSC and apoptosis. Again, this may 

be attributed to a varying level of detail in the KE descriptions. Despite the large efforts in the present 

study undertaken to harmonise KEs under common KE titles, the derived network contains four KEs 

that to some extent are related to cell death (cell injury/death, apoptosis, presence of necrotic tissue 

and increased oncotic necrosis). Although it is well known that cell death can manifest in different 

ways, this is not consistently reflected in the KEs descriptions. Specifically, the KE cell injury/death 

does not distinguish between apoptosis and necrosis, albeit the two elicit considerably different 
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cellular responses (Fink and Cookson, 2005). This greatly implicates KE harmonisation, and ultimately, 

AOP network derivation. Moreover, the KE annotations and descriptions impact the construction of 

an AOP network. When KEs and KERs are shared among multiple AOPs, the AOP-Wiki automatically 

generate connections between them. This allows information that has been used to build an AOP to 

be reused in subsequently developed AOPs, whilst revealing their interconnections. However, as seen 

in this exercise, there are many KEs titled differently, while having the same meaning and/or referring 

to the same event, thereby hampering this process. Moreover, attention should be paid to the 

nomenclature used for KE titles to ensure a sufficient level of detail. In this respect, ‘FA accumulation’ 

may oversimplify the more generalised process of disruption in FA metabolism and transport that can 

ultimately lead to compensatory changes in multiple mechanisms of the FA metabolism processes. 

Further harmonisation and review of the present and future contributions to the AOP-Wiki is 

warranted. In this regard, there is an opportunity to take advantage of efforts made in the field of 

ontology-based semantic mapping (Wang et al. 2019). It has been shown that semantic analysis may 

assist in developing future AOPs by selecting candidate events from the AOP-Wiki based on ontology-

terms that are semantically similar to the MIE or AO of interest (Wang 2020), which could bypass the 

current challenge with differences in KE titles.  Finally, the discussion on incomplete AOPs and KE 

descriptions should not be taken as critique of the specific AOP developers. It is merely intended to 

highlight areas in need of further improvement to facilitate advancement of the use of AOPs for risk 

assessment purposes. 

It is important to recognise that the current ‘AOP mining’ approach is limited to the knowledge 

presently incorporated in the AOPs available in the AOP-Wiki. To illustrate, many nuclear hormone 

receptors, including pregnane X receptor (PXR) and constitutive androstane receptor (CAR), both 

included in the linear AOPs making up this AOP network, are known to have overlapping ligands whilst 

having a high degree of overlap in target genes related to the regulation of cholesterol homeostasis 

and energy metabolism (Krasowski et al. 2011). However, activation of CAR inhibits lipogenesis, 

whereas PXR activation promotes lipid accumulation (Mackowiak et al. 2018; Daujat-Chavanieu and 
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Gerbal-Chaloin 2020). Furthermore, as shown in Figure 1, one aspect that is missing in the derived 

AOP network is the well-established role of farnesoid X receptor (FXR) in the regulation of bile acid 

and lipid homeostasis (Stofan and Guo 2020). FXR is a ligand-activated transcription factor known to 

be involved in the control of bile acid synthesis and is critical in regulating the enterohepatic circulation 

of bile acids by inducing the expression of bile acid efflux transporters, such as the bile salt export 

pump (BSEP) and organic solute transporter (OST)α/β, and suppressing influx transporters (Stofan and 

Guo 2020; Sun et al. 2021). It has been shown that inhibition of BSEP alone may not be sufficient to 

induce cholestasis as also other efflux transporters (i.e. OSTα/β) play an important role in the 

compensatory mechanism (Jackson et al. 2016; Jackson et al. 2018). Actually, this has been published 

in regards to the AOP on cholestasis (AOP ID 27/BSEP) as part of an adaptive response to counteract 

the accumulation of bile acids (Gijbels et al. 2020). However, these mechanisms are not included in 

the AOP-Wiki. These nuclear receptor compensatory mechanisms and/or feedback loops are not well 

reflected in the present network. Despite the fact that AOPs are not intended to be chemical agnostic, 

such types of ligand- and/or target gene-overlap, as well as feedback-mechanisms, should be included 

when the application of AOPs shifts towards risk assessment, rather than solely hazard identification. 

