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 13 

Abstract: The structural health monitoring of a Floating Offshore Wind Turbine (FOWT) tendons, taking into 14 

account the comprehensive damage diagnosis problem of damage detection, damaged tendon identification and 15 

damage precise quantification under varying environmental and operating conditions (EOCs), is investigated 16 

for the first time. The study examines a new concept of a 10 MW multibody FOWT whose tower is supported 17 

by a platform consisting of two rigid-body tanks connected by 12 tendons. Normal and the most severe EOCs 18 

from a site located in the northern coast of Scotland, are selected for the simulation of the FOWT structure 19 

under constant current but varying wind and wave conditions. Dynamic responses of the platform under 20 

different damage states are obtained based on the simulated FOWT. The damage scenarios are modelled via 21 

stiffness reduction (%) at the tendon’s connection point to the platform’s upper tank. Damage diagnosis is 22 
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achieved via an advanced method, the Functional Model Based Method, that is formulated to operate using a 23 

single response signal and stochastic Functional Models representing the structural dynamics under the effects 24 

of varying EOCs and any magnitude of the considered damages. Due to the robustness and high number of the 25 

existing tendons, the effects of considered damages on the FOWT dynamics are minor and overlapped by the 26 

effects of the varying EOCs, indicating a highly challenging damage diagnosis problem. Very good damage 27 

detection results are obtained with the damage detection almost faultless and with no false alarms. Accurate 28 

tendon identification is achieved for the 95% of the considered test cases, while the mean error in damage 29 

quantification is approximately equal to 4% using measurements from just a single accelerometer within a very 30 

limited frequency bandwidth of [0-5] Hz. 31 

Keywords: Damaged tendon diagnosis, Structural Health Monitoring, Functional Models, Statistical time series 32 

methods, Floating Offshore Wind Turbine, Varying environmental and operating conditions 33 

 34 

1. Introduction 35 

Structural Health Monitoring (SHM) of offshore structures such as fixed and floating platforms for 36 

Offshore Wind Turbines (OWTs), is vital as damage on critical parts may lead to loss of stability, inefficient 37 

operation or total loss of asset. Offshore structures operate under varying Environmental and Operating 38 

Conditions (EOCs) such as wind speed (WS), significant wave height (SWH), current, temperature and others, 39 

which partially or fully “mask” the effects of damages on the structural dynamics, rendering SHM highly 40 

challenging [1-4]. The SHM of tendons [5-8], mooring lines [9-13], offshore platforms [14-21] and OWT towers 41 

[21-23], has been mostly investigated albeit under constant EOCs. However, the realistic case of varying EOCs 42 

that significantly affects the structural dynamics and makes SHM difficult, has been considered only in a limited 43 

number of studies [1-3, 24-25] with focus mostly on platforms and towers of OWTs. More so, these studies 44 

were confined only to the first level of SHM, which is damage detection [26].  45 
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The damage detection methods employed in the above studies are conducted using a data-based model such 46 

as a state space [1, 25] or a regression [2, 24] models. The data-based model is exclusively developed using 47 

vibration signals from the healthy structure and measurements of the EOCs. Model features which are sensitive 48 

to damage, such as its residual signal and selected modal parameters are acquired for damage detection. Thus, 49 

based on the explicit modelling [27, 28] of the varying EOCs’ effects on the dynamics of healthy OWTs and 50 

measurements of the present EOCs, damage detection is achieved through a comparison of the features of the 51 

present (unknown structural state) model with their counterparts from the healthy dynamics. These methods 52 

usually require several sensors, multiple vibration signals and continuous measurements of the varying EOCs 53 

both in the baseline (method’s training) and inspection (diagnostics in real time) phases [1-3, 24-25]. The use 54 

of several sensors and EOCs measurements are often costly and impractical. 55 

Recently, a novel approach has been exclusively presented for damage detection under varying EOCs. The 56 

main advantage of this approach over the previous methods is that no measurable EOCs are needed in the 57 

diagnostics phase [27, 28], leading to reduced cost and equipment. This approach is based on the general 58 

framework of the Functional Model Based Method (FMBM) [29], which has been successfully applied for 59 

damage detection under varying EOCs in a railway vehicle suspension [27] and a composite beam [28]. In these 60 

referenced studies, the healthy structural dynamics under varying EOCs are modelled via a stochastic Functional 61 

Model (FM) whose parameters are expressed as functions of the EOCs. Additionally, the FM is based on a 62 

concept of representing the transmittance function [30] under varying EOCs using a pair of vibration response 63 

signals received via two sensors (one sensor per signal), with one measurement point taken as input and the 64 

other as output. A further advantage of this approach is that the FM is estimated using a relatively low number 65 

of response signal pairs, while the operating parameter that includes the EOCs may be scalar or vector of any 66 

dimension according to the population of the EOCs. Two types of FMs have been used in this FMBM version 67 

[27, 28], a Functionally Pooled AutoRegressive model with eXogenous excitation (FP-ARX) [27] and a Vector 68 

FP-ARX (VFP-ARX) model [28]. It is noted that various other versions of the FMBM have been presented in 69 

the past for damage precise localization [29, 31-36] and precise quantification [31, 37-38] under constant EOCs.  70 
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The goal of this study is to investigate, for the first time, the problem of SHM in tendons of a Floating 71 

Offshore Wind Turbine (FOWT), taking into account the complete damage diagnosis process (damage 72 

detection, damaged tendon identification and damage precise quantification) under varying EOCs. This is 73 

achieved through the use of a new version of FMBM [27, 28] that is formulated to operate using just a single 74 

response signal received via a single sensor instead of two signals received via two sensors used in [27, 28].  75 

The structure examined in this study is a new concept of a 10 MW multibody FOWT whose tower is supported 76 

by an improved and more stable version of the multibody floating platform (TELWIND) [39] consisting of two 77 

rigid tanks connected by 12 tendons. The FOWT is subjected to varying EOCs corresponding to seven different 78 

WSs, irregular SWHs and current of constant speed and direction, thus reflecting normal and the most severe 79 

EOCs of the selected case study site located in the northern coast of Scotland. The FMBM used in this study is 80 

based on two types of FMs, a single Functionally Pooled AutoRegressive (FP-AR) model and multiple Vector 81 

FP-AR (VFP-AR) models (one per tendon). Due to the dependence of SWH on WS, only the WS is considered 82 

as an operating parameter in the FMs. Therefore, the FP-AR model describes the healthy structural dynamics 83 

under the effects of varying EOCs of any potential WS and it is used for damage detection. As for the VFP-AR 84 

models, each model describes the structural dynamics under the effects of varying EOCs of any potential WS 85 

and any damage magnitude on the considered tendon. The VFP-AR models are used for damaged tendon 86 

identification and damage precise quantification. It should be noted that the structural complexity of the FMs 87 

employed in this study, is significantly reduced, thus offering the advantage for their quick estimation. 88 

