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Abstract 
 

Hydrocephalus is a disorder when an excessive amount of cerebrospinal fluid (CSF) 

accumulates inside the subarachnoid space, which can lead to an enlargement of the ventricular 

system of the brain and increase the pressure inside the head. 

Paediatric population, adults, and most elderly ones can be affected by hydrocephalus. This 

neurological condition can have an excellent diagnosis if treated. However, it also can be life 

threatening if not treated correctly. With the increasing roll-out of ‘digital hospitals’, electronic 

medical records, new data capture and analysis technologies, as well as a digitally enabled 

health consumer, the healthcare workforce is required to become digitally literate to manage 

the significant changes in the healthcare landscape. In this study, Machine learning techniques 

are employed for the long-term follow-up for hydrocephalus patients, for which a data set of 

3,262 records of ICP signals of shunted patients from Alder Hey Hospital, was used. Six 

popular machine-learning based classifiers have been evaluated for the classification of 

monitoring shunted patients and produce the required risk assessments to follow up shunted 

patients within a supervised learning setting, which are Ensemble Bagged Tree, Ensemble 

Boosted Tree, Fine Tree, Quadratic SVM, Gaussian SVM and Cubic SVM. The classifier 

Ensemble Boosted Tree achieved the highest aggregate performance outcomes of accuracy 

98.90, sensitivity 100, specificity 100 and precision of 100. The study concludes that using 

machine learning techniques represents an alternative procedure that could assist healthcare 

professionals, as well as the specialist nurse and junior doctor to improve the quality of care 

and follow-up with hydrocephalus disorder. 
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1- Chapter 1 Introduction 
 

 Overview 

 

Hydrocephalus is considered as a common disease treated by paediatric neurosurgeons. 

Hydrocephalus is a complex condition caused by physical or functional obstruction of cerebral 

fluid (CSF) flow. Hydrocephalus disease can be inherited or acquired [1]. This functional 

obstruction leads to progressive ventricular dilatation. Different studies showed that 1.1 in 

1,000 infants have hydrocephalus; there have been few systematic assessments of the causes 

of hydrocephalus in this age group, which makes it a challenging condition to approach as a 

scientist or as a clinician [2]. 

Medical societies have utilised technology in the development of medical information systems. 

These developments aim to improve the deployment of technology in medical applications. 

Professional systems and many artificial intelligence techniques have been used and developed 

to improve decision support tools for decision-makers. The integration between technology 

and healthcare provides the medical systems to manage the chronic disease burden and support 

our ageing population as well as reducing healthcare costs and supporting clinical decision 

making [3]. 

Machine learning (ML) has proven to be a great tool that allows classifying large data sets and 

making predictions about the world. Classification determines the category an object belongs 

to and regression deals with obtaining a set of numerical input or output examples that are used 

to discover functions to find a suitable output from a given input. Mathematical analysis of ML 

algorithms and their performance is a well-defined branch of theoretical computer science, 

often referred to as computational learning theory. Machine learning algorithms have been 
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developed to propose new methods with theoretical algorithms. Machine learning algorithms 

can develop techniques for applying real-life situations  [4]. 

The goal for implementing machine learning techniques is to utilise experience, improve 

performance and for obtaining correct predictions and classification. The inspiration for using 

machine-learning techniques is to handle a hypothetically unlimited amount of data and process 

them to achieve excellent accuracy and performance.  

Classification techniques (classifier) provide grouping with a set of symbols into several 

classes that depend on their attributes (features). A feature is considered as one characteristic 

of a symbol that can help in accumulating each class. The data type is considered to be one of 

the essential factors that affect the success of a learning method.  The medical data set in this 

study is a supervised learning method that can learn from the training sets that involved input 

features and the target values (Classes) [5]. Inadequate training instances make it relatively 

hard for machine learning techniques to predict the target values of the medical data sets 

accurately. It is crucial to decrease the number of random features using a dimensionality 

reduction procedure to achieve high accuracy and performance  [6].  In this study, the feature 

extraction approach is used to map the best data set of Intracranial Pressure (ICP) signals as an 

input to machine learning. The enhancement of communication technologies and their 

implementation in the medical sector have successfully changed the way of life, by improving 

healthcare facilities and outcomes. Healthcare organisations are continually attempting to 

enhance patient care by providing cost-effective care, better infrastructure, and quality of 

services [7] [8]. It is so vital for shunted patients to be monitored regularly and provide them 

with the proper response needed. The main contribution of this research is to develop and 

design a model that monitors and follows up shunted patients and gives them the chance to 

record data regularly, which can be accessed at any time by clinicians.  
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The automated follow-up system will provide an option to modify the medical delivery method 

from the traditional way into the automatic way. There are significant aspects required to build 

smart home systems in terms of allowing people to manage their health with out-of-hospital 

care. The backbone of the proposed research is to develop an intelligent system that monitors 

shunted patients regularly. The system is based on machine learning algorithms and a ready-

to-use web application that aims to provide shunted patients much more flexibility for 

managing their conditions. 

 Research Statement 

 

Hydrocephalus is considered as a complicated neurological disorder. It is an enlargement of 

the ventricular system of the brain and increases the pressure inside the head. This enlargement 

is caused by the insufficient passage of cerebrospinal fluid (CSF) from its point of production 

within the cerebral ventricles to its point of absorption into the systemic circulation. In other 

words, an imbalance between the production of CSF and its absorption could lead to one of 

three types of hydrocephalus: communicating, non-communicating and normal pressure 

hydrocephalus (NPH) [9]. 

The initial monitoring and follow up of shunted patients are an essential part of ongoing patient 

safety. Most regional neuroscience centres are monitoring large cohorts of shunted patients 

from their region and outside. This process is often for the remainder of the patient's life with 

little evidence-based for how and when they should be seen as out-patients. Moreover, this 

process places a massive burden on the patients and their families in terms of travel, time off 

work, school and any other daily life aspects. In general, the shunt failure rate seems to be 

unchanging despite advances in neurosurgical practice; as shown by numerous follow-up 

studies. 30 to 40 % of shunted paediatric patients have a shunt failure within the first year  [8]. 

A follow-up study showed that 51.4% of 344 hydrocephalus children at 12 different centres 
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had shunt failure. The overall shunt survival rate drops by 21% over four years, starting at 62% 

in the first year and ending at 41% in the fourth year [10]. Another long-term study analyses 

the clinical follow-up evaluations of 1,015 patients with a shunt. The median age of patients 

was 41.6, and the mean follow-up time was 9.2 years.  

There are two problems, which are still open to investigation and solve:  

1. How can we use advances in computer technologies to help clinicians managing long-

term follows up for patients with hydrocephalus (who are already shunt dependent)?  

2. How can we use advances in data science to help junior clinicians to make their own 

decisions in diagnosing hydrocephalus based on the senior clinician's decisions? 

 Research Goal, Aims and Objectives 

 Research Goal 

 

The research goal is to implement an intelligent approach to follow-up, and management of 

shunted patients, which employs novel approach supported by machine learning techniques to 

improve the procedure of alerting the medical team in neurology clinics according to risk 

levels. In this research, the use of the intelligent approach will be a novel pathway to manage 

the waiting list according to risk levels, therefore improve neurology clinics’ work and increase 

the capacity of the current service model by designing a data quality framework to describe all 

the essential measures for data processing and analysis, making use of sophisticated statistical 

methods. This helps to ensure that the data is clean enough and valid to train different machine 

learning algorithms. These intelligent risk assessment models will be tested and evaluated using 

different performance metrics to demonstrate their prediction power. 
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 Research Aims 

 

The main aim of this research is to provide a robust and sufficient risk assessment model as 

well as alerting the medical team of patients with hydrocephalus. The intelligent approach 

employs a novel method supported by machine learning for this purpose and initialising a user-

friendly follow-up platform that will support long-term monitoring of shunted patients and 

involve them in managing their conditions. We will work towards these aims by addressing the 

following objectives. 

 Research Objectives  

 

Tailoring a decision support system can significantly improve the way patients suffering from 

hydrocephalus are treated and followed.  The key objective of this research is to produce an 

intelligent decision support system that will learn and evolve to help with the proper therapeutic 

decisions for the treatment of specific symptoms caused by hydrocephalus.  The research 

objectives will be achieved by examining further the current approaches and evaluating the 

best methods and combinations of the approaches of how proper analysis and support for 

decision making can be achieved.  

A breakdown of the research objectives is provided hereunder: 

1- To produce a comprehensive literature review. 

2- To understand the process of monitoring shunted patients that carried out by 

clinicians. 

3- To gather a sufficient dataset that is required for this research. 

4- To define a method to select the ICP signals and convert it to numeric. 

5- To define a method to develop an improved follow-up platform by including more 

parameters required by neurologists and according to patients' willingness. 

6- To define a method to predict the risk assessments for a given patients scenario. 
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7- To implement a working prototype of the proposed methodology and evaluate its 

performance. 

 Research Contribution 

 

Currently, no intelligent mobile application has yet been developed to manage patients 

diagnosed with hydrocephalus.  Therefore, the new proposed system will help to manage all 

patients diagnosed with hydrocephalus and have implanted shunts. Those patients are 

challenging to follow and to apply specific treatment plans because of the complexities 

involved when treating patients with hydrocephalus. The proposed system will enhance and 

improve the decisions made by physicians and neurosurgeons when applying new treatment 

plans and following up patients. It will also help to cut down unnecessary hospital visits, as 

most of the patients will send their symptoms and headache pain events to their assigned 

physician using their mobile phone while they are following a specific treatment plan.  

Physicians will be able to help address the needs of their patients without the need for a physical 

meeting. The developed follow-up platform allows physicians and neurosurgeons to collect 

and analyse new information about the behaviour of their patients and the success of the 

treatment plans applied on their patients. The new intelligent system will be able to analyses 

(knowledge data discovery) the data collected from patients, physicians and neurosurgeons. 

The new intelligent system will adapt to new environments and learn from new data inputted 

by all the users concerned, thus refining and altering treatment plans using the appropriate 

artificial intelligence techniques.  It will facilitate the management of patients' history and keep 

them informed about any changes regards to the treatment plan they are following.   It will help 

physicians and neurosurgeons decide on what works best in terms of materials (type /size of 

shunt placed inside the patient), treatment plans and drugs used on their specific patients and 

eliminate unnecessary costs of unwanted/unused materials purchased as the system will 

recognise and help physicians to indicate which worked best on their patients.  Finally, it will 
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reduce time wasted on unnecessary tests that will be carried out to specify what treatment plan 

best suits the patient concerned. The following are a summary of the main research 

contributions. 

1- Developing a ground truth data to follow-up hydrocephalus patients by combining 

the neurologists’ decisions in addition to patients’ data via the developed 

application. This approach will provide a robust base for the upcoming decision 

support system model as well as provide instance-based evidence for a trainee 

doctor. 

2- The development of follow-up mobile health application/system for long-term 

follow up of shunted patients and involve them in managing their conditions. Our 

follow-up platform has the potential to reduce avoidable expenses for the NHS, by 

reducing unnecessary visits on the one hand, and enabling clinicians to work faster 

and more efficiently in managing their patients, on the other. 

3- Intelligent approach for follow up and risk assessment will improve patient 

experience, safety and quality of life utilising proper prognosis together with 

lowering the potential for the occurrence of medical errors. 

 Thesis Structure  

 

The thesis is distributed into seven chapters, each part covering a specific area of the research 

work. The remainder of this thesis is structured as follows: 

• Background (Chapter 2): This chapter discusses what Hydrocephalus disease is, the 

types of hydrocephalus, causes and current diagnosis and management for the disease. 

The current techniques used to follow up patients with hydrocephalus have also been 

introduced in this chapter. In addition, it demonstrates the different machine learning 

types and techniques, big data and its impact on healthcare. 
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• Literature Review (Chapter 3): This chapter considers different machine learning 

models, learning algorithms, and classification techniques. It also presents a literature 

review related to hydrocephalus. Furthermore, it provides the approaches used for 

exploring data analysis which is utilised to complete this empirical study.  

• Research workflow (Chapter 4): Presents an overview of the research wok. It 

demonstrates a flowchart with research outlines. It discusses patient monitoring using 

M-health applications and demonstrates an analysis for a questionnaire, which 

investigates the user's acceptance of healthcare technology.  In addition, it demonstrates 

each step of the research workflow for clearer and better vision. Finally, the chapter 

closes with a summary section. 

• Proposed Methodology and data preparing (Chapter 5): This chapter defines the 

ICP signals in detail. It is also explains feature extraction and how it is used for 

preparing the ICP data set for the purpose of selecting a ready to use ICP data set. The 

development of IOS System (HydroApp) is illustrated in this chapter. Moreover, the 

chapter presents the automation of clinical approach in following up hydrocephalus 

patients. 

The proposed methodology framework and experimental set-up for ICP signals have 

also been presented in this chapter; with machine learning classifiers and prototype 

implementations to demonstrate applicability in real-world applications. It discusses 

the data preparation process. In this scenario, this chapter focused on addressing the 

missing values, oversampling, identifying outliers, and data normalisation technique. 

The performance techniques metrics were also evaluated illustrated in this chapter. 

Experimental set-up for the model is discussed in chapter 5.  

•  Predictive models (Chapter 6): This chapter discusses the performance metrics 

simulation results and analysis for the various machine-learning models that have been 
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selected in this research work. The chapter also elaborates more in further discussion 

about each of the used classifier based on the performance evaluation metric techniques 

(Sensitivity, Specificity, precision, accuracy). A Computation of the confusion matrix 

was also preformed in this chapter.  

• Conclusion and Future works (Chapter 7): The final chapter presents the 

fundamental research and discusses its outcomes. This chapter demonstrates the 

constraints on the methodology framework and experimental set-up and outlines future 

work, which is recommended for other researchers to find suitable solutions to improve 

the research domain. 
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2- Chapter 2 Background Information 
 

 Introduction 

 

Hydrocephalus is understood to be a complicated neurological disorder caused by "the dynamic 

imbalance between the production and absorption of cerebrospinal fluid (CSF) leading to 

enlarged vortices", or stated more explicitly, a condition that is attributed to the increased CSF 

amount in the ventricles caused by a disruption in flow, absorption, or formation [11][12]. In 

adults, there is about 150 cubic cm of CSF in the subarachnoid space and the ventricular system 

within the brain [13]. The CSF surrounds the brain, the spinal cord, and is present in the 

ventricular system in the brain. The CSF supports brain weight, protects it from shocks, and 

plays a vital role in the absorption of the toxic by-products of metabolism [14].  Intracranial 

pressure (ICP) could be an indicator of a neurological disorder known as hydrocephalus, which 

is currently managed by the shunting procedure. The following is an overview of 

hydrocephalus and ICP. 

 Hydrocephalus 

 

 Hydrocephalus can be thought of an imbalance in the production/resorption of CSF [15]. The 

average production and flow of CSF lead to an increased intracranial volume and pressure. 

Whereas in a tumour, the outflow of the CSF is physically blocked [16]. Therefore, the word 

Hydrocephalus means water (from hydro) on the brain (from cephalus) [17]; there are different 

forms of hydrocephalus as shown in . 
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Table 2.1. 

 

 

 

 

 

Table 2.1 Hydrocephalus forms 

Non-communicating 

Hydrocephalus 
Obstruction of flow within 

ventricles. 
Communicating Hydrocephalus Impaired CSF re-absorption in 

arachnoid granulations or 

obstruction of flow in subarachnoid 
space leads to increase ICP, 

papilledema, herniation. 
Normal Pressure Hydrocephalus A type of communicating 

hydrocephalus, where CSF is not 
absorbed by the arachnoid villi   

Dilated ventricles with a triad of 

dementia, ataxia, and urinary 
incontinence. 

Hydrocephalus ex-vacuo Excess CSF in regions of brain 

atrophy (Ex. Alzheimer's disease) 

 

• Non–communicating (Obstructive) hydrocephalus  

Obstructive hydrocephalus is caused because of the obstruction of the CSF passages (foraminae 

or aqueduct), which cause an increase in the size of the lateral ventricles and the third ventricles. 

However, the usual condition that obstructs the aqueduct of Sylvius is a bleed or aqueductal 

stenosis (e.g. ependymoma, this kind of a tumour can arise in the fourth ventricle), causing a 

blockage and cause non-communicating hydrocephalus [18]. 

• Communicating Hydrocephalus  

In this form, there is communication between the ventricles. The main problem is the impaired 

CSF resorption by the arachnoid villi. Meningitis may cause inflammation of arachnoid villi. 

As resorption of CSF is impaired throughout the system, all ventricles will be affected. 

Therefore, the patient will have dilation in third, fourth and lateral ventricles [19]. 
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• Normal Pressure Hydrocephalus (NPH) 

The diagnosis of NPS involves a triad of patient signs and symptoms; gait disturbance 

(magnetic gait), cognitive decline, and urinary incontinence [20]. The hypothesised cause of 

NPH is the effect of ICP peaks leading to chronic mechanical stress on ventricular walls; this 

will affect the ventricular dilatation and clinical impairment [21]. Figure 2.1 shows the 

ventricles of the brain. 

 

 

Figure 2.1 ventricles of the brain [24] 

 

The following section describes the most ventriculoperitoneal shunt that includes two types of 

valves; Meithka valves and Codman valves, as well as a description of ICP signals. 

 Ventriculoperitoneal Shunt 

 

Ventriculoperitoneal shunt (VPS) is the most common technique to manage CSF circulation 

disturbances in children and adults. VPS is prone to problems such as mechanical malfunctions, 

like obstruction of valve or catheter, catheter disconnection or migration, over drainage, and 

infection. A shunt typically contains a couple of catheters and a one-way valve. The valve 

regulates the amount, flow direction, and pressure of CSF out of the brain's ventricles  [22]. 
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Recently Meithke group has improved shunt valves by moving from differential pressure (DP) 

technique to adjustable units, which can adjust pressure level according to clinical conditions. 

Anti-siphon devices and gravitational valves (G valves) represent the comparison of the rising 

hydrostatic pressure column when the patient is in the upright position. Such devices prevent 

extreme CSF drainage without affecting shunt performance while the patient is in the standing 

position. The new telemetric device to measure the ICP is the sensor reservoir that consists of 

two units, implanted internal sensor reservoir and external reader unit. Figure 2.2 presents the 

external reader unit for intracranial pressure (ICP). This unit displays and stores data; the 

storage is linked to the antenna. The antenna is placed near the implant to initiate 

transcutaneous ICP measurement.  

 

Figure 2.2 The reader unit for ICP data display and storage [23] 

 

The ICP is monitored by supplying energy from the reader unit to the sensor reservoir. In 

contrast, ICP can be continuously monitored by transferring ICP data from the sensor reservoir 

to the reader unit. The implanted internal sensor reservoir is the first long-lasting implantable 

pressure measuring unit within a shunt system. It is attached into a reservoir for a ventricular 

drainage system and conveys pressure values using non-invasive, telemetry techniques through 

a display unit. Figure 2.3 shows the implanted internal sensor [24]. 
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          Figure 2.3 The implanted internal sensor reservoir that  used to measure the ICP 

[25] 

 

Codman Hakim programmable valve is one of the most popular valves for hydrocephalus 

shunt. It allows for customised treatment regimens via the use of an externally applied and 

codified magnetic field [25]. Clinicians may adjust valve settings according to the patient’s 

condition, i.e. increasing or decreasing settings. Settings could be reduced for Hakim valves by 

10 mm H2O to 20 mm H2O when there is a concern of having high pressure while patients are 

lying down. Likewise, settings could be reduced by two mmHg at a time for Miethka valves. 

If the patient has a drop in ICP, it is preferable to lie down due to gravity while monitoring 

patients for symptoms like headache. In the absence of symptoms, it is preferred to monitor the 

ICP for quite a while. Occasionally, severe drainage might lead to bleeding in the brain [26]. 

Valve settings could be increased by two mmHg at a time for Miethka valves or by two or up 

to 20 mm H2O for Hakim valves according to the patient's condition. Specialists typically 

evaluate the size of ventricles, associated symptoms, and the ICP readings, and subsequently 

decide to adjust valves' settings or not. With the absence of symptoms, specialists would prefer 

to monitor the case for another night   [25]. 

The initial monitoring and follow-up of shunted patients is an essential part of ongoing patient 

safety as clinicians can decide the risk assessment as soon as possible—most regional 

neuroscience centres follow up large cohorts of shunted patients from their region and outside. 

In general, the shunt failure rate seems to be unchanging despite advances in neurological 
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practice; as shown by numerous follow-up studies. 30 to 40 % of shunted paediatric patients 

have a shunt failure within the first year [8]. A follow-up study showed that 87.4% of 124 

hydrocephalus children had the first-time shunt when under 18 years old. The estimated mean 

age was 5.35 years. 21.1% were younger than six months, whereas 33.9 children were between 

6 and 12 months. Moreover, 31.2% of children were between 1 and 6 years old, 11% were 

between 7 and 12 years old [27]. Another long-term study analyses the clinical follow-up 

evaluations of 1,015 patients with a shunt. The median age of patients was 41.6, and the mean 

follow-up time was 9.2 years. The overall shunt failure rate was 46.3%, and most of the shunt 

revisions within the first months after shunt placement [28]. UK National Health Service 

(NHS) estimated that 4 out of 10 shunts would malfunction.  

This study aims to provide a robust and sufficient risk assessment model and an alerting 

capability to inform the medical team about their shunted patients. Our proposed intelligent 

approach employs a novel machine learning system for this purpose and initialising a user-

friendly follow-up platform that supports long-term monitoring of shunted patients and 

involves them in managing their conditions.  

 Shunt Malfunction 

 

Shunt malfunction presents in many ways. Patients are taught to identify the signs - headache, 

nausea, vomiting, and lethargy. If these symptoms come on acutely and are severe, the patient 

will always present to their closest emergency department. The real-world management of 

shunt malfunctions is more complicated than just that scenario. Patients often complain of 

subtle changes - behavioural change, change in sleep patterns, mild irritability, and low 

concentration. An ICP measurement is instrumental in these cases and may prevent 

unnecessary computed tomography (CT) scans and over-treatment of shunt malfunction. If a 

patient or their clinician is worried about the possibility of raised ICP, (i.e. the shunt is not 
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working optimally for the patient or may be malfunctioning) and the patient has an implanted 

ICP monitor it is possible to check the ICP without an invasive procedure. 

 Symptoms  

 

Symptoms are signs that appear on patients in case of shunt dysfunction or for a change in the 

ICP readings. The more patients have symptoms, the more they have to be monitored unless 

they have another reason for these symptoms.  

2.2.3.1 Double Vision  

 

Double vision known as seeing two images of a single object instead of one. Double vision 

happens when the ventricular enlargement develops pressure on the eye nerves  [29]. The 

following areas require to check double vision symptoms; infectious and Inflammatory, the 

Scalp for giant cell arteritis, sphenoid and skull base in trauma and increased intracranial 

pressure [30]. Double vision is considered a significant symptom for shunted patients as they 

feel pain behind the eyes, and it is considered as an indication for dilatation of ventricles. So 

any patient who has double vision, should be monitored to control his ICP. 

2.2.3.2 Irritability 

 

Irritability can happen when the patient feels annoyed with regular daily habits. The patient 

becomes more sensitive to stressful situations. Many factors can cause irritability, such as life 

stress, a lack of sleep, low blood sugar levels, and hormonal changes. Patients may experience 

confusion or difficulty concentrating, rapid heartbeat or fast or shallow breathing. Other possible 

causes of irritability are: hormonal imbalance includes diabetes, hyperthyroidism polycystic, 

ovary syndrome, menopause and raised ICP in shunted patients who have hydrocephalus. 

Cerebellar inflammation for shunted patients may cause irritability and headache for the 

patients. Hence, the patient feels irritable; he needs to be monitored to investigate whether the 

reason is a rise of the ICP readings or from another illness [31]. Usually, clinicians try to contact 
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the patients to have more history about the patient's symptom like how long the patient has been 

irritable, does it happen all day or at certain times or are they better at the start of the day or end 

of the day. Also, clinicians ask the patients if they prefer to lie down or sit up.  