Qualitative AOPs inform on biological plausibility and can, for example, be used to guide the 

prioritisation of assays for inclusion in testing strategies and screening of chemicals. However, they 

typically do not determine the probability of the AO to occur under a specified exposure scenario and 

are thus not fit for quantitative risk assessment. Quantitative AOPs incorporate knowledge on the 

required level of perturbation needed to transition from one KE to the next, as well as informing on 

the modulating factors that can influence those relationships. Ultimately, a quantitative AOP should 

be precise enough to allow for a quantitative prediction of under what conditions, and to what degree, 

and AO is likely to occur for a given activation of a MIE (Villeneuve et al. 2014; Conolly et al. 2017; 

Wittwehr et al. 2017). In particular, quantitative AOPs may determine biological tipping points along 

a toxicity pathway (Spinu et al. 2020). In respect to the herein derived network, it is worth investigating 
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if the selected KEs become initiated simultaneously or as a step-wise process. Such discoveries could 

enable identification of common toxicity limiting steps for high priority focus in toxicology screening. 

The AOP network proposed herein was evaluated in the context of any available AOP networks that 

study hepatotoxicity. At present, eleven AOP networks have been developed for several liver 

endpoints, including hepatic steatosis, hepatic fibrosis and hepatic cholestasis, as summarised in the 

supplementary material (Appendix 1). Their applications vary from development and WoE assessment 

(Vinken et al. 2013a; Angrish et al. 2016) to quantification of MIEs and/or KEs of an AOP network 

(Gadaleta et al. 2018; Perkins et al. 2019; Burgoon et al. 2020) In this respect, additional MIEs have 

been studied for their potency of inducing liver steatosis (Mellor et al. 2016) and a bioassay toolbox 

has been compiled for the in vitro assessment of KEs leading to liver steatosis (Luckert et al. 2018). 

However, none of the AOP networks has studied multiple outcomes. Hence, the AOP network 

developed herein offers the most advanced mechanistic representation given that it described 

linkages between several hepatic diseases and adverse effects, including liver cancer. In addition, the 

available AOP networks differ in terms of the level of details the construction contained, e.g. 

mechanistic knowledge, phenotype, genomics, proteomics, metabolomics. Thus, a combination of 

information was utilised to develop an AOP network for hepatic steatosis modelled as a Bayesian 

network (Burgoon et al. 2020). This underlines the challenge for harmonisation and integration of the 

diverse nature of information towards improved decision making in chemical risk assessment. The 

OECD AOP-Wiki represents an excellent repository in this sense, allowing for the curation, evaluation, 

and validation of linear AOPs and additionally safeguards the quality of the mechanistic data and 

facilitates the identification of knowledge gaps and prioritisation of testing strategies. Notably, solely 

two of the previously developed AOP networks (Appendix 1) included linear AOPs available in the 

OECD AOP-Wiki, as opposed to the AOP network de novo formulated. Two identified AOP networks 

were available in Cytoscape AOPXplorer (Burgoon 2021). This database is part of the AOP 

Knowledgebase and becomes essential for the development, analysis and storage of resultant AOP 

networks for real-world applications. 
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Table 1 

ID TITLE 
MOLECULAR INITIATING 
EVENT 

ADVERSE 
OUTCOME 

AUTHOR STATUS OECD STATUS AVAILABLE VIA 

27 
Cholestatic liver injury induced by inhibition of the bile salt export 
pump (ABCB11) 

Inhibition, Bile salt export 
pump 

Cholestasis 
Under development: Not open for 
comment. Do not cite 

Under Development https://aopwiki.org/aops/27 

36 Peroxisomal fatty acid beta-oxidation inhibition leading to steatosis 
Decreased PPARα/β/γ 
activation 

Steatosis 
Under Development: Contributions and 
Comments Welcome 

- https://aopwiki.org/aops/36 

38 Protein alkylation leading to liver fibrosis Alkylation, Protein Fibrosis Open for citation & comment TFHA/WNT Endorsed https://aopwiki.org/aops/38 

58 NR1I3 (CAR) suppression leading to hepatic steatosis 
Suppression, CAR 
(multiple) 

Steatosis 
Under Development: Contributions and 
Comments Welcome 

- https://aopwiki.org/aops/58 

60 
NR1I2 (pregnane X receptor, PXR) activation leading to hepatic 
steatosis 

Activation, PXR Steatosis 
Under Development: Contributions and 
Comments Welcome 

- https://aopwiki.org/aops/60 

130 Phospholipase A inhibitors lead to hepatotoxicity 
Inhibition,  
Phospholipase A 

Fibrosis 
Under Development: Contributions and 
Comments Welcome 

Under Development https://aopwiki.org/aops/130 

144 Endocytic lysosomal uptake leading to liver fibrosis 
Endocytic lysosomal 
uptake 

Fibrosis 
Under development: Not open for 
comment. Do not cite 

EAGMST Under Review https://aopwiki.org/aops/144 

209 
Perturbation of cholesterol and glutathione homeostasis leading to 
hepatotoxicity: Integrated multi-OMICS approach for building AOP 

No MIE defined 
(Upregulation, SREBF2) 