In addition, various damage scenarios corresponding to reduced stiffness (%) at a tendon’s connection point 89 

to the platform’s upper tank, are realized. Two of the total 12 tendons are examined in this study, namely, the 90 

tendon under the largest tension due to its proximity to the wave direction and an arbitrarily selected tendon 91 

being far from the mooring line. It should be noted that the effects of varying EOCs on the healthy FOWT fully 92 

“mask” the effects of damages of magnitude less than 20 %. On the other hand, the damages of magnitude [20-93 

80] % have small effects on the structural dynamics due to the high number and robustness of the existing 94 

tendons. Additionally, the damages of magnitude [20-80] % on the one tendon under constant EOC, affect the 95 
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structural dynamics in a similar manner. The damages of magnitude [10-100] % on different tendons, also have 96 

similar effects on the structural dynamics. Thus, these conditions lead to a highly challenging damage diagnosis 97 

problem. 98 

Consequently, a numerical model of the coupled FOWT is used for the implementation of damage scenarios 99 

and the simulation of healthy and damaged structures under the seven WSs and SWHs. A single underwater 100 

accelerometer measures the dominant response, surge (translation movement along axis x) acceleration, within 101 

a limited and low frequency bandwidth of [0-5] Hz, corresponding to realistic operating conditions under 102 

physical excitation. 103 

The rest of this paper is structured as follows: The FOWT, the varying EOCs, the tendon damages and the 104 

simulation details are presented in Section 2. The methodology for damaged tendon diagnosis is presented in 105 

Section 3. The damaged tendon diagnosis results are presented in Section 4. The conclusions are presented in 106 

Section 5. 107 

2. The FOWT structure, its dynamics, damage scenarios and simulations under 108 

varying EOCs 109 

2.1 The 10 MW multibody FOWT structure 110 
 111 
The examined structure is a new concept of a 10 MW FOWT, which consists of a tower supported by 112 

improved and more stable (with reduced weight) version of the multibody floating platform (TELWIND) 113 

developed by Esteyco [40] in the ARCWIND project [39].  The multibody platform consists of a lower tank 114 

(LT) and an upper tank (UT) connected by 12 tendons (steel cables) (Figure 1) as opposed to 6 tendons (albeit 115 

with changes to tendon properties) on the previous version [39]. Three mooring lines are connected to fairleads 116 

attached to the UT’s top surface at 14 m below the mean sea level for station-keeping of the platform. Part of 117 

the reasons for the increase in tendons is to provide sufficient redundancy of tendons connecting between the 118 

upper tank and the lower tank. This further guarantees that the 10 MW FOWT remains safe and stable in the 119 

event that a single tendon is broken. With regards to the model properties, the upper tank has a draught of 20.5 120 
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m, a mass of 5.31 ⋅ 106 kg and a volume of 7399.02 m3. The draught of the lower tank is 100 m, the mass is 121 

8.72 ⋅ 106 kg and the volume equals 7922.92 m3. The pretension of the 12 tendons is approximately 3 ⋅ 106 N. 122 

 123 

Figure 1. (a) The 10 MW multibody FOWT, the position of the accelerometer (Point Y) and the damage 124 

locations which are the connection points at the UT. (b) Bottom view of the platform with the propagation 125 

direction of the current, wind and wave.  126 

 127 

2.2   The varying EOCs and damage scenarios  128 
 129 
In this study, the FOWT is examined under varying EOCs corresponding to seven different WSs 4 m/s, 8 130 

m/s, 11.4 m/s, 14.5 m/s, 18 m/s, 21.5 m/s and 25 m/s with SWHs 1.61 m, 1.67 m, 2.16 m, 2.55 m, 2.95 m, 3.56 131 

m, 4.02 m (Table 1). The FOWT is in a nonoperational state below its cut-in speed of 4 m/s and above a cut-132 

out speed of 25 m/s. The wind is generated via the Kaimal spectrum [41] and a different time series is used as 133 

wind excitation to the FOWT for each simulation. Consequently, the same spectral intensity is maintained. The 134 

irregular waves are generated via the modified two-parameter Pierson-Moskowitz spectrum [42], [43]. The 135 

EOC also includes current of constant speed and direction. Details of the wind, wave and current parameters 136 

corresponding to the varying EOCs used in this study, are presented in Table 1 and Figure 1(b). These 137 



7 
 

parameters represent the characteristics of normal and the most severe EOCs of the selected site located in the 138 

northern coast of Scotland. 139 

The healthy scenarios are considered under the seven WSs and SWHs. Each examined damage scenario 140 

corresponds to a reduction in the tendon’s stiffness (%) at its connection point to the upper tank of the platform 141 

under given WS and SWH. The stiffness reduction covers a range of [10-100] % with an increment of 5 %. 142 

Tendons 6 and 8 are examined, with tendon 6 suffering the largest tension due to its proximity to the wave 143 

direction and tendon 8 randomly selected due to its proximity to a mooring line (Figure 1(b)). WS response for 144 

each healthy state is designated as 𝐹𝐹𝑤𝑤 with 𝑤𝑤 being the WS. Equally, each examined damage condition is 145 

designated as 𝐹𝐹𝑤𝑤,𝑚𝑚
𝑞𝑞 with 𝑞𝑞 = 6, 8 for the examined tendon and 𝑚𝑚 the damage magnitude (% stiffness reduction). 146 

Table 1. Details of the varying EOCs. 147 
Wind speed  

(WS) 

Significant  

wave height (SWH)  

Peak  

frequency 

Propagation direction of sea 

current, wave, wind  

Current  

speed 

Excitation 

bandwidth 

4 m/s 1.61 m 0.285 Hz 0o 0.22 m/s [0.1-100] Hz 

8 m/s 1.67 m 0.199 Hz 0o 0.22 m/s [0.1-100] Hz 

11.4 m/s 2.16 m 0.185 Hz 0o 0.22 m/s [0.1-100] Hz 

14.5 m/s 2.55 m 0.152 Hz 0o 0.22 m/s [0.1-100] Hz 

18 m/s 2.95 m 0.14 Hz 0o 0.22 m/s [0.1-100] Hz 

21.5 m/s 3.56 m 0.121 Hz 0o 0.22 m/s [0.1-100] Hz 

25 m/s 4.02 m 0.112 Hz 0o 0.22 m/s [0.1-100] Hz 

 148 
 149 

2.3   The simulations  150 
 151 

This study uses vibration responses of the 10 MW multibody FOWT under varying EOCs, which correspond 152 

to healthy and different damaged states. The responses are obtained from a numerical simulation [44] conducted 153 

using F2A, a coupled ANSYS-AQWA and NREL FAST [45]. The platform is modeled as a fully coupled 154 

multibody, consisting of two rigid tanks (UT and LT), connected by 12 flexible tendons and kept in station by 155 

three mooring lines modelled as nonlinear catenary. 156 

An important consideration in the simulation of the platform is its stability in the event of a tendon failure. 157 

