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Abstract

It is undoubted that fog computing contributes in catering the latency-stringent applications of 5G, and one of the enabling tech-
nologies that fundamentally ensure the success of fog computing is virtualization as it offers isolation and platform independence.
Although the emergence of vehicle-based fog (referred to as v-fog) facilities can certainly benefit from these desirable features of
virtualization, there are several challenges that need to be addressed in order to realize the full potential that v-fogs can offer. One of
the challenges of virtualization in v-fog is Virtual Machine (VM) migration. There are several factors that trigger a VM migration
in a v-fog such as vehicle resource depletion. VM migrations would not only lead to nonessential usage of valuable resources (e.g.
energy, bandwidth, memory) in the v-fogs, but also incur various overheads and performance degradation throughout the whole
network. Thus, minimizing VM migrations is necessary. Furthermore, to ensure the seamless VM migrations between v-fogs, trust
of v-fogs is required. While there exists studies of trust in the virtualization of cloud, they are irrelevant to v-fogs as v-fogs are dif-
ferent in nature (i.e. heterogeneous, mobile) from the cloud. Additionally, trust is not included in the decision making mechanisms
of VM allocation for vehicular environments in the existing works. Moreover, as vehicle resources are constrained, their energy has
to be utilized efficiently. In this paper, we propose EnTruVe, an ENergy and TRUst-aware VM allocation in VEhicle fog computing
solution that aims to minimize the number of VM migration while reducing VM processing associated energy consumption as much
as possible. The VM allocation algorithm in EnTruVe provides a larger selection pool of v-fogs that meets the VMs requirements
(e.g. trust, latency), thereby ensuring higher chances of success of VM allocation. Using Analytic Hierarchy Process (AHP), the
proposed EnTruVe solution evaluates the v-fogs based on a set of metrics (e.g. energy consumption, end-to-end latency) to select
the optimal v-fog for a VM allocation. Results obtained demonstrate that EnTruVe has the least number of VM migrations and it is
the most energy efficient solution. Additionally, it shows that EnTruVe provides the highest utilization of v-fogs of up to 57.6% in
comparison to other solutions as the number of incoming requests increases.

Keywords: Energy efficiency, trust, vehicular fog, VM migration

1. Introduction

As we enter the fourth industrial revolution, it is imperative
for 5G networks to provide diverse services to cater to the strin-
gent requirements of existing and upcoming applications. Fog
computing [1] certainly plays an important role in realizing the
potential of 5G with its capability in serving applications with
stringent latency requirements and being close to end users. As
vehicular technologies are advancing, combined with the fact
that vehicles remain parked 96% of the time [2], parked vehi-
cles can be utilized to serve as part of fog computing facilities.
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Thus, investment in deploying dedicated fog computing infras-
tructures for the end users can be reduced. In this paper, we de-
fine any device (e.g. routers, set-top box, optical line terminal
[3]) that has capabilities for catering edge computing services
as fogs, and when the device is mobile, it is defined as v-fog.

Being the foundation in cloud computing, virtualization tech-
nology allows resources to be utilized efficiently where it cre-
ates an abstraction layer over computer hardware that allows
the hardware elements of a single computer (processors, mem-
ory, and storage) to be divided into multiple Virtual Machines
(VMs) [4]. The virtualization technology offers hardware-level
isolation and platform independence [5], which is especially
crucial to facilitate vehicular-based fog computing efficiently
as seen employed in existing studies [6, 7].

In contrast with cloud, v-fogs exert a distinctive set of chal-
lenges that should be overcome if virtualization is going to be



employed. On top of having lower reliability, being distributed
and mobile in nature, v-fogs are more vulnerable to attacks as
the existing vehicular security measures cannot entirely prevent
advanced attacks from happening [8, 9]. This can not only jeop-
ardize the v-fogs, but also endanger human lives. Thus, meet-
ing the stringent latency and ensuring high availability are more
challenging in fog-integrated 5G environment as these factors
should be considered in making decisions related to VM man-
agement. Hence, trust-based solution is required to facilitate
VM-based fog computing platforms efficiently [5]. Similar to
[10], we define trust as an expectation that a parked v-fog will
behave in an intended manner. Trust is important as it enables
seamless collaboration in the entire system, and without it, the
deployment of v-fogs to assist 5G network would be problem-
atic.

Trust is not only imperative in fog computing and 5G, but
it is also a persistent issue in the cloud [11]. Various studies of
trust management are observed across multiple domains such
as the Internet of Things (IoT) [12, 13], Wireless Sensor Net-
work (WSN) [14], Intelligent Transport Systems (ITS) [9] and
cloud computing [15]. In cloud computing specifically, the au-
thors in [15] presented a trust model specifically designed to
assist cloud providers in taking decisions about inter-cloud VM
migration based on reliability and reputation. Meanwhile, work
in [16] uses a token-based approach to guarantee that VMs are
migrated to trustworthy cloud platforms. However, no results
are presented to support their frameworks. Additionally, trust
is not emphasized in VM allocation in vehicles in the existing
studies [17].

Due to the aforementioned limitations fog computing faces
that are different from cloud i.e. being distributed, mobile, and
vulnerable in nature, the existing trust-based VM allocation so-
lutions in the cloud are not completely applicable to the vehic-
ular environment. Nonetheless, trust in fog computing is high-
lighted in our previous work in [18] where we use a use case to
demonstrate how our trust-based solution works. In our other
work in [19], trust-based task mapping solution between the v-
fogs is proposed where parked v-fogs which are used as part of
the fog computing facilities are clustered together for compu-
tation to form a physical cluster (known as Trust Domain) as
shown in Fig. 1. Whereas logical cluster of v-fogs, as shown
in Fig. 2 is based on the v-fog’s trust value. Seeing the positive
results, here we take a step further in extending our study con-
sidering the importance of trust inclusion in tackling the VM
migration issue in v-fog. When trust is incorporated into VM
management in v-fogs in terms of v-fog trust evaluation, we
believe that reducing of the number of VM migration and VM
resource footprint, and increasing the v-fog energy efficiency
can be achieved in which we will observe in the performance
evaluation. We present a use case to highlight the importance
of our work. In the use case scenario, we envision a commer-
cial metropolitan area with plenty parking spaces similar to the
work in [20]. Various tasks from end users of different sectors
would be operating in the area such as health monitoring, real-
time surveillance and tactile internet applications. Such critical
tasks rely on stringent latency communication, hence the parked
vehicles in the parking spaces can be utilized as fog computing

facilities to locally process the tasks. This ensures that not only
the stringent latency is met, but even security is considered.