2.2.3.3 Drowsiness 

 

Drowsiness is occurring when the patient Feels abnormally sleepy or tired during the day. 

Drowsiness may lead to additional symptoms, such as forgetfulness or falling asleep at 

inappropriate times and considered as a significant symptom for shunted patients. Usually, 

drowsiness happens in cases of under drainage and causes a decrease in consciousness, and it is 

considered a red flag sign of raised ICP. If the patient is drowsy and difficult to wake or just 

sleeping more than usual, it is considered as a warning sign for patients to contact the hospital. 

Drowsiness is one of the symptoms that may indicate shunt malfunction. When the patient feels 

drowsiness suddenly, he must be monitored continuously as it could be a sign’ of intracranial 

hypertension in a shunted patient [32]. 

2.2.3.4 Fever 

 

Normal body temperature is different for everyone and changes during the day. A high 

temperature, usually considered to be 38C or above, is called fever [33].  Fever symptom is an 

indication raised ICP. On the other hand, it can occur because of another illness. Therefore, 

clinicians should check the reason for the fever and check other signs to find out whether the 

reason is because of high ICP. Fever could happen with other illnesses, so clinicians should 

make sure that the High temperature may occur because of a problem in the shunt or the ICP 

readings, it could be more significant if it occurs in conjunction with other symptoms. In this 

case, patients should be monitored and reviewed. However, if the patient has a fever without 

any obvious reason, he should be observed and seen by a doctor. 
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2.2.3.5 Weakness 

 

Weakness is defined as a feeling of body fatigue or tiredness. When the patient experiences 

weakness they may not be able to move a particular part of their body correctly.  The symptom 

of weakness can be described as a lack of energy to move specific muscles or even all muscles 

in the body. Furthermore, it comes under drowsiness and irritability. Patients can feel weak 

because of the pressure in the head. Generally, the weakness symptom depends on the patient’s 

status as well. 

2.2.3.6 Nausea 

 

Nausea is the feeling of an urge to vomit. Nausea can be acute and short-lived, or it can be for 

an extended period. When prolonged, it is a debilitating symptom. It can originate from 

problems in the brain or organs of the upper gastrointestinal tract. The clinical presentation 

varies by age: vomiting and nausea are the most frequent signs in older children. At the same 

time, infants experience more often with raised intracranial pressure symptoms such as nausea, 

vomiting, irritability and bulging fontanel [32]. Nausea is considered as individual sign presence 

for shunted patients, some patients have complete shunt blockage, and they never get nauseous, 

or vomit. In contrast, some patients may have full function shunt, and they are nauseous most 

of the time. Therefore, it is a very distinctive sign, but all patients need to be monitored in case 

they have nausea.  

 Intracranial Pressure 

 

In 1951, Guillaume and Janny performed the intracranial pressure measurements (ICP) to 

measure the ventricular fluid pressure signals using the electromagnetic transducer. In 1960, 

Nils Lundberg invented the modern ICP measurements. Nils Lundberg proposed a safe, 

modern method associated with the intracranial pathology. Intracranial pressure (ICP) is of 

great interest to clinicians because ICP analysis provides evidence of effective hydrocephalus 

https://www.medicinenet.com/nausea_and_vomiting/article.htm
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treatment [29]. Traumatic brain injuries caused by road traffic accidents, sports injury, assault 

or explosions may cause brain damage resulting in swelling which can obstruct CSF flow, or 

traumatic subarachnoid blood may prevent CSF resorption. Therefore, an acute rise in ICP may 

occur, further damaging the brain tissue [30]. The insufficient absorption of CSF is considered 

as a severe threat for patients.  

Clinicians consider CSF dynamics such as hydrocephalus. The ICP is the main characteristic 

of the hydrocephalus disease. In the subarachnoid, ICP can be measured during an infusion test 

that consists of an artificial elevating of ICP through the fluid's infusion. Many proposed 

methods to measure and analyse the Hydrocephalic ICP signals include the traditional spectral 

analysis and nonlinear techniques. The nonlinear studies found that when the pressure values 

are in the highest range, the ICP signals show the lowest sample entropy values. The brain 

pressure could be high, idiopathic intracranial hypertension (IIH) or low-pressure intracranial 

hypotension, CSF leak. Decisions for operations are based on the ICP. Lumbar puncture 

opening pressures often estimate ICP; operation’s decisions are taken based on the pressure 

measurements in the path [31]. However, this method has some challenges, such as: 

1. Technical problems: an artefact of position and sometimes cannot be performed with 

Chiari. 

2. The single number of time point: No pulse curve, cannot detect episodic changes. 

3. Mixed disorders: Cannot distinguish and may exacerbate CSF leak/IIH patients.  

Clinicians use ICP readings to diagnose IIH patients where headache symptoms appear or 

persist despite treatment. However, if there is no definitive papilledema, marginal or variable 

lower pressure (LP) findings, it could be normal high range pressure. ICP reading can be used 

in diagnosing CSF leaks, clinical hypotension symptoms, positional headache with no 

definitive magnetic resonance imaging (MRI) signs brain or spine [32]. 
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Cerebral perfusion pressure (CPP) is the pressure that pushes the blood to the brain, hence 

influences the cerebral blood flow (CBF). The normal CPP is between 60 and 100 mm Hg [33]. 

When CPP falls too low, the brain is not perfused, and the brain tissue dies. ICP readings are 

essential to calculate the CPP and the mean arterial pressure (MAP), whereas the formula is 

“CPP = MAP – ICP”. Consequently, to estimate the CPP, we need to know the patient’s blood 

pressure to determine the measurement of MAP and ICP [34]. The earliest indication of 

increasing ICP is a mental status, like feeling restless, confused, and responding to questions. 

However, irregular breathing is another indicator of increasing ICP, including Cheyne–Stokes 

that leads to hyperventilation then apnoea. Nerves to optic oculomotor are the late indicator of 

increasing ICP that may include double vision, unequal pupils, the optic nerve’s swelling. 

Moreover, decorticate posturing or flaccid is the worst case of increasing ICP [35]. 

ICP is a vital component in the diagnosis of hydrocephalus. In the subarachnoid, the ICP can 

be measured during an infusion test that consists of an artificial elevating of the ICP through 

the fluid's infusion. 

The normal ICP is between 0 and 20 cmH2O. Clinicians look at the ICP signals for between 10 

and 15 minutes at different times. If raised ICP is sustained for least 10-15 minutes, more 

observations are required. However, clinicians consider whether the patient is symptomatic at 

that time [36]. 

 In the case of raised ICP for more than one hour, they check the patient's clinical status; lying 

down/ being upright, difficulty waking him up, headache or vomiting. If any of these signs are 

present, the patient is advised to visit the closest emergency department.  

If the patient is asymptomatic and has high ICP, the patient is advised to visit the neurosurgical 

clinic to recheck the pressure and assess shunt functionality. On the other hand, if the child is 
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unconscious, usually clinicians decide to admit the patient in the hospital for emergency 

surgery. 

If the child is awake and has high pressure with symptoms, it is preferred to admit, check the 

ventricular size with CT scan and observe overnight. Consequently, if the patient does not 

improve, they proceed to emergency surgery for shunt exploration +/-revision. [37][38].  

The collected data from the IOS system and ICP signals will be the main data in this research. 

 

 The Current Method of Diagnosing Hydrocephalus 

 

Hydrocephalus is the most common disease treated by paediatric neurosurgeons. 

Hydrocephalus is an initial increase in intraventricular pressure, resulting in pathologic dilation 

of the cerebral ventricles with an accumulation of CSF. Usually, hydrocephalus requires 

lifelong vigilance by various health care professionals. Nonsurgical clinicians often have 

questions about disease recognition, shunt infection, and shunt malfunction to treat children 

with hydrocephalus, with or without shunts. Imaging modalities such as non-sedated magnetic 

resonance imaging and non-shunt surgery have changed the landscape of the primary paediatric 

clinician's interaction. 

The diagnosis of the disorder is challenging as it may imitate many other neurological 

conditions as it has no independent biomarker. Careful history taking, a keen and detailed 

physical examination, and pertinent imaging studies can lead to an early diagnosis. However, 

it becomes even more challenging as most cases are diagnosed by invasive cerebrospinal fluid 

(CSF) removal tests [39].  

Clinicians depend on ICP readings that are extracted from a Rumedic device. Patients are 

provided with this portable device to record their ICP regularly. Ordinarily, the clinician's team 
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import the readings to be visually analysed. The clinicians decide based on the patient's 

feedback and ICP readings. However, the patient should wait for his regular appointment or 

book a new one. This process takes time and effort from the patients and the clinician team. It 

also is difficult for patients to record all the details, especially if it is a long time of feeling 

unwell. 

 Machine Learning 

 

ML has proven to be a great tool that allows classifying large data sets and making predictions 

about the world. Classification determines the category an object belongs to and regression 

deals with obtaining a set of numerical input or output examples that could be used to discover 

functions for finding a suitable output from a given input. Mathematical analysis of ML 

algorithms and their performance is a well-defined branch of theoretical computer science, 

often referred to as computational learning theory [4]. 

ML has taken a massive forward step for examining useful data that are collected from personal 

monitoring devices and mobile apps, electronic health records, and surgical robots that have 

been developed to help in medical operations. ML-based applications could improve health 

outcomes and the quality of life for patients and could also reduce the cost for clinical 

institutions [40]. ML tools and methods can be applied to several forms of healthcare data 

(structured and unstructured). There are powerful ML techniques for structured data, like 

classical support vector machine, neural network, and deep learning. Natural language 

processing is considered as unstructured data. ML is used in different health fields, like cancer, 

neurology, and cardiology [40]. ML can be used in early detection and diagnosis, treatment, 

and outcome prediction and prognosis evaluation. ML has a spreadable role to help clinicians 

to make better clinical decisions. The big data analytic methods have become a vital 

application. The availability of healthcare data will help to answer relevant clinical questions; 
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powerful ML techniques can unlock clinically relevant information hidden in the massive 

amount of data that can support clinical decision making. ML has been used to assist in 

diagnosing cancer, analysing the clinical images to identify skin cancer [41]. A machine 

learning system has been developed to restore the control of movement in patients with 

quadriplegia [42] by testing the power of an offline man/machine interface that uses the 

discharge timings of spinal motor neurons to control upper-limb prostheses [43]. Another ML 

system to diagnose the heart disease through cardiac image has been released by US Food and 

Drug Administration (FDA) to provide automated, editable ventricle segmentations based on 

conventional cardiac MRI images [44]. 

 Types of Machine Learning 

 

Machine learning techniques are categorised into three types: 

A. Supervised Machine Learning: The machine-learning task of finding a function from 

labelled data. Labelled data is a data set with an independent variable/s and a dependent 

variable. As shown in Figure 2.4 , the data set contains, input attributes (independent 

variables) and a labelled class column that is the target variable (desired output); 

supervised ML analyses the data by establishing a relationship between a labelled class 

and the independent feature variables. Therefore, we pass the data set to the learning 

algorithm. This supervised learning algorithm tries to find patterns and relationships 

between the input’s attributes, dependent label class, and independent variable. Based 

on the relationship, it identifies the model, which is called the predictive model and 

based on the predictive model, it is also going to predict the output of these sets of 

records. To check the output performance, we review the expected result with the 

design output and see how accurate the model design is. There are two main techniques 

for the supervised model: Classification and Regression. Classification predicts results 

from a data set, which have dependent variables categorical or unordered like medical 
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imaging or speech recognition. Regression is used to predict the outcome from a data 

set with dependent variables of continuous values or ordered values [45]. 

 

Figure 2.4 Supervised learning technique model 

 

B. Unsupervised Machine Learning: The machine-learning task of exploring the data to 

derive some inferences /insights from the data set. The labelled variable is not present 

in the unsupervised learning data set. Figure 2.5 shows the unsupervised analyses. 

Some techniques are needed like dimension reduction, clustering; and association 

analysis techniques are used to analyse the unlabelled data. The dimension reduction 

techniques are used to reduce the number of data variables; some dimension reduction 

techniques use principal component analysis (PCA) and factor analysis [46]. However, 

if the same data reduce the number of records (cases), clustering techniques can be 

used. Analysis techniques are commonly used in e-commerce; for example, the e-

commerce portal tries to give the customer the associated products related to their 

interests.  In unsupervised learning techniques, we directly get an output. The 

supervised learning technique has input attributes and desired outcome if we compare 

the supervised and unsupervised learning techniques. The algorithm tries to find the 

Input Attributes + Desired Output

Supervised Learning 
Techniques 

Predictive Model

Predicted Output
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relationship between the target variable and the independent variables; based upon that, 

it builds a predictive model to predict an output. A predictive model can be used for 

future predictions and can be used for new data sets. Whereas the unsupervised model 

has an input data that goes to the unsupervised learning technique to get an output, in 

this case, we cannot use this technique for future use [47].  

 

Figure 2.5 Unsupervised learning model 

 

C. Reinforcement Machine Learning: is learning by interacting with space or an 

environment. However, reinforcement machine learning is an agent to determine the 

consequences of its actions, rather than from being Pattern mining [48]. It selects its 

action based on its experiences to provide new choices. In other words, Reinforcement 

machine learning learns from its knowledge by giving feedback from the output. 

Reinforcement machine learning is already used in experience-driven sequential 

decision-making that selects its action based on its experience (exploitation) and also 

by new choices (exploration) [49]. 
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 Machine Learning Classifiers  

 

Classification is a process of categorising a given set of data into classes. It can be performed 

on both structured and unstructured data. The process starts with predicting the class of given 

data points as it is often referred to as target, label or categories. There are many machine 

learning algorithms for classification. This chapter will discuss three machine learning 

classification algorithms: Support vector machine, decision tree, and ensemble. 

 Support Vector Machine Algorithm 

 

Support Vector Machine (SVM) is a supervised learning method that builds classification 

models using a converted set of high-dimensional features. SVM can be applied to continuous, 

binary, and categorical outcomes similar to Gaussian, logistic, and multinomial regression [50].  

SVM learns from the past input data and predicts future prediction as output. The maximum 

space to separate two classes is called distance margin D+ and D-. A hyperplane is a distance 

between the support vector and the hyperplane; the distance should be as far as possible.  The 

closest data points to the hyperplane are known as support vectors Figure 2.6 represents the 

classes of observations. The solid line indicates the decision boundary; the dashed lines denote 

the upper and lower margins. Triangles and squares represent the two classes (y values). Larger 

triangles and squares represent support vectors. Misclassified observations on the wrong side 

of the decision boundary are circled. 
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Figure 2.6 Two none-spreadable classes of observations [51] 

If each observation has a mass measurement and a height measurement, then the data would 

be 2-dimensional. When the data are 2-dimensional, a support vector classifier is a line, and in 

this case, the soft margin from these two points [51]. 

If the observation has a mass, height and age, then the data would be 3-dimensional. The age 

represents the depth, so observations would appear more significant when they are younger, 

and they look smaller when the observations are older. When the data are 3-dimensional, the 

support vector classifier forms a hyperplane instead of a line. Support vector classifier classifies 

new observations by determining the hyperplane's chosen side. SVM can start with data in a 

relatively low dimension; like starting the data in one dimension. SVM can move the data to a 

higher dimension, for example, moving the data from 1-dimension to 2-dimensions. SVM can 

find the support vector classifier that separates the more top dimensional data into two groups  

[52]. To classify non-linear data, SVM uses kernel trick for classification. The kernel trick 

transforms data into another dimension to have a clear dividing margin between classes of data. 

After that a hyperplane can be drawn between the various classes of data. 

SVM uses kernel function that systematically finds support vector classifiers in a higher 

dimension; for example, it can transfer data from 1-D to 2-D data. The polynomial kernel has 

a parameter d, which stands for the polynomial degree. When d=1, the polynomial kernel 
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computes the relationships between each pair of observations in 1-dimension and these 

relationships are used to find a support vector classifier. When d=2, we get 2–dimensions. The 

polynomial kernel computes the 2-dimensional relationships between each pair of 

observations, and those relationships are used to find a support vector classifier. When d=3, 

we get the third dimension, and the polynomial kernel computes the 3-dimensional 

relationships between each pair of observations to find a support vector classifier. If d=4 or 

more, then more dimensions to find a support vector classifier. 

In summary, the polynomial kernel systematically increases dimensions by setting d. The 

polynomial degree and the relationships between each pair of observations are used to find a 

support vector classifier [53]. Good value for d with cross-validation can be found. Another 

commonly used kernel is the radial kernel, also known as the radial basis function (RBF) 

kernel. Radial kernel finds support vector classifiers in infinite dimensions. However, when 

using it on a new observation, the radial kernel behaves like a weighted nearest neighbour 

model. In other words, the closest observations (the nearest neighbours) have much influence 

on how we classify the new observation. The observations that further away have relatively 

little impact on the classification. 

Kernel functions only calculate the relationships between every pair of points as if they are in 

the higher dimensions; they do not do the transformation. The approach of figuring out the high 

dimensional relationships without transforming the data to the higher dimension is called the 

kernel trick. The kernel trick reduces the amount of computation required for SVM by avoiding 

the maths that transform the data from low to high dimensions. It makes calculating 

relationships in the infinite dimensions used by the radial kernel possible. Regardless of how 

the correlations are calculated, the concepts are the same, when we have two categories but no 

obvious linear classifier that effectively separates them. SVM works by moving the data into 
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relatively high dimensional space and finding a relatively high dimensional support vector 

classifier that can effectively classify the observations [54]. 

 SVM has many advantages like working with high dimensional input space or avoiding the 

overfitting because of having a regularisation parameter. The parallel lines give us a sense of 

where all the other points are about the soft margin. Some observations would be outside the 

soft margin, and some observations are inside the soft margin and misclassified. In this case, 

cross-validation is used to determine this misclassification results in better classification in the 

long run. Fine Gaussian SVM is a model that has high flexibility as it decreases with kernel 

scale settings. It makes finely detailed distinctions between classes with kernel scale set to sqrt 

(P)/4. Medium Gaussian SVM has medium flexibility and medium distinctions, with kernel 

scale set to sqrt (p). Gaussian is a nonlinear SVM function (radial basis function) [55]. 

 Decision Tree Algorithm 

 

A data structure which comprises a root node then comprises some internal nodes (split nodes), 

then includes some terminal nodes (leaf nodes). Decision tree algorithm can represent data 

efficiently, which is hierarchical. The decision tree is mainly used for binary, multinomial, or 

continuous outcome types [56]. Decision tree gives all the possible solutions to a decision based 

on certain conditions. Entropy is the measure of randomness or unpredictability in the dataset.  

If the entropy reaches zero at the end of the training, all objects are now classified with 100% 

accuracy. Information gain is the measure of the decrease in entropy after the data set is split, 

whereas the leaf node is the classification or the decision. The root node is the topmost decision 

node [57].  

Random forest builds decision trees and merges them for more accurate and stable prediction. 

Random decision forests are correct for decision trees’ habit of overfitting to their training set 

using the bagging method. Bagging method is based on combining learning methods to 



40 
 

increase the overall result. Ultimately, we can measure the random forest's accuracy by the 

proportion of Out-Of-Bag samples that were correctly classified by the random forest. The ratio 

of Out-Of-Bag samples that were incorrectly classified is the Out-Of-Bag Error. In other words, 

a random forest is built then estimates the accuracy of the random forest and changes the 

number of variables used per step. This procedure is repeated to choose the most accurate one. 

Typically, we can start by using the square of the number of variables and then try a few settings 

above and below that value [58]. 

The decision tree has many advantages like it is simple to understand, interpret and visualise. 

There is no need for special preparation for the data in the decision tree method as it works for 

numerical and categorical data [59]. However, the decision tree has some disadvantages like 

overfitting. If there is noise in the data, it requires high variance as the model can get unstable 

due to small variations of data. The low biased tree is a highly complicated decision tree to 

have a little bias, making it difficult for the model to work with new data  [60]. 

 Ensemble Algorithm 

 

Ensemble did not create a new algorithm but instead assembled several different algorithms or 

models to create an ensemble learner [61]. Ensemble model calculates the mean if regression 

or estimates the voting for better classification. The ensemble has lower errors than any of the 

algorithms, and it has less overfitting than other algorithms. The adaptive boosting model can 

combine several weak learners into a single keen learner. The vulnerable learners are almost 

always stumping which is a very short tree from the training data. Some stumps get more say 

in the classification than others and the amount of saying that the stump has on the final output 

based on how well it compensated for those previous errors. Each stump learns by taking the 

last stump's mistakes into account [62]. Adaptive boosting is mainly used for classification. 

Figure 2.7 demonstrates the strategy of how the ensemble model works. 
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Step1: Each observation is 

weighted equally for the first 

decision stump

Step2:Mis-classified 

observations are assigned 

higher weight

Step3:A new decision stump is 

drawn by considering the 

observations with higher weight 

as more significant 

Step4:Again, a higher weight is 

assigned for any mis-classified 

observations

Step5: The process continue 

until all the observations fall 

into the right class

 

Figure 2.7 How the ensemble model works [61] 

 

An ensemble model is used when a single model over fits results that need extra training and 

can be used for classification and regression. There are some conventional ensemble methods 

like Bootstrap Aggregation (Bagging). Bagging technique is based on providing a different 

dataset for every model; this technique is called row sampling with replacement. The models 

are trained on the given data then the test data is used for the prediction. Aggregation is the 

voting classifier that is applied to the model's predictions then combines the outputs to find the 

best outcome. Ensembles often have lower error than the individual methods by themselves. 

Ensemble learners have higher consistency by offering less overfitting. It also reduces bias and 

variance errors [61]. 

 Big Data 

 

The science of data has emerged as a new discipline of some importance in recent years. Data 

science can be considered a combination of the classic discipline of statistics with databases 

and data mining and distributed systems. There is a need for existing approaches to be 

amalgamated so that the plentiful, available data can be turned into more excellent value for 

organizations, individuals, and society. Furthermore, there have arisen new challenges, not 
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solely about the size of the ‘big data’ but also concerning further questions that call for new 

answers/solutions. 

The expression ‘big data’ has become a fashionable phrase these days. More than just a fad, 

however, big data represents the opportunity to change the design of business models and the 

associated, day-to-day decisions that go along with the emergent analysis of data. The 

combination of tools, applications and resources is increasing in magnitude. By way of 

example, big data is now being used to transform medical practice, the modernization of public 

policy, and better inform decision-making within the business [63]. Potentially, big data can 

radically change the dynamics involved with supply chains. Increasingly voluminous and 

diverse data has resulted in more massive data sets that cannot be managed by hands-on, 

conventional management tool forms. So that new and incredibly valuable datasets can be 

managed effectively, there has been the development of new data science methods and new 

types of application of analytics for prediction. Some data has backed up the widespread notion 

that data is a driver of improved decision-making and greater profitability. 

Based on a large-scale study, it was found that companies of self-characterized as being driven 

by data, the better was their performance within respect to objective measures for results related 

to operations and finance. Companies placed in the uppermost third for their particular industry, 

with respect to use of decision-making that was data-driven, were, on average, 6% more 

profitable and 5% more productive than competitors [64]. There can be multiple forms of data, 

including structured and non-structured, including text files, financial data, genetic mappings 

and multimedia files. Unlike much of the analyses of traditional data that organizations 

perform, most big data is semi-structured or unstructured by nature; as such, different tools and 

techniques are required for processing and analysis [65]. Analyses of big data are successfully 

employed within a variety of industries, like insurance and banking. Understanding and 

personalization based upon the behaviour of online users and studies of the environment, as 
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well as analyses by organizations of the national government to enhance ability in serving 

citizens while addressing challenges such as those about terrorism and natural disaster, 

healthcare, economy and job creation [66]. 

 The Science of Data, Predictive Analytics and Big Data. 

 

Data science is increasingly being given attention within academia and is growing more 

popular. There is a constant creation of data, and its production rate is ever-increasing. Social 

media, mobile phones, and technologies of imaging for the determination of medical diagnoses 

are all examples of sources for creating new data. That data must have a place of storage for 

future use. There is the automatic generation of diagnostic information by devices and sensors, 

and that information has to have storage and processing within real-time. It is difficult enough 

to keep on top of the enormous data influx; however, analysis of the vast volumes of data for 

identification of patterns that are meaningful, and the extraction of useful information is 

extremely challenging, mainly if it is not in conformity with more traditional ideas for the 

structure of data. Those data challenges do, however, present opportunities for transformation 

of science, government, business and, indeed, everyday life.  