The tendons in this concept are designed to have redundancy in the event a tendon or the connection between 158 
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the upper and the lower tanks fails. The goal is to ensure that the remaining tendons have sufficient reserved 159 

capacity to provide stability and support operations. Thus, the FOWT remains safe and stable even if a single 160 

tendon is broken. Furthermore, the results of the coupled analysis of a 10 MW multibody FOWT (upper and 161 

lower tanks connected by tendons) have shown that this platform remains stable even after the break of a tendon 162 

[46]. This is further confirmed by the non-exceedance of the variation range (-15 deg to 15 deg) of the platform’s 163 

pitch motion response under healthy and damaged states (Figure 2). Further details on the platform’s natural 164 

frequencies and eigenmodes are available in [8, 46]. 165 

 166 

Figure 2. Pitch motion signals from Point Y for the (a) healthy state 𝐹𝐹11.4, (b) the damage state 𝐹𝐹11.4,100
6  and (c) 167 

the damage state 𝐹𝐹11.4,100
8 . 168 

 169 
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Although the six degrees of freedom (surge, heave, sway, roll, yaw and pitch) accelerations are measured 170 

using a single sensor placed on the UT (Point Y, Figure 1(a)), only the surge acceleration is used in this study. 171 

This is because the surge acceleration is determined as the most dominant response. The acceleration signals 172 

are sampled at 𝑓𝑓𝑠𝑠 = 10 Hz (acceleration signal bandwidth of [0–5] Hz) with each being 𝑁𝑁 = 20000 samples 173 

(2000 s) long. 174 

Similarly, 6 acceleration signals are obtained from each simulation, one for each degree of freedom. A total 175 

of 43 simulations are conducted for the healthy structure under the seven WSs (Table 1). A total of 474 176 

simulations are conducted with a single damage for each of the 19 considered magnitudes from each of the two 177 

damage locations considered (connection points of tendons 6, 8 at the UT, Figure 1) under each WS. 4 178 

simulations for the healthy structure (one under each of the WSs 4 m/s, 11.4 m/s, 18 m/s, 25 m/s) and 80 179 

simulations for the damaged structure (one per damage magnitude, covering a range of [10-100] % with an 180 

increment of 10%, under each of the WSs 4 m/s, 11.4 m/s, 18 m/s, 25 m/s on each of the two tendons) are used 181 

in the method’s training phase. The remaining 39 simulations of healthy and 394 of damaged structures are 182 

solely used in the inspection phase for performance assessments. The 39 simulations correspond to 9 simulations 183 

under each of the WSs 4 m/s, 11.4 m/s, 18 m/s, 25 m/s and 1 simulation under each of the WSs 8 m/s, 14.5 m/s, 184 

21.5 m/s. The 394 simulations correspond to i) 2 simulations for each damage magnitude, covering a range of 185 

[10-100] % with an increment of 10 %, under each of the WS 4 m/s, 11.4 m/s, 18 m/s, 25 m/s on each of the 186 

two tendons, ii) 3 simulations for each damage magnitude, covering a range of [15-95] % with an increment of 187 

5 %, under each of the WS 4 m/s, 11.4 m/s, 18 m/s, 25 m/s on each of the two tendons, iii) 1 simulation for each 188 

damage magnitude 10 % and 35 % under WS 8 m/s on each of the two tendons, iv) 1 simulation for each damage 189 

magnitude 10 %, 35 %, 55 % and 75 % under WS 14.5 m/s on each of the two tendons, and v) 1 simulation for 190 

each damage magnitude 10 %, 35 % and 55 % under WS 21.5 m/s on each of the two tendons. Each signal is 191 

sample mean corrected and scaled by its sample standard deviation. Details of the simulations and measured 192 

signals, are presented in Table 2. 193 
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2.4   Effects of damage and varying EOCs on the FOWT dynamics 194 

The dynamics of the FOWT under the healthy state, vary due to the variability of the WS. This is confirmed 195 

through discrepancies between the PSDs estimated via the Welch estimator [47] (Welch estimation details: 196 

Table 2. Details of the performed simulations and vibration signals. 197 

Structural  

state 

Description No. of damaged 

tendons 

No. of damage  

magnitudes 

No of  

WSs 

No. of simulations –  

Baseline phase 

No. of simulations –  

Inspection phase 

Healthy -  - 7 4 (one under each            
WS [4, 11.4, 18, 25]       
m/s) 

36 (9 under each WS [4, 
11.4, 18, 25] m/s) 

3 (1 under each WS [8,  
14.5, 21.5] m/s) 

Damaged 

 

Reducing the 
stiffness of a single 
tendon (%) 

(increment of 5%) 

2 (Tendons  

6, 8) 

19 7 80 (one per damage 
magnitude [10, 20, 30, 
40, …., 100] % under 
each WS [4, 11.4, 18, 
25] m/s on each   
tendon)  

394 (2 per damage 
magnitude [10, 20, 30,     
…., 100] % under each    
WS [4, 11.4, 18, 25]  m/s  
on each tendon) 

(3 per damage magnitude 
[15, 25, 35, …., 95] % 
under each WS [4, 11.4, 
18, 25] m/s on each 
tendon) 

(1 per damage magnitude 
[10, 35] % under WS [8] 
m/s on each tendon) 

(1 per damage magnitude 
[10, 35, 55, 75] % under 
WS [14.5] m/s on each 
tendon) 

(1 per damage magnitude 
[10, 35, 55] % under WS 
[21.5] m/s on each 
tendon) 

Sampling frequency: 𝑓𝑓𝑠𝑠 = 10 Hz, acceleration signal bandwidth: [0-5] Hz 

Signal length: 𝑁𝑁 = 20000 samples (2000 s) 

 198 

Matlab function pwelch.m; signal length 20000 samples, window length 868 samples, 95% overlap, Hamming 199 

window, frequency resolution of 0.011 Hz) and corresponding to the healthy state under the four WSs 4 m/s, 200 

11.4 m/s, 18 m/s, 25 m/s, in Figure 3. The discrepancies are evident in the bandwidths of [0.04-0.3] Hz and 201 

[1.05-1.2] Hz. Moreover, in Figure 4, the effects of selected damage cases on the structural dynamics, are shown 202 

via Welch-based (Welch estimation details: Matlab function pwelch.m; signal length 20000 samples, window 203 
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868 samples, 95% overlap, Hamming window, frequency resolution of 0.011 Hz) PSD estimates corresponding 204 

to the healthy structure and the structure under 3 damage magnitudes 10 %, 20 %, 80% on tendon 6 and under 205 

the four WSs. In Figure 4(a), the PSDs of the healthy and damaged structure under damage of magnitude 10 %, 206 

overlap throughout the frequency bandwidth. In Figures 4(b)-(c), the PSDs of the healthy and damaged structure 207 

under damage of magnitudes 20 %, 80 %, overlap extensively for most of the frequency bandwidth. Deviations 208 

between the healthy and damaged structural dynamics are noticed in bandwidth of [0.85-1.2] Hz for magnitude 209 