To the best of our knowledge, this is the first study to in-
corporate trust in deciding the optimal vehicular fog node for
VM allocation. Here, a VM allocation can refer to either VM
placement or VM migration. We define VM placement as an
event that occurs when a VM is placed to a host (v-fog) for the
first time. When several conditions such as when the host is
no longer meeting the VMs requirements or the host is moving
elsewhere, VM migration is triggered. We define VM migra-
tion as an event that occurs when a VM is already placed onto a
host but needs to be moved to another host due to factors such
as not meeting the VMs requirements or the host is moving
elsewhere. Note that VM migration is resource-intensive i.e.
it consumes a large number of CPU cycles and network band-
width [21] which in turn exhausts the v-fogs energy and can di-
rectly impact the v-fog’s performance. Therefore, in this paper,
we propose a solution named EnTruVe which has two major
objectives: (i) reducing the number of VM migrations between
the v-fogs and (ii) minimizing the energy consumption of v-
fog based fog computing infrastructure when the virtualization
technology is in place.

This paper is a follow-up work from our previous works
presented in [18] and [19]. Motivated by the significance of
trust inclusion in making VM allocation decisions that we dis-
cussed earlier, we aim to provide a trust-based service in or-
der to meet a client’s satisfaction such as finishing tasks on
time. First, EnTruVe matches a client’s request requirements
with a VM. Then EnTruVe allocates the VM onto an optimal v-
fog. EnTruVe consists of three VM allocation options namely
i) intra-cluster, ii) inter-cluster, and iii) inter-Trust Domain1, as
seen in Fig. 3. These VM allocation options are further elab-
orated in the Section 3.3.3 of this paper. Additionally, the pro-
posed EnTruVe solution facilitates VM migration trigger algo-
rithm that is executed when any of the trigger conditions is true.
This is explained in Section 3.3.4 of this paper. Using Analytic
Hierarchy Process (AHP), the proposed EnTruVe solution eval-
uates the v-fogs within the selected trust domain based on a set
of metrics (e.g. energy consumption and end-to-end latency for
a client that is requesting for a service) to select the optimal
v-fog for a VM allocation.

Through this solution, we can reduce the number of VM mi-
grations between the parked v-fogs, thereby increasing the uti-
lization of the parked v-fogs and reducing valuable resources
(e.g. energy, bandwidth, memory) in the v-fogs. Addition-
ally, EnTruVe selects the most energy-efficient parked v-fog and
communication interface while assigning a VM to a v-fog in or-
der to minimize the energy consumption in the v-fog based fog
computing infrastructure. Hence, we make the following con-
tributions in this paper:

• We consider trust as a variable to gauge the v-fogs perfor-

1Intra-cluster VM allocation happens between v-fogs that reside in the same
logical cluster and Trust Domain. Inter-cluster VM allocation occurs between
v-fogs in the same Trust Domain but different logical clusters. Inter-Trust Do-
main VM allocation occurs between v-fogs from different Trust Domain but
can be in the same or different logical clusters.
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Figure 1: v-fogs in different Trust Domains.

mance and use it as the basis to form v-fog logical clus-
ters. This is necessary considering v-fogs heterogeneous
and distributed nature.

• We propose EnTruVe, a VM allocation solution that fil-
ters the participating v-fogs in Vehicular Fog Computing
(VFC) in order to select the optimal v-fog for VM allo-
cation using AHP.

• Our proposed VM allocation procedure takes into account
the trust requirement of the VMs. This can be carried out
in three options, namely intra-cluster, inter-cluster and
inter-Trust Domain.

• Our solution selects the most energy-efficient parked v-
fog while assigning a VM to a v-fog. Additionally, it
considers the energy consumption of a v-fog’s commu-
nication interface of either Vehicle-to-Vehicle (V2V) or
Vehicle-to-Interface (V2I), and dynamically selects the
most energy-efficient communication interface for VM
allocation onto the v-fogs.

The performance evaluation of the proposed work is con-
ducted using Matlab. Our results demonstrate that the proposed
EnTruVe solution outperforms the other solutions in terms of
number of migrations, utilization, and energy efficiency. The
rest of the paper is arranged as follows: Section 2 presents
the existing studies on trust in VM management and VM al-
location in the vehicular network. Section 3 describes the pro-
posed work, system model and algorithm for VM allocation in
v-fogs. The performance evaluations are elaborated in Section
4. Meanwhile the discussions and conclusions are presented in
Section 5 and 6 respectively.

2. Background Study

In this section, we briefly review the existing studies per-
taining to trust in the cloud in Section 2.1, and VM allocation
in cloud and fog environments in Section 2.2.

2.1. Trust in Cloud

There are studies on trust in the cloud that specifically fo-
cus on the Infrastructure-as-a-Service (IaaS) [15, 22, 23]. The
authors in [22] propose CloudTrust that quantifies the degree of
confidentiality and integrity offered by a Cloud Service Provider
(CSP), where they also define physical and virtual trust zones.
However, their trust assessment model is security-wise only and
is not conducted to further secure VM migrations. Unlike [22],
the authors in [23] propose a trusted VM migration protocol
which can guarantee the coherence and continuity of trusted
status during the VM migration in the IaaS platform. Their
notion of trust is based on physical security such as digital sig-
nature. Meanwhile, the authors in [15] present a trust model
specifically designed to assist cloud providers in making inter-
cloud VM migration decisions. They assume that a truster com-
putes the trust by means of two different measures: reliability,
i.e. a direct measure derived by the direct experience of the
truster with the trustee, and the reputation, which is an indi-
rect measure based on the opinions of the other agents. How-
ever, no results are presented to support their framework. On
the other hand, the authors in [24] develop a secure and intelli-
gent task offloading framework where they exploit blockchain
and smart contract to facilitate fair task offloading and mitigate
various security attacks. The authors design a subjective logic-
based trustfulness metric to quantify the possibility of task of-
floading success, and develop a trustfulness assessment mecha-
nism. An online learning-based intelligent task offloading algo-
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rithm named QUeuing-delay aware, handOver-cost aware, and
Trustfulness Aware Upper Confidence Bound (QUOTA-UCB)
is proposed, which can learn the long-term optimal strategy and
achieve a well-balanced tradeoff among task offloading delay,
queuing delay, and handover cost.

Authors in [16] propose a secure and trustworthy solution
for VM migration within an existing cloud provider domain.
Using a token-based approach, their solution guarantees that
VMs are migrated to trustworthy cloud platforms. On the other
hand, work in [25] presents a trust model to support service
providers to verify trustworthiness of infrastructure providers
in cloud computing environments. Their model calculates trust
values based on different parameters, namely Service Level Agree-
ment (SLA) monitoring compliance, service provider ratings,
and service provider behavior. Finally, the trust values are cal-
culated based on an opinion model in terms of belief, disbelief,
uncertainty and base rate. However, their trust evaluation is not
incorporated in VM migration procedure.