Numerous industries have been pioneers in the development of ability in gathering and 

exploiting data, as the examples below illustrate: 

1- The calling patterns of subscribers are analysed by mobile phone companies for the 

determination, for instance, of whether the frequent contacts of a caller are upon one of 

the rival networks. If a rival network offers an attractive promotion that could lead to a 

subscriber's defection, an incentive may be provided proactively by the company to 

encourage the subscriber to stay within the contract. 

2- Data is the main product for a company such as Facebook or LinkedIn in itself. Those 

companies have valuations that are derived heavily from the very data that they are 
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gathering and hosting, and that intrinsic value contained therein continues to grow with 

the growth in data.  

3- The company in question monitors all of the purchases made by customers on their 

credit cards. Fraudulent purchases can be identified to a high level of accuracy by using 

rules that have been derived through the processing of several billion transactions.  

Three attributes can be considered definitive ones regarding the characteristics of big data. 

Firstly, there is a considerable amount of data. Instead of just thousands of rows and columns 

of data, or even millions, there may be billions of them with big data. Secondly, big data 

involves data structures and types that are complex. Big data reflects various new data sources 

and new structures and formats that include the digital kinds of traces that remain upon the web 

and other kinds of a digital repository for later analyses. Thirdly, big data involves speedy 

creation of new data growth; big data can describe data of high velocity with data ingestion 

that is rapid and analysis that is almost real-time [67]. There are multiple forms in which big 

data can be found as mentioned above, however, contrary to lots of data analyses that are 

traditionally performed within organizations, most big data is in a semi-structured or 

unstructured form, and different kinds of tools and techniques are needed for processing and 

analysing it. For such complex forms of data to be processed, there is a preference for 

distributed environments of computing and architectures of MPP (massively parallel 

processing) to enable the parallelized ingest of data and analysis. With that in mind, the section 

that follows looks more closely at data structures. 

It is estimated that from 80% to 90% of future growth in data hail from non-structured types of 

data. Although they are distinctly different, there is commonly mixing up of the four types. The 

classic kind of database, the RDBMS (relational database management system), can store the 

logging of calls as software support for a call centre. An RDBMS can store support call 

characteristics in the form of typical data of a structured kind, with attributes associated to them 
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such as machine type, time stamps, type of problem and the operating system. Usually, there 

is an unstructured, semi-structured or quasi-structured data in the system. Such as the history 

of customer chat, information of the call log in free-form such as that taken from a ticket from 

an e-mail in relation to the issue, a phone call transcript with a description of the problem in 

technical terms or the audio file of the telephone call conversation with a record of the provision 

of the solution. Indeed, many insights could be gleaned from the call centre's data, be it in the 

quasi or semi-structured or unstructured form [67]. In general, data science relates to applying 

either qualitative or quantitative methods for solving relevant problems and predicting 

outcomes. A salient revelation these days is that, as the vast volume of data continues to grow, 

there cannot be a separation of domain knowledge and its analysis. 

Historically, the healthcare industry has generated huge volumes of data that drive patients' 

care, by the requirements of regulation and compliance and the keeping of records. Whilst there 

is a storage of most data in the form of hard copy, a current trend results in large volumes of 

data being rapidly digitized  [68]. Across the world, the productivity and quality of systems for 

healthcare are vital concerns. For example, within the UK, there are many good projects and 

initiatives related to the usage of data within analyses in medical and health research [69]. 

Significant opportunities exist for UK-based data science capabilities with the emerging vision 

of accelerated access activities and review at the EU levels.  

The healthcare sector does account for a considerable proportion of the GDP (gross domestic 

product) of the US; within 2011, healthcare was the largest US economy sector at around 17.9% 

of GDP [69]. Terrific opportunities exist for the analytics of big data for impacting upon 

healthcare sector quality and productivity within the UK and various other countries including 

Japan, the USA, South Korea, China, Malaysia and Thailand [70]. Analytical insights that are 

acquired by analysing healthcare data in a meaningful way have the potential of causing 

significant changes to clinical and business models, can bring about greater efficiency through 
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smarter care delivery and can serve to guide rollout expected of purchasing based on value. It 

is often the case that the quality of data is somewhat taken for granted; in contrast to other 

sectors like manufacturing which have market-based expectations driving product quality, 

market forces of the industry of big data have not been imposing similar data quality standards 

within healthcare. Illustrations and examples from the real world are provided to show key 

sources of poor quality data [71]. Figure 2.8 captures a typical health data lifecycle. Different 

health data types are listed at the left side in Figure 2.8. Data can be made up of EHR 

(electronic health records), insurance claims, diagnostic/clinical laboratory data, 

pharmaceutical events, genetic information, associated geospatial statistics and various other 

potentially relevant information (even if the association may seem weak). There are various 

parameters for different Vs in healthcare big data. For a patient population of one million 

people, the data volume for healthcare claims may have the order of several terabytes and, for 

data that is genomic; the order can be in petabytes. Data related to claims within a transactional 

form that is structured may stream in with a rate of around twenty claims each minute (the 

velocity). Various data that are unstructured such as clinical image data and EHR may have 

velocities and volumes that are even higher than they are for claims data. Furthermore, 

variability in velocity, volume and type of big data in healthcare can all add to the difficulty 

and complexity in assuring the veracity of data analytics.  
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Figure 2.8 The typical lifecycle for health data and the use of it within the domain of 

health care  [72] 

 

There is leveraging of that centralized repository in order for business-specific models of 

analysis to be run that make recommendations of insights that are actionable. A centralized 

system that is an example resulting in those kinds of insights is the Japanese national clinical 

database [72]. Often, the actionable insights result in changes and improvements in outcomes 

related to the integrity and quality of the delivery of healthcare. In the majority of cases, it can 

mean further data collection, improvements to regulatory mechanisms or, perhaps, moves 

towards greater convenience through improved codebooks and standards. Issues of quality may 
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arise at all stages from the collection of data, its integration and transformation and any 

inferences. There is also an increased chance that issues of data quality can be propagated and 

the quality deteriorating within the healthcare system that is controlled by feedback. The main 

sources of problems in data quality are as shown in Figure 2.8. Within the following section, 

there is discussion around the sources that contribute to low levels of veracity, as well as 

discussion of the consequences within the lifecycle of health data. The error sources that are 

discussed are not errors in statistics because of sampling. The focus taken is in relation to 

sources of errors that are non-sampling. It is difficult to quantify non-sampling errors within 

accuracy estimates and the -/+ kind of error margin.  

The following are the advantages of involving data science in health care. 

1. The early detection of disease 

Early disease detection is facilitated by big data, with the help given to clinical objectives 

associated with the achievement of better treatments and improved patient outcomes; the 

authors discovered there to be great promise in those areas in relation to disease and illness that 

are age-related. As well as early detection, help may also be given by big data analytics to the 

prevention of a broad range of fatal illnesses and the personalized monitoring and management 

of disease. It helps providers track behaviours that are healthy and aids patients in the 

monitoring of their particular conditions; with the need to address worldwide issues for health, 

such as cardiology, or diseases that are age-related, those capabilities hold a great deal of 

potential.  

2. Data quality and structure and its accessibility  

The suggestion from the literature is that big data facilitates rapid data capture and conversion 

of raw, unstructured, and primary data into information that is meaningful. There is a 

generation of new knowledge from the high amounts of useful data, and potential data reuse. 



49 
 

The transparency and accessibility for the data are increased by the open-source technology. 

Finally, there can be the maintenance of data quality using analytics to shed information that 

is unnecessary; around 57% of the relevant literature did mention that particular opportunity.  

3. Improved decision making  

Big data facilitates suitable utilization of medicine that is evidence-based and aids the providers 

of healthcare in the making of decisions that are better informed; in turn, that leads to 

improvement in care quality provided for patients. Examples of other kinds of application that 

have an impact upon the process of decision-making are patient profile analytics, genomic 

analytics and remote monitoring. Processes of decision-making may be optimized greatly 

through availability of information that is up-to-date and accurate, since the making of 

decisions is impacted significantly by generation of new treatment guidelines and practices 

within clinical research. If big data is allowed to influence the making of decisions, it will 

facilitate processes that are simpler and faster through offering support to human decision 

making or replacing it.  

4. Reduction in costs  

The suggestion from the literature is that decreasing costs of computing elements, such as 

processing and storage, results in decreasing costs of tasks that are data-intensive. Passing on 

such savings will result in benefits to a broad medicine spectrum and to the workforce within 

healthcare. There will be the realization of savings through treatments being more cost-

effective as well as more cost-effective monitoring to help bring about improved adherence to 

medication and to bring about reduction in expensive costs for transportation as the field of 

cardiology has experienced; this opportunity was mentioned within 36% of relevant literature. 
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5. Patient-centric care  

Increased technology use is slowly bringing about a change of direction for the sector of 

healthcare from disease-centric forms of care, to care that is more patient-centric; a significant 

role is played in that transformation by big data. Big data facilitates direct delivery of 

information to patients and empowers them in playing a more active role within their care. If 

suitable information is provided to patients, there is an impact on their decision-making in that 

their decisions can be better informed. Increased levels of communication amongst providers, 

patients and the wider community also impacts upon informed decisions; that opportunity was 

mentioned by around 29% of the relevant literature.  

6. Enhancement of personalized medicine  

With big data use, there can be translation of personalized medicine objectives into the clinical 

practice. The access to and the processing of huge volumes of data ought to enable the 

recording of disease risk within specific, personalized patient records; the aim of applications 

of big data is for that process to be made more efficient. Recently, there has been greater usage 

of machine learning as an effective and practical approach to the handling of big data, founded 

upon both historical databases and artificial techniques of intelligence. Therefore, there is 

therefore a research theme that is attractive for application of approaches of machine-learning 

to the resolving of the task; indeed, current challenges for biomedical data indicate that 

algorithms of machine-learning look set to play a significant role within the handling of big 

data.  
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Summary 

 

Hydrocephalus is a chronic and lifelong disease. It requires neurosurgical intervention and 

follow-up of these patients usually for life. In general, shunt failure continues to be a significant 

problem and threat to the patient’s health and wellbeing for the rest of their life. This chapter 

introduces the hydrocephalus disease, the ventriculoperitoneal shunt, and an overview of ICP 

signals. This chapter clarifies why hydrocephalus disease is series and why it need lifelong 

monitoring. It also demonstrated the current diagnose that followed by clinicians to follow up 

shunted patients. The real-world management of shunt malfunctions is more complicated than 

just that scenario. Patients often complain of subtle changes - behavioural change, change in 

sleep patterns, mild irritability. The chapter demonstrates the symptoms that patients may feel 

which are: irritability, nausea, fever, double vision, drowsiness, and weakness. In addition, the 

chapter clarifies different machine learning types which are supervised, unsupervised and 

reinforcement machine learning. Also, it demonstrates the following machine learning 

algorithms: Support Vector Machine Algorithm, Decision Tree algorithms and Ensemble 

Algorithm. The concept of big data and its impact on healthcare has been demonstrated. In 

addition, the chapter illustrates the typical lifecycle for health data and the use of it within the 

domain of health care. The health data lifecycle commences with various kinds of data, that 

hail from a variety of different sources, integrating together at a location that is centralized.  

Also, the benefits of involving data science in health care have been demonstrated which are: 

The early detection of disease, data quality and structure and its accessibility, Improved 

decision making, reduction in costs, patient-centric care and enhancement of personalized 

medicine. The next chapter is about different literature review about machine learning, 

different machine learning classifiers and different research work that related to hydrocephalus 

and machine learning. 
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3- Chapter 3 Literature Review 
 

 Introduction 

 

Machine learning (ML) has become an increasingly important science tool and is emerging as 

a potentially practice-changing analytical tool within healthcare. Machine learning is an 

application of Artificial Intelligence (AI). Machine learning is used to learn and improve from 

experience without being explicitly programmed automatically. Algorithms enable the 

software to improve performance over time as more data is obtained, this programming by 

input-output. Learning without any supervision requires identifying patterns in streams of 

inputs, whereas learning with adequate supervision involves classification and numerical 

regressions [73]. This chapter demonstrates different literature review and related work 

regrading machine learning techniques and its role in dealing with different diseases especially 

hydrocephalus disease. 

 The Role of Machine Learning Techniques in Diagnosing Cancer 

 

Precision medicine is an initial approach for disease prevention and treatment that considers 

personalised patient information that includes genomics, environment, and lifestyle [74]. 

Artificial intelligence has recently played a significant role in medicine and health to provide 

advanced methodologies for analysing, generating, and propagating heterogeneous data. 

However, machine learning offers the ability to join existing knowledge to discover 

relationships and create computational models that improve care and quality of life [75]. 

Machine learning is used to develop predictive models within various ground fields of big data 

analysis by interpreting data beyond the mechanical fitting of input data/matrix of numbers into 

a given model depending on different methods such as Support Vector Machines, Random 

Forests, and Logistic Regression. Cancer biology is illustrative of the interplay between 

unsupervised and supervised learning. It introduces the concept of combination to improve 
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predictive models, giving them plenty of learning algorithms that are targeted for particular 

problems [76]. Artificial Neural Networks (ANN) can provide accurate breast cancer diagnosis 

results when the data set is provided. ANN consists of different layers: the input layer, one or 

more hidden layer and output layer [77]. The data set is fed to the input layer which comprises 

of the age, Body mass index (BMI), the number of pregnancies, or post-menopausal, details of 

genetics analysis like GCPII C1561T, RFC1 G80Aand cSHMT C1420T, and different 

nutrients that are consumed regularly like folate, B2, B6 and B12. In this approach, the output 

variable is 0 if the patient does not have Cancer and one if the patient has Cancer. The data 

throw the hidden layers, and every layer takes the input from the previous layer, as the 

information moves between layers. It is multiplied by the random weight that is assigned to 

each of the connections that travel along. However, the individual weight indicates the strength 

of the relationship between layers as they are the crucial factors to convert the input layer to 

the output layer [78].  

Consequently, bios and activation functions are added to the hidden layers during the data's 

move. The sigmoid function is used to place any output results between zero and one. The input 

data flow through the layers and arrive at the output layer with a value between zero and one. 

Backpropagation uses the algorithm's feedback by comparing the output just produced with the 

output it was meant to produce. However, weights are modified according to the difference 

between them and rerunning the network [79]. The goal is to run the network repeatedly, 

adjusting the weights and getting closer to the right output. Gradient Descent is the process that 

adjusts the weights to have the lowest possible error in the output. Gradient descent is 

considered the backbone of the network and the most used learning algorithm. Gradient descent 

uses cost function that measures how far the guessed output is from the actual output as well 

as measuring the number of errors in the network. 
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Moreover, the number of network errors are typically expressed as the difference between the 

predicted value and the actual value [80]. We can plot the error against the connection weight 

for a given data as it changes with each iteration. To get the best neural network, minimise the 

cost function by choosing the correct connection weight that allows having the lowest point of 

the cost function. The cost function's derivative is to know the direction it needs to move in to 

get the least error value. Means –Squared Error function is used to measure the number of 

errors in models that vary from the correct weight and give the direction to move to the correct 

cost. 

Consequently, the learning rate estimates how much to move in the direction to get the least 

error value. This approach predicts whether the patient has Cancer or not [81]. Deep learning 

can provide a precise evaluation of intricate patterns observed in microscopic tissue images by 

using deep learning techniques that evaluate sets of digitised formalin-fixed paraffin-embedded 

hematoxylin-eosin stained tumour tissue microarray (TMA). Four hundred and twenty patients 

with colorectal Cancer were employed to provide samples for the research [82]. Using 

convolutional neural networks and Long Short-Term Memory networks, we validated the 

predictive power of the colorectal TMAs concerning the patient outcome. 

The univariate Cox proportional hazard regression analysis showed that the deep learning 

algorithm's prognostic accuracy on TMAs (hazard ratio 2.3; CI 95% 1.79-3.03) outperforms 

visual histological grading. The univariate Cox hazard regression performed by a certified 

pathologist on a whole slide level (hazard ratio 1.65; CI 95% 1.30-2.15) [83]. K top-scoring 

(K-TSP) algorithm is successfully used in many cancer microarray datasets because it is based 

on relative expression ordering of gene pairs. Performance can be improved by separating its 

practical feature selection component and linking it with a robust classifier like support vector 

machine (SVM) [84]. An approach was developed to combine the K-TSP ranking algorithm 

with other machine learning methods like SVM to provide a well-organised, multivariate 
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feature ranking of K-TSP. Consequently, SVM, combined with the K-TSP ranking algorithm, 

beats K-TSP and SVM alone in some Cancer prognosis datasets. Studies suggest that as a 

feature selector, it is better tuned to specific data characteristics such as correlations amongst 

informative genes, which is hypothetically remarkable as an alternative feature ranking method 

in pathway analysis [85]. 

 Classifying Different Types of Headache Using Machine Learning Techniques 

 

Migraine is a neurological disorder characterised by severe throbbing pain on one or both sides 

of the head. In some cases, head pain may be accompanied by other symptoms, including 

nausea, vomiting, and numbness or tingling in the face [86]. Patients may also experience 

sensitivity to light and sound and vision problems. Headache is widespread in the community; 

there are broad categories of headaches, primary headaches and secondary headaches. A 

primary headache is not related to any disorder, while a secondary headache is usually 

connected with other diseases. There are four main phases of migraine [87].  

Phase 1: The prodromal, where there is a trigger inside or outside the body. It causes the 

abnormal firing of neurons in the brain. It can begin hours or days before the actual migraine 

starts [88]. 

Phase 2: The aura phase includes temporary visual or sensory disturbance that usually strikes 

before other migraine symptoms. Abnormal neuronal firing leads to a wave of electrical 

hyperactivity that moves across the brain that processes the signal from the senses. Once the 

electrical waves stop, the aura goes away. However, not everyone experiences an aura when 

having a migraine; only 30% of migraine suffers experience aura [89]. 

Phase 3: The attach phase, also known as the headache phase. Headache phase occurs when 

the actual headache strikes and can last for hours, up to several days, the abnormal firing 

neurons activate the trigeminal nerve, which surrounds the blood vessels in the head. This nerve 
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is responsible for motor functions and sensation in the face [90]. The attach phase leads to the 

release of an inflammatory substance that causes the blood vessels to swell and increases blood 

flow around the brain. 

Consequently, this is the cause of throbbing pulsing pain most people experience during 

migraines. Pain receptors are then activated to send pain signals to different parts of the brain. 

However, untreated migraine can last up to 72 hours before the nervous system response finally 

calms it [91]. 

Phase 4: The postdrome or recovery phase where non-headache symptoms like fatigue, 

weakness and impaired concentration can continue for 1-2 days [92]. 

The authors in [93] presented a decision support system that provides headache diagnoses and 

follow-up for primary headache patients. The decision support system has three essential parts: 

a mobile application for the patients, a web application to visualise the collected data and an 

automated diagnosis module. However, decision trees were used to automate the headache 

diagnoses.  

Feature selection methods are commonly used to identify subsets of relevant features to 

facilitate models for classification. Election methods have been used in diffusion tensor images 

(DTIs). Many machine learning techniques have been used to automate the diagnosis of 

migraine. By using DTIs and questionnaire answers. 52 adults were employed to experiment. 

They were divided into three groups: 15 adults who focused on sporadic migraine, 19 adults 

subjects with chronic migraine, and overuse of medication. Eighteen adults focused on a 

magnetic resonance that relies on diffusion tensor to see white matter pathway integrity of the 

regions of interest involved in pain and emotion. 

The test results and the DTI images were used as input for different election algorithms like 

Gradient Tree Boosting, L1-based, Random Forest and Univariate, whereas, Support Vector 
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Machine (SVM), Boosting and Naïve Bayes were used to producing a migraine classification. 

A committee method was implemented to provide classification accuracy. Based on this 

approach, there was an increment of accuracy from 90 to 95 % using support vector machine 

classifier. The accuracy increased from 67 to 93% when using Naïve Bayes classifier, 93 to 

94% in boosting. The proposed system achieved 90% accuracy, performing a migraine 

diagnosis [94]. 

 Extracted Morphological Features of ICP  

 

Many methods have been proposed to measure and analyse ICP signals, including nonlinear 

methods and traditional spectral analysis. Nonlinear studies have discovered that ICP signals 

reveal the lowest sample values for entropy when pressure values are within the highest range 

[95]. Mentoring of ICP is a procedure that is common within NPH (normal pressure 

hydrocephalus); for NPH in the UK, several units do just lumbar puncture, and others do the 

test of a lumbar drain. With this study, NPH presence within ICP readings is investigated 

through WEKA classification software. The investigation employed fourteen ICP recordings 

from various patients who had undertaken the infusion test. 

Furthermore, the software can extract twenty morphological features from the pulsed ICP 

wave. Nine determined statistical functions and one hundred and eighty features were used as 

input within the classification. It facilitates the accessible computing and deep analysis of the 

intracranial pressure—the pre-processed and filtered data for extraction of the morphological 

parameters and features. Then, the trends of the parameters are provided. The software creates 

twenty output vectors at a rate of one for each of the calculated movements. So, there is a 

determination of twenty trends by each of the recordings. For each of those, there is a 

computation of nine statistical functions, i.e., the value of the mean, the variance, the minimum, 

the maximum, the kurtosis (the difference between the minimum and maximum), the first 
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quartile, the median (second quartile), the third quartile, and the skewness or interquartile range 

(third quartile – first quartile). Thus, the number of 180 (20 x 9) features was determined for 

each of the classified segments [96]. WEKA, the classification software that was utilised, has 

shown itself to be an essential, useful tool for analysing data sets of the real world. The analysis 

may be backward elimination (starting from a vector that contains all components and then 

prunes them down by worst through step by step). The analysis could be forward selection 

(commencing with a list that is empty and then inserting a new attribute at each step until there 

is the reaching of a threshold that has been pre-set) [97]. There was an achievement of correct 

classification of 85.7% in the results using three features. There was correct classification of 

88.89% of the patients who had not been affected by NPH. The results showed that 80% of the 

patients affected by NPH were correctly identified [96]. 

 The Monitoring of Intraparenchymal ICP of Hydrocephalus and Cerebrospinal 

Fluid  
 

There has been an analysis of ICP and PA (pulse amplitude) recordings for all day and night 

within a study that aimed at utilising PCA (principal component analysis) for the diagnosis of 

doubted Hydrocephalus. A software package is used to record the PA and ICP; artefacts are 

eliminated, and data is recorded on a minute-by-minute basis. Consequently, there is analysis 

in the study of median ICP and PA (pulse amplitude) recordings in the neurosurgical naïve 

patients; the patients had been undergoing a kind of elective monitoring of ICP for doubted 

disorders of CSF. Furthermore, there was a measurement of the correlation between PA and 

ICP during the recording period. The investigation used 198 patients distributed within six 

distinct diagnostic kinds of the group (in each, n = 21 to 47); PA determined 61.4% of that 

data, and ICP determined 33%. The study showed a significant difference in PA and ICP for 

diagnosing. The PA analysis managed IH (idiopathic hydrocephalus), Chiari/ syrinx and 

NPH/LOVA (long-standing over ventriculomegaly of the adult). The ICP, however, managed 
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low-pressure and IH. In total, there was the identification of 198 patients who had undergone 

first-time monitoring of ICP, during the period of study, who, before the neurosurgical 

intervention, was naïve. There was a splitting of the demographics of the population through 

diagnosis. The diagnoses were divided towards broad categories. There was diversity in the 

population concerning age, ranging from 16 years of age up to 85, with a good age group within 

each diagnostic subgroup. The study offers insights into hydrodynamic type disturbances 

within various diagnostic patient groups with CSF-type hydrodynamic disorders. The study 

highlights utility in analysing both recordings of median PA and ICP, stratified into recordings 

for the night and day times [98].  