20 % (Figure 4(b)) and in bandwidths of [0.5-0.6] Hz and [0.85-1.2] Hz for magnitude 80 % (Figure 4(c)). It is 210 

noted that similar changes on the dynamics are observed for damages on tendon 8. Based on these results, it is 211 

evident that the effects of varying WS on the healthy FOWT dynamics, fully ’mask’ the effects of damages of 212 

magnitude less than 20 %. Furthermore, small deviations (less than 0.1 Hz) between the healthy and damaged 213 

structural dynamics exist for magnitude [20-80] % due to the robustness and high number of the existing 214 

tendons. Hence, it is confirmed by the deviations corresponding to damage magnitude [10-80] % that these 215 

damages have small effects on the structural dynamics and that damage detection is quite challenging.  216 

 217 

218 

Figure 3. Welch-based PSD estimates using surge acceleration signals from Point Y for the healthy FOWT 219 

under the four considered WSs 4 m/s, 11.4 m/s, 18 m/s, 25 m/s. 220 

 221 

In Figure 5, a comparison of Welch-based (Welch estimation details: Matlab function pwelch.m; signal 222 

length 20000 samples, window 868 samples, 95% overlap, Hamming window, frequency resolution of 0.011 223 

Hz) PSD estimates corresponding to damage of magnitudes 20 %, 40 %, 60 %, 80 % on tendons 6 for WSs 11.4 224 

m/s, 25 m/s and on tendon 8 for WSs 4 m/s, 18 m/s, is presented. The effects of these damages differ in 225 
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bandwidths of [0.27-.34] Hz, [0.5-0.6] Hz and [0.85-1.1] Hz for WS 4 m/s (Figure 5(a)) and in bandwidths of 226 

[0.23-0.34] Hz, [0.5-0.6] Hz, [0.64-0.78] Hz, [0.85-1.07] Hz for WSs 11.4 m/s (Figure 5(b)), 18 m/s (Figure 227 

5(c)) and 25 m/s (Figures 5(d)). It is obvious that the differences between these damages under constant WS, 228 

are less than 0.23 Hz which is quite small. These small differences mean that damages of magnitude [20-80] % 229 

under constant WS, similarly affect the structural dynamics due to the robustness and number of the existing 230 

tendons. Also, similar effects indicate that damaged tendon identification and damage precise quantification are 231 

highly challenging.  232 

 233 
Figure 4.  Welch-based PSD estimates using surge acceleration signals from Point Y for the healthy and the 234 

damaged FOWT for the four WSs 4 m/s, 11.4 m/s, 18 m/s, 25 m/s, with damages on tendon 6 and of 235 

magnitudes (a) 10 %, (b) 20 % and (c) 80 %. 236 
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 237 

Figure 5.  Welch-based PSD estimates using surge acceleration signals from Point Y for the FOWT with 238 

damage of magnitudes 20 %, 40 %, 60 %, 80% on (b),(c) tendon 6 for WS 11.4 m/s, 25 m/s and (a),(c) tendon 239 

8 under WS 4 m/s, 18 m/s. 240 
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The difficulty of damaged tendon identification and damage precise quantification is also revealed by the 241 

similarity in the effects of damages on different tendons. This similarity is confirmed through additional 242 

comparisons between the Welch-based (Welch estimation details: Matlab function pwelch.m; signal length 243 

20000 samples, window 868 samples, 95% overlap, Hamming window, frequency resolution of 0.011 Hz) PSD 244 

estimates for some of the considered damage cases under the four WSs 4 m/s, 11.4 m/s, 18 m/s and 25 m/s, 245 

presented in Figure 6. For each pair of the compared damage cases (damages of magnitude 10 % on tendons 6, 246 

8 and damages of magnitude 40 % on tendons 6, 8), the corresponding PSDs almost coincide with each other.  247 

 248 
Figure 6. Comparison between Welch-based PSD estimates using surge acceleration signals from Point Y for 249 

damages on tendons 6, 8 and of the same magnitude for the four considered WSs 4 m/s, 11.4 m/s, 18 m/s, 25 250 

m/s: (a) Magnitude 10 % and (b) magnitude 40 %. 251 

 252 

3. Damaged tendon diagnosis method 253 

In this study, the formulation of the new version of the FMBM [27, 28] based on a single response signal 254 

received from a single sensor instead of two signals received via two sensors as in [27, 28], is presented for 255 
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damage diagnosis of tendons of a FOWT under varying EOCs. Due to the dependence of SWH on WS, only 256 

the WS is considered as an operating parameter in the FMs. In step 1 of the method, damage detection is 257 

achieved based on a single FP-AR model and damaged tendon identification and damage precise quantification 258 

(steps 2 and 3) are achieved based on multiple VFP-AR models (one per tendon). The method consists of two 259 

phases, the baseline phase and the inspection phase. The baseline (training) phase is performed based on data 260 

from known structural states and when the structure is not operational (shutdown condition). The inspection 261 

phase runs periodically or continuously during the structure’s normal operation (on-line) based on current 262 

vibration data, while the structure is under unknown health state. 263 

3.1 Baseline phase  264 

 265 
Initially, a FP-AR model [8] having the ability to represent the (partial) dynamics of the healthy FOWT under 266 

varying EOCs of any potential WS, is identified. For identifying the FP-AR model, 𝑀𝑀1 response signals 267 

corresponding to a sample of the considered WSs, are acquired. These sampled WSs cover the range 268 

[𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚,𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚] via the discretization 𝑤𝑤𝑣𝑣 ∈ 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑀𝑀1 and each response signal is characterized by a specific 269 

WS 𝑤𝑤𝑣𝑣. Thus, for each WS, the following operating parameter 𝑘𝑘 is defined as 𝑘𝑘 = 𝑤𝑤𝑣𝑣 ⟺ 𝑘𝑘𝑣𝑣 with 𝑣𝑣 =270 

1, … . ,𝑀𝑀1  and a pool of 𝑀𝑀1 response signals 𝑦𝑦𝑘𝑘[𝑡𝑡], each of length 𝑁𝑁, is obtained with 𝑡𝑡 = 1, … ,𝑁𝑁. 271 

Based on the pool of the acquired response signals, a mathematical description of the healthy structural 272 

(partial) dynamics under varying EOCs of any potential WS, is obtained through a FP-AR(𝑛𝑛𝑛𝑛)𝑝𝑝 model of the 273 

following form [8]: 274 

  𝑦𝑦𝑘𝑘[𝑡𝑡] + ∑ 𝛼𝛼𝑚𝑚(𝑘𝑘)𝑚𝑚𝑚𝑚
𝑚𝑚=1 ⋅ 𝑦𝑦𝑘𝑘[𝑡𝑡 − 𝑖𝑖] = 𝑒𝑒𝑘𝑘[𝑡𝑡]    with    𝑒𝑒𝑘𝑘[𝑡𝑡] ∼ iid 𝒩𝒩�0,𝜎𝜎𝑒𝑒2(𝑘𝑘)�    and  𝑘𝑘 ∈ 𝑅𝑅               (1) 275 

 276 

   𝑛𝑛𝑚𝑚(𝑘𝑘) = ∑ 𝑛𝑛𝑚𝑚,𝑗𝑗
𝑝𝑝
𝑗𝑗=1 ⋅ 𝐺𝐺𝑗𝑗(𝑘𝑘)                                                                (2) 277 