2.2. VM Allocation

To achieve the optimization of channel selection which is
critical for efficient and reliable task delivery in edge comput-
ing environment, the authors in [26] propose a learning-based
channel selection framework with service reliability awareness,
energy awareness, backlog awareness, and conflict awareness,
by leveraging the combined power of machine learning, Lya-
punov optimization, and matching theory. Resource allocation
in terms of VM allocation has been vastly studied over the years
with different objectives such as preventing SLA violations, re-
ducing the number of transferred pages, reducing the number of
physical machines, and the number of migrations [27]. Several
studies have attempted to address the VM allocation issue in
cloud data centers. It is addressed in [28] where the authors use
an Ant-Colony system-based approach in order to minimize the

number of active servers, improve the resource utilization, bal-
ance different resources, and reduce power consumption. An-
other study in [29] focuses on minimizing data and energy cost
of VM allocation in distributed cloud data centers. The au-
thors in [30] propose VMPlanner which optimizes the traffic
flow routing to turn off as many unneeded network elements as
possible for power saving. Meanwhile, the study in [31] pro-
poses a solution by placing the VMs according to each host
capacity. The authors propose an enhanced levy-based particle
swarm optimization algorithm with variable-sized bin packing
to solve the VM placement problem. VM migration is triggered
when the utilization rate of VM reaches a critical value.

In v-fog, the authors in [17] propose a mobility and desti-
nation workload-aware migration scheme which takes into ac-
count the workload and mobility of the original host as well
as the potential destinations. This ensures that the destinations
have time to process the current workload and migrate new
workload when required. To avoid the second-hop problem,
they utilize cutoff calculation to calculate the cutoff time for the
search criteria where only vehicles remaining in the grid longer
than cutoff are considered as viable candidates. The source ve-
hicle consequently selects the vehicle with the longest time re-
maining among the viable candidates for workload migration.
A close resemblance to our proposed idea can be observed in
[32] where the authors envision four types of VM migrations
in v-fog, namely inter-fog, intra-fog, across roadside-vehicular
cloud, and across roadside-central cloud. However, the basis of
host selection for allocation of VMs is not justified and trust is
not integrated in their VM migration types.

Similar studies addressing the above issue can be seen in
[33]. The authors in [33] aim to achieve minimal average data
traffic where they propose an enumeration based optimal place-
ment algorithm and divide-and-conquer based near-optimal place-
ment algorithm. They distribute the VM Replica Copies (VRCs)
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of applications to the edge network, enumerate all placements
of VRCs and evaluate the average data traffic for each place-
ment case. However, End-to-End (E2E) latency is not consid-
ered in the studies mentioned above. As E2E latency is an es-
sential factor that needs to be considered for VM allocation in
fog environment, it is considered in some studies (e.g. [34] [35]
[36]). In [34], the authors propose a VM allocation decision
model based on mobility prediction in fog computing in order
to optimize the placement of the VMs in a v-fog. In their study,
the VM is moved to a v-fog node ahead of its route which aims
to reduce user latency. They use a greedy algorithm to select
the fog with the lowest E2E latency among a set of 10 candi-
date fogs.

The authors in [36] use a modified Q-learning method on
deciding the resource price strategy for VM migration. They
develop a novel one-on-one contract game with 3 phases: VM
migration decision, the conclusion of a contract for the v-fog
resource allocation, and learning-based price adjustment. The
closest study that resembles our work is found in [35] where the
authors propose a VM migration decision policy named VaM-
PIre, that considers the mobility of vehicles and the number of
resources available in the fogs. The authors use the AHP for
decision-making, and consider four factors that can affect the
VM migration decision namely the energy cost of performance,
the energy cost of communication, mobility, and available re-
sources.

It is apparent from the existing literature that although trust
(mainly in terms of communication trust and data trust) is an
important aspect specifically the cloud, it is not considered in
VM allocation in the vehicular environment. We believe that
providing a trust-based solution for VM allocation is important
in ensuring a seamless virtualization-based collaboration in the
VFC environment. Hence, we are motivated to provide a solu-
tion that infuses trust in the VM allocation procedure.

3. Proposed Work

To facilitate this, we propose a framework that observes
the VM allocation in v-fogs. Section 3.1 elaborates the system
model, Section 3.2 describes our EnTruVe solution’s workflow,
and the proposed algorithm is presented in Section 3.3.

3.1. System Model

In this study, we consider live VM migration in order to re-
duce the service downtime [27]. In our proposed solution, we
consider that each client request has three main requirements
i.e. trust, E2E latency requirement, and task completion time.
We denote V = {vm1, vm2, ..., vmn} as the set of VMs in a v-fog
where n is the number of VMs and

∑n
i=1 vmi 6 Vcap where Vcap

is the capacity of VMs that a v-fog can hold. The set of re-
quests from the clients is denoted as R = {r1, r2, ..., rm}, where
m is the number of requests. We assume that a VM alloca-
tion can take place with the help of brokers through either the
V2V or V2I communications. The former enables the v-fog
to communicate directly with the brokers via 5G or WiFi tech-
nologies. Meanwhile, the latter utilizes the Device-to-Device
(D2D) connectivity using either the 5G D2D or WiFi Direct
technologies [37] with network-assisted configurations. We as-
sume that the brokers will prompt the Base Station (BS) to assist
D2D-related processes such as D2D discovery and D2D syn-
chronization [38] beforehand minimizing time consumption in
D2D communication. We assume that the D2D facilitates the
multiple-hop communication.

We assume a few additional network functions in 5G core
network similar to our work in [19] in this paper. We consider
two additional components which are two levels of broker func-
tion located in the 5G BS, namely the Main Broker (MB) and
Local Broker (LB), similar to our previous paper [19]. There
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are five main components involved in facilitating the VM allo-
cation in our proposed EnTruVe, namely User Plane Function
(UPF), MB and LB and the v-fogs as explained below:

1. UPF: Apart from having its existing functions in 5G net-
works such as packet inspection, traffic steering of the
user plane, and transport-level packet marking [39], we
assume that the UPF has a global knowledge including
the traffic forwarding latency from one point to another
point similar to our previous work in [19]. Additionally,
we assume that the UPF has the Workload Management
(WLM) subcomponent as shown in Fig. 4, which keeps a
record of VMs that will be placed and are currently being
placed in a v-fog, and the workload status of a v-fog. The
WLM also contains information of a v-fog namely E2E
latency, energy consumption, and resource availability,
which are further explained in the subsequent subsection.

2. LB: The LB runs the v-fog admission procedure which
performs the trust evaluation of v-fogs using the metrics
and the procedure explained in our previous study. As
trust values are dynamically changing over time, the LB
periodically evaluates the trust values of the v-fogs.

3. MB: The MB has a Request Management subcompo-
nent which manages incoming requests generated by the
clients. The role of MB is to allocate VMs to the most
appropriate v-fog where it runs the VM allocation proce-
dure that will be elaborated in Section 3.3.2. To execute
the procedure, the MB requires the information from the
5G core network. A subcomponent in the MB called An-
alytic Hierarchy Process Evaluation (AHPE) executes the
necessary steps (see the algorithm presented in Fig. 5) to
evaluate and determine the optimal v-fog that meets the
requirements of VM for task processing based on prede-
fined metrics.