Fifty-eight patients were employed in the research, of whom 53% had surgery following the 

ICP monitoring. The study illustrates that no links were found between ICP scores/ICP waves 

and the ventricular size symptoms or age. The diagnosis of shunt-dependent hydrocephalus 

relies on 1.patient’s histories 2. The results of clinical neurological examinations 3. 

Radiological assessment of the ventricular size. The basis for the indication of the preoperative 

kind of diagnostic ICP wave/monitoring of ICP, is through the observation of the issues. 

Clinicians should consider the following observations: 1. There is not a typical, shunt-

dependent type patient history; 2. No clear evidence for shunt-dependent hydrocephalus is 

provided by clinical neurological examination. 3. No clear evidence for shunt-dependent 

hydrocephalus is provided by the imaging done of the cerebral ventricles. 4. Other potential 

causes for the patient situation have not been revealed by non-invasive assessment. In that 

situation, there is diagnostic ICP monitoring, which includes both assessments of ICP and ICP 

waves, to help select a further treatment. This study aimed to characterise ICP/ICP waves 

within those children who are hydrocephalic and who had clinically improved after surgery. 

Patients who were managed in non-surgical ways were used as a reference. The hypothesis 

expressed was that the degree of ICP scores changed within the surgery group compared with 
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the patients used as a reference, and this could offer indirect information about the workings 

of shunts within paediatric hydrocephalus. Secondarily, the examination was undertaken of the 

ICP monitoring complication profile. The study gave proof that those children who had either 

non-communicating or communicating hydrocephalus, who had clinically improved following 

surgery, presented with mean ICP and wave amplitudes of ICP (MWA) that were elevated. The 

ICP wave amplitude levels had been lifted to a magnitude observed when there was a decrease 

to intracranial acquiescence. Therefore, the current observations could support the notion that 

improvement in intracranial compliance may be a mechanism that has importance for the 

working of shunts within paediatric hydrocephalus  [37]. 

 Use of Convolutional Neural Networks for ICP Waveform  

 

A study looked into how CNN (convolutional neural networks) can be used which extract 

features, automatically within waveform morphology, that is connected within intracranial 

hypertension. Any hypertension characteristic properties are recognised by the system, which 

provides an unbiased waveform analysis. However, the feature set is defined by the system. 

There has been the use of CNN for the operation of training for labelled data in the creation of 

filters; there is labelled data to produce filters that then generate outputs that can detect proper 

classification of hypertension. Furthermore, those outputs may be utilised for further analysis 

for concluding the data pattern. This study is retrospectively related to patients being treated 

for various conditions related to intracranial pressure including Chiari syndrome, idiopathic 

intracranial hypertension and patients with slit ventricle with clamped shunts. For this study, 

60 patients had been considered in total, and there was a continuous recording of the ECG 

(electrocardiogram) signals. The patient's record was distributed to normalised, average beats 

within segments of 30 seconds; each reading was given a labelling of low intracranial pressure 

or high intracranial pressure, i.e. over 15 mmHg. The aim of the study was the prediction of 
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the presence of ICP at increased levels. There is accuracy for the algorithm of 92.05% plus or 

minus 2.25% in detecting intracranial hypertension within the data set. 

This work's primary contribution is the provision of a framework for the detection of 

hypertension consisting of two key components, i.e., a convolutional type neural network and 

an auto encoder. An auto encoder is a type of unsupervised learning utilising neural networks 

to generate encoded data representations; if utilised as a pre-training kind of method, the auto 

encoder has been shown as leading to improvement in performance in deep networks. That 

type of pre-training comprises the auto encoder’s training upon beat samples followed by the 

use of the layers generated for initialisation of a neural network, which facilitates its 

performance of supervised learning upon those encoded representations. The model's 

conducting was done with three layers, i.e. a dense type of output layer and two convolutional 

layers that each consisted of ten filters of size 5. The study determined the layer parameter 

combination for minimisation of training loss and discovered that there was little consequence 

for the accuracy of detection from a sizeable number of filters. The experiments have results 

that indicate deep neural networks' ability to detect intracranial hypertension within patients 

accurately with waveform morphology. Amongst the methods of deep learning, CNNs offer an 

ability unique in the extraction of features hailing from signals in translationally invariant ways, 

which allows us to analyse those data objectively. Whilst deep learning can generate complex 

functions that are fitting, even though the results have promise, a full evaluation of the 

performance of the model calls for a more extensive set of tests. Testing upon a set that is 

independent fails to ensure there is uncorrelated data and so there is a need for further analyses 

to understand to what degree the network is generalisable. Neural networks and CNN 

(convolutional neural networks) specifically have been shown as useful about the learning 

properties for ICP beat waveforms to detect intracranial hypertension presence. Methods for 

the characterisation of hypertension in a manner that is non-invasive have been researched 
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extensively. However, they remain to be realised; the anticipation from this paper is that the 

model of deep learning described herein represents a significant stepping stone in achieving 

that goal [99]. 

 The System of Computer-Aided Diagnosis for Patients with Hydrocephalus   

 

NPH (normal pressure hydrocephalus) is a reversible type of dementia, one of just a few of 

such types. Because of their versatility and low cost, CT (computed tomography) scans have 

been utilised for many years to help with reversible kinds of dementia and help diagnose, for 

example, NPH, and other kinds of intracerebral anomalies. However, no adequate and well-

defined protocols currently exist, for the analyses in the setting to scan the subarachnoid space 

volumes and the ventricular, cerebral mass. In the NPH setting, the Evans ratio approximates 

the ratio of the ventricle to the ventricular, cerebral mass and the volumes of subarachnoid 

space. It has been proposed to use the Evans ratio for approximating the ratio of the ventricle 

to the brain volume using just one two-dimensional scan slice; however, this is not sufficiently 

robust. The proposal within this study is to use an automated kind of method for calculating 

brain volumes so that there is, from the standpoint of radiology, better NPH recognition. Firstly, 

the method involves the alignment of the 3D volume of the subject CT to a space that is 

common by way of an affine transformation. A random kind of forest classifier is then used to 

mask the relevant types of tissue. The brain volume is partitioned by a 3D method of 

morphological segmentation and this, in turn, is utilised for the training of machine learning 

methods for the classification of subjects into NPH versus non-NPH based upon the volumetric 

information. Compared to the Evans ratio's thresholding method, there is increased sensitivity 

with the proposed algorithm. The SVM (support vector machine) and the random forest were 

utilised for training the volumetric information acquired from the algorithm for segmentation. 

As well as the ventricle, cerebral mass, and subarachnoid space, the classifiers were trained for 

brain size. The findings showed that the volumes of ventricles were more significant for NPH 
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whilst there is mostly consistency for subarachnoid space in both NPH and non-NPH. For the 

ages of 69.5 plus or minus 4.8 years, ventricular volumes are stable for standard cases with 

average MRI (magnetic resonance image) derived for ventricular volumes [100]. 

Summary  

 

The integration of artificial intelligence (AI) of tools and techniques into a digital healthcare 

system becomes an effective strategy to reduce healthcare costs, support clinical decision-

making and manage chronic disease. 

It is noticeable that there are preliminary studies that include machine learning techniques and 

their applications to analyse ICP readings for hydrocephalus follow up. There are many 

research studies about diagnosing the hydrocephalus disease using machine learning 

classifiers. This chapter demonstrates research studies to find the relation between ICP 

waveform and diagnosing hydrocephalus. It illustrates the role of machine learning in 

diagnosing headache. Headache is the main characteristic for hydrocephalus as patients feels 

in headache pain most of the times. Also, it demonstrates the role of machine learning to 

diagnose chronic diseases like cancer.  

In this chapter, a comprehensive literature review is produced that motivates this research to 

go further and improve the currently available methods. This chapter achieve the research 

objective, which provide with a proper literature review about hydrocephalus, and the role of 

different types of machine learning in diagnosing and managing hydrocephalus disease. The 

chapter clarifies other types of machine learning like convolutional Neural Networks to analyse 

for ICP Waveform. In addition, the chapter demonstrates a study of monitoring of 

intraparenchymal ICP of hydrocephalus and cerebrospinal fluid. Another study clarifies the 

extracted morphological features of ICP. 

 Next chapter demonstrates the research framework. This chapter shows the flow of the whole 

work which employs the machine learning techniques to follow up shunted patients. In 
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addition, a questionnaire of testing the user acceptance of using mobile health applications has 

been conducted. 
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4- Chapter 4:  Research Framework 
 

 Introduction 

 

As mentioned before the research goal is to employ the machine learning techniques to monitor 

and follow up hydrocephalus patients with implanted shunt. This chapter describes the research 

methodology layout including the steps of data collection including ICP analysis and collecting 

the patient’s feedback from the developed HydroApp, automation of the clinician’s way to 

follow up shunted patients. At the end of the chapter, it demonstrates the predictive models that 

used to produce the required risk assessments to monitor shunted patients.  

 Questionnaire Analysis 

 

Studies shows that UK National Health Service (NHS) estimated that 4 out of 10 shunts would 

malfunction in the first year after shunt implant. The overall shunt failure rate was 46.3%, and 

most of the shunt revisions take place within the first few months after shunt placement.  

Hydrocephalus can arise at any age, even before birth. Some statistical estimations indicate 

that one out of every five hundred children are affected by hydrocephalus, and this rate is most 

likely on the rise.  

 The following data Analysis investigates the user's acceptance of healthcare technology, it 

discusses patient monitoring using M-health applications, and demonstrates an analysis for a 

questionnaire, which investigates the user's acceptance of healthcare technology. The 

development of IOS System (HydroApp) is illustrated in chapter 5.  

The following figures (4.1 – 4.6) demonstrates the analysis of the questionnaire using SPSS 

software 
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Figure 4.1 Analysing the relationship between hydrocephalus type and the patient's age. 

 

The bar graph in Figure 4.1 illustrates the relationship between the patient's age and the type 

of hydrocephalus he has. Patients who were under 17 had Post-haemorrhagic (SAH, IVH) type, 

Post-infection type, and normal pressure hydrocephalus shared the frequency of one patient. 

However, most patients who have normal pressure hydrocephalus (NPH) were between 45 and 

74 years old. Consequently, normal pressure type was a higher frequency than other types of 

hydrocephalus in age 45 to 55, while four patients were aged between 18 and 24 years old when 

they had NPH. 

As for the tumour-related type, most patients were aged between 45 and 54 years old when 

they had the tumour related type, and four patients were between 35 and 44 years old. Patients 

who were 25 to 34 and who were older than 75 years old shared the frequency of one patient. 

The Post-haemorrhagic (SAH, IVH) type had a rate of one patient in most age categories as 

well as the Post-infection type. On the other hand, only three patients had Spine bifida type at 

the age of 45 to 54 years old. For the Idiopathic intracranial hypertension (IIH) type, patients 

were between 35 and 54 years old with the frequency of five patients. Patients who had other 

types of hydrocephalus had a high rate in different age categories. For example, seven patients 
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had other types when they were between 35 to and years old, while six patients were aged 45 

to 54 years old. Overall, the highest frequencies were distributed between NPH and the other 

types of hydrocephalus disease. Mainly NPH patients were aged between 55 and 74 years old. 

Tumour-related hydrocephalus type had the second-highest frequency for patients who were 

aged between 35 and 55 years old. Figure 4.2 illustrates the relationship between the 

hydrocephalus disease type and the patient's age when he had the first shunt. 

 

Figure 4.2 Analysing the relationship between hydrocephalus type and the patient's age 

at the first shunt 

The chart shows information about the patient's age when they had their first shunt and the type 

of hydrocephalus. According to the bar chart, most patients had their first shunt when they were 

under 12. Nine patients who had NPH had the first shunt operation when they were under 12 

years old; however, it was noticed that six (NPH) patients were between 55 and 64 years old 

when they had the first shunt. Five patients were between 65 and 74 years old when they had 

the first shunt. Only four patients had NPH when they were between 45 and 54 years old. The 

least frequency was for patients who were older than 75 and had NPH.  The age categories 18 

-24 and older than 75 years old shared the frequency of one patient with a tumour related 

hydrocephalus. As for the other age categories, the rate is more in the age category 25 to 34 
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years old, which is six tumour related hydrocephalus patients, while four patients were between 

55 and 64 years old when they had their first shunt. The following age categories 18 to 24, 35 

to 44 and 45 to 54 years old shared the frequency of one patient who had Spina bifida when 

they had their first shunt. However, four patients who had Post-haemorrhagic (SAH, IVH) type 

were under twelve years old. We can see from the chart that one patient with idiopathic 

intracranial hypertension (IIH) was under 12 and one patient was 12 to 17 years old and one 

patient was between 35 and 44 years old at the first shunt operation. Two patients who had 

Idiopathic intracranial hypertension (IIH) were 45 to 54 years old at the first shunt. Lastly, 

three patients who had Post-infection were under 12 years old at the first shunt, while the other 

three patients were between 45 and 64 years old. 

Overall, most patients who had NPH and other types of hydrocephalus had the first shunt when 

they were children. Consequently, NPH is a common hydrocephalus type in childhood. There 

are some other types of hydrocephalus that have frequency in in most age categories. Therefore, 

patients who had different types of hydrocephalus were mostly under 12 years old when they 

had their first shunt. However, patients with Spina bifida type were the lowest frequency. 

 

Figure 4.3 Analysing the relationship the patient's age and his age when he had the first 

shunt 
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The bar graph in Figure 4.3 illustrates the relationship between the patient's age and age of the 

first shunt operation. Around 6.5 % of patients who were under 12 years old, had the first shunt 

operation. However, one patient who was between 12 and 17 years old had the first shunt when 

he was under 12 years old. The age categories 18 to 24 and 25 to 25 to 34, shared the same 

frequency, which is seven patients, which is 22.6%. Six patients aged 45 to 54 years old had 

the first shunt when they were children under 12 years old. 

Only three patients were between 12 and 17 years old and had the shunt when they were under 

12 years old. However, two patients were between 45 and 54 years old and had the first shunt 

when they were 18 to 24 years old. Following that, 42.9% of patients who were 45 to 54 had 

the operation when they were 25 to 34 years old. However, five patients had their shunt at age 

45 to 54 years old. Most patients who were aged between 55 and 64 years old, had their first 

shunt at the same age represented in the percentage of 72.7%. Six patients were between 45 

and 54 years old. Patients who had hydrocephalus disease in the adulthood, had the shunt at 

the same age or a few years before. Based on the previous analysis, patients who had the disease 

in middle age had the first shunt operation at an early age of their life. It has been found that 

patients who had their first shunt operation when they were children had NPH, which means 

that patients with NPH had more shunt operations than the other types. Most patients with a 

tumour related type were between 25 and 34 years old and had the first shunt at the same age 

or under 12 years old. 

Consequently, patients with a tumour related type had a high number of shunt operations. On 

the other hand, patients who were between 45 and 54 year old had had different types of 

hydrocephalus disease and the first shunt operation usually was at the same age. Patients aged 

between 55 and 64 years old, were diagnosed with NPH or a tumour related or post-infection 

type and started to have the shunt operations at the same age or ten years before. Moreover, 
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patients who had NPH and tumour related had a more significant number of shunt operations 

than the other hydrocephalus types. 

 

Figure 4.4 Analysing how frequently patients would like to visit the clinic 

 

Figure 4.4  illustrates how frequently the patients would like to be seen in the clinic. Patients 

who wanted to be seen every three months or every two years shared a percentage of 8%. 22.7% 

preferred to be seen every six months. Most patients would like to visit the clinic once a year 

while 23.9 % of patients did not prefer regular visits; they would like to come to the clinic 

when a problem happens. Patients would like to decrease the number of regular clinic 

appointments despite having the need to be followed up continuously. Figure 4.5 illustrates 

the biggest worries for patients about their shunt. The graph shows that 75% of patients were 

worried about the shunt blockage or the shunt not functioning well. Moreover, 6.8% of patients 

were concerned about a headache that the shunt may cause for different reasons. 4.5% of 

patients were worried about the infection that can happen because of the shunt. However, 

patients who did not have concerns shared the same percentage as patients who were afraid of 

the shunt infection. Shunt blockage is the primary concern that may affect their health. As a 
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result, patients have to have a regular follow-up to avoid the shunt blockage and discover any 

infections early then avoid pain and headache that may happen to the patient.   

 

Figure 4.5 Analysing the biggest worries of shunted patients. 

 

 

Figure 4.6 Analysing how often patients would like to be reviewed using smartphone 

technology 

Figure 4.6 shows how patients would like to be reviewed in case of using smart technology to 

record their pain events. 10.2 % of patients prefer to be reviewed monthly. 11.4 % of patients 

wanted to be reviewed every three months to ensure the functionality of their shunt and treating 

any series of pain events. Most patients preferred to be reviewed every six months, which 

represented 31.8%.Consequently, 23.9 % of patients wanted to be reviewed yearly. Moreover, 

only 4.5 % of patients preferred to be reviewed and discussed every two years. On the other 
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hand, 18.2 % of patients were not interested in this type of monitoring.  Overall, the graph 

percentages indicate that hydrocephalus patients prefer to be monitored electronically using 

smartphone technology. Monitoring patients electronically will save their time, and at the same 

time, they feel comfortable and safe because they can record any pain episodes at any time.  

Healthcare technology has a significant impact on patients’ lives; it allows patients to record 

their daily health status and feel safe that they will be called when something serious is around. 

On the other hand, clinicians have time and flexibility to check their patient's records. The 

analysis showed that patients are ready to use health care technology, especially with a chronic 

disease like hydrocephalus. However, patients who have normal pressure hydrocephalus, 

usually implant the shunt within their childhood. Moreover, hydrocephalus disease needs to be 

followed regularly to protect the patient from the shunt blockage or infections that the shunt 

may cause it. Overall, using healthcare technology to follow up and specify risk assessment will 

improve patient experience, safety, and quality of life utilizing proper prognosis together with 

lowering the potential for the occurrence of medical errors. As a result, using healthcare 

technology has a significant impact on NHS, patients, and clinicians.  

Based on the analysis of the user acceptance of M- health, which is very high. It was a strong 

motivation to carry on this research. 

The next section shows the implemented methodology to monitor shunted patients using 

machine learning techniques, ICP analysis and the use of M-health technology. 
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 Methodology Flow Chart  

 

This research is going through several procedures including data analysis and getting it ready 

for machine learning classifiers. In addition, HydrApp system has been developed to record 

the patient’s feedback. 

The following Figure 4.7 shows the flowchart of the research framework. The following 

sections is clarifying each step. 

 

Figure 4.7 Methodology research framework 
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 ICP Signal Analysis 

 

In this stage, the ICP signals are converted from signals to numeric to be ready as an input for 

the chosen classifiers. It is also explaining feature extraction and how it is used for preparing 

the ICP data set for the purpose of selecting a ready to use ICP data set. 

The proposed methodology framework and experimental set-up for ICP signals have also been 

presented in this section. It discusses the data preparation process. In this scenario, this step 

focuses on addressing the missing values, oversampling, identifying outliers, and data 

normalisation technique. The ICP signals are processed and converted to numeric to be a 

sufficient input to the chosen machine learning classifiers. The ICP signals are converted to 

eight blocks of averages based on the clinician’s recommendations that allow them to 

effectively monitor shunted patients. The Dataset consist of analysed ICP signals and the 

patient’s feedback that extracted from HydrpApp system which is the next step of the research 

framework. 

 Develop HydroApp System for Patient’s Feedback 

 

Patients with long-term conditions such as hydrocephalus are usually asked to complete 

traditional paper-based diaries and regularly, which enables specialists to monitor and evaluate 

their status. However, within a publicly funded healthcare system such as the UK's National 

Health Service (NHS), long-term follow-up in neurology clinics appears not to be possible for 

all shunted patients due to the continued decline in funding over the past decade. Consequently, 

ensuring the continuity of care for shunted patients requires a switch from a classical model of 

care to a new model, in which shunted patients are encouraged to track their conditions and to 

play a vital role in managing their care. In this context, a questionnaire was conducted to 

investigate the user's acceptance of healthcare technology and to test the patient's ability to 

transfer from the traditional follow-up method to the use of mobile health applications. Eighty-
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eight hydrocephalus patients have been picked randomly and asked to complete the 

questionnaire. Most patients were adults within different age categories and have the shunt.  

The graphs were extracted using SPSS, which is a statistical software used in various sciences 

like the business world, social sciences and natural sciences [19–24]. The following analysis 

demonstrates how far patients can accept the idea of electronic follow–up by using m-Health 

applications. 

 Flowcharts to Automate the Patient’s Follow-up 

 

This section presents the automation of clinical approach in following up hydrocephalus 

patients. 

The flow charts show the automation of the process of combining the signs and the ICP 

readings by taking the right decision based on the given scenario from clinicians. Clinicians 

can take their decisions by relying on the ICP readings for the patient and the symptoms that 

he feels at this time. Figure 4.8 show a flowchart that automates the current method of 

monitoring shunted patients. Detailed flowcharts is demonstrated in chapter 4 for clearer 

vision. 
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Figure 4.8 Flowchart to automate the monitoring procedure for shunted patients 
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 Predictive Models and Results  

 

This step demonstrates the performance metrics and simulation results. In addition, it 

demonstrates the analysis for the various machine-learning models that have been selected in 

this research work. It elaborates more in further discussion about each of the used classifier 

based on the performance evaluation metric techniques (Sensitivity, Specificity, precision, 

accuracy). A Computation of the confusion matrix was also performed in this step.  

Summary 

 

There is potential for machine learning and the employment of advanced forms of analytics for 

advancing the manner in which technology is leveraged by providers in the making of more 

informed types of clinical decision. However, the huge volumes of data that are generated each 

year in the healthcare field have to be compartmentalized and organized in such a way that it 

enables there to be transparency and universal accessibility between different healthcare 

organizations. This chapter demonstrates the research workflow and clarifies the steps that 

employs different machine learning techniques achieve high results to monitor shunted 

patients. 

It is expected that there will be further studies showing consideration for patient characteristics 

through use of customized forms of medicine and diagnostics that are computer aided. It is 

crucial to have a data set that contains ICP readings for hydrocephalus patients to improve the 

currently available methods. The next chapter will include a discussion about the available data 

set and data features extraction and selection. HydroApp system is demonstrated to retrieve the 

other features for the study to start developing our dataset, which contains many properties and 

features to help in achieving the required result. 
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5- Chapter 5: The Intracranial Pressure Dataset  
 

 Introduction 

 

Intracranial pressure (ICP) could be an indicator of a neurological disorder known as 

hydrocephalus, which is currently managed by the shunting procedure. This chapter provides 

an overview of ICP readings interpretation from a medical point of view concerning Alder Hey 

Children's Hospital NHS Foundation Trust in Liverpool, UK. Moreover, it helps to express ICP 

readings using an advanced data science approach and prepares for implementing intelligent 

strategies as an alternative pathway to improve the use of ICP within the current medical 

system. It is assumed that would help specialists and non-specialists in an informative way to 

comprehend ICP readings. It also allows combining ICP readings with other parameters to 

derive a proper action concerning patients with hydrocephalus. 

A Swift programming language has been used for the IOS platform to implement the 

application. Users can use the HydroApp as long as the internet connection is provided. Users 

can use the HydroApp to record their pain episodes. This chapter demonstrates the dataset 

developed in this research. 

 Selection and Extraction Features 

 

The general approach to machine learning, which captures many existing learning algorithms, 

is the modelling approach allowing systems to automatically enhance their performance of a 

task by spotting relevant data. Machine learning techniques are based on recognizing patterns 

in data by discovering ways to categorize a required subject based on the existing variances 

between issues [101]. The process of reducing the number of variables and features is called 

dimensionality reduction. Dimensionality reduction can be divided into subcategories which 

are feature selection and feature extraction. There are many advantages for feature selection 
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like shortening the training time, more accessible to interpret the model, reduce the overfitting 

and improve accuracy [102]. There are many types of feature selection; forward selection, 

backward elimination (recursive feature elimination) and stepwise selection. Forward selection 

can identify the best variables (e.g., based on model accuracy). Forward selection can add the 

next best variable into the model and so on until some predefined criteria are satisfied. Back 

elimination can start with all variables. Backward elimination drops the least useful variable 

(e.g., based on the smallest drop in model accuracy) and so on until some predefined criteria 

are satisfied. Stepwise selection is similar to the forward selection process, but a variable can 

also be dropped if it has been deemed as not useful any more after a certain number of steps. 