Hepatotoxicity 
Under development: Not open for 
comment. Do not cite 

- https://aopwiki.org/aops/209 

213 
Inhibition of fatty acid beta oxidation leading to non-alcoholic 
steatohepatitis (NASH) 

Decreased, β-oxidation Steatohepatitis Open for adoption - https://aopwiki.org/aops/213 

220 CYP2E1 activation leading to liver cancer Activation, CYP2E1 Cancer Open for citation & comment EAGMST Under Review https://aopwiki.org/aops/220 

273 Mitochondrial complex inhibition leading to liver injury 
Mitochondrial inhibition 
(multiple) 

Liver injury 
Under development: Not open for 
comment. Do not cite 

- https://aopwiki.org/aops/273 

278 IKK complex inhibition leading to liver injury Inhibition, IKK complex Liver injury 
Under development: Not open for 
comment. Do not cite 

- https://aopwiki.org/aops/278 

285 Inhibition of N-linked glycosylation leads to liver injury 
Inhibition, N-linked 
glycosylation 

Liver injury 
Under development: Not open for 
comment. Do not cite 

- https://aopwiki.org/aops/285 

318 Glucocorticoid receptor activation leading to hepatic steatosis Activation, GR (multiple) Steatosis 
Under Development: Contributions and 
Comments Welcome 

- https://aopwiki.org/aops/318 



 27 

Table 1 Linear AOPs for hepatotoxicity included in the AOP network. CAR Constitutive Androstane Receptor; CYP2E1 Cytochrome P450 2E1; GR Glucocorticoid Receptor; MIE Molecular initiating event; OECD Organisation for 
Economic Co-operation and Development. 
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Table 2 The analysis of the in-degree and out-degree confirmed 22 convergent KEs 
and 28 divergent KEs. 

 

  

Convergent KEs  Divergent KEs 
KE type KE name  KE type KE name 
KE Accumulation, FA  MIE Activation, CYP2E1 
KE Activation, SREBF1  MIE Activation, GR 
KE Ballooning (hepatocyte)  MIE Activation, LXR 
AO Cell injury/death  MIE Activation, PXR 
AO Cholestasis, Pathology  KE Apoptosis 
KE Decreased, HSD17B10 expression  KE Bile accumulation 
KE Decreased, Ketogenesis  MIE Binding of inhibitor, mitochondrial complex III 
KE Decreased, Oxidative phosphorylation  MIE Binding of inhibitor, mitochondrial complex IV 
KE Formation, Mallory body  MIE Binding of inhibitor, mitochondrial complex V 

KE Increased, De novo FA synthesis  MIE 
Binding of inhibitor, NADH-ubiquinone 
oxidoreductase (complex I) 

KE Increased, TG formation  KE Damage, Lipid bilayer 
AO Liver fibrosis  MIE Decreased, PPAR-α activation 
AO Liver injury  MIE Decreased, PPAR-β activation 
KE Perturbation of cholesterol  MIE Decreased, PPAR-γ activation 
AO Steatohepatisis  KE Decreased, β-oxidation 
AO Steatosis  MIE Demethylation, PPAR-γ promoter 
KE Sustained cell proliferation  KE Disturbance, Lysosomal function 
KE Up Regulation, ACC-1  KE Down Regulation, GSS and GSTs gene 
KE Up Regulation, SCD-1  MIE Endocytotic lysosomal uptake 
KE Vacuolization (bile duct cell)  MIE Inhibition of N-linked glycosylation 
KE Vacuolization (hepatocyte)  MIE Inhibition, BSEP 
KE Vacuolization (kupffer cell)  KE Inhibition, FoxA2 
   MIE Inhibition, IKK complex 
   MIE Inhibition, Phospholipase A 
   KE Mitochondrial dysfunction 
   MIE Protein Alkylation 
   MIE Suppression, CAR 
   KE Up Regulation, SREBF2 
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Table 3 

Key event 
Representative 

stressors 
Endpoint measured Methodology References 

Cell injury/ death 

Isoniazid, 
paracetamol, 

phenobarbital, 
propranolol, 
verapamil* 

Oxidoreductase enzyme 
activity 

Detection of formazan product derived from reduction in viable cells of tetrazolium substrates MTT, MTS, XTT. Riss et al. (2016) 

Lactate dehydrogenase 
leakage 

Bioluminescent representation of LDH activity in extracellular medium, indicating its effluence from damaged cells. Chan et al. (2013) 

Neutral red uptake Quantification of the internalisation of fluorescent neutral red dye, occurring exclusively within viable cells. Repetto et al. (2008) 

Protease enzyme activity Assaying of protease enzyme activity, through cleavage of peptide (GF-AFC) in functional cells. Riss et al. (2016) 