4. VM Repository (VMR): To ensure centralized manage-
ment of VMs, we assume that the VMR operates in the
cloud similar to [40]. The VMR receives any incoming
client requests from the MB. The functions of the VMR
includes creating the VMs to cater to the application re-
quirements of the request based on VM template, storing
and destroying the VMs when required.

5. v-fog: Additionally, we consider that a v-fog in a logical
cluster can execute various VMs created by the VMR. We
assume that single or multiple VM allocations can occur
from a v-fog. At a given time, there can be m VMs in a v-
fog, therefore the total number of VM arrivals in a v-fog
is expressed as λtotal = λ1 + λ2 + ... + λn where n is the nth
VM arrival. We assume that a v-fog can set its maximum
utilization, ρmax considering the service latency Ls set by
the operator (this will be elaborated further in Section
3.3.1).

3.2. Proposed Workflow
When a v-fog reaches a Trust Domain, the v-fog’s informa-

tion is first extracted from the 5G core network 1 as illustrated
in Fig. 4. The LB acquires these information for the v-fog’s
trust evaluation in the v-fog admission procedure. On the other
hand, the MB needs the v-fog information for decision-making
in the VM allocation procedure. First, we explain here how the
LB assigns a v-fog to a logical cluster. Next, we explain how
the MB conducts the VM allocation procedure.

3.2.1. v-fog Admission Procedure in a Logical Cluster
The LB evaluates the trust of a v-fog based on three metrics

namely, availability, security and reputation. The security met-
ric reflects the v-fog security level, reputation metric is mea-
sured based on a v-fog’s performance in completing user re-
quests, and the availability metric is measured in terms of the
v-fog’s parking duration. The logical clusters, which we de-
fined in Section 1, are formed based on trust values. Each logi-
cal cluster has its own trust range, predefined by a lower bound
and an upper bound, depending on the number of logical clus-
ters. After the LB evaluates the trust value of a v-fog and if
the v-fog’s trust value falls into a logical cluster’s trust range,
the LB assigns the v-fog to the respective logical cluster. For
instance, as illustrated in Fig. 2, a v-fog that belongs to log-
ical cluster i can be promoted and assigned to logical cluster
i + 1 when the v-fog’s trust value is within logical cluster i +
1’s trust range. Similarly, the LB can demote the v-fog to other
logical clusters if the v-fog’s trust value falls within the other
logical cluster’s trust range. This demonstrates that trust is dy-
namic and the solution can cater to the changing trust values of
v-fogs.

In this paper, the trust assessment of v-fogs is conducted us-
ing fuzzy logic in LB. The v-fogs’ admission into their respec-
tive logical clusters according to their trust value is based on the
Vehicle Cluster Formation algorithm in our previous work pre-
sented in [19]. The execution of this procedure is compulsory
before the VM allocation procedure takes place.

3.2.2. VM Allocation Procedure
1. VM Placement:

For the VM allocation procedure in MB, Fig. 4 shows
that a client sends a task request to the MB consisting
of its requirements 2 . To serve the task request, our
proposed solution takes these requirements into account
for allocating a VM to a v-fog. We define a vector C =

{trust, E2E latency requirement, task completion time}, el-
ement of which respectively defines the client’s trust, end-
to-end latency and task completion deadline requirement
for a particular task.

The total time that a v-fog can serve is denoted by Vtp

= Vpark + Vleave where Vpark is the average v-fog park-
ing duration and Vleave is the average time when the v-fog
starts to leave its parking spot until it leaves the premise.
If the v-fog’s Vtp < T total

proc , where T total
proc is the total amount

of time required to finish the tasks, the MB will not con-
sider the v-fog for VM allocation. Upon receiving the
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Figure 4: General workflow of EnTruVe.

task request, the Task Management component forwards
the task request to the WLM in order to process it 3 .
Then the WLM acquires a VM from the VMR to cater
the task request requirements 4 . The WLM forwards
the VM information to the AHPE 5 , where the AHPE
then selects a v-fog that meets the requirements 6 in or-
der to reduce the number of VM migrations. Inevitably,
there could be more than one v-fog that meet the require-
ments. Hence, the MB uses AHP in this procedure for
VM allocation to select the optimal v-fog for VM al-
location [41]. Based on the three options for VM allo-
cation namely intra-cluster, inter-cluster, and inter-Trust
Domain, the AHPE then identifies the optimal v-fog for
VM placement 7 . The v-fog periodically updates the LB
of its current status while processing the VM at hand 8 .

2. VM Migration: As mentioned previously, the LB peri-
odically assesses the trust value of a v-fog. When the
trust value of the v-fog at a given time t is depleted, the
v-fog no longer meets the trust requirement of the VM
and thus triggers the VM migration. At this point, we
have an algorithm (that will be discussed in the following
subsection) that handles VM migration that is triggered
from different conditions. For instance, when the v-fog’s
security in terms of its authentication role has changed
or its digital certificate to participate in the VFC service
has expired, these can lead to the decrease in security
value and subsequently depletes the v-fog’s trust value.
Similarly, if the v-fog’s Vleave < (T total

proc - T total
cur ), where

T total
cur is the current time elapsed in processing the tasks,

this condition triggers the v-fog to migrate the VM to an-
other v-fog. Another factor is when the E2E latency is no
longer met for the client, which could happen due to the

increase of network latency (Ln). When VM migration is
triggered from a v-fog 9 , the running VMs in the origi-
nating v-fog have to be migrated to other v-fog that meets
the VM requirements. The AHPE evaluates the rest of the
v-fogs that meets the VM requirements 10 and selects a
v-fog to migrate the VM based on the same metric set
11 . Similar to VM placement, the VM migration also
follows the three mentioned VM allocation options 12 .
These options are described in Section 3.3.3.

3.3. Proposed Algorithm for VM Allocation

In this subsection, we evaluate the v-fogs in order to find the
optimal v-fog for VM allocation. We define three metrics that
are used for decision-making in our proposed algorithm. Then
we explain the use of AHP to evaluate the metrics for optimized
v-fog selection. Finally, we elaborate on our proposed VM allo-
cation algorithm and the VM migration trigger algorithm. The
notations which are used for mathematical expressions in this
paper are tabulated in Table 1.

Table 1: Summary of key notations.