 278 

with 𝑛𝑛𝑛𝑛 designating the AutoRegressive (AR) order, 𝑦𝑦𝑘𝑘[𝑡𝑡] the response signal and 𝑒𝑒𝑘𝑘[𝑡𝑡] the disturbance 279 

(residual) signal that is white (serially uncorrelated) zero-mean with variance 𝜎𝜎𝑒𝑒2(𝑘𝑘). iid stands for identically 280 



16 
 

independently distributed and   𝒩𝒩(⋅,⋅) designates normal distribution with the indicated mean and variance. 281 

Based on Equation (2), the AR parameters 𝑛𝑛𝑚𝑚(𝑘𝑘) are functions of 𝑘𝑘 belonging to a 𝑝𝑝-dimensional functional 282 

subspace spanned by the (mutually independent) functions 𝐺𝐺1(𝑘𝑘),𝐺𝐺2(𝑘𝑘), … ,𝐺𝐺𝑝𝑝(𝑘𝑘) (functional basis). The latter 283 

are univariate (one variable) orthogonal polynomials (Chebyshev, Legendre and other families) forming a 284 

functional basis 𝒢𝒢 [8, 37]. The constants 𝑛𝑛𝑚𝑚,𝑗𝑗 designate the AR projection coefficients which can be formed in 285 

the vector 𝜽𝜽 = �𝑛𝑛1,1 … 𝑛𝑛𝑚𝑚𝑚𝑚,𝑝𝑝�[𝑚𝑚𝑚𝑚⋅𝑝𝑝×1]
𝑇𝑇

 (bold-face upper/lower case symbols designate matrix/column-vector 286 

quantities, respectively; T designates transposition). 287 

The FP-AR(𝑛𝑛𝑛𝑛)𝑝𝑝 model (Equations (1), (2)) is re-written in a linear regression form (see details in [33, 36, 288 

pp. 28-31, 37]): 289 

𝑦𝑦𝑘𝑘[𝑡𝑡] = [𝝋𝝋𝑘𝑘
𝑇𝑇[𝑡𝑡] ⊗𝒈𝒈𝑇𝑇(𝑘𝑘)] ⋅ 𝜽𝜽 + 𝑒𝑒𝑘𝑘[𝑡𝑡] = 𝝓𝝓𝑘𝑘

𝑇𝑇[𝑡𝑡] ⋅ 𝜽𝜽 + 𝑒𝑒𝑘𝑘[𝑡𝑡]                                           (3)                                             290 

 291 

with 𝝋𝝋𝑘𝑘[𝑡𝑡] = �−𝑦𝑦𝑘𝑘[𝑡𝑡 − 1]  …  − 𝑦𝑦𝑘𝑘[𝑡𝑡 − 𝑛𝑛𝑛𝑛]�[𝑚𝑚𝑚𝑚×1]
𝑇𝑇

 designating the regression vector, 𝒈𝒈(𝑘𝑘) =292 

�𝐺𝐺1(𝑘𝑘)  …  𝐺𝐺𝑝𝑝(𝑘𝑘)�[𝑝𝑝×1]
𝑇𝑇

 the functional basis vector and ⊗ the Kronecker product. 293 

Pooling together Equation (3) of the FP-AR model corresponding to the various operating parameters 294 

𝑘𝑘 �𝑘𝑘1,𝑘𝑘2, … ,𝑘𝑘𝑀𝑀1� of the obtained 𝑀𝑀1 response signals for a single value of 𝑡𝑡, leads to: 295 

�
 𝑦𝑦𝑘𝑘1[𝑡𝑡]
⋮

𝑦𝑦𝑘𝑘𝑀𝑀1
[𝑡𝑡]
�

[𝑀𝑀1×1]

= �
 𝝓𝝓𝑘𝑘1

𝑇𝑇 [𝑡𝑡]
⋮

𝝓𝝓𝑘𝑘𝑀𝑀1
𝑇𝑇 [𝑡𝑡]

�

[𝑀𝑀1×𝑝𝑝⋅𝑚𝑚𝑚𝑚]

⋅ 𝜽𝜽 + �
𝑒𝑒𝑘𝑘1[𝑡𝑡]
⋮

𝑒𝑒𝑘𝑘𝑀𝑀1
[𝑡𝑡]
�

[𝑀𝑀1×1]

  ⟹   𝒚𝒚[𝑡𝑡] = 𝜱𝜱[𝑡𝑡] ⋅ 𝜽𝜽 + 𝒆𝒆[𝑡𝑡]             (4)                                296 

Then, the data for 𝑡𝑡 = 1, … ,𝑁𝑁 are substituted in Equation (4) for the estimation of the parameter vector 𝜽𝜽 297 

through the Ordinary Least Squares (OLS) estimator [33, 36, p. 15] (a hat   ̂ above a quantity designates its 298 

estimate): 299 

𝜽𝜽� = [∑ 𝜱𝜱𝑇𝑇[𝑡𝑡] 𝜱𝜱[𝑡𝑡]𝑁𝑁
𝑡𝑡=1 ]−1 ⋅ [∑ 𝜱𝜱𝑇𝑇[𝑡𝑡] 𝒚𝒚[𝑡𝑡]𝑁𝑁

𝑡𝑡=1 ]                                                  (5) 300 

The order of the FP-AR model is determined through a conventional AR(na) model [48, pp. 81-83] based 301 

on a single response signal from the healthy structure under one of the considered WS values. The 302 

minimization of the Bayesian Information Criterion (BIC) [48, pp. 505-507] leads to the selection of the order 303 
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of the AR model. The determination of the FP-AR model’s functional subspace 𝑝𝑝, given a selected orthogonal 304 

polynomial family, is achieved via a Genetic Algorithm (GA) procedure [33, 36, p. 16, 49] based on the 305 

minimization of an extended version of the BIC [36, pp. 33-35, 50].   306 

 FP-AR model’s validation is achieved through the verification of the uncorrelatedness (whiteness) of the 307 

model’s residual signals. The whiteness check is conducted based on the Pena-Rodriguez test [36, p. 19, 51] 308 

which detects changes in the partial autocorrelation function 𝜋𝜋𝑒𝑒[𝜏𝜏] (𝜏𝜏 = 1, … ,ℎ is the lag) [52, pp. 64-68] of the 309 

residual signals. The Pena-Rodriguez test is based on a D statistic which is a function of 𝜋𝜋𝑒𝑒[𝜏𝜏] and it follows a 310 

standard normal distribution D ∼ 𝒩𝒩(0,1). A signal’s whiteness is confirmed only if D does not exceed the 311 

critical limits of the distribution, −𝑍𝑍1−α ≤ D ≤ 𝑍𝑍1−α (−𝑍𝑍1−α, 𝑍𝑍1−α the critical limits, α the risk level).  312 