 ICP Signals Feature Selection Methodology 

 

Compared to other topics in computer vision, little formal or analytical work has been 

published to guide the creation of ground truth data [103]. There is some guidance  

provided by the machine learning community for measuring the quality of ground truth data 

used for training and test data sets, but this tends to revolve only around the size of the data set 

[104]. To address this issue, we propose a novel method to assess ground truth quality, through 

calculating its confidence and consistency levels to measure its accuracy and variability, 

respectively. Ideally, Hydrocephalus patients should be ICP monitored continuously to confirm 

that ICP remains within the normal range. The raw data were obtained using the Raumedic 

device, which is a portable ICP device. A patient's feedback is extracted from the HydroApp, 

which includes the current symptoms and inter current illnesses. Algorithm 1  presents the 

process that is used to explain the methodology that followed in the ICP feature selection. The 

data set includes ICP signals, collected from patients who are shunt dependent. However, the 

patient's feedback from the HydroApp is also used as an input for the classification algorithms. 

Matlab software is used to analyse the ICP signals. Figure 5.1 shows the flow chart of the 

signal-processing phase. 
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Figure 5.1 Methodology of features selection of ICP signals 

 

5.2.1.1 Data Cleansing 

 

Missing data can happen for several reasons, such as unexpected difficulty in getting some vital 

readings. Missing values or null values are common in the medical data set. Data cleansing 

tasks are performed to reduce noise like gaps or empty values as well as increasing the 

consistency of the data. Some ICP signals have meaningless readings, which means null values 

at different times, as highlighted in Figure 5.2.The algorithm eliminates all the null values 

from the ICP readings to prepare the data for the next step by having a consistent and 

continuous stream of input data to our model.  
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Figure 5.2 ICP signals with empty readings 

 

5.2.1.2 Converting the ICP Signals from Seconds to Minutes 

 

Usually, clinicians only consider a change in ICP signal when it is seen continuously for several 

minutes. However, the Raumedic ICP device registers the signals in seconds. Consequently, to 

avoid this problem, the algorithm converts the timeline from seconds to minutes. Figure 5.3 

shows the ICP signals in minutes, so it is easier to detect the concerning signals that indicate 

the patient's case. 

 

 

Figure 5.3 ICP signals in minutes 
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5.2.1.3 Data Grouping 

 

Based on the expert's recommendations, the algorithm divides the timeline into 15 minutes 

blocks because doctors consider at least 15-30 minutes of continuous high or low ICP readings 

to be significant. However, they keep observing the patient for at least two hours to evaluate 

any ongoing shunt issue better. The multiple chunks of data are grouped by the ICP number 

like ICP1, ICP 2 …, ICP8. As seen in Algorithm 1, the sums of every 15 minutes been 

processed to produce eight columns of 15 minutes of ICP readings for two hours which 

indicates eight columns of 15 minutes blocks of ICP readings. 

Let us assume that X is a matrix of t and r where t is the time in minutes and r is the ICP 

readings, r is the number of ICP blocks. The algorithms will group the reading in 15 minutes’ 

blocks. Moreover, the algorithm defines the average pressure as ICP readings between 0 and 

20 if 0<=r<=20 where a>=3. 

Algorithm 1: Data Preparing 

𝐼𝑛𝑡𝑖𝑡𝑖𝑙𝑎𝑠𝑒 

𝑋 ←  𝑖𝑛𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 

𝑌 ←  𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 

𝑡 ←  𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 

𝑟 ←  𝐼𝐶𝑃 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 

𝑅𝑒𝑎𝑑 𝑛𝑒𝑤 𝑓𝑖𝑙𝑒 𝑎𝑠 

𝑥 ←  

(

 
 
 
 

 𝑡1   𝑟1
𝑡2   𝑟2
𝑡3   𝑟3
.       .
.       .
.      .
𝑡𝑛    𝑟𝑛)

 
 
 
 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

∀𝑋 𝑖𝑓 𝐿𝑒𝑛𝑔𝑡ℎ 𝑋 > = 7200 𝑡ℎ𝑒𝑛 

𝐷𝑟𝑜𝑝 𝑒𝑚𝑝𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝑋 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑋 𝑡𝑜 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 
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∀𝑟 𝑖𝑛 𝑋 

𝐹𝑖𝑛𝑑 𝑐𝑜𝑛𝑠𝑖𝑔𝑎𝑡𝑖𝑣𝑒 3 𝑜𝑟 𝑎𝑏𝑙𝑜𝑣𝑒 𝑟 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

𝑟′ ←  1/𝑎∑ rn        Where     r < 0 , a ≥ 3

𝑎

𝑛=1

 

𝑟′ ←  1/𝑎∑ rn        Where     0 ≤  r ≤ 20 , a ≥ 3

𝑎

𝑛=1

 

𝑟′ ←  1/𝑎∑ rn        Where     r > 20 , a ≥ 3

𝑎

𝑛=1

 

𝑌 ←  

(

 
 
 

𝑟′1
𝑟′2
𝑟′3
.
.
𝑟′𝑛)

 
 
 

 

𝑅𝑒𝑠ℎ𝑎𝑝𝑒 𝑌 𝑖𝑛𝑡𝑜 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 8 

 

𝑌 =  (

𝑟′1,1 𝑟′1,2 …𝑟′1,8
𝑟′2,1 𝑟′2,2 …𝑟′2,8

....

𝑟′𝑛,1 𝑟′𝑛,2 …𝑟′𝑛,8

) 

 

𝐸𝑛𝑑 𝐹𝑜𝑟 

𝐸𝑙𝑠𝑒 

𝑁𝑜 𝐴𝑐𝑡𝑖𝑜𝑛 

𝐸𝑛𝑑 𝐼𝑓 

𝐸𝑛𝑑 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 

 

5.2.1.4 High -Frequency Noise 

 

Figure 5.4 shows ICP signals with individual values of high ICP readings. High individual 

values happen when the patient has a sudden movement or response like yelling, crying, being 

extremely happy and many other examples of human reactions and does not affect the patient 

clinically. The red arrow represents high ICP readings. The figure shows that the patient had 

an ICP reading of 22 cmH2O at a specific time. 
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On the other hand, the graph shows a normal ICP signal throughout the baseline. The ICP data 

preparing algorithm checks for high-frequency noise which is higher than 20cmH2O for a short 

period. Then the algorithm removes it. 

 

Figure 5.4 Example of high-frequency noise 

 

5.2.1.5 Low-Frequency Noise 

 

Usually, doctors do not consider the low-frequency signals which occur once or twice at 

different times. The algorithm in Figure 5.5 removes the low-frequency noise from the ICP 

readings. Figure 5.5 shows some low-frequency noise that will be eliminated to prepare the 

data for the analysis. The red arrow indicates the low-frequency noise in the graph. The 

algorithm uses the same strategy for disposing of the high and low-frequency noise.  

 

Figure 5.5 Example of low-frequency noise 
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5.2.1.6 Converting the ICP ≥ 20 From Signals to Numeric Data.  

 

Figure 5.6 shows more than three consecutive readings which are higher than 20; the algorithm 

in Algorithm 1  detects at least three peaks in a row and finds the average for these readings. 

This process will convert the data from signals to understandable numeric that enables the 

clinicians to read the ICP readings in an efficient way with minimum time consuming. 

 

Figure 5.6 More than three consecutive readings of>20 

 

5.2.1.7 Converting the ICP Readings < 20 From Signals to Numeric Data.  

 

For over drainage cases, doctors consider at least three continuous peaks of ICP signals which 

are under 0 cmH2O. Figure 5.7 shows that the following readings have at least three peaks 

under 0 cmH2O within 15 minutes. The red arrow shows three peaks under 0 cmH2O. 

 

Figure 5.7 Readings have at least three peaks under 0 cmH2O within 15 minutes. 
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5.2.1.8 Calculating the Average for ICP Groups 

 

For every group, if there are three peak readings, we have to calculate the average of the 

readings to have one value to more easily estimate the patient’s status within a particular time 

as well as condensing data to a usable state for training and testing. 

5.2.1.9 Calculating the Average for Previous Averages 

 

This step unifies the averages for all the ICP signals to generate a new data set for all previous 

readings. Table 5.1 and Table 5.2 shows the normalized data set that is ready for training and 

testing. 

5.2.1.10 Combining 8-time Blocks to Have 2-Hour ICP Readings. 

 

Algorithm 1 demonstrates the process used to analyse the data set. Based on the clinician's 

recommendations, the patient’s case is considered as having high or low ICP signal when there 

are at least three high /low readings within fifteen minutes. Continued ICP monitoring 

establishes whether it is high /low-frequency noise. Table 5.1 shows a sample data of combined 

eight blocks of fifteen-minute averages to compose two hours for ICP signals with calculated 

averages. Whereas Table 5.2 demonstrates a sample of the data input obtained from the 

HydroApp system. 

 

Table 5.1 ICP readings in 15 minutes blocks 

ICP1 ICP2 ICP3 ICP4 ICP5 ICP6 ICP7 ICP8 

0.891389 1.177937 2.905407 2.272444 2.411444 3.93763 4.632704 2.264963 

3.093296 4.024111 3.853111 4.473778 4.802704 4.832333 4.976778 7.501629 

3.955852 5.925296 7.967556 7.006889 8.152 5.642259 8.289296 10.62674 

14.48144 19.81993 22.50759 18.80355 18.25744 15.78385 11.42337 9.244111 

12.0233 12.46907 18.16535 18.15718 17.59496 15.32167 14.57405 9.847704 

 

Table 5.2 Sample of the input data 
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Symptoms 

 Shunt Function 

Intercurrent 

illness 

None Yes Yes 

Irritability No No 

Drowsiness Yes Yes 

Drowsiness Yes No 

Drowsiness No No 

Nausea Yes Yes 

Nausea No Yes 

Nausea No No 

Double vision Yes Yes 

Double vision No Yes 

Double vision No No 

Fever Yes Yes 

Fever No Yes 

Fever No No 

Weakness Yes Yes 

Weakness No No 

 

 Development of HydroApp 

 

The phone market is one of the broadest and most competitive sectors in the modern time. Phone 

companies try to attract and build a strong relationship with customers by delivering better 

service and better quality [105][106]. As a result of the growth of the phone market and social 

media usage, there are ever-increasing numbers of mobile owners downloading applications for 

every aspect of life [107]. Therefore, smartphones support many sectors in the economy, such 

as  business, transportation, and especially health care [108][109].  

Mobile–health applications (M-health applications) have an increasingly integral role in 

people's lives. Mobile health is part of the broader "eHealth" global movement, which is using 

technology such as computers, mobile phones, mobile health devices and mobile health apps to 

monitor patients and provide them with health services and the necessary lifestyle advice. A 

study in 2014 that compared the average usage of health applications with the previous year 

showed that 19% of mobile owners downloaded health apps while 27% of users looked for 

enhancement of health-related motivation (fitness applications). This study also showed that 

downloading apps for environmental monitoring and tracking increased by 38% [110]. Both 
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mobile health and eHealth providers gather information required to improve healthcare 

outcomes.  

M-health applications have the potential to reduce the cost to the NHS by reducing the number 

of regular follow-up appointments as well as phone calls. M-health may change the need for 

regular follow–ups. This experience provides patients and clinicians mobile, personalized 

records for every patient.  

More than 15 million people in England have a long-term health condition [111]. These people 

use a large proportion of health care resources. Patients with long-term conditions such as 

hydrocephalus are often asked to complete paper-based diaries and outcome measure forms 

regularly, to enable specialists to monitor and evaluate their status. Ensuring long-term 

continuity of care for shunted patients requires a switch from a classical model of care to a new 

model, in which shunted patients are encouraged to track their conditions and to play a vital role 

in managing their care. 

There are many types of research trying to reduce medical costs by automating the diagnosis of 

disease, especially chronic diseases. Research in machine learning and health care makes it 

possible to drive innovative medical practice using the enormous volume of data (evidence). 

Moreover, physicians, nurses and clinical staff may be helped to make decisions and decrease 

the incidence of medical errors by analysing all available data; presenting it clearly and 

suggesting a course of action [112]. 

Over the last few years, we have started to work with our partners in Alder Hey Children's 

Hospital NHS Foundation Trust to improve the monitoring of patients with hydrocephalus using 

intelligent mobile applications. We have successfully developed the HydroApp system for 

remote control of patients with hydrocephalus, which is currently in the process of feasibility 

testing in Alder Hey Hospital. The HydroApp allows patients to send their diaries and outcome 
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measures anytime/anywhere. It enables specialists to monitor and evaluate their status. We have 

also investigated patients' acceptance of using such technology to manage their conditions.  

Enormous interest was found amongst patients with hydrocephalus to adopt the HydroApp. The 

developed system is a web-based system. HydroApp can be used to manage, communicate and 

provide the required follow-up for patients with hydrocephalus +/- headache. This App gives 

both patients and clinicians the ability to keep track of pain. HydroApp system allows patients 

to record all the symptoms related to headache. Questions related to the patient health need to 

be answered by the patients, which can be used with the recorded data from the system to help 

the clinician to make the decision, based on the graphical representation for the system analysed 

data. As shown in Figure 5.8Figure 5.8 , the application has been implemented and is already 

in use. The clinical dashboard displays a graphical representation of the data provided by the 

patient and analysed by the App. 

 

 

A. Login activity                B. Pain tab              C. Forms tab 
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D. EQ-5D-Y tab                E. LOS tab                   F. Visits tab 

Figure 5.8  (A-E) Regular user tabs on the application 

 

We worked on the management of the users’ accounts, of which managing passwords are the 

most crucial part. We used the salted password hashing method which converts the password to 

fixed–a length that cannot be reversed and it will be different from the original password. 

Ideally, we used hash functions because it could not return the unique password, which provides 

adequate security for the password. On the other hand, Hackers and malicious software may try 

to know passwords, so we used "salting" which is a function that can add random numbers, that 

are called salt, to the password before hashing the password. Consequently, in the implemented 

application, the server application will receive the user's login information, which is username 

and password when the user submits his login information, which is a standard method of 

authentication. The server application will investigate whether the login information was right 

and query the table that has the ID for the authorized users. If the user's data is matching with 

one of the authorized users, the server application will send patient_id to the client app to start 

a session and enter the necessary information.  
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 Automating the Clinical Approach in Following Up Hydrocephalus Patients 

 

The current methodology followed by clinicians to follow up the hydrocephalus patients, is 

based on combining a set of symptoms with ICP readings. The symptoms include drowsiness, 

nausea, double vision, fever, irritability, weakness, which are collected manually by patients in 

addition to the collected ICP reading for each patient. The symptoms are demonstrated in 

chapter 2. 

The following flow charts are the automated process of clinician’s methodology of monitoring 

shunted patients using ICP readings and the patient’s feedback through HydroApp. Moreover, 

intercurrent illness plays an essential role in taking the decision as well.  All the following 

figures of flow charts demonstrate the scenarios have been reviewed and accepted by clinicians. 

1. Shunt function is very important factor for shunted patients to keep them stable and 

continue with their daily life normally. Shunt malfunction leads to several problems 

that must be fixed; shunt malfunction has been discussed in chapter 2. Figure 5.9 shows 

that the patient should attend the hospital’s A&E if the shunt is not functioning well 

regardless the other data. 
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Figure 5.9 Flow chart of Attend hospitals A&E 

 

2. No treatment action is taken when the ICP reading is at the regular and stable, and the 

patient feels well and there no symptoms to be recorded in the HydroApp. At the same 

time, there are no other illnesses, so the patients require no treatment. Figure 5.10 

shows a flow chart to take no treatment action. 
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Figure 5.10 Flow chart of no treatment action 

 

3. Drowsiness and double vision are considered as critical symptoms for shunted patients. 

If the patient has regular ICP but double vision and drowsiness; the patient must be observed 

and reviewed within 24 hours to check his ventricles and the shunt functionality. The clinicians 

contact the patient and check his case. Figure 5.11 shows that if the patient has drowsiness or 

double vision with regular ICP, and the shunt is functioning well the patient should be reviewed 

and observed within twenty-four hours.  
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Figure 5.11 Flow chart to review patients within 24 hours 

 

4. When the patient is feeling tired or not feeling well like having weakness, irritability, 

nausea or fever, however, their shunt is functioning well and their ICP is in its regular 

bases, and there are no other illnesses, in this case, the HydroApp sends notification of 

the following clinical routine. Figure 5.12 shows the flow chart of the clinical routine 

action.   
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Figure 5.12 Flow chart to review patients in their clinical routine 

 

5. When the patient has another illness that may cause symptoms like drowsiness, nausea, 

double vision, fever, irritability, weakness, the patient will receive a notification from 

the HydroApp to review GP. In this case, the ICP is stable, and the shunt is functioning 

well. Figure 5.13 demonstrates the flow chart of the GP review with regular ICP. 
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Figure 5.13 Flow chart for GP review with normal ICP 

 

6. GP review is required, as shown in Figure 5.14 during the case of intercurrent illness. 

If the patient has high ICP for thirty minutes with or without symptoms, the GP still has 

to review because he has an intercurrent illness, so the GP review is required to figure 

out whether the patient needs more observation or just needs treatment for the sickness 

he has. 
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Figure 5.14 Flow chart for GP review with high ICP 

 

7. Drowsiness and double vision are considered as critical symptoms for a shunted patient, 

especially when he has high ICP for at least 30 minutes. Figure 5.15 shows that the 

patient should be reviewed within 24 hours if he has double vision or drowsiness, or if 

he has another illness. The clinicians should consider the patient within 24 hours; even 

if he has another disease.   
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Figure 5.15 Flow chart for review within 24 hours 

 

8. If the patient has high ICP readings for at least 30 minutes and he has one of the 

symptoms that were mentioned earlier, the neurological team will contact the patient by 

phone to have more feedback about the case and decide the correct action for the patient 

as shown in Figure 5.16 . 
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Figure 5.16 Flow chart for review patients by phone contact 

 

9. As mentioned earlier in chapter 2, the normal ICP is considered from 0 mmH2O to 20 

cm H2O. If the patient has high ICP from 25 – 30 mm H2O, the clinicians keep an eye 

on the patient and go for the semi-urgent review. Figure 5.17 shows that the patient in 

this scenario has no symptoms and no intercurrent illness. 
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Figure 5.17 Flow chart for semi-urgent review 

 

10. Figure 5.18 shows that the clinicians in the neurological department should contact the 

patient and find out the reason for the raised ICP that reached over 30 mm H2O. 

However, this decision is taken regardless of whether there is intercurrent illness or 

symptoms. 
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Figure 5.18 Flow chart for ICP over 30 mm H2O 

 

11. As mentioned in Chapter 2, low ICP over drainage happens when it is over drainage for 

CSF. As mentioned in Figure 5.19 , if the patient has another illness, the GP must review 

even though the ICP signals show low readings, or he is symptomatic.  
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Figure 5.19 Flow chart for GP review with low ICP 

 

12. Figure 5.20 illustrates that the patient should be reviewed within 24 hours in case he has 

low ICP readings between 0 and -15 and having symptoms like drowsiness, nausea, 

double vision, fever, irritability, weakness. In this scenario, the patient doesn't have 

another illness. 
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Figure 5.20 Flow chart for review within 24 hours with low ICP  

 

13. A semi-urgent review is required when the patient has low ICP between 0 and -15 

mmH2O for at least 30 minutes. The flow chart in Figure 5.21 , shows that the patient 

doesn't have symptoms or other illnesses.  



105 
 

Start

Is the above scenario 

correct?

ICP 

Readings
Symptoms

Shunt 

Function

Inter 

current 

illness

Low ICP

For continues 

30 minutes

YES

NO

None

NO

More 

observation 

required

YES 

Semi urgent 

review

 

 

Figure 5.21 Flow chart for semi-urgent review with low ICP  

 

14. The patient should attend the hospital’s A&E if he has very low ICP, which is under -15 

mmH2O as this may cause bleeding in ventricles. The flow chart in Figure 5.22 shows 

that the patient should attend the hospital’s A&E regardless of whether he may have 

symptoms or other illnesses.  
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Figure 5.22 Flow chart for attending hospitals A&E with low ICP 

 

Summary 

 

Comprehensive processing stages have been conducted in this chapter. We start the chapter by 

describing the ICP signals feature selection methodology. Detecting and processing the data 

set was the first step of the data processing journey, in which we have employed the method 

for modifying processed ICP that is ready for automation.  The process was in eight stages, 

which started with eliminating the gaps and ended up with two continuous averages for two 

hours of processed ICP. In addition, we demonstrated the HydroApp system, which helps 

patients with long-term conditions such hydrocephalus. This chapter illustrates the advantages 

of using the HydroApp system for patients' follow-up. By the end of this chapter a defined 

method to select the ICP signals and convert it to numeric data has been implemented as well 

as develop an improved follow-up platform by including more parameters required by 

neurologists and according to patients' willingness. 
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6- Chapter 6 Results and Evaluation 
 

 Introduction 

 

As discussed in chapter 5, using feature extraction for ICP signals, can help in monitoring 

hydrocephalus patients. In this chapter, the methodology and the result of using the six 

classifiers will be discussed.  The methodology used is derived from the main machine learning 

framework. This chapter describes the techniques and classifiers in machine learning that were 

used to develop a prediction model to monitor hydrocephalus patients. 

 Predictive Models  

 

The dataset was collected from shunted patients from Alder Hey hospital. The patients have 

Raumedic devices to record ICP signals continuously. Details about the training and testing 

data set are given in Table 6.1 . In this research, the ICP signals have been analysed within two 

or more continuous hours of reading, with the patient lying down, to ensure that any observed 

change in the ICP reading is significant and genuine. However, the data set is randomly 

shuffled. When training the ICP signals, different ratios of training were tested for ICP signals, 

namely 20:80, 40:60, 50:50, 60:40, 70:30, 75:25, and 80:20. For convenience, we use the first 

ratio, which is 20:80 (i.e., training data percentage) to represent the ratio and refer to the 

parameter as a Percentage of Training Data (PTD). By evaluating the output of the experiment 

when it is trained using varying values of PTD, so we will be able to evaluate how well 

increasing training data ratio improves the quality of the experiment result performance. 

Table 6.1 Distribution of the data set 

 Training Testing Total 

ICP signals 2610(80%) 652(20%) 3262 
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Six algorithms have been used for the experiment; Cubic support vector machine (SVM), 

Ensemble boosted tree, Medium Gaussian SVM, Quadratic SVM, Ensemble bagged tree’ and 

the Fine Tree. The data used for the experiment is the combination of the prepared ICP signals 

and the data collected from the IOS system. In this study, the number of classes is 11, which is 

represented in Table 6.2 with an assigned code for more accessible presentation. 

 

Table 6.2 Predicted classes 

Classes for the confusion matrix Code 

Attend hospitals A&E 1 

No treatment required 2 

Review within 24H&change the HydroApp 

notification frequency to 24H 

3 

Clinical routine 4 

GP review and change the HydroApp to 24H 5 

GP review and change the HydroApp to 6H 6 

Phone contact with the neuro team  & HydroApp 

notification frequency to 24H 

7 

Semi-urgent review and HydroApp notification 

frequency to 6H 

8 

Attend hospitals A&E HydroApp notification 

frequency to 3H 

9 

Semi-urgent review 10 

More observations required 11 

 

 

 

The results from our experimental procedure are presented and organised for each respective 

classifier for the experiment in tables 6-11 when the data source was 652 patients’ ICP readings. 
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Table 6.3 demonstrates the model classifiers that have been used for the experiment. The 

following model classifiers have been used for the experiment: Fine Tree, Ensemble Boosted, 

Tree, Ensemble Bagged Tree, Cubic SVM, Quadratic SVM, Medium Gaussian SVM. 