Notation Definition
αtx Linear scaling factor for transmission
βtx Baseline power consumption of WiFi

in active v-fog using WiFi (W)
λ VM allocation request arrival rate to a v-fog
µ v-fog’s service rate
Ωv

max v-fog processor maximum processing
capacity (MIPS)

ECn Total energy consumption of v-fog wireless
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interface (J)
ECdst Energy consumption of destination v-fog

wireless interface (J)
ECint Energy consumption of intermediate v-fog

wireless interface (J)
ECsrc Energy consumption of source v-fog wireless

interface (J)
ECtotal Total energy consumption of a v-fog (J)
ECp Energy consumption of v-fog processor (J)
L Observation period
Le2e E2E latency
Ln Network latency
Ls Service latency
M Number of VMs to be migrated
n(p) Number of each VM’s iterations to migrate

multiple VMs
P Power consumption of v-fog communication

interface
P(b) Erlang B blocking probability
P(l) Probability of link existence
PBB Baseband power consumption (W)
Pv

idle v-fog processor idle power consumption (W)
Pv

max v-fog processor maximum power
consumption (W)

Pon Power consumption when cellular subsystem is
active (W)

POH Additional power consumption of BS (W)
PRF Radio frequency block power consumption (W)
PV2V v-fog power consumption using V2V

communication (W)
PV2I v-fog power consumption using V2I

communication (W)
r Ratio of dirtying rate of memory page

to the VM transmission rate
Rrx Data received rate (Mbps)
Rtx Data transmission rate (Mbps)
Rvm VM transmission rate (Mbps)
rmax Maximum range between two v-fogs (m)
S tx Transmit power (W)
T V2V

tot Total latency using V2V communication
T V2I

tot Total latency using V2I communication
TS C Time taken for the source to send data to the LB
TS CD Time taken for the source to send data to

the destination v-fog
TLB Time taken for the LB to send data to the

next MB or v-fog
TMB Time taken for the MB to send data from

the previous LB to the next LB
Tdown Migration downtime
Ttrans Transmission time
Tprop Propagation time
Tres The time a VM takes to resume its operation at

destination v-fog
Vm Original memory size of each VM (MB)
wl Ratio of v-fog CPU capacity

3.3.1. Metrics for v-fog Evaluation
We define three metrics namely E2E latency, energy con-

sumption, and resource availability, that the MB uses for decid-
ing on the optimal v-fog in the VM allocation procedure. Here,
we will explain the metrics:

1. E2E Latency: The Le2e is considered as it has a sig-
nificant impact on 5G applications. This is because the
emerging applications such as haptics and robotics, aug-
mented reality and virtual reality have time-sensitive re-
quirements. Hence, selecting a v-fog that can meet the
stringent E2E latency requirement for VM allocation is
crucial. Le2e is comprised of service latency (Ls) and net-
work latency (Ln) as expressed below:

Le2e = Ls + Ln (1)

It is worth noting that while Ls can be managed by the
broker, calculating the Ln precisely is beyond the control
of the VFC. These two latencies are described below:

• Service Latency: The Ls of a v-fog is set by the
service provider. Therefore we can calculate Ls us-
ing (2) which is based on the average service delay
of a v-fog calculation of the M/M/1 queuing model
in [42] where µi is the service rate of ith v-fog and
ρi is the utilization of ith v-fog.

Ls =

1
µi

1 − ρi
, (2)

where µi is the service rate of ith v-fog and ρi is the
utilization of ith v-fog. In order to get the desired
Ls using (2), we set the maximum utilization of ith
v-fog (ρmax) as expressed in (3), and for a given set
of v-fog, ρmax is set by the service provider. In order
to get the desired Ls using (2), we set the maximum
utilization of ith v-fog (ρmax) as expressed in (3),
and for a given set of v-fog, ρmax is set by the service
provider.

ρmax = 1 −
1
µiLs

(3)

where 0 6 current utilization 6 ρmax. Furthermore,
from (3), we can obtain the maximum arrival rate
that a v-fog can accept, denoted as λmax using (4).

λmax = ρmaxµi (4)

• Network Latency: The Ln calculation differs for
each communication type. When VM allocation oc-
curs using V2V communication, Ln can be obtained
from (5):

Ln,v2v = TS CD ∗ n (5)
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where TS CD is the time taken for the source to send
the data to the next receiving v-fog, and n is the
number of hops between the v-fogs. If intra-cluster
and inter-cluster VM allocations are conducted us-
ing V2I, the Ln can be expressed as Ln = TS C +

TLB, where TS C is the time taken for the source to
send the data to the LB, and TLB is the time taken
for the LB to transfer data to the destination v-fog.
Otherwise, the latency for inter-Trust Domain VM
allocation is expressed as Ln = TS C + 2TLB + TMB,
where TMB is the time taken for MB to transfer data
from the source LB to the next LB as denoted in (6).

Ln,v2i =


TS C + TLB, if intra/inter-

cluster
TS C + TLB + TMB + TLB, otherwise.

(6)

The latency in each of the node (Tnode) i.e. TS CD,
TS C , TLB, and TMB described above is comprised of
transmission time (Ttrans), propagation time (Tprop),
and migration downtime (Tdown) of the VM which
are calculated as (7):

Tnode = Ttrans + Tprop + Tdown. (7)

Evaluating Tdown is an important parameter that af-
fects the latency as we deal with VMs with various
memory size, number of VMs, and memory dirty-
ing rate. We follow the work in [43] to evaluate the
downtime of VM migration in (8) as follows:

Tdown =
MVm

Rvm
Mrn(p) + Tres, (8)

where M is the number of VMs to be migrated, Rvm

is the VM transmission rate and r is the ratio of the
dirtying rate of memory page to the transmission
rate. The amount of original memory of each VM
is Vm and n(p) is the actual number of each VM’s it-
erations in strategy for migrating multiple VMs and
Tres is the time a VM takes to resume at the desti-
nation v-fog.

2. Energy Consumption: To measure the energy consump-
tion of a v-fog in a given amount of time, we define L as
the observation period. The calculation for energy con-
sumption of a v-fog during L is expressed as ECtotal =

ECp + ECn, where ECp is the energy consumption of
the v-fog for processing a VM, and ECn describes the
energy consumption of the v-fog wireless interface dur-
ing the observation period, L. Following [44], ECp can
be calculated as (9):

ECp =

(
Pv

max − Pv
idle

Ωv
max

)
· wl · L, (9)

where Pv
max is the v-fog processor maximum power con-

sumption when λ < λmax. Here, λmax is obtained from
(4). Meanwhile, Pv

idle is the v-fog processor idle power
consumption, Ωv

max is the v-fog processor maximum pro-
cessing capacity (MIPS), and wl is the ratio of v-fog CPU
capacity.