A VFP-AR [28, 31, 33, 36, pp. 13-16, 53] model having the ability to represent the FOWT (partial) dynamics 313 

under varying EOCs of any potential WS and damage of any magnitude at the location of interest on a single 314 

tendon, is identified for each examined tendon. For identifying the VFP-AR model, 𝑀𝑀3 response signals are 315 

obtained for a sample of the considered WSs (the same WSs with those considered in the FP-AR model) and a 316 

sample of different damage magnitudes on the examined tendon. These sampled WSs and damage magnitudes 317 

cover the range [𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚,𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚] × [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] via the discretizations 𝑤𝑤𝑣𝑣 ∈ 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑀𝑀1  and 𝑚𝑚𝑙𝑙 ∈318 

𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑀𝑀2 with 𝑀𝑀3 = 𝑀𝑀1 × 𝑀𝑀2. Each signal is characterized by a specific pair of WS 𝑤𝑤𝑣𝑣 and magnitude 319 

𝑚𝑚𝑙𝑙. Thus, for a pair of WS and damage magnitude, the following operating parameter vector 𝒌𝒌 is defined as 320 

𝒌𝒌 = [𝑤𝑤𝑣𝑣  𝑚𝑚𝑙𝑙]𝑇𝑇 ⟺ 𝒌𝒌𝑣𝑣,𝑙𝑙 with 𝑣𝑣 = 1, … ,𝑀𝑀1 and 𝑙𝑙 = 1, … ,𝑀𝑀2 𝑛𝑛nd a pool of 𝑀𝑀3 response signals 𝑦𝑦𝒌𝒌[𝑡𝑡], each of 321 

length 𝑁𝑁, is obtained with 𝑡𝑡 = 1, … ,𝑁𝑁. 322 

Based on this pool of data, a mathematical description of the structural (partial) dynamics under varying 323 

EOCs of any potential WS and damage of any potential magnitude on the examined tendon, is obtained through 324 

a VFP-AR(𝑛𝑛𝑛𝑛)𝑝𝑝  model of the following form [28, 31, 33, 36, pp. 13-16, 53]:                   325 

  𝑦𝑦𝒌𝒌[𝑡𝑡] + ∑ 𝛼𝛼𝑚𝑚(𝒌𝒌)𝑚𝑚𝑚𝑚
𝑚𝑚=1 ⋅ 𝑦𝑦𝒌𝒌[𝑡𝑡 − 𝑖𝑖] = 𝑒𝑒𝒌𝒌[𝑡𝑡]    with    𝑒𝑒𝒌𝒌[𝑡𝑡] ∼ iid 𝒩𝒩�0,𝜎𝜎𝑒𝑒2(𝒌𝒌)�    and  𝒌𝒌 ∈ 𝑅𝑅2            (6) 326 

     𝑛𝑛𝑚𝑚(𝒌𝒌) = ∑ 𝑛𝑛𝑚𝑚,𝑗𝑗
𝑝𝑝
𝑗𝑗=1 ⋅ 𝐺𝐺𝑗𝑗(𝒌𝒌)                                                                     (7) 327 
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 328 

with 𝑦𝑦𝒌𝒌[𝑡𝑡] being the response signal and 𝑒𝑒𝒌𝒌[𝑡𝑡] being the disturbance (residual) signal that is essentially a white 329 

(serially uncorrelated) zero-mean with variance 𝜎𝜎𝑒𝑒2(𝒌𝒌). Based on Equation (7), the AR parameters 𝑛𝑛𝑚𝑚(𝒌𝒌) are 330 

functions of 𝒌𝒌 belonging to a 𝑝𝑝-dimensional functional subspace spanned by the (mutually independent) 331 

functions 𝐺𝐺1(𝒌𝒌),𝐺𝐺2(𝒌𝒌), … ,𝐺𝐺𝑝𝑝(𝒌𝒌) (functional basis). The latter are bivariate (two variables) orthogonal 332 

polynomials forming a functional basis 𝒢𝒢 [31, 33, 34, 36, p. 28]. Based on the 𝑀𝑀3 response signals corresponding 333 

to the various operating parameter vectors 𝒌𝒌 �𝒌𝒌1,1,𝒌𝒌2,1, … ,𝒌𝒌𝑀𝑀1,𝑀𝑀2�, the vector of projection coefficients 𝜽𝜽 334 

(Equation (6)) is estimated based on the OLS estimator (Equation (5)) (for more details see [33, 36, p. 15]). 335 

For the selection of the VFP-AR model orders, the determination of the model’s functional subspace 336 

dimensionality 𝑝𝑝 and the model validation, the same procedures are followed as in the FP-AR model 337 

identification (see also in [33, 36, p. 16]).  338 

Remark: For simplicity of notation, the same symbols 𝑛𝑛𝑛𝑛, p, 𝜽𝜽 are commonly used in the FP-AR and VFP-AR 339 

models without necessarily being equal. They are separately obtained as described in the above identification 340 

procedures.  341 

3.2 Inspection phase  342 

 343 
Step 1: Damage detection. A response 𝑦𝑦𝑢𝑢[𝑡𝑡] signal is obtained under the current (unknown) structural state. 344 

Then the signal is driven through the FP-AR(𝑛𝑛𝑛𝑛)𝑝𝑝 model (Equation (1)) which is re-parametrized in terms of 345 

the currently unknown state, 𝑘𝑘 = 𝑤𝑤: 346 

𝑦𝑦𝑢𝑢[𝑡𝑡] + ∑ 𝑛𝑛𝑚𝑚(𝑘𝑘)𝑚𝑚𝑚𝑚
𝑚𝑚=1 ⋅ 𝑦𝑦𝑢𝑢[𝑡𝑡 − 𝑖𝑖] = 𝑒𝑒𝑢𝑢[𝑡𝑡,𝑘𝑘]                                                  (8) 347 

 348 

The estimation of 𝑘𝑘 is achieved based on the following Nonlinear Least Squares (NLS) estimator [28, 33, 349 

36, pp. 16-17, 37, 38] (realized via golden search and parabolic interpolation [54]): 350 

    𝑘𝑘� = arg min
𝑘𝑘∈𝐾𝐾

∑ 𝑒𝑒𝑢𝑢2[𝑡𝑡,𝑘𝑘]𝑁𝑁
𝑡𝑡=1 ,          𝜎𝜎�𝑒𝑒𝑢𝑢

2 = 1
𝑁𝑁
∑ 𝑒𝑒𝑢𝑢2�𝑡𝑡,𝑘𝑘��𝑁𝑁
𝑡𝑡=1                                        (9) 351 
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with 𝑒𝑒𝑢𝑢[𝑡𝑡, 𝑘𝑘] provided by Equation (8) and 𝐾𝐾 = [𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚,𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚] the boundaries of the examined WS range. The 352 

estimate 𝑘𝑘� is asymptotically (𝑁𝑁 → ∞) normally distributed with mean 𝜇𝜇𝑘𝑘 and variance 𝜎𝜎𝑘𝑘2, that is 𝑘𝑘� ∼353 