 

Table 6.3 Trained models 

The Trained Models 

Fine Tree 

Ensemble Boosted Tree 

Ensemble Bagged Tree 

Cubic SVM 

Quadratic SVM 

Medium Gaussian SVM 

 

 Performance Metrics  

 

Statistical metrics can measure the overall capability and performance of predictive models. In 

this section, some performance metrics like sensitivity, specificity, precision and classification 

will be demonstrated. Sensitivity is called the true positive rate (TPR). Sensitivity is a 

performance metric, which identifies the classifier's ability to predict the class of interest 

correctly. Specificity refers to the true negative rate (TNR). Specificity indicates the classifier's 

ability in excluding the other class correctly. Classification accuracy is the overall correctness 

of the predictive model. Accuracy is calculated by adding the correct predictions (both true 

positives and true negatives), divided by the total number of predictions made [118]. 

Classification accuracy is usually the first step in evaluating the quality of predictive models.  

These metrics are calculated based on the terms listed in the confusion matrix (table 16-21). 

Table 6.4 demonstrates the computation of the performance metrics used in this experiment. 
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Table 6.4 Performance metrics 

Metrics Abbreviation Computation 

Sensitivity TPR TP/(TP+FN) 

Specificity TNR TN/(TN+FP) 

Accuracy ACC (TP+TN)/(TP+TN+FP+FN) 

Precision PPV TP/(TP+FP) 

 

Going back to the ICP readings that were used in the experiment; these were extracted from 

the ICP signals, which were prepared to be ready for the experiment. The other features were 

extracted from the HydroApp system. We tried to use the maximum possible amount of data 

for the training after many trials. The predictive model achieves high classification accuracy 

which means that the predictive models usually predict the value of the majority class. 

 Performance Accuracy 

 

In our experiment, we concentrate on the classifiers' accuracy. Figure 6.1 shows the classifier 

accuracy for the algorithms used. The accuracy represents the most general correct 

classification proportion. The performance model has been conducted for the assigned 

classifiers. The best accuracy is 98.90% for Ensemble bagged Tree, whereas Ensemble boosted 

tree classifier has achieved 93.90% of accuracy. The cubic SVM and fine tree classifiers 

obtained approximately the same accuracy, which is 97%. Quadratic SVM and Medium 

Gaussian SVM obtained the following accuracy results, respectively 95.7% and 94.8%. 
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Figure 6.1 Model accuracy for the required classifier 

 

Figure 6.1 shows that the Ensemble bagged tree model produces the highest accuracy 

compared to the other classifiers. The results from our experimental procedure are presented 

and organised for each individual classifier for the 11 classes, mentioned in Table 6.2.  

Meanwhile, performance metrics for the six classifiers were demonstrated. The data source 

was for 652 ICP signals. We then proceeded to present our evaluation of the classifiers 

according to the classifier accuracy. We have experimented with all the available classifiers in 

Matlab software, and there were 15 classifiers. Nevertheless, only the best six classifiers with 

the highest accuracy have been discussed. According to the accuracy results the selected model 

for the experiment is Ensemble Bagged Tree because it has the highest accuracy as well as it 

has the highest rate for the performance metrics as explained in the following sections. 

Ensemble bagged tree algorithm combines different tree models. It trains each learner on 

different data. The data is grabbed randomly for each bagging area then trained in several 

decision tree models. Ensemble Bagged Tree train different set of data using decision tree 

algorithm every time then take the mean of the outputs to have a final output, this explains why 

this model yields the highest accuracy. 
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 True Positive Rate 

 

In our experiments, we concentrate on the right prediction of the eleven classes to help 

clinicians for better monitoring for the patients; that is why a positive value has been given 

when the classifier predicts the right class. However, if the classifier has correctly predicted 

the right action, either one of the eleven actions, a true value is given for this case, and a false 

value is given for the incorrect prediction. The following scenario explains how to measure the 

true positive rate of the test results: Assume that we have scenario 1 to be tested by the system 

to produce the correct action, the system will verify the scenario for the first action if the 

response is correct and predicted correctly, so the system succeeded in classifying the situation 

as true positive. If the action is wrong, the system will test the next action, so the system 

succeeded in classifying the action as true negative. If the system classified the scenario as 

wrong while it is correct, it classified the scenario as false positive. False-negative has been 

classified if the system moved to the next action. 

4- TP: Correctly classified action; the action is classified as the correct action 

5- TN: Correctly classified as incorrect action; the system recognised that the action 

is wrong and transferred to the next action successfully, so it correctly classified the 

wrong action. 

6- FP: incorrect action classified as correct; the system classifies the scenario for 

action one as a proper action for the scenario. 

7- FN: actions are considered as incorrect while it is correct.  

Tables 6.5-6.11 illustrate the experimental results for Cubic SVM, Medium Gaussian SVM, 

Quadratic SVM, Ensemble Bagged Tree, Ensemble Bagged Tree, Ensemble Boosted Trees and   

Fine Tree models respectively. The data source was for 652 ICP signals in all models. It is 

noticeable that class one has an equal true positive and true negative rate for all classifiers. 
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These results could be explained as classifiers test the first action, which is class 1 if it's the 

correct prediction, so it's included in the true-positive rate. If the prediction is not class 1, the 

classifier automatically transfers the data set to be tested for class 2. 

 Support Vector Classifier 

 

Support vector machines are one of the binary model types which takes a set of variables as 

input and then classify each variable (input) into two categories. The goal is to build a linear 

approach by mapping the n-dimensional sample values space into a higher dimensional 

attribute space, and then the new instance is classified through this linear approach. In the SVM 

model, a data point is shown as a p-dimensional vector and SVM can be separated using p-1-

dimensional hyperplane procedure. The main idea of this study is to identify geometrical 

patterns with 11 classes of actions that could be used generally through several models, like 

SVM. This study focused on several classifiers that are related to SVM to calculate the 

classification performance metrics. In this research, the classification outcomes were 

conducted using Medium Gaussian SVM, Quadratic SVM model and cubic SVM.  The main 

target is to demonstrate the SVM models with different types of optimisation settings which 

have provided acceptable outcomes in terms of accuracy and performance. 

Table 6.5 Cubic SVM model test results 

Model True 

Positive 

Rate (%) 

False 

Positive 

Rate(%) 

False 

Negative 

Rate (%) 

True Negative 

rate (%) 

Class 1 41.56 0.00 0.00 58.43 

Class 2 1.07 0.15 0.00 98.77 

Class 3 9.66 0.31 0.31 89.72 

Class 4 4.75 0.00 0.15 95.09 

Class 5 14.72 0.00 0.76 84.50 

Class 6 7.20 0.15 0.00 92.63 
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Class 7 7.51 0.00 0.00 92.48 

Class 8 1.68 0.00 0.00 98.31 

Class 9 2.91 0.00 0.00 97.08 

Class 10 0.61 0.00 0.15 99.23 

Class 11 6.59 1.07 0.31 92.02 

 

Table 6.5 shows that the cubic SVM classifier succeeded in predicting all class 1 correctly. For 

class 2, there is a 15 % false-positive rate, while the majority of the prediction was 98.77% 

classified as true negative. Cubic SVM had an equal percentage of false negative and false 

positive of 31% for class 3. Whereas it achieved a high true negative rate with 89.72%. When 

the classifier has a high percentage of true negative rate, this means that the classifier recognises 

that the first prediction is not the true one and the algorithm moves to the next prediction and 

tests whether it's the right decision or it has to move to the next. Cubic SVM achieved an 

impressive rate for classes 6, 7, 8, and 9 with 0% of the false-positive and false-negative rate. 

The true negative rate was higher than the true positive rate for these classes. The true negative 

rate varied between 92.48 and 97.08%. Class 4 and 10 has only 15% false-negative rate while 

the higher rate goes to true negative. Class 10 has 15%. 

Table 6.6 Medium Gaussian SVM model test results 

Model True 

Positive 

Rate (%) 

False 

Positive 

Rate(%) 

False 

Negative 

Rate(%) 

True 

Negative 

rate(%) 

Class 1 41.56 0.00 0.00 58.43 

Class 2 1.07 0.00 0.00 98.92 

Class 3 9.66 1.07 0.31 88.95 

Class 4 4.75 0.00 0.15 95.09 

Class 5 15.49 2.30 0.00 82.20 

Class 6 7.20 0.00 0.00 92.79 

Class 7 7.36 0.31 0.15 92.17 
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Class 8 1.38 0.00 0.31 98.31 

Class 9 2.91 0.31 0.00 96.77 

Class 10 0.46 0.00 0.31 99.23 

Class 11 3.68 0.46 3.22 92.63 

 

Medium Gaussian SVM model test results are illustrated in Table 6.6 classes 1and 2 have no 

false predictions. Classes 3,7 and 11 have both false positive and false negative rates. These 

classes have a true-negative rate of 88.95%, 92.48%, and 92.48%, respectively. The false-

negative rate of 0.15%, was acquired by class 4, whereas class 10 has 0.31%false negative rate.  

Table 6.7 Quadratic SVM model test results 

Model True 

Positive 

Rate (%) 

False 

Positive 

Rate(%) 

False 

Negative 

Rate(%) 

True 

Negative 

rate(%) 

Class 1 41.56 0.00 0.00 58.43 

Class 2 1.07 0.15 0.00 98.77 

Class 3 9.81 1.07 0.15 88.95 

Class 4 4.75 0.15 0.15 94.93 

Class 5 15.18 1.38 0.31 83.12 

Class 6 7.20 0.00 0.00 92.79 

Class 7 7.51 0.00 0.00 92.48 

Class 8 1.68 0.00 0.00 98.31 

Class 9 2.76 0.00 0.15 97.08 

Class 10 0.61 0.00 0.15 99.23 

Class 11 4.44 0.61 2.45 92.48 

 

Table 6.7 shows the true-negative rate for quadratic SVM classifier. The quadratic SVM 

classifier succeeded in classifying the classes 1, 6, 7 and 8 without false prediction. Classes 3, 

4, 9 and 10 have 0.15% of the false-negative rate, while classes 2 and 4 have the same rate of 
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false-positive rate. Class 11 has the highest rate of false-negative, which is 2.45%. Whereas, 

class 5 has the highest false-positive rate, which is 1.38%.  

 Ensemble Classifier 

 

The ensemble model technique relies on combining two or more classifiers to improve the 

classification performance and accuracy as well as augmenting strength from any of the 

fundamental models. This method is considered adequate and produces good results, mainly 

when using the accurate classifiers to be combined. In this research, the ensemble classifier 

was able to learn precisely the ICP readings combined with the other features from the 

HydroApp and produced successful classification outcomes against the other models. 

Ensemble model demonstrates the abilities of the optimal performing models and estimates the 

overall classification accuracy and performance that improved with better predictions. This 

technique is designed based on the pattern recognition system in association with the bootstrap 

aggregating approach to enhance the accuracy and stability of the selected algorithms. 

Table 6.8 Ensemble Bagged Tree model test results   

Model True 

Positive 

Rate (%) 

False 

Positive 

Rate(%) 

False 

Negative 

Rate(%) 

True Negative 

rate(%) 

Class 1 41.56 0.00 0.00 58.43 

Class 2 1.07 0.00 0.00 98.92 

Class 3 9.96 0.00 0.00 90.03 

Class 4 4.90 0.00 0.00 95.09 

Class 5 15.49 0.15 0.00 84.35 

Class 6 7.20 0.00 0.00 92.79 

Class 7 7.51 0.00 0.00 92.48 

Class 8 1.68 0.00 0.00 98.31 

Class 9 2.91 0.00 0.00 97.08 

Class 10 0.61 0.00 0.15 99.23 



117 
 

Class 11 6.90 0.00 0.00 93.09 

 

Table 6.8 illustrates the performance metrics for ensemble bagged tree classifier; It is evident 

that the classifier succeeded in most predictions of the classes. Almost all classes do not have 

false negative or false positive rate except for classes 5 and 10. These results indicate that the 

Ensemble bagged tree classifier had the highest performance in all classes. 

Table 6.9 Ensemble Boosted Trees model test results 

Model True 

Positive 

Rate (%) 

False 

Positive 

Rate(%) 

False 

Negative 

Rate(%) 

True 

Negative 

rate(%) 

Class 1 41.56 0.00 0.00 58.43 

Class 2 1.07 0.46 0.00 98.46 

Class 3 9.96 1.68 0.00 88.34 

Class 4 4.75 0.46 0.15 94.63 

Class 5 15.03 0.15 0.46 84.35 

Class 6 7.20 0.46 0.00 92.33 

Class 7 7.51 0.00 0.00 92.48 

Class 8 1.68 0.00 0.00 98.31 

Class 9 2.30 0.00 0.61 97.08 

Class 10 0.61 0.00 0.15 99.23 

Class 11 4.90 0.15 1.99 92.94 

  

Table 6.9 demonstrates the Ensemble boosted tree model test results. The classifier 

accomplished high prediction rate for classes 1,7 and 8. Class 3 has the highest false-positive 

rate, with 1.68%, followed by Classes 4 and 6 with .46%. On the other hand, class 11 was 

considered as incorrect while it's correct with the rate of 1.99%. As mentioned earlier, the 

reason for having a higher true-negative rate than true positive is because the classifier tests 

the input data for every class and moves to the next class to be tested. 
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 Tree Classifier 

 

Decision tree algorithms are known as they are relatively fast to train. Decision tree algorithms 

are prevalent due to the algorithm characteristics, such as they are fast to train and produce 

transparent models. The decision tree can classify the labelled data into a tree. The Tree is 

derived in the learning phase, which obtains the accuracy of a classifier test data that is taken 

randomly from training data. After that, unlabelled data is classified using the Tree or rules 

derived from the learning phase. The structure of a decision tree relies on a root node, a left 

subtree and right subtree. The leaf nodes in a tree characterise a class label. The arcs from one 

node to another node denote the conditions on the attributes. In our research, decision tree 

represented in fine tree model achieved high accuracy outcomes. As the data have to be tested 

with certain conditions like shunt functionality, if the patient has a shunt malfunction, the 

outcome is to attend the hospital’s A&E. Tree classifier is easy to understand and interpret, 

handles categorical and numeric attributes, and is robust to outliers and missing values. 

Decision tree classifiers are used extensively for diagnosis of diseases as they can obtain good 

accuracy in medical data. 

Table 6.10 Fine Tree model test results 

Model True 

Positive 

Rate (%) 

False 

Positive 

Rate(%) 

False 

Negative 

Rate(%) 

True 

Negative 

rate(%) 

Class 1 41.56 0.00 0.00 58.43 

Class 2 0.92 0.00 0.15 98.92 

Class 3 9.35 0.00 0.61 90.03 

Class 4 4.75 0.00 0.15 95.09 

Class 5 15.49 0.00 0.00 84.50 

Class 6 7.20 0.00 0.00 92.79 

Class 7 7.51 0.00 0.00 92.48 

Class 8 1.68 0.00 0.00 98.31 
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Class 9 2.91 0.31 0.00 96.77 

Class 10 0.61 0.00 0.15 99.23 

Class 11 6.90 0.76 0.00 92.33 

  

As shown in Table 6.10, Fine Tree model test results of classes 1, 5, 6, 7, and 8 were without 

false predictions. The true negative rate varies between 58.43 and 98.31%. The true positive 

rate varies between 1.38 and 41.56 for these classes. Class 2, 4, and 10 has a false negative rate 

of 0.15%. Only classes 9 and 10 have a false positive rate with 0.31, 0.76, respectively. 

 Sensitivity and Specificity 

 

There are other Scalar Metrics to characterise the capability of the classifiers simulated in the 

experiment. Sensitivity and specificity have been calculated. Sensitivity = True positive 

divided by the number of all positive predictions. Whereas, the specificity = True negative 

divided by the number of all negative predictions [119]. Table 6.11 shows the sensitivity and 

specificity of the classifiers, in the experiment, the algorithm with the highest accuracy has 

been selected, which is Ensemble Bagged Tree, achieving the optimum sensitivity of 100% for 

the whole classes except class 10 (Semi-urgent review) which achieved 80%. Ensemble bagged 

Tree achieved a specificity of 100% in all classes. Boosted tree classifier obtained a specificity 

of 100% sensitivity for all classes except for class 3. In contrast, it obtained 100% sensitivity 

in classes 1,2,3,6,7 and 8. The other classes varied from 71 to 97%. Also, Cubic SVM classifier 

achieved high specificity for all classes of 100%. Classes 10 and 11 achieved 96% and 99% 

respectively. 

Moreover, fine tree classifier acquired 100% specificity except for class 11 while the sensitivity 

was 100% for classes 1, 5, 6, 7, 8, 9 and 11. Medium Gaussian SVM obtained higher specificity 

in most classes than sensitivity, which was 100% in all classes except for classes 5 and 3, which 

have 97 and 99% respectively. Quadratic SVM also achieved high specificity in most classes 
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as well, only classes 3 and 11 got 99%, and class 5 got 98%. In general, the classifiers obtained 

impressive results of specificity and sensitivity. As mentioned earlier, the classifier tests the 

data set for class 1 and moves to class 2 to be tested if class 1 is the wrong prediction. This 

technique explains why the specificity is higher than the sensitivity as the specificity is the True 

negative divided by the number of all negative predictions. 

 

Table 6.11 Sensitivity and metric specificity measures 

Class 

Name 

Cubic SVM(%) Ensemble Bagged Tree 

(%) 

Boosted Trees 

(%) 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

1 100 100 100 100 100 100 

2 100 100 100 100 100 100 

3 97 100 100 100 100 98 

4 97 100 100 100 097 100 

5 95 100 100 100 097 100 

6 100 100 100 100 100 100 

7 100 100 100 100 100 100 

8 100 100 100 100 100 100 

9 100 100 100 100 79 100 

10 80 096 80 100 80 100 

11 100 099 100 100 71 100 

Class 

Name 

Fine Tree Medium Gaussian 

SVM 

Quadratic SVM 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

1 100 100 100 100 100 100 

2 86 100 100 100 100 100 

3 94 100 97 99 98 99 

4 97 100 97 100 97 100 

5 100 100 100 97 98 98 

6 100 100 100 100 100 100 

7 100 100 98 100 100 100 

8 100 100 82 100 100 100 

9 100 100 100 100 95 100 

10 80 100 60 100 80 100 

11 100 99 53 100 64 99 
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 Evaluation Using Precision  

 

Some more metrics were calculated, such as precision, to provide an objective performance 

evaluation of their predictive power. Precision or also called positive predictive value (PPV) 

which is the number of true positive predictions divided by the total number of true and false 

positives. Precision metrics show how a particular case that been predicted as positive is, in 

fact, a positive [118]. Low precision can expose a multitude of false positives; precision can be 

considered as a measure of a classifier's perfection. Table 6.12 shows the precision metric 

measures Class 1, which is “attend hospital’s A&E” achieved a precision of 1 in all classifiers. 

This result indicates that the classifiers impressively achieved high prediction performance for 

class 1. For class 2 the following classifiers achieved high precision of 100%; Ensemble bagged 

Tree, Fine Tree and Medium Gaussian SVM. In contrast, the classifiers Cubic SVM and 

Quadratic SVM achieved a precision of 88%. The least precision for class 2 is Boosted trees 

classifier with 70%. Ensemble Bagged Tree, and Fine Tree has made the highest precision of 

100% for class 3. Next, Cubic SVM with 0.97, followed by Medium Gaussian SVM and 

Quadratic SVM with 90%, finally, Boosted Trees achieved 86%. For class 4, Cubic SVM, 

Ensemble bagged Tree, Fine Tree and Medium Gaussian SVM had a precision of 100% 

followed by Quadratic SVM with 0.97 then Boosted Trees classifier with a precision of 91%. 

Cubic SVM and Fine Trees had a precision of 100% for class 5.  Ensemble Bagged Tree and 

Boosted Trees achieved 99% of precision followed by Quadratic SVM of 92% precision. 

Medium Gaussian SVM had the lowest precision of class 5, which is 87%. Ensemble Bagged 

Tree, Fine Tree, medium Gaussian SVM and Quadratic SVM. In class 6; the following 

classifiers made a precision of 100%; Ensemble Bagged Tree, Fine Tree, Medium Gaussian 

SVM and Quadratic SVM. Cubic SVM achieved a precision of 98% and Boosted Trees with 

94%. Cubic SVM, Ensemble Bagged Tree, Boosted Trees, Fine Tree and Quadratic SVM had 

a precision of 100% for class 7, whereas Medium Gaussian SVM had a precision of 96%. Class 
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8 has an impressive precision, which is 100% in all classes. This result indicates that the 

classifiers had 100% perfect prediction for classes 8 and 10. For class 9, the classifiers Cubic 

SVM, Ensemble Bagged Tree, Boosted Trees, and Quadratic SVM had a precision of 100% 

and 90% for the other classifiers. Classifiers also achieved an excellent precision for class 9. 

In class 11, only Ensemble Bagged Tree classifier achieved 100% whereas Boosted Tree and 

Fine Tree had a precision of 97% and 90% respectively. Cubic SVM, Medium Gaussian SVM 

and Quadratic SVM had a precision of 0.86,0.89 and 0.88% respectively. In general, Table 

6.12 shows that Ensemble Bagged Tree has the highest precision as all the classes have a 

precision of 100% except for class 5; has 99% precision. Moreover, Fine Tree classifier has a 

high precision of 100%, except for classes 9 and 11. The other classifiers were varying between 

100 and 70%. 

Table 6.12 Precision metric measures 

Class 

Name 

Cubic SVM Ensemble Bagged 

Tree 

Boosted Trees 

Precision (%) Precision (%) Precision (%) 

1 100 100 100 

2 88 100 70 

3 97 100 86 

4 100 100 91 

5 100 99 99 

6 98 100 94 

7 100 100 100 

8 100 100 100 

9 100 100 100 

10 100 100 100 

11 86 100 97 

Class 

Name 

Fine Tree Medium Gaussian 

SVM 

Quadratic SVM 

Precision (%) Precision (%) Precision (%) 

1 100 100 100 

2 100 100 88 

3 100 90 90 

4 100 100 97 

5 100 87 92 

6 100 100 100 

7 100 96 100 

8 100 100 100 
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9 90 90 100 

10 100 100 100 

11 90 89 88 

 

In general, all classifiers have achieved an impressive overall result with more than 97% using 

ICP signals and features from HydroApp system. Ensemble Bagged Tree was the leading 

classifier followed by Fine Tree, after that Cubic SVM, Quadratic SVM, Medium Gaussian 

SVM and finally Ensemble Boosted Tree. The disparity rate among their overall performance 

was about 2%. The overall performance of Ensemble Bagged Tree classifier has overcome Fine 

Tree classifier by 1%, whereas it overcomes Cubic SVM by 2%, Quadratic SVM by 3%, 

Medium Gaussian SVM by 4%, while Ensemble Boosted Tree has come at the end of the list 

with a difference of 5%. This might indicate that DT classifier can achieve much better overall 

performance than others using highly hierarchical correlated attributes. 

 Classifier Training Result 

 

The confusion matrix is a machine learning concept that helps researchers by providing 

information about the predicted and actual classifications that are done by the classification 

system. The confusion matrix has two dimensions, one for the actual data class and the other 

for the predicted class [51]. The confusion matrix has two dimensions x-by-x matrix, where x 

is the number of classes in the output variable. Figure 6.2 to 6.7 demonstrate the confusion 

matrix training results for the used classifiers.  
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         Figure 6.2 Bagged Tree confusion matrix 

 

 

        Figure 6.3 Boosted Tree confusion matrix 
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         Figure 6.4 Cubic SVM confusion matrix 

 

 

         Figure 6.5 Fine Tree confusion matrix 
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 Figure 6.6 Quadratic SVM 

 

 

Figure 6.7 Medium Gaussian confusion matrix 
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 Validation 

 

This section demonstrates a comparison between the traditional method and the proposed 

method. As mentioned before, shunted patients should be monitored and followed as 

implanting the shunt can cause some problems like infection, blockage or shunt malfunction. 

Sometimes, the patient does not feel well with no apparent reason. Usually, clinicians ask the 

patient to keep records of specific questions they need for their decision like, what they feel, 

how long has the patient felt tired. In Alder Hey Hospital, the neurological team relies on the 

ICP readings that are extracted from the portable device with patients, the Raumedic device. 