In both of the communication types i.e. V2V and V2I, we
consider energy consumption in the source v-fog, all the
intermediate nodes and the destination v-fog. We assume
that the power is calculated from the source v-fog node
to the intermediate nodes and destination v-fog node. For
simplicity, we assume that the v-fogs have similar trans-
mission and reception rates. Therefore, calculating the
ECn of a v-fog during L can be expressed as (10):

ECn = Esrc + nEint + Edst, (10)

where Esrc is the transmission energy consumption of the
source v-fog to the intermediate nodes, Eint is the trans-
mission and reception energy consumption of the inter-
mediate nodes to the destination v-fog, and Edst is the re-
ception energy consumption of the destination node. The
Esrc, Eint, and Edst are calculated using (11), (12) and
(13) respectively as follows:

ECsrc =
V Msize

Rtx
λLP, (11)

ECint = n(V Msize · λLP(
1

Rtx
+

1
Rrx

)), (12)

ECdst =
V Msize

Rrx
λLP, (13)

where V Msize is the average VM memory size to be trans-
ferred, Rtx and Rrx are the transmitted and received data
rate of the v-fog, respectively. The VM allocation request
arrival is denoted as λ. Meanwhile P is the v-fog power
consumption. As expressed in (14), P = PV2V if v-fog is
using V2V communication, and P =PV2I if v-fog is using
V2I communication, either via WiFi or 5G.

P =

{
PV2V , if λ < λmax

PV2I , otherwise , (14)

We assume the equation provided in this paper for power
consumption in 5G follows [45] and the calculations of
PV2I for WiFi follows the work in [37] as elaborated be-
low:

PV2I =

{
αtxRtx + βtx, if WiFi,
Pon + PBB(Rtx) + PRF(S tx) + POH , if 5G,

(15)
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where the parameter αtx is a linear scaling factor for trans-
mission and βtx is the baseline power consumption in
the active v-fog using WiFi connection. Whereas for
communication using 5G, the Pon is the power consump-
tion when the cellular subsystem is active, PBB is the
baseband power consumption which is dependent on Rtx,
and PRF defines radio frequency block power consump-
tion that is dependent on the transmit power, S tx. Mean-
while, POH is the additional power consumption of the
BS which includes cooling and circuit loss.

3. Resource Availability: Availability is an important fac-
tor to consider for VM allocation, especially when deal-
ing with mobile devices of limited resources and incon-
sistent power supply. The LB considers availability in
trust evaluation of v-fog admission procedure based on
the v-fog’s parking duration. However, a v-fog can still
be considered available although it is overutilized with
requests. Thus, the chances of a v-fog being unavail-
able due to overutilization should be considered. Here,
we observe resource availability in terms of the v-fog’s
blocking probability (P(b)) and the probability of link ex-
istence (P(l)). The resource availability can be calculated
using (16),

UA = αP(b) + β(1 − P(l)), (16)

where α and β are the weightage score, and α +β 6 1.
P(b) can be obtained using the Erlang B blocking prob-
ability, depending on the λ (request arrival rate) and µ
(v-fog’s service rate). Following [46], we assume that
the distance between two v-fogs which is needed in V2V
communication follows the exponential distribution with
path consisting of l links, and P(l) is given by (17), where
rmax is the maximum range between two v-fogs.

P(l) =

∫ rmax

0
λe−λsds = 1 − e−λrmax . (17)

3.3.2. Decision Making using AHP
The MB uses AHP [47] to make decisions in determining

the optimal v-fog for VM allocation based on the defined met-
rics. Unlike fuzzy logic that is used for trust evaluation, the
AHP method has criteria weights independent from the hier-
archy’s depth. AHP also has the ability to check for incon-
sistency in the decider’s preferences [48]. Although the MB
selects the optimal v-fog for VM allocation, there is a possi-
bility that the selected v-fog may not meet the E2E latency re-
quirement. Hence, prior to the decision-making using AHP, the
MB filters the v-fogs that participate in the VFC where only
v-fogs that meet the E2E latency requirement will be consid-
ered for the AHP evaluation. In the AHP evaluation, the num-
ber of criteria, n is defined for VM allocation based on set M
= {energy consumption, E2E latency, resource availability}. A
Pairwise Comparison Matrix (PCM) is generated for the criteria
as expressed in (18):

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann.

 . (18)

On the right and left sides of the matrix diagonal, the values
represent the strength of agreement of ith criteria with respect
to jth criteria [49]. Let ai j = 1/a ji where i, j = 1, 2, ..., n, ai, j >
0 and ai, j = 1. Saaty’s scale [47] is used to determine the value
of the (i, j) position of the PCM. The relative importance of
various criteria is computed using the Normalization of the Ge-
ometric Mean (NGM) technique, and ωi symbolizes the degree
of importance for the ith criteria as expressed in (19).

ωi =
(
∏n

j=1 ai j)
1
n∑n

i=1(
∏n

j=1 ai j)
1
n

. (19)

Finally, the score for ith v-fog to each criteria (V si) is cal-
culated using (20):

V si = min
j=1∑
n

ai j∑i=1
m ai j

· ωi. (20)

This paper assumes a minimization case where a v-fog with
the lowest AHP score is selected as the optimal v-fog for VM
allocation.

3.3.3. VM Allocation Algorithm in the MB
Here, we elaborate on our proposed VM allocation algo-

rithm that is illustrated in Fig. 5. Following the procedure in
our previous work [19], a v-fog belongs in a Trust Domain upon
entering a parking lot and is assigned to a logical cluster. The
MB periodically obtains all the v-fog’s information i.e. energy
consumption, E2E latency and resource availability information
in the background 1 . When there is an incoming request of a
VM that needs to be hosted in a v-fog 2 , the MB has to select
a v-fog with the lowest AHP score using (20). The MB uses
the gathered information for v-fog evaluation and goes through
the three VM allocation options in sequence starting from intra-
cluster, then the inter-cluster, and lastly the inter-Trust Domain.

• Intra-cluster: The MB starts by observing the first option
and evaluates the v-fogs belonging in the same logical
cluster for VM allocation 3 . The VM is allocated when
there is an optimal v-fog 4 , and prior to the allocation,
the MB selects the communication path of either V2V
or V2I, that offers the lowest E2E latency. If no suit-
able v-fog in the intra-cluster option that meets the VM
requirement is found, the MB proceeds to consider the
inter-cluster option where the same steps are applied 5 .

• Inter-cluster: For the second option, the MB only con-
sider logical clusters with trust range which is equal to
or greater than the VM trust requirement2 (in case of VM

2For instance, if the requesting v-fog belongs to the logical cluster with
trust value 7, then only v-fogs in logical clusters with trust value 7 and above
are considered for VM allocation.
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Figure 5: Flowchart for VM allocation algorithm in MB.

placement) or the logical cluster with the same trust range
as the originating v-fog belongs to (in case of VM mi-
gration) 6 . Similar to the intra-cluster option, the MB
selects the communication path of either V2V or V2I,
which offers the lowest E2E latency before allocating the
VM when the optimal v-fog is found 7 . When no opti-
mal v-fog is found, the MB proceeds to search in logical
clusters in an ascending manner 8 until there is no op-
timal v-fog found in the logical cluster with the highest
trust value in the Trust Domain 9 . This prompts the MB
proceeds to search in the last option 10 .