𝒩𝒩(𝜇𝜇𝑘𝑘,𝜎𝜎𝑘𝑘2). 354 

Then damage detection is accomplished by checking the validity of estimate 𝑘𝑘�. The latter is accepted as valid 355 

only when the residual signal 𝑒𝑒𝑢𝑢�𝑡𝑡,𝑘𝑘�� uncorrelatedness (whiteness) is confirmed via the Portmanteau Test [28, 356 

37, 38] which detects changes in the normalized autocorrelation function 𝜌𝜌[𝜏𝜏] (𝜏𝜏 = 1, … ,ℎ is the lag) [51, pp. 357 

21-26] of 𝑒𝑒𝑢𝑢�𝑡𝑡,𝑘𝑘�� . The Portmanteau Test is based on a Q statistic which is a function of 𝜌𝜌[𝜏𝜏] and it follows a 358 

chi-square distribution Q ∼ χℎ2 . A signal’s whiteness is confirmed only if Q does not exceed the critical limit of 359 

the distribution, Q ≤ χ1−α, ℎ
2  (χ1−α, ℎ

2  the critical limit, α the risk level). The non-acceptance of the 𝑘𝑘� validity 360 

means that a damage is detected, otherwise the examined structural state is healthy. 361 

 362 
Step 2: Damaged tendon identification. After the detection of a damage, the signal 𝑦𝑦𝑢𝑢[𝑡𝑡] is driven through 363 

each (baseline phase) VFP-AR model (one model per examined tendon; Equation (6)) which is now re-364 

parametrized in terms of the currently unknown state, 𝒌𝒌 = [𝑤𝑤  𝑚𝑚]𝑇𝑇: 365 

         𝑦𝑦𝑢𝑢[𝑡𝑡] + ∑ 𝑛𝑛𝑚𝑚(𝒌𝒌)𝑚𝑚𝑚𝑚
𝑚𝑚=1 ⋅ 𝑦𝑦𝑢𝑢[𝑡𝑡 − 𝑖𝑖] = 𝑒𝑒𝑢𝑢[𝑡𝑡,𝒌𝒌]                                               (10) 366 

 367 

The estimation of 𝒌𝒌 is achieved based on the following Nonlinear Least Squares (NLS) estimator [28, 31, 368 

33, 36, p. 18]:  369 

    𝒌𝒌� = arg min
𝒌𝒌∈𝐾𝐾

∑ 𝑒𝑒𝑢𝑢2[𝑡𝑡,𝒌𝒌]𝑁𝑁
𝑡𝑡=1 ,          𝜎𝜎�𝑒𝑒𝑢𝑢

2 = 1
𝑁𝑁
∑ 𝑒𝑒𝑢𝑢2�𝑡𝑡,𝒌𝒌��𝑁𝑁
𝑡𝑡=1                                        (11) 370 

 371 

with 𝑒𝑒𝑢𝑢[𝑡𝑡,𝒌𝒌] provided by Equation (10) and  𝐾𝐾 = [𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚,𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚]  × [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] including the boundaries of 372 

the examined WS and magnitude ranges. The minimization in Equation (11) is achieved via a GA, followed by 373 

a refinement via Sequential Quadratic Programming (SQP) techniques [55]. The estimate 𝒌𝒌� is asymptotically 374 

(𝑁𝑁 → ∞) normally distributed with mean 𝝁𝝁𝒌𝒌 and covariance matrix 𝚺𝚺𝒌𝒌, that is 𝒌𝒌� ∼ 𝒩𝒩(𝝁𝝁𝒌𝒌,𝚺𝚺𝒌𝒌). 375 
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The validity of the estimate  𝒌𝒌� = [𝑤𝑤�   𝑚𝑚�] 𝑇𝑇 based on the VFP-AR model for the examined tendon, is accepted 376 

only when the uncorrelatedness (whiteness) of the residual signal 𝑒𝑒𝑢𝑢�𝑡𝑡,𝒌𝒌�� is confirmed via the Pena-Rodriguez 377 

test.  The whiteness of the residual signal is confirmed only if the D statistic does not exceed the critical limits 378 

of the normal distribution (see subsection 3.1).  The acceptance of the validity means that the VFP-AR model 379 

is able to represent the structural dynamics under the current damage and that the examined tendon is identified 380 

as the damaged tendon. It should be noted that if the above procedure underlines that the estimate 𝒌𝒌� belongs to 381 

two or more tendons, the one with the lowest D statistic is selected as the actual damaged tendon. If 𝑒𝑒𝑢𝑢�𝑡𝑡,𝒌𝒌��  is 382 

not white then an alternative VFP-AR model (representing a different tendon) shall be checked. 383 

Step 3. Damage precise quantification. If the examined tendon has been successfully identified as the 384 

damaged tendon, then the estimate 𝒌𝒌� = [𝑤𝑤�   𝑚𝑚�] 𝑇𝑇 is accepted. The estimated magnitude of the examined damage 385 

on the identified damaged tendon is 𝑚𝑚�  under an estimated WS 𝑤𝑤� . Therefore, confidence intervals for 𝑤𝑤� ,  𝑚𝑚�  are 386 

constructed [31, 35, 36, p. 18, 37, 38] as: 387 

                      �𝑤𝑤� − 𝑡𝑡1−α2 , 𝑁𝑁−1 ⋅ 𝜎𝜎�𝑤𝑤,  𝑤𝑤� + 𝑡𝑡1−α2 , 𝑁𝑁−1 ⋅ 𝜎𝜎�𝑤𝑤�,   �𝑚𝑚� − 𝑡𝑡1−α2 , 𝑁𝑁−1 ⋅ 𝜎𝜎�𝑚𝑚,  𝑚𝑚� + 𝑡𝑡1−α2 , 𝑁𝑁−1 ⋅ 𝜎𝜎�𝑚𝑚�               (12) 388 

 389 

with −𝑡𝑡1−α2 , 𝑁𝑁−1 and 𝑡𝑡1−α2 , 𝑁𝑁−1  designating the 𝑡𝑡 distribution's (with 𝑁𝑁 − 1  degrees of freedom) critical limits, 390 

α the risk level and 𝜎𝜎�𝑤𝑤,𝜎𝜎�𝑚𝑚 the square roots of the first and second diagonal components of the estimated 391 

covariance matrix 𝜮𝜮�𝒌𝒌 provided by the Cramer-Rao lower bound [31, 33, 36, p. 18]. 392 

4. Damaged tendon diagnosis method 393 
 394 
4.1   Baseline phase  395 

 396 

An AR(171) model is identified based on a response signal from the healthy structure under WS 11.4 m/s 397 

(see details in Table 3). The order of the conventional AR model is adopted as the order of a FP-AR model 398 

representing the healthy structural dynamics under varying EOCs of any potential WS. 𝑀𝑀1 = 4 response signals 399 

 400 
 401 
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Table 3. Details of the FMBM. 402 
Baseline phase   

State Tendon   Signal 

length 

Estimated  

model 

No. of  

signals 

No. of projection  

coefficients 

Sample per 

Parameter 

Condition  

numberα  

BIC 

Healthy - 𝑁𝑁 =20000  

samples 

AR(171)   - 116.59 5.88 ⋅ 106 

 