Ordinarily, the clinicians’ team import the readings to be visually analysed. The clinicians 

make their decisions based on the patient's feedback and ICP readings. However, the patient 

should wait for his regular appointment or book a new one. This process takes time and effort 

from the patients and the clinician team. In addition to that, it is difficult for patients to record 

all the details, especially if it is a long time of feeling unwell. 

Our proposed methodology provides accurate predictions of the proper actions that should be 

taken by clinicians based on the analysed ICP signals using machine learning classifiers and 

the patient's input through the HydroApp system. This method enables clinicians to access the 

patient's feedback through the application at any time. Moreover, clinicians can take a quick 

decision for the patient's benefits, and they can change the notification of the HydroApp for 

patients according to their medical status. For example, clinicians can change the notification 

for the patient's HydroApp system so they can respond and fill their episodes according to the 

updates. A new sample of data has been used to validate the methodology. Table 6.13 

represents a random sample of ICP readings for two hours.Table 6.14 shows the patient’s input 

through the HydroApp system. Table 6.15 represents the outcome of the decision taken by the 

model and by clinicians for the same data set, after comparing the model results and the 
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clinician's decisions for 50 random data set samples. The validation yields that 90% of the 

results are matching between the model results and the clinician's decisions.  

Table 6.13 Random ICP readings for the validation process 

 ICP 1 ICP 2 ICP 3 ICP 4 ICP 5 ICP 6 ICP 7 ICP 8 

1 10.82982 10.44917 11.48177 10.46382 15.8645 22.53323 21.80053 22.69403 

2 10.82982 10.44917 11.48177 10.46382 15.8645 22.53323 21.80053 22.69403 

3 10.82982 10.44917 11.48177 10.46382 15.8645 22.53323 21.80053 22.69403 

4 10.82982 10.44917 11.48177 10.46382 15.8645 22.53323 21.80053 22.69403 

5 10.82982 10.44917 11.48177 10.46382 15.8645 22.53323 21.80053 22.69403 

6 10.82982 10.44917 11.48177 10.46382 15.8645 22.53323 21.80053 22.69403 

7 12.06121 12.00324 10.25976 18.24102 27.26542 24.49781 27.88922 28.69167 

8 12.06121 12.00324 10.25976 18.24102 27.26542 24.49781 27.88922 28.69167 

9 12.06121 12.00324 10.25976 18.24102 27.26542 24.49781 27.88922 28.69167 

10 12.06121 12.00324 10.25976 18.24102 27.26542 24.49781 27.88922 28.69167 

11 12.06121 12.00324 10.25976 18.24102 27.26542 24.49781 27.88922 28.69167 

12 12.06121 12.00324 10.25976 18.24102 27.26542 24.49781 27.88922 28.69167 

13 12.06121 12.00324 10.25976 18.24102 27.26542 24.49781 27.88922 28.69167 

14 12.06121 12.00324 10.25976 18.24102 27.26542 24.49781 27.88922 28.69167 

15 12.06121 12.00324 10.25976 18.24102 27.26542 24.49781 27.88922 28.69167 

16 12.06121 12.00324 10.25976 18.24102 27.26542 24.49781 27.88922 28.69167 

17 16.52056 16.63033 20.22022 14.31578 13.68622 28.92856 25.10476 22.41178 

18 16.52056 16.63033 20.22022 14.31578 13.68622 28.92856 25.10476 22.41178 

19 16.52056 16.63033 20.22022 14.31578 13.68622 28.92856 25.10476 22.41178 

20 16.52056 16.63033 20.22022 14.31578 13.68622 28.92856 25.10476 22.41178 
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Table 6.14 Patients input from HydroApp system 

 

Symptoms 

Intercurrent 

illness 

Shunt 

functionality 

1 Fever Yes No 

2 Fever No No 

3 Weakness Yes Yes 

4 Weakness Yes No 

5 Weakness No Yes 

6 Weakness No No 

7 None Yes Yes 

8 None Yes No 

9 None No Yes 

10 None No No 

11 Irritability Yes Yes 

12 Fever No Yes 

13 Fever No No 

14 Weakness Yes No 

15 Weakness No Yes 

16 Weakness No No 

17 None Yes Yes 

18 None Yes No 

19 Irritability Yes Yes 

20 Irritability Yes No 
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Table 6.15 Comparison between clinicians’ decision and the model decision  

 Model’s decision   Clinician’s Decisions 

1 Phone contact with the neurological 

team GP review and change the 

frequency for the HydroApp to 24H 

 

Phone contact with the neurological 

team GP review and change the 

frequency for the HydroApp to 24H 

2 Attend hospital’s A&E Attend hospital’s A&E 

3 Semi urgent review 

 

 

GP review and change the frequency 

for the HydroApp to 6H 

4 Phone contact with the neurological 

team GP review and change the 

frequency for the HydroApp to 24H 

 

Phone contact with the neurological 

team GP review and change the 

frequency for the HydroApp to 24H 

5 Attend hospital’s A&E Attend hospital’s A&E 

6 Attend hospital’s A&E Attend hospital’s A&E 

7 GP review and change the frequency for 

the HydroApp to 6H 

 

GP review and change the frequency 

for the HydroApp to 6H 

8 Semi urgent review and change the 

frequency for the HydroApp to 6H 

 

Semi urgent review and change the 

frequency for the HydroApp to 6H 

9 Attend hospital’s A&E Attend hospital’s A&E 

10 Attend hospital’s A&E Attend hospital’s A&E 

11 GP review and change the frequency for 

the HydroApp to 6H 

 

GP review and change the frequency 

for the HydroApp to 6H 

12 Attend hospital’s A&E Attend hospital’s A&E 

13 Attend hospital’s A&E Attend hospital’s A&E 

14 Phone contact with the neurological 

team GP review and change the 

frequency for the HydroApp to 24H 

 

Phone contact with the neurological 

team GP review and change the 

frequency for the HydroApp to 24H 

15 Attend hospital’s A&E Attend hospital’s A&E 

16 Attend hospital’s A&E Attend hospital’s A&E 

17 GP review and change the frequency for 

the HydroApp to 6H 

 

GP review and change the frequency 

for the HydroApp to 6H 

18 Semi urgent review and change the 

frequency for the HydroApp to 6H 

 

Semi urgent review and change the 

frequency for the HydroApp to 6H 

19 GP review and change the frequency for 

the HydroApp to 6H 

 

GP review and change the frequency 

for the HydroApp to 6H 

20 Phone contact with the neurological 

team and change the frequency for the 

HydroApp to 24H 

 

Phone contact with the neurological 

team and change the frequency for 

the HydroApp to 24H 
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 Discussion 

 

In this study, a data science methodology is used that combines 10   features extracted from 

2,610 ICP signals in addition to patients’ input extracted from the HydroApp system. The 

methodology aim is to predict the correct action to monitor shunted patients. The main reason 

that the classifiers used in the methodology are powerful is due to the achievement made during 

the training and testing phase. The accuracy outcomes of the best ensemble classifier 

(Ensemble Bagged Tree) produced 100% for all classes except for class 10 in the training sets 

as shown in Table 6.16, while testing sets produced 100% accuracy for classes 1,2 5,6,7,8,9, 

and 11 using Fine Tree classifier while classes 3, 4, and 10 obtained 93, 96.4 and 75% 

respectively. The main reason that Ensemble and Decision Trees produced the best results was 

due to the highest outcome received by other classifiers. For instance, the training set of 

Ensemble Bagged Tree received 98.9%, Fine Tree received 97.4%. In terms of the testing set, 

the accuracy results are demonstrated in detail as it presents the accuracy for each class. Cubic 

SVM obtained 100% for classes 1, 2, 6, 7, 8 and 9, and Cubic SVM obtained around 96% for 

classes 3, 4, and 5. All classifiers yielded 75 % accuracy for class 10. Ensemble Boosted Tree 

yielded 100% accuracy for classes 1,2,3,6,7, and 8 while classes 4,5,9,10,1 and 11 obtained 

96.4, 96.3, 81.3, 75 and 69.4% respectively. A 100% accuracy was achieved in classes 1,2,6,7, 

and 8 using Quadratic SVM classifier. Classes 3,4 and 9 results varied between 93.8 and 98.8% 

while the least accurate result is 61.6% for class 1. Medium Gaussian SVM classifier yielded 

the least accurate average results. However, it obtained 100% accuracy in classes 1,2,5,6 and 

9. Classes 3, 4, and 7 varied from 96.5 to 97.4%. The lowest accuracy is for class 11, which is 

50%. The best predictions in this study received during the training and testing phase show that 

the Ensemble Bagged Tree outperformed other classifiers. The experiment produced statistical 

methods. In addition to that, this methodology offers better performance to follow up shunted 

patients. 



132 
 

Overall, the body of results that were obtained highlight the potential of ICP signals for the 

classification of predicting the required actions to monitor shunted patients. The choice of 

model is crucial in obtaining a satisfactory result, as is evident in the variation of the 

performance between the models used in our experiment. The classifiers used reacted 

adequately to the ICP signals and are therefore of potential use in the medical field. 

Furthermore, the performance evaluations are for data drawn from a number of probability 

distributions, particularly for distributions that are not standard. Ensemble Bagged Tree, and 

Fine Tree are powerful models for the analysis of the ICP data set as has been proven for this 

domain to offer vital prediction accuracy and performance in comparison with other classifiers. 

A good relationship between input features and target actions is discovered during the 

development process. The data sets were moderate in size, with 80% for training and 20% of 

the input features randomly selected for testing. With the integration of accuracy and efficiency 

in addition to the useful analytical techniques, the Ensemble and Decision Tree algorithms 

constitute a practical and effective technique for the ICP signals data sets, where no suitable 

statistical algorithms are available. The results gained from the practical examination into the 

use of various types of machine learning models show that the chosen data sets exhibit 

significant outcomes for the test models.  

Table 6.16 The prediction accuracy for the testing data set 

 

Classifier       

      

Classes 

Ensemble 

Boosted 

Tree (%)

Ensemble 

Bagged 

Tree    (%)

Cubic 

SVM     

 (%)

Fine 

Tree      

   (%) 

Medium 

Gaussian 

SVM (%) 

Quadratic 

SVM      

(%)

Class 1 100.0 100.0 100.0 100.0 100.0 100.0

Class 2 100.0 100.0 100.0 100.0 100.0 100.0

Class 3 100.0 100.0 96.5 93.0 96.5 98.2

Class 4 96.4 100.0 96.4 96.4 96.4 96.4

Class 5 96.3 100.0 96.3 100.0 100.0 98.8

Class 6 100.0 100.0 100.0 100.0 100.0 100.0

Class 7 100.0 100.0 100.0 100.0 97.4 100.0

Class 8 100.0 100.0 100.0 100.0 80.0 100.0

Class 9 81.3 100.0 100.0 100.0 100.0 93.8

Class 10 75.0 75.0 75.0 75.0 75.0 75.0

Class 11 69.4 100.0 97.2 100.0 50.0 61.1



133 
 

 Summary 

 

The methodology of giving the right action to follow up shunted patients worked well, after 

preparing the ICP data set to be chunks of two hours. The methodology results yielded high 

accuracy and good prediction of taking the right actions to monitor shunted patients. The next 

chapter discusses the conclusion and future work. This study conducted an empirical 

investigation into the use of various types of machine learning models for predicting the r 

actions that were required to follow up shunted patients. This research has introduced various 

types of machine learning algorithms for analysing ICP signals as well as medical data obtained 

from the HydroApp system. In contrast with traditional medical solutions, this research 

investigates the effectiveness of the machine learning approach in managing and monitoring 

shunted patients. It was discovered through experimental investigation, comprising the usage 

of patient input through the HydroApp system and approaches such as the Ensemble classifiers, 

SVMs, and decision tree models, that the analysis of ICP signals is viable and yields precise 

results. The results obtained from a range of models during our experiments have shown that 

the combined classifiers, Ensemble bagged Tree, and Fine Tree produced significantly better 

outcomes over the range of other classifiers. 
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7- Chapter 7 Conclusion and Future Work 
 

 Conclusion  

 

This study proposes the employment of artificial intelligence systems to enhance the 

environment of the medical domain presented to patients who suffer from hydrocephalus 

disease. For improving the quality of care for patients and clinicians, the research focused on 

two essential perspectives. Firstly, this study used machine-learning algorithms based on real 

ICP signals data sets for shunted patients. The main goal of doing this is to improve the 

classification process to monitor those patients. Secondly, this study designed a user-friendly 

platform which is the HydroApp system to construct secure communication and follow-up 

between patients and healthcare providers. The research is proposed by the Alder Hey 

Children’s Hospital to develop the patient’s quality of life and reduce time for the NHS which 

include phone calls and clinical appointments, and acquire precise results depending on the 

patient’s ICP readings and patient’s episodes through the HydroApp system. Moreover, 

building a machine learning model could help healthcare providers by reducing the need for 

medical expert’s assessment. Also, junior clinicians can learn from data that has been analysed 

previously. This type of model can help specialist nurses and the junior clinicians to improve 

their decision-making process. This research supports the urgent need for a new pathway that 

reduces the load on the NHS, as well as enhancing patients’ quality of life. The use of machine-

learning methods as a monitoring model could reduce the need for specialist assessment. This 

machine-learning model can be used to train non-specialist doctors to improve their decision-

making procedure. In this research, a comprehensive different research studies and proposal 

projects has been reviewed and explored. This aim to improve follow-up and management of 

patients with hydrocephalus.  
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Extensive research indicates that machine learning models produce a good enhancement with 

clinical data sets and have helped in achieving high accuracy prediction results. The main aim 

of this research is to provide a model to distinguish applications of machine learning 

approaches for medically related problems. This study attempts to follow up with the shunted 

patients of hydrocephalus by predicting the right action required. This research uses different 

architectures in terms of examining performance for each model within this study. The 

motivation for the classification approach used in this study is to support medical sectors to 

provide proper therapy advice depending on the former data set. Expert systems and various 

Artificial Intelligence methods and techniques have been used and developed to improve 

decision support tools for medical purposes. Machine Learning models are considered as a 

powerful technique in the field of scientific research that enables computers to learn from data. 

There are several machine learning techniques for classification including the Artificial Neural 

Network, the Random Forest model, and the Support Vector Machine. In this research, the 

application of machine learning approaches provided a methodology of following shunted 

patients. As mentioned in chapter 2, hydrocephalus patients need long term/lifetime follow-up, 

as most are shunt dependent for life. Therefore, better follow-up information, in terms of 

resources used, time spent in primary and secondary care, health professionals consulted, total 

in-patient stay, will lead to a better understanding of the natural history and future effective 

planning. Eventually, this could guide future follow-up management and resource utilisation. 

In this study, a novel machine learning approach has been demonstrated to predict the required 

actions in the management of hydrocephalus patients. In this research, a  

 Research Contributions 

 

The significance and the research contribution can be described as developing a machine 

learning approach that helps clinicians to follow up hydrocephalus patients, and developing 

follow-up using M-health technology can promote the quality of care given to this category of 
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patients. It has revealed further novelties in the domain of machine learning models, pre-

processing medical data sets, classification tasks, and performance evaluation techniques 

metrics. The data set includes 2,610 records for training and 652 for testing. As mentioned in 

chapter 5, an algorithm was developed to prepare the data according to the specialist’s advice 

to avoid inaccurate or biased data sets. Six popular machine-learning classifiers were used for 

the experimental procedure undertaken in this study for training. These machine learning 

classifiers can establish intelligent diagnostic models. The classifiers used are Fine Tree, 

Ensemble Boosted Tree, Ensemble Bagged Tree, Cubic SVM, Quadratic SVM and Medium 

Gaussian SVM. The results show that assembling models obtained high sensitivity, specificity, 

precision and accuracy. The results provide optimal classification with a high rate, as illustrated 

in chapter 6. In this aspect, Decision Tree classifiers obtain an impressively high rate of 

performance and accuracy. This Ensemble Bagged Tree classifier received better results during 

the training set process including; sensitivity 100%, specificity 100%, Precision 100%, 

Accuracy 98.90%. Where the Ensemble Bagged Tree achieved the highest rate of accuracy 

during the test process including the detailed accuracy of each class, the Ensemble Bagged 

Tree classifier obtained 100% accuracy for all classes and 75% accuracy for class 10. 

Moreover, Fine Tree and Cubic SVM received high and close results of accuracy during the 

testing set process. This study used visualisation methods and statistical techniques to present 

our results. Statistical techniques have assisted us to make a comparison on the outcomes from 

different aspects and finally to choose the best classifiers that can be proper to provide the best 

prediction that helps clinicians to monitor shunted patients. A confusion matrix was computed. 

This research aimed to have an automatic observation and follow-up plan for shunted patients 

as well as predicting the right action for every patient event (i.e. Raised/lowered ICP with 

symptoms). Machine learning has been used to assess and process the ICP signals to help 

manage hydrocephalus follow-up in the long term. This methodology helps to increase the 
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capacity of the current service model in neurosurgery clinics, decreases the pressure of 

unnecessary visits, and minimises the risk of complication and errors through intelligent 

assessment and decision support of the medical team.  

In summary, the results reveal that intelligent systems, i.e. machine learning-based diagnostic 

models, represent a promising approach for the classification of monitoring shunted patients 

who have hydrocephalus disease, and are likely to hold significant visions to develop 

traditional models of monitoring and follow –up delivery.  

Clinicians need to investigate through patients’ outcomes, which include their pain episodes. 

A user-friendly software which is the HydroApp system was developed to help patients to 

record their pain episodes, at the same time, clinicians can access the patients’ feedback at any 

time and send them the necessary notification based on their feedback from the HydroApp 

system and their automatically analysed ICP signals. The main target of this system is to 

provide a user-friendly web-based system capable of making an on-demand, decision support 

system and recommendations that could lead to functional improvements. 

This research revealed that the potential of such a HydroApp system is a practical and useful 

tool for healthcare providers to recommend therapy. Moreover, the clinician’s platform system 

sends timely notifications to the patients based on their analysed ICP signals and their pain 

episodes through the HydroApp system.  This methodology can lead to development in their 

health condition. In aggregate, machine learning-based monitoring models in combination with 

the HydroApp system for long-term follow-up are likely to hold a significant potential to 

improve the quality of healthcare provided to patients with hydrocephalus. In addition to that, 

this methodology can reduce avoidable expenses for the NHS by reducing unnecessary visits 

as well as enabling clinicians to work faster and more efficiently in managing their patients. In 

short, it is the start of personalised healthcare. 
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 Summary and Future Work  

 
Hydrocephalus patients need long-term/lifetime follow-up, as most are shunt dependent for 

life. Therefore, better follow-up information, in terms of resources used, time spent in primary 

and secondary care, health professionals consulted, total in-patient stay, will lead to a better 

understanding of the natural history and future effective planning. Eventually, this could guide 

future follow-up management and resource utilisation. In this study, a novel machine learning 

approach has been demonstrated to predict the required actions in the management of 

hydrocephalus patients. With the success of our experimental study, this study considers further 

work directions, including improvements to the proposed machine learning along with the 

HydroApp system and extending its proposed techniques for better prediction. The data set is 

composed of 3,262 samples to obtain better accuracy. Further research is recommended to 

make a confirmation on the experiment outcomes, where a large number of data could also be 

utilised to advance the performance of the results. In this part, the possible extensions are 

highlighted to medical applications as discussed below. 

• As future work, understanding and analysing the ICP signals will be the key to more 

investigations of intelligent systems to help hydrocephalus patients and their clinical 

management. Deep learning could be used for more investigations and more prediction 

systems for ICP signals.  

• The proposed methodology framework is used with the machine learning algorithms, 

with the target values (classes) provided by the neurological team at the Alder Hey 

Children’s Foundation Hospital Trust. Moreover, the proposed model could serve 

different domains within medical environments.  

• The predictive models can be applied to another available medical data set. 

Consequently, the proposed model can be tested on another data set. The automated 

data recording through the HydroApp system could be extended to broader usage. 
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This research aims to collect a data set containing ICP signals features as input data to the 

classifiers. As an example, implanting a sensor in a patient could provide more datasets that 

can be linked to the HydroApp system and help clinicians to be always informed about the 

patient’s condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



140 
 

8- References 
 

[1] F. M. Joaquim A., Ghizoni E., Tedeschi H., “Hydrocephalus Basic Concepts and 

Initial Management,” in Fundamentals of Neurosurgery. Springer, 2019. 

[2] W. B. D. Hannah M Tully, “Infantile hydrocephalus: a review of epidemiology, 

classification and causes,” Nhs.Co.Uk, vol. 57, no. 8, pp. 359–368, 2015. 

[3] L. Shinners, C. Aggar, S. Grace, and S. Smith, “Exploring healthcare professionals’ 

understanding and experiences of artificial intelligence technology use in the delivery 

of healthcare: An integrative review,” Health Informatics J., vol. 26, no. 2, pp. 1225–

1236, 2020. 

[4] C. Bartneck and M. Lyons, “The relationship between emotion models and artificial 

intelligence,” Role Emot., pp. 1–12, 2008. 

[5] C. C. Aggarwal and P. S. Yu, “On classification of high-cardinality data streams,” 

Proc. 10th SIAM Int. Conf. Data Mining, SDM 2010, pp. 802–813, 2010. 

[6] L. Li, R. Sun, S. Cai, K. Zhao, and Q. Zhang, “A review of improved extreme learning 

machine methods for data stream classification,” Multimed. Tools Appl., vol. 78, no. 

23, pp. 33375–33400, 2019. 

[7] J. Wiens and E. S. Shenoy, “Machine Learning for Healthcare: On the Verge of a 

Major Shift in Healthcare Epidemiology,” Clin. Infect. Dis., vol. 66, no. 1, pp. 149–

153, 2018. 

[8] A. R. Alkharabsheh, “Early fault prediction and detection of hydrocephalus shunting 

system,” JBiSE_Journal Biomed. Sci. Eng., vol. 06, no. 03, pp. 280–290, 2013. 

[9] Y. Li et al., “Detection of differentiated changes in gray matter in children with 



141 
 

progressive hydrocephalus and chronic compensated hydrocephalus using voxel-based 

morphometry and machine learning.,” Anat. Rec. (Hoboken)., no. October 2018, pp. 1–

13, 2019. 

[10] J. Kestle et al., “Long-term follow-up data from the shunt design trial,” Pediatr. 

Neurosurg., vol. 33, no. 5, pp. 230–236, 2000. 

[11] A. K. Filis, K. Aghayev, and F. D. Vrionis, “Cerebrospinal fluid and hydrocephalus: 

Physiology, diagnosis, and treatment,” Cancer Control, vol. 24, no. 1, pp. 6–8, 2017. 

[12] I. K. Pople, “Hydrocephalus and shunts: what the neurologist should know.,” J. 

Neurol. Neurosurg. Psychiatry, vol. 73 Suppl 1, pp. i17-22, 2002. 

[13] A. L. F. E. Løvgren, S. Linge, and K. Mardal, “Cfd Analysis of Cerebrospinal Fluid 

Flow in the Cranio-Cervical Region,” vol. 1, pp. 1–4, 2008. 

[14] I. R. Manchester, K. Andersson, J. Malm, and A. Eklund, “System identification for 

clinical diagnosis of hydrocephalus,” Proc. IEEE Conf. Decis. Control, pp. 3391–

3396, 2010. 

[15] M. J. Simon and J. J. Iliff, “Regulation of cerebrospinal fluid (CSF) flow in 

neurodegenerative, neurovascular and neuroinflammatory disease,” Biochim. Biophys. 

Acta - Mol. Basis Dis., vol. 1862, no. 3, pp. 442–451, 2016. 

[16] H. L. Rekate, “The definition and classification of hydrocephalus: A personal 

recommendation to stimulate debate,” Cerebrospinal Fluid Res., vol. 5, pp. 1–7, 2008. 

[17] M. J. Simon and J. J. Iliff, “Regulation of cerebrospinal fluid (CSF) flow in 

neurodegenerative, neurovascular and neuroinflammatory disease,” Biochim. Biophys. 

Acta - Mol. Basis Dis., vol. 1862, no. 3, pp. 442–451, 2016. 