• Inter-Trust Domain: In the final option, the MB first ob-
serves the nearest Trust Domain 11 and begins search-
ing the logical cluster with the same trust range as the
VM trust requirement or the originating v-fog 12 . When
the optimal v-fog is found, the MB selects the communi-
cation path with the lowest E2E latency between V2V
and V2I, before allocating the VM to the optimal v-fog
13 . Otherwise, the MB proceeds to search the optimal
v-fog in the logical clusters in ascending manner 14 15 .
When none of the v-fogs in the logical clusters belonging
in that Trust Domain are eligible, the MB continues to
search at the next nearby Trust Domain until all the Trust
Domains are checked. The request for VM allocation is
dropped when no suitable v-fog is found in this option
16 17 .

It is worth noting that as the MB scales out its searching op-
tions to find the optimal v-fog, it has a bigger pool of candidate
v-fogs for consideration. All this is conducted while meeting
the VM requirements.

3.3.4. VM Migration Trigger Algorithm
After the MB places ith VM to a v-fog, the LB continues

to evaluate the status of the v-fog periodically in terms of its
trust value and metrics for AHP evaluation in order to track
any changes of the v-fog as shown in Fig. 6. When a v-fog’s
trust value depletes, for instance due to the decrease of secu-
rity value, or when any of the metrics (i.e. energy consump-
tion, E2E latency, resource availability) that the MB uses in the
VM allocation algorithm are less than desirable, such condi-
tions trigger the v-fog to migrate the VM to other v-fog.

4. Performance Evaluation

The performance evaluation of the proposed EnTruVe solu-
tion is done using Matlab where the number of v-fogs is fixed
and each v-fog has a random parking duration throughout the
evaluation. The VM allocation request arrival follows the Pois-
son process where they are processed based on a steady-state
First in First Out mechanism. The simulation metrics are tabu-
lated in Table 2. For the E2E latency, we assume that the range
of values is the E2E latency cutoff point i.e. all v-fogs that are
considered in the evaluation meets the E2E latency requirement
of the VM request. In the VM allocation, three selected met-
rics from the set M i.e. energy consumption, E2E latency, and
resource availability are the criteria chosen for AHP evaluation
in order to select the optimal v-fog.

A PCM of the criteria, ω is compiled where the matrix’s en-
try represents the importance of a criterion relative to the other
criterion. When we set the parameters for this, we assume that
E2E latency is 2 times more important than energy consump-
tion because E2E latency is an important factor to consider in
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5G and it is 3 times more important than resource availability,
and energy consumption has 2 times more importance than re-
source availability.

We compare our proposed EnTruVe with VaMPIre which
is proposed in [35] that closely resembles our work where en-
ergy consumption is also considered for their selection criteria.
To see how the proposed work performs without considering
energy consumption, we revise EnTruVe with the exception of
energy consumption as part of AHP evaluation for decision-
making and named the solution as TruVe. A random selection
solution named as RanSel is also included in this performance
evaluation to observe how the random VM allocation performs.

In Section 4.1, we observe the influence of the number of
incoming requests on the number of VM migration, energy effi-
ciency, and utilization of the selected v-fog. Section 4.2 demon-
strates the effect of request arrival rate on the number of VM
migration of the three migration options (intra-cluster, inter-
cluster and inter-Trust Domain), and the corresponding VM mi-
gration energy consumption. Meanwhile, Section 4.3 shows the
effect of Le2e (E2E latency) on the number of VM migration and
the maximum utilization of v-fogs.

4.1. Influence of Number of Incoming Requests

As mentioned in Section 1, despite the advantages that vir-
tualization technology can offer to v-fogs, the number of VM
migration between v-fogs can impair the overall system per-
formance. The results in Fig. 7 show how the proposed En-
TruVe reduces the number of VM migration when compared
with VaMPIre, TruVe and RanSel, and increases the energy ef-
ficiency and utilization based on the number of incoming re-

Parameters Value
β 132.86 mW [50]
Ωv

max 1000 MIPS [44]
µ 0.3 tasks/s
ECtotal Random, between 1 kJ - 100 kJ
Le2e Random, between 1-30 s
Number of v-fogs 100
Resource availability Random, between 1% - 100 %
of a v-fog
PBB 0.62 mW [50]
Pv

idle 6 W [44]
Pv

max Random
POH Random
Pb Random, between 0 - 1
Pl Random, between 0 - 1
r 0.08 [43]
Vm 400 MB [6]

Table 2: Parameters used in performance analysis.

quests. In this scenario, the number of incoming requests is
set from 100 requests, 200 requests, and 300 requests. Figure
7(a) shows that as the number of incoming request increases,
the number of VM migration increases, with our EnTruVe hav-
ing the lowest number of VM migration of 48 migrations, 80
migrations and 127 migrations when the number of incoming
requests are 100 requests, 200 requests, and 300 requests, re-
spectively. This is subsequently followed by VaMPIre, TruVe,
and RanSel. This indicates that EnTruVe has the most number
of VM allocation without requiring to migrate the VMs after
placement. This is because under the proposed EnTruVe, our
selection of v-fog that is stable in terms of its availability can
completely process the VM requests and is less likely to migrate
the VMs elsewhere. This finding highlights the importance of
trust-based VM allocation and how the definition of trust stated
earlier are reflected in the v-fogs expected behavior.

To show the result in terms of energy efficiency for all of the
solutions, Fig. 7(b) is presented where EnTruVe is proven to be
more energy-efficient than the rest of the solutions throughout
the number of incoming requests of 100 requests, 200 requests,
and 300 requests, respectively. The effect of the number of
incoming requests on utilization is presented in Fig. 7(c). It
shows that as the number of incoming requests increases, v-fog
utilization also increases. EnTruVe has the highest utilization
from 17%, to 57.6% among all solutions and the RanSel solu-
tion has the lowest utilization. The obtained results imply the
trust-based solution that EnTruVe offers reflects the clients ex-
pectation of the v-fogs, hence EnTruVe outperforms the other
solutions in this subsection.

4.2. Influence of VM Allocation Request Arrival Rate
The ρmax (v-fog maximum utilization) which is discussed

in Section 3.2.2 has an influence on the VM placement, the
number of VM placement in a VM placement option, and the
subsequent energy consumption of a v-fog associated with this.
Figure 8 shows the proposed three VM allocation options, i.e.
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(a) Influence of the number of VM requests on number of VM migration.

(b) Influence of the number of VM requests on energy efficiency.

(c) Influence of the number of VM requests on utilization.