Oxidative stress 

Chloroform, 
1,2-dichlorobenzene, 

furan, 
menadione, 
valproic acid 

ROS presence Quantification of fluorescence of dihydroethidium or fluorescein derivatives. Kalyanaraman et al. (2012) 

Oxidation of DNA Detection of 8-hydroxydeoxyguanosine formation (as ELISA). Dasgupta and Klein (2014) 

Peroxidation of lipids Detection of malondialdehyde presence, through reactivity with TBARS. Dasgupta and Klein (2014) 

Protein oxidation Identification of markers of oxidative damage, such as protein carbonylation and advanced glycation end products. Dasgupta and Klein (2014) 

Mitochondrial 
dysfunction 

2,4-dinitrophenol, 
HCN, 

pentachlorophenol 
rotenone, 
zidovudine 

Respirometry 
Monitoring response in oxygen consumption in order to infer efficiency of OXPHOS, either through polarimetry or 
extracellular flux analysis. 

Horan et al. (2012) 

Membrane potential 
depletion 

Assaying of fluorescent rhodamine dye uptake into polarised mitochondria. Perry et al. (2011) 

ATP production Luciferase-based bioluminescent determination of ATP concentration (also used as proxy for general cell viability). Riss et al. (2016) 

Reduction in glycolysis 
dependence 

Promotion of OXPHOS reliance in cancer cell lines, enabling mitochondrial liability to be emphasised. Marroquin et al. (2007) 

Fatty acid accumulation 

Amiodarone, 
fenofibrate, 
tetracycline, 
ticlodipine, 

valproic acid 

Intracellular lipid content Quantification of BODIPY, Nile red or Oil Red O fluorescence in treated, cultured cells (HepG2, HepaRG). 

Muller and Sturla (2019),  
Donato et al. (2012), 
Gomez-Lechon et al. (2007),  
Tolosa et al. (2016) 
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Table 3 Overview of assays that can be used to measure endpoints associated with the four KEs (cell injury/death, increased ROS, mitochondrial dysfunction and FA accumulation) identified as the most highly connected and central 
KEs in an AOP hepatotoxicity network. Abbreviations: ELISA Enzyme-linked immunosorbent assay; GF-AFC Glycylphenylalanyl-aminofluorocoumarin; MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium; MTT 3,-4,5 dimethyithiazol-2,5 diphenyl tetrazolium bromide; ROS Reactive oxygen species; OXPHOS Oxidative phosphorylation; TBARS Thiobarbituric acid reactive substance assay; XTT 2,3-bis-(2-methoxy-4-nitro-
5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. 
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Figures  

 

Figure 1 The network consisting of 14 AOPs available in the AOP‐Wiki related to hepatotoxicity 

(extracted 1 September 2020) that share at least one KE. MIEs, KEs and AOs are coloured yellow, blue 

and red, respectively. Solid arrows indicate adjacent KER, with the arrow emanating from the 

upstream KE and into the downstream KE. KERs shared by more than one AOP are represented by a 

single arrow. KER label indicates strength of evidence as defined by the AOP author in the AOP‐Wiki 

where H=high, M=medium, L=low. No label indicates lack of information in the AOP-Wiki. Curated KE 

titles, including abbreviations, are available as supplementary information (Appendix 1). KE Key event; 

KER Key event relationship; MIE molecular initiating event; AO Adverse outcome. 
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Figure 2 (a) KEs shared by more than one AOP. The score indicates the number of AOPs in which the 

KE is present. Cell injury/death is included in the highest number of AOPs, followed by FA 

accumulation, decreased, β-oxidation and steatosis. (b) The distribution of the shared KEs among the 

linear AOPs included in the network. AOP Adverse outcome pathway; CD36 Cluster of differentiation 

36; FA Fatty acid; HSC Hepatic stellate cell; KE Key event; SCD-1 Stearoyl-CoA desaturase-1; ROS 

Reactive oxygen species; TG Triglyceride. 
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Figure 3 (a) The distribution of KEs in shared AOPs show that the interconnectivity between the AOPs 

in the network is fairly limited. (b) The distribution of KEs according to the directed eccentricity score 

shows that 35 % of the KEs cannot be categorised as either upstream or downstream due to their level 

of interconnectivity (i.e. eccentricity score between 3-6). 
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Figure 4 The distribution of the weight of evidence for KERs as reported by the AOP developers. 
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Supplementary material 

Appendix 1 

This Excel file contains all collected material used to derive the network, including KE annotation 

changes described in section 2.2. of the Materials and Methods, as well as NetworkAnalyzer output. 

Appendix 2 

This Word file contains supplementary figures describing the topological analysis of the derived AOP 

network for hepatotoxicity. 