[18] T. Sæhle and P. K. Eide, “Association between ventricular volume measures and 



142 
 

pulsatile and static intracranial pressure scores in non-communicating hydrocephalus,” 

J. Neurol. Sci., vol. 350, no. 1–2, pp. 33–39, 2015. 

[19] G. Nagra, M. E. Wagshul, S. Rashid, J. Li, J. P. McAllister, and M. Johnston, 

“Elevated CSF outflow resistance associated with impaired lymphatic CSF absorption 

in a rat model of kaolin-induced communicating hydrocephalus,” Cerebrospinal Fluid 

Res., vol. 7, pp. 1–8, 2010. 

[20] G. Rosseau, “Normal Pressure Hydrocephalus,” Disease-a-Month, vol. 57, no. 10, pp. 

615–624, 2011. 

[21] K. J. Streitberger et al., “In vivo viscoelastic properties of the brain in normal pressure 

hydrocephalus,” NMR Biomed., vol. 24, no. 4, pp. 385–392, 2011. 

[22] J. Tervonen, V. Leinonen, J. E. Jääskeläinen, S. Koponen, and T. J. Huttunen, “Rate 

and Risk Factors for Shunt Revision in Pediatric Patients with Hydrocephalus—A 

Population-Based Study,” World Neurosurg., vol. 101, pp. 615–622, 2017. 

[23] N. H. Norager, A. Lilja-Cyron, T. S. Hansen, and M. Juhler, “Deciding on Appropriate 

Telemetric Intracranial Pressure Monitoring System,” World Neurosurg., vol. 126, pp. 

564–569, 2019. 

[24] S. Antes, A. Stadie, S. Müller, S. Linsler, D. Breuskin, and J. Oertel, “Intracranial 

Pressure–Guided Shunt Valve Adjustments with the Miethke Sensor Reservoir,” 

World Neurosurg., vol. 109, pp. e642–e650, 2018. 

[25] A. S. S. Nowaka,⁎, H.M. Mehdornb, “The programmable shunt-system Codman 

Medos Hakim: A clinical observation study and review of literature,” pubmed, vol. 

Volume 173, p. Pages 154-158, 2018. 

[26] L. G. Petersen, J. C. G. Petersen, M. Andresen, N. H. Secher, and M. Juhler, “Postural 



143 
 

influence on intracranial and cerebral perfusion pressure in ambulatory neurosurgical 

patients,” Am. J. Physiol. Integr. Comp. Physiol., vol. 310, no. 1, pp. R100–R104, 

2015. 

[27] T. K. Dakurah et al., “Management of Hydrocephalus with Ventriculoperitoneal 

Shunts: Review of 109 Cases of Children,” World Neurosurg., vol. 96, pp. 129–135, 

2016. 

[28] G. K. Reddy, P. Bollam, and G. Caldito, “Long-term outcomes of ventriculoperitoneal 

shunt surgery in patients with hydrocephalus,” World Neurosurg., vol. 81, no. 2, pp. 

404–410, 2014. 

[29] K. A. Markey, S. P. Mollan, R. H. Jensen, and A. J. Sinclair, “Understanding 

idiopathic intracranial hypertension: Mechanisms, management, and future directions,” 

Lancet Neurol., vol. 15, no. 1, pp. 78–91, 2016. 

[30] B. K. Kirsch CF, “Diplopia: What to Double Check in Radiographic Imaging of 

Double Vision,” Radiol Clin North Am, no. 55(1):69-81., 2017. 

[31]  and J. S. K. Vandana Arya, Virender K. Gehlawat, Aashima Singh, Kundan Mittal, 

“Acute Cerebellitis as a Rare Treatable Cause of Obstructive Hydrocephalus,” Pediatr. 

Neurosci., 2019. 

[32] K. O. Neiter E, Guarneri C, Pretat PH, Joud A, Marchal JC, “Semiology of 

ventriculoperitoneal shunting dysfunction in children - a review.,” Neurochirurgie., 

2016. 

[33] T. Bartfai and B. Conti, “Fever,” ScientificWorldJournal., vol. 10, pp. 490–503, 2010. 

[34] L. C. Padayachy, A. A. Figaji, and M. R. Bullock, “Intracranial pressure monitoring 

for traumatic brain injury in the modern era,” Child’s Nerv. Syst., vol. 26, no. 4, pp. 



144 
 

441–452, 2010. 

[35] A. Raghunathan and J. K. Antony, “MEMS based intracranial pressure monitoring 

sensor,” in RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in 

Electronics, Information and Communication Technology, Proceedings, 2018, vol. 

2018-Janua, pp. 451–456. 

[36] T. Schirinzi et al., “Cerebrospinal fluid biomarkers profile of idiopathic normal 

pressure hydrocephalus,” J. Neural Transm., vol. 125, no. 4, pp. 673–679, 2018. 

[37] H. Von Bezing, S. Andronikou, R. Van Toorn, and T. Douglas, “Are linear 

measurements and computerized volumetric ratios determined from axial MRI useful 

for diagnosing hydrocephalus in children with tuberculous meningitis?,” Child’s Nerv. 

Syst., vol. 28, no. 1, pp. 79–85, 2012. 

[38] L. Zacchetti, S. Magnoni, F. Di Corte, E. R. Zanier, and N. Stocchetti, “Accuracy of 

intracranial pressure monitoring: Systematic review and meta-analysis,” Crit. Care, 

vol. 19, no. 1, pp. 1–8, 2015. 

[39] S. Boeckx et al., “ICP and CPP management before and after 2007: impact on the 

association between dose of ICP and outcome,” Intensive Care Med. Exp., vol. 3, no. 

S1, pp. 1–2, 2015. 

[40] A. Hall and R. O’Kane, “The best marker for guiding the clinical management of 

patients with raised intracranial pressure—the RAP index or the mean pulse 

amplitude?,” Acta Neurochir. (Wien)., vol. 158, no. 10, pp. 1997–2009, 2016. 

[41] K. U., M. R.M., A. C.R., and C. M., “Advances in intracranial pressure monitoring and 

its significance in managing traumatic brain injury,” Int. J. Mol. Sci., vol. 16, no. 12, 

pp. 28979–28997, 2015. 



145 
 

[42] T. Sæhle and P. K. Eide, “Characteristics of intracranial pressure (ICP) waves and ICP 

in children with treatment-responsive hydrocephalus,” Acta Neurochir. (Wien)., vol. 

157, no. 6, pp. 1003–1014, 2015. 

[43] M. Kojoukhova et al., “Associations of intracranial pressure with brain biopsy, 

radiological findings, and shunt surgery outcome in patients with suspected idiopathic 

normal pressure hydrocephalus,” Acta Neurochir. (Wien)., vol. 159, no. 1, pp. 51–61, 

2017. 

[44] E. R. Wright Z, Larrew TW, “Pediatric Hydrocephalus: Current State of Diagnosis and 

Treatment,” pubmed, vol. 37. 

[45] F. Jiang et al., “Artificial intelligence in healthcare: Past, present and future,” Stroke 

Vasc. Neurol., vol. 2, no. 4, pp. 230–243, 2017. 

[46] P. P. and Y. R. SP Somashekhar, R Kumarc, A Rauthan, KR Arun, “Abstract S6-07: 

Double blinded validation study to assess performance of IBM artificial intelligence 

platform, Watson for oncology in comparison with Manipal multidisciplinary tumour 

board – First study of 638 breast cancer cases,” Am. Assoc. Cancer Res., vol. Volume 

77, no. Issue 4 Supplement, 2017. 

[47] R. A. Bouton CE, Shaikhouni A, Annetta, Bockbrader MA, Friedenberg DA, Nielson 

DM, Sharma G, Sederberg PB, Glenn BC, Mysiw WJ, Morgan AG, Deogaonkar M, 

“Restoring cortical control of functional movement in a human with quadriplegia.,” 

Nature, vol. 27074513, 2016. 

[48] S. M. Farina D, Vujaklija I, “Man/machine interface based on the discharge timings of 

spinal motor neurons after targeted muscle reinnervation.,” Nat Biomed Eng, 2017. 

[49] Marr B., “First FDA approval for clinical Cloud-Based Deep Learning in Healthcare.,” 



146 
 

2017. [Online]. Available: https://www.forbes.com/sites/bernardmarr/2017/01/20/first-

fda-approval-for-clinical-cloud-based-deep-learning-in-

healthcare/#1958ddfd161c%0D. [Accessed: 10-Feb-2019]. 

[50] M. Bkassiny, Y. Li, and S. K. Jayaweera, “A survey on machine-learning techniques in 

cognitive radios,” IEEE Commun. Surv. Tutorials, vol. 15, no. 3, pp. 1136–1159, 2013. 

[51] S. C. Tan, “Using Supervised Attribute Selection for Unsupervised Learning,” Proc. - 

2015 4th Int. Conf. Adv. Comput. Sci. Appl. Technol. ACSAT 2015, pp. 198–201, 2016. 

[52] Q. Li, J. Zhao, and X. Zhu, “An unsupervised learning algorithm for intelligent image 

analysis,” 9th Int. Conf. Control. Autom. Robot. Vision, 2006, ICARCV ’06, no. 1, pp. 

0–4, 2006. 

[53] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, “Reinforcement 

Learning through Asynchronous Advantage Actor-Critic on a GPU,” pp. 1–12, 2016. 

[54] Skansi Sandro, Machine Learning Basics. In: Introduction to Deep Learning. 

Undergraduate Topics in Computer Science., 06 Februar. Springer, Cham, 2018. 

[55] N. Guenther and M. Schonlau, “Support-Vector Networks,” Mach. Learn., vol. 20, no. 

3, pp. 273–297, 1995. 

[56] H. T. N. H. K. Lam,S. H. Ling, Computational Intelligence And Its Applications. Uk: 

Imperial College Press, 2012. 

[57] E. G.nen, Mehmet and Alpayd n, “Multiple kernel learning algorithms,” J. Mach. 

Learn. Res., vol. 12, pp. 2211--2268, 2011. 

[58] J. Zheng and B. L. Lu Bao-Liang, “A support vector machine classifier with automatic 

confidence and its application to gender classification,” Neurocomputing, vol. 74, no. 

11, pp. 1926–1935, 2011. 



147 
 

[59] A. J. Scholkopf, Bernhard and Smola, Learning with kernels: support vector machines, 

regularization, optimization, and beyond. MIT press, 2001. 

[60] R. Rodriguez-Pérez, M. Vogt, and J. Bajorath, “Support vector machine classification 

and regression prioritize different structural features for binary compound activity and 

potency value prediction,” ACS Omega, vol. 2, no. 10, pp. 6371–6379, 2017. 

[61] T. Vafeiadis, K. I. Diamantaras, G. Sarigiannidis, and K. C. Chatzisavvas, “A 

comparison of machine learning techniques for customer churn prediction,” Simul. 

Model. Pract. Theory, vol. 55, pp. 1–9, 2015. 

[62] H. Parvin, M. Mirnabibaboli, and H. Alinejad-Rokny, “Proposing a classifier ensemble 

framework based on classifier selection and decision tree,” Eng. Appl. Artif. Intell., 

vol. 37, pp. 34–42, 2015. 

[63] J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random Forests and Decision Trees,” 

Int. J. Comput. Sci. Issues, vol. 9, no. 5, pp. 272–278, 2012. 

[64] D. Chaudhary, “International Journal of Advanced Research in Data Mining : 

Techniques and Algorithms,” vol. 3, no. 8, pp. 475–479, 2013. 

[65] Y. Ben-Haim and E. Tom-Tov, “A streaming parallel decision tree algorithm,” J. 

Mach. Learn. Res., vol. 11, pp. 849–872, 2010. 

[66] “Hands-On_Ensemble_Learning_with_R_A_Beginner’s_Gui... (1).pdf.” . 

[67] K. Vo, J. Jonnagaddala, and S. T. Liaw, “Statistical supervised meta-ensemble 

algorithm for medical record linkage,” J. Biomed. Inform., vol. 95, no. April, p. 

103220, 2019. 

[68] K. J. Giri, “Big Data - Overview and Challenges,” vol. 4, no. 6, pp. 525–529, 2014. 



148 
 

[69] E. Brynjolfsson and A. Mcafee, “The Business of Artificial Intelligence: what it can 

and cannot do for your organization,” Harvard Bus. Rev. Digit. Artic., pp. 1–20, 2017. 

[70] S. Erevelles, N. Fukawa, and L. Swayne, “Big Data consumer analytics and the 

transformation of marketing,” J. Bus. Res., vol. 69, no. 2, pp. 897–904, 2016. 

[71] A. Kamilaris, A. Kartakoullis, and F. X. Prenafeta-Boldú, “A review on the practice of 

big data analysis in agriculture,” Comput. Electron. Agric., vol. 143, no. January, pp. 

23–37, 2017. 

[72] S. Misra and S. Bera, “Introduction to Big Data Analytics,” Smart Grid Technol., pp. 

38–48, 2018. 

[73] N. Savage, “Digging for drug facts,” Commun. ACM, vol. 55, no. 10, pp. 11–13, 2012. 

[74] ABPI, NICE, and University of Manchester, “DATA SCIENCE FOR HEALTH AND 

CARE EXCELLENCE. Harnessing the UK opportunities for new research and 

decision-making paradigms,” 2016. 

[75] S. M. Aljunid et al., “Health-care data collecting, sharing, and using in Thailand, 

China Mainland, South Korea, Taiwan, Japan, and Malaysia,” Value Heal., vol. 15, no. 

1 SUPPL., pp. 132–138, 2012. 

[76] S. R. Sukumar, R. Natarajan, and R. K. Ferrell, “Quality of Big Data in health care,” 

Int. J. Health Care Qual. Assur., vol. 28, no. 6, pp. 621–634, 2015. 

[77] A. Murakami, Y. Hirata, N. Motomura, H. Miyata, T. Iwanaka, and S. Takamoto, “The 

national clinical database as an initiative for quality improvement in Japan,” Korean J. 

Thorac. Cardiovasc. Surg., vol. 47, no. 5, pp. 437–443, 2014. 

[78] J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,” Nat. Phys., vol. 

13, no. 5, pp. 431–434, 2017. 



149 
 

[79] T. P. Exarchos, M. V. Karamouzis, K. P. Exarchos, D. I. Fotiadis, and K. Kourou, 

“Machine learning applications in cancer prognosis and prediction,” Comput. Struct. 

Biotechnol. J., vol. 13, pp. 8–17, 2014. 

[80] B.-J. Kim and S.-H. Kim, “Prediction of inherited genomic susceptibility to 20 

common cancer types by a supervised machine-learning method,” Proc. Natl. Acad. 

Sci., vol. 115, no. 6, pp. 1322–1327, 2018. 

[81] D. Wong and S. Yip, “Machine learning classifies cancer,” Nature, vol. 555, no. 7697, 

pp. 446–447, 2018. 

[82] E. S. Burnside, C. E. Kahn, J. W. Shavlik, T. Ayer, O. Alagoz, and J. Chhatwal, 

“Breast cancer risk estimation with artificial neural networks revisited,” Cancer, vol. 

116, no. 14, pp. 3310–3321, 2010. 

[83] N. I. M. Saleh, E. F. Shair, C. Gomes, M. M. Mehdy, and P. Y. Ng, “Artificial Neural 

Networks in Image Processing for Early Detection of Breast Cancer,” Comput. Math. 

Methods Med., vol. 2017, pp. 1–15, 2017. 

[84] P. S. Pawar and D. R. Patil, “Breast cancer detection using neural network models,” 

Proc. - 2013 Int. Conf. Commun. Syst. Netw. Technol. CSNT 2013, pp. 568–572, 2013. 

[85] M. Tivnan, C. Rappaport, M. Lambert, and D. Lesselier, “A modified gradient descent 

reconstruction algorithm for breast cancer detection using Microwave Radar and 

Digital Breast Tomosynthesis,” 2016 10th Eur. Conf. Antennas Propagation, EuCAP 

2016, no. 5, pp. 1–4, 2016. 

[86] A. Helwan, J. B. Idoko, and R. H. Abiyev, “Machine learning techniques for 

classification of breast tissue,” Procedia Comput. Sci., vol. 120, no. 2017, pp. 402–

410, 2017. 



150 
 

[87] Y. Kinar et al., “Performance analysis of a machine learning flagging system used to 

identify a group of individuals at a high risk for colorectal cancer,” PLoS One, vol. 12, 

no. 2, pp. 1–8, 2017. 

[88] J. L. Dmitrii Bychkov, Riku Turkki, Caj Haglund, Nina Linder, “Outcome prediction 

in colorectal cancer using digitized tumor samples and machine learning .,” Proc. Am. 

Assoc. Cance, no. 2017 Apr 1–5, 2017. 

[89] E. Glaab, J. Bacardit, J. M. Garibaldi, and N. Krasnogor, “Using rule-based machine 

learning for candidate disease gene prioritization and sample classification of cancer 

gene expression data,” PLoS One, vol. 7, no. 7, 2012. 

[90] P. Shi, S. Ray, Q. Zhu, and M. A. Kon, “Top scoring pairs for feature selection in 

machine learning and applications to cancer outcome prediction,” BMC 

Bioinformatics, vol. 12, 2011. 

[91] J. Wang, B. Zhang, C. Shen, J. Zhang, and W. Wang, “Headache symptoms from 

migraine patients with and without aura through structure-validated self-reports,” BMC 

Neurol., vol. 17, no. 1, pp. 1–7, 2017. 

[92] M. Vincent and S. Wang, “Headache Classification Committee of the International 

Headache Society (IHS) The International Classification of Headache Disorders, 3rd 

edition,” Cephalalgia, vol. 38, no. 1, pp. 1–211, 2018. 

[93] J. Hoffmann and A. May, “Diagnosis, pathophysiology, and management of cluster 

headache,” Lancet Neurol., vol. 17, no. 1, pp. 75–83, 2018. 

[94] M. Viana et al., “Migraine aura symptoms: Duration, succession and temporal 

relationship to headache,” Cephalalgia, vol. 36, no. 5, pp. 413–421, 2015. 

[95] E. A. D. Schindler, D. A. Wright, M. J. Weil, C. H. Gottschalk, B. P. Pittman, and J. J. 



151 
 

Sico, “Survey Analysis of the Use, Effectiveness, and Patient-Reported Tolerability of 

Inhaled Oxygen Compared With Injectable Sumatriptan for the Acute Treatment of 

Cluster Headache,” Headache, vol. 58, no. 10, pp. 1568–1578, 2018. 

[96] J. Xiang et al., “Neuromagnetic abnormality of motor cortical activation and phases of 

headache attacks in childhood migraine,” PLoS One, vol. 8, no. 12, 2013. 

[97] D. W. Dodick, “A Phase-by-Phase Review of Migraine Pathophysiology,” Headache, 

vol. 58, pp. 4–16, 2018. 

[98] G. Vandewiele et al., “A decision support system to follow up and diagnose primary 

headache patients using semantically enriched data,” BMC Med. Inform. Decis. Mak., 

vol. 18, no. 1, p. 98, 2018. 

[99] B. Fernandez-Ruanova, M. Gomez-Beldarrain, J. C. Garcia-Monco, Y. Garcia-

Chimeno, and B. Garcia-Zapirain, “Automatic migraine classification via feature 

selection committee and machine learning techniques over imaging and questionnaire 

data,” BMC Med. Inform. Decis. Mak., vol. 17, no. 1, pp. 1–10, 2017. 

[100] T. Adjei, D. Abasolo, and D. Santamarta, “Characterisation of the complexity of 

intracranial pressure signals measured from idiopathic and secondary normal pressure 

hydrocephalus patients,” Healthc. Technol. Lett., vol. 3, no. 3, pp. 226–229, 2016. 

[101] M. Galeano, A. Calisto, A. Bramanti, F. Angileri, G. Campobello, and S. Serrano, 

“Classification of morphological features extracted from intracranial pressure 

recordings in the diagnosis of normal pressure hydrocephalus (NPH),” Proc. Annu. Int. 

Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 2768–2771, 2011. 

[102] S. Casale, A. Russo, G. Scebba, and S. Serrano, “Speech emotion classification using 

Machine Learning algorithms,” Proc. - IEEE Int. Conf. Semant. Comput. 2008, ICSC 



152 
 

2008, pp. 158–165, 2008. 

[103] A. Chari et al., “Intraparenchymal intracranial pressure monitoring for hydrocephalus 

and cerebrospinal fluid disorders,” Acta Neurochir. (Wien)., vol. 159, no. 10, pp. 

1967–1978, 2017. 

[104] B. Quachtran, R. Hamilton, and F. Scalzo, “Detection of Intracranial Hypertension 

using Deep Learning,” Proc. - Int. Conf. Pattern Recognit., pp. 2491–2496, 2017. 

[105] A. Zhang, P.-Y. Kao, A. Shelat, R. Sahyouni, J. Chen, and B. S. Manjunath, “Fully 

Automated Volumetric Classification in CT Scans for Diagnosis and Analysis of 

Normal Pressure Hydrocephalus,” 2019. 

[106] A. S. Al-Kafri et al., “Boundary Delineation of MRI Images for Lumbar Spinal 

Stenosis Detection Through Semantic Segmentation Using Deep Neural Networks,” 

IEEE Access, vol. 7, pp. 43487–43501, 2019. 

[107] C. A. C. Montañez, P. Fergus, A. Hussain, D. Al-Jumeily, M. T. Dorak, and R. 

Abdullah, “Evaluation of phenotype classification methods for obesity using direct to 

consumer genetic data,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. 

Intell. Lect. Notes Bioinformatics), vol. 10362 LNCS, pp. 350–362, 2017. 

[108] H. Alsmadi et al., “An insight into ICP monitoring of patients with hydrocephalus 

using data science approach,” Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl. AICCSA, 

vol. 2019-Novem, pp. 5–6, 2019. 

[109] N. Zhou et al., “Crowdsourcing image analysis for plant phenomics to generate ground 

truth data for machine learning,” PLoS Comput. Biol., vol. 14, no. 7, pp. 1–17, 2018. 

[110] M. Butler, “Android: Changing the mobile landscape,” IEEE Pervasive Computing, 

vol. 10, no. 1. pp. 4–7, 2011. 



153 
 

[111] C. Giachetti and S. Torrisi, “Following or Running Away from the Market Leader? 

The Influences of Environmental Uncertainty and Market Leadership,” Eur. Manag. 

Rev., 2017. 

[112] Claudio Giachetti, “Explaining Apple’s iPhone Success in the Mobile Phone Industry: 

The Creation of a New Market Space,” Springer, 2018. 

[113] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A 

survey of mobile phone sensing,” IEEE Commun. Mag., vol. 48, no. 9, pp. 140–150, 

2010. 

[114] M. A. Lopes, Á. S. Almeida, and B. Almada-Lobo, “Handling healthcare workforce 

planning with care: Where do we stand?,” Hum. Resour. Health, vol. 13, no. 1, 2015. 

[115] L. Ventola, “Mobile d evices and a pps for health c are p rofessionals: uses and benef,” 

P T, vol. 39, no. 5, pp. 356–364, 2014. 

[116] NHS England, “NHS England, Domain 2: Enhancing quality of life for people with 

long-term conditions,” 2018. [Online]. Available: 

https://www.england.nhs.uk/ourwork/ltc-op-eolc/. [Accessed: 12-Feb-2018]. 

[117] K. E. Behrns, “Big Data And New Knowledge In Medicine: The Thinking, Training, 

And Tools Needed For A Learning Health System: Krumholz HM (Yale Univ School 

of Medicine, in New Haven, CT) Health Aff 33:1163-1170, 2014§,” Yearb. Surg., vol. 

2015, pp. 13–14, 2015. 

[118] A. Rácz, D. Bajusz, and K. Héberger, “Multi-Level Comparison of Machine Learning 

Classifiers and Their Performance Metrics,” Molecules, vol. 24, no. 15, pp. 1–18, 

2019. 

[119] G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, D. S. Rajput, R. Kaluri, and G. 



154 
 

Srivastava, “Hybrid genetic algorithm and a fuzzy logic classifier for heart disease 

diagnosis,” Evol. Intell., no. 0123456789, 2019. 

 