Figure 7: Effect of the number of VM requests on the number of VM migration,
energy efficiency of VM migration, and utilization of v-fog.

intra-cluster, inter-cluster, and inter-Trust Domain for different
ρmax values. Figure 8(a) shows that as the λ increases, and the
ρmax increases from 0.2 through 0.6, i.e. E2E latency require-
ment becomes lenient, we have more VM placement in a par-
ticular VM placement option, where we observe 3 VM place-
ments for the top graph, 6 VM placements for the middle graph,
and more than 6 VM placements for the bottom graph. These
three figures also demonstrate that when ρmax value is small,
EnTruVe triggers more than one VM placement option. That
is, when ρmax = 0.2, it triggers intra-cluster, inter-cluster, and
inter-Trust Domain VM placement. When ρmax = 0.4, it triggers
intra-cluster and inter-cluster migration VM placement. How-
ever, when ρmax = 0.6, EnTruVe only uses the intra-cluster VM
allocation option. This is because the intra-cluster VM place-
ment option has more room to accommodate and process the
VM placement request arrival while still adhering to Le2e. En-
TruVe shows desirable performance in all results as it considers
multiple factors such as trust and E2E latency as part of the
v-fog selection evaluation, unlike the other solutions.

To show the effect of µ of different VM memory size on
energy consumption of a v-fog, we compare two VM memory
sizes of 200 MB and 400 MB, and µ is set from 5 tasks/s to 50
tasks/s for Fig. 8(b). Figure 8(b) shows that the energy con-
sumption increases as µ increases. By default, V2V commu-
nication first takes place. However, V2I communication takes
over when the µ increases from 5 tasks/s to 35 tasks/s. Fur-
thermore, as the VM memory size increases, the energy con-
sumption for VM allocation increases. This occurs due to the
increase in number of migration iterations needed for a VM al-
location.

4.3. Influence of Service Latency
Realizing the importance of Ls (service latency) and Ln (net-

work latency), we show Ls can influence the performance in
terms of the number of migrations, and how both Ls and Ln can
influence the maximum utilization of a v-fog in our proposed
solution. We present the results in Fig. 9(a) where it shows
that as Ls increases i.e. becomes lenient, the number of VM
migration decreases as more requests can be accommodated by
the selected v-fog. As we can see from this figure, EnTruVe
demonstrates the lowest number of VM migrations, followed
by TruVe, VaMPIre and RanSel. This implies that EnTruVe has
more successful VM placement among all despite the stringent
Ls.

Figure 9(b) shows the influence of Ls on utilization where
as the Ls increases, the maximum utilization that a v-fog can
have increases. As Le2e is comprised of both Ls and Ln, the
bigger the value of Ls results in smaller Ln value that it can
tolerate. Figure 9(c) shows the influence of Ln with Tnode = 0
s and Tnode = 3 s on v-fog maximum utilization (%). As Ln

becomes lenient, the maximum utilization that a v-fog can have
decreases. This is in line with the result in Fig. 9(a) as the
v-fogs have more VMs being placed in the v-fogs. It can be
observed that when Tnode = 3 s, the v-fog in EnTruVe solution
experience lower maximum utilization with a maximum of 88%
compared to when Tnode = 0 s with a maximum of 85%. This
indicates that as the Tnode increases, it can reduce the maximum
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(b) Influence of VM request arrival rate on energy consumption.

Figure 8: Effect of VM request arrival rate on the number of VM placements and energy consumption in a v-fog.

utilization of a v-fog. Furthermore, the results demonstrate that
as Ls increases, the v-fog utilization increases. However, as Ln

increases, the v-fog utilization decreases.

5. Discussions

It is apparent that reducing E2E latency is important in VM
allocation when 5G is involved. One aspect that can contribute
to the E2E latency reduction is minimizing the VM allocation
time. However, minimizing the VM allocation time without
compromising client requirements is challenging, especially con-
sidering the v-fog nature. Furthermore, VM memory can reach
gigabytes in size which can increase the E2E latency. Thus,
ways to minimize the VM allocation time aside from data dedu-
plication and VM synthesis [5] can be employed. VMs running
certain services that the clients are frequently requesting can be
pre-cached in the edge, so that the VMs do not have to be ac-
quired from the VMR in the cloud whenever a VM allocation
request comes.

As client requests in VFC vary with different geo-spatial
conditions, the proposed solution should be able to adjust to the
dynamic environment. Artificial Intelligence (AI) can be used
in 5G systems to support several applications such as anomaly
detection in mobile wireless networks and provide proactive
resource allocation to the clients. Apart from that, using AI
through machine learning can help predict the future of incom-
ing client requests based on the previous request arrivals. An-
other aspect to be considered is on optimizing the relative im-
portance of criterion for the PCM. This is because the judg-
ments using Saaty’s scale for PCM highly influences the out-
come of v-fog selection, where different criterion importance
results in different v-fog selection. Hence, this implies the sub-
jectivity of judgments that are determined based on a defined
objective.

On the other hand, aside from v-fog trust, trust can be ob-
served in various perspectives. Network communication trust is
imperative in ensuring a good end-to-end performance. A com-
promised or untrustworthy network communication can disrupt
the VFC services although the v-fogs involved are trusted. For
example, a malicious insider might tamper or redirect the com-
munication between two trusted v-fogs, leading to inaccurate
v-fog evaluation. Apart from the network communication trust,
data trust is another type of trust that can be further studied. En-
suring data trust is especially useful in broadcasting safety mes-
sages in ITS where the sender is unknown and v-fog trust is not
in place. Not only will the false messages cause unwanted inci-
dents to the v-fogs and the drivers, they can also hinder seam-
less ITS operations.

6. Conclusions

Virtualization technology has proven beneficial in enabling
resources to be utilized efficiently in fog computing and it is em-
ployed in v-fogs to help support 5G. As VM migrations can im-
pose unnecessary resource consumption, VM migrations should
be reduced. However, trust is needed in ensuring seamless VM
migrations between v-fogs and it is lacking in the existing stud-
ies of vehicular networks. In this study, we proposed EnTruVe,
a first effort in deciding the optimal v-fog for VM allocation
with trust taken into consideration. Unlike the existing works,
the proposed work has demonstrated that the number of VM
migration can be reduced when VM allocation is carefully de-
cided. We proposed three VM allocation options namely intra-
cluster, inter-cluster, and inter-Trust Domain, that can reduce
the chances of dropped VM allocation requests while meeting
the VM request requirements, i.e. trust, E2E latency require-
ment and task completion time. We compared our work with
three other solutions namely VaMPIre, TruVe and RanSel. Re-
sults from the performance comparison have shown that En-
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(a) Influence of Ls on the number of VM migration.

(b) Influence of Ls on v-fog utilization.

(c) Influence of Ln on v-fog utilization.

Figure 9: Effect of Ls on the number of VM migration, and effect of Ls and Ln
on utilization.

TruVe outperformed the other solutions. Additionally, EnTruVe
obtained the highest v-fog utilization and energy efficiency in
comparison to other solutions. In the future, we will study the
issues such as reducing VM placement time, that we have high-
lighted in the discussion section in this paper.
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