-8.18 

Healthy - 𝑁𝑁 =20000  

samples 

FP-AR(171)4   513 155.94 2.16 ⋅ 107 

 

-32.02 

Damaged 6 𝑁𝑁 =20000  

samples 

VFP-AR(171)9  1539 519.81 5.59 ⋅ 107 

 

-317.24 

Damaged 8 𝑁𝑁 =20000 

 samples 

VFP-AR(171)9  1539 519.81 1.81 ⋅ 108 

 

-321.48 

Order selection based on an AR model: Estimation method: OLS, Matlab function: arx.m 

Functional subspace dimensionality determination based on Genetic Algorithm: population=100, elite count 20, crossover 
fraction=0.7, maximum number of generations=100, Tolerance of the objective function = 10−4;  Matlab function: ga.m 

FP-AR(171)4 model’s functional basis: 𝑝𝑝1=4 univariate Shifted Legendre polynomials: 𝒢𝒢1 = [𝐺𝐺0(𝑘𝑘)  𝐺𝐺1(𝑘𝑘)  𝐺𝐺2(𝑘𝑘)  𝐺𝐺3(𝑘𝑘) ]𝑏𝑏 

VFP-AR(171)9 model’s functional basis (tendon 6): 𝑝𝑝2=9 bivariate Shifted Legendre polynomials: 

 𝒢𝒢2 = �𝐺𝐺0,0(𝒌𝒌)  𝐺𝐺0,1(𝒌𝒌)  𝐺𝐺0,2(𝒌𝒌)  𝐺𝐺1,0(𝒌𝒌)  𝐺𝐺1,1(𝒌𝒌)  𝐺𝐺1,2(𝒌𝒌)  𝐺𝐺2,0(𝒌𝒌)  𝐺𝐺2,1(𝒌𝒌)  𝐺𝐺3,0(𝒌𝒌)�𝑐𝑐 

VFP-AR(171)9 model’s functional basis (tendon 8): p2=9 bivariate Shifted Legendre polynomials: 

 𝒢𝒢2 = �𝐺𝐺0,0(𝒌𝒌)  𝐺𝐺0,1(𝒌𝒌)  𝐺𝐺0,2(𝒌𝒌)  𝐺𝐺1,0(𝒌𝒌)  𝐺𝐺1,1(𝒌𝒌)  𝐺𝐺2,0(𝒌𝒌)  𝐺𝐺2,1(𝒌𝒌)  𝐺𝐺3,0(𝒌𝒌)  𝐺𝐺3,9(𝒌𝒌)�𝑐𝑐 

Validation method: Pena-Rodriguez test with risk levels α = 4 × 10−1 ( FP-AR(171)4 model ), α = 4.4 × 10−1 ( VFP-
AR(171)9 model – tendon 6),  ), α = 4.4 × 10−1 ( VFP-AR(171)9 model – tendon 8) & no. of lags = 2100 

Inspection phase – Step 1: Damage detection  

FP-AR model based estimation of  𝑘𝑘 : NLS estimator based on golden search & parabolic interpolation (Tolerance of the 
objective function  = 10−10; Tolerance of the estimated value  = 10−10; Matlab function: fminbnd.m) 

Validation method: Portmanteau test with no. of lags = 950 

Inspection phase – Step 2: Damaged tendon identification & Step 3: Damage precise quantification 

VFP-AR models based estimation of  𝒌𝒌 :  NLS estimator based on Genetic Algorithm (tolerance of the objective function = 
10−10; Matlab function: ga.m) and Sequential Quadratic Programming (tolerance of the objective function  = 10−10; 
tolerance of the estimated value  = 10−10; Matlab function: fmincon.m). 

Validation method: Pena-Rodriguez test with no. of lags = 2100 

a Condition number of ∑ 𝜱𝜱𝑇𝑇[𝑡𝑡] 𝜱𝜱[𝑡𝑡]𝑁𝑁
𝑡𝑡=1  in Equation (5). 

 b 𝐺𝐺𝑚𝑚(𝑘𝑘) : univariate orthogonal polynomial of degree i . 

 c 𝐺𝐺𝑚𝑚,𝑗𝑗(𝒌𝒌) :  bivariate orthogonal polynomial of total degree i + j, obtained as tensor product from two univariate polynomials 
𝐺𝐺𝑚𝑚(𝑤𝑤), 𝐺𝐺𝑗𝑗(𝑚𝑚) of degrees i, j, respectively. 

 403 
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are used for identifying a FP–AR model with WS considered in the WS range 𝑤𝑤𝑣𝑣 ∈ [4, 25] m/s and the range 404 

covered via the discretization 𝑤𝑤𝑣𝑣 ∈ [4, 11.4, 18, 25] m/s (see subsection 3.1). The FP–AR model’s functional 405 

subspace dimensionality 𝑝𝑝1 is determined via a GA-based procedure based on the minimization of BIC. The 406 

initial functional subspace is selected to be spanned by 4 univariate Shifted Legendre polynomials which are 407 

functions of the WS 𝑤𝑤𝑣𝑣 normalized with respect to the maximum value that is 𝑤𝑤𝑣𝑣 = 𝑤𝑤𝑣𝑣/25  [0, 1]. 408 

The identification procedure leads to a FP-AR  model. A comparison between the Welch-based (Welch 409 

estimation details: Matlab function pwelch.m; signal length 20000 samples, window 868 samples, 95% overlap, 410 

Hamming window, frequency resolution of 0.011 Hz) and the FP-AR model’s PSD estimates, is presented in 411 

Figure 7. The agreement between the PSDs shows the high accuracy in modelling the healthy structural 412 

dynamics under varying EOCs. The dependence of an indicative FP-AR  model parameter as a function 413 

of WS, is depicted in Figure 8(a). The FP-AR  model based PSD magnitude as a function of frequency 414 

and WS, is depicted in Figure 8(b). Full details on the FP-AR model identification are presented in Table 3.  415 

Subsequently, for each examined tendon, 𝑀𝑀3 = 40 response signals are used for identifying a VFP–AR 416 

model. This model represents the structural dynamics under varying EOCs of any potential WS in the WS range 417 

𝑤𝑤𝑣𝑣 ∈ [4, 25] m/s and under any damage magnitude on the tendon in the damage magnitude range 𝑚𝑚𝑙𝑙 ∈ [10, 418 

100] % (see subsection 3.1). The WS range is covered via the discretization 𝑤𝑤𝑣𝑣 ∈ [4, 11.4, 18, 25] m/s and the 419 

magnitude range is covered via the discretization 𝑚𝑚𝑙𝑙 ∈ [10, 20, 30, …., 80, 90, 100] %. The AR model order is 420 

selected based on the AR(171) model. Then the dimensionality of the functional subspace 𝑝𝑝2 of the VFP–AR 421 

model, is determined via a GA-based procedure based on the minimization of BIC. The initial functional 422 

subspace is spanned by 40 bivariate Shifted Legendre polynomials which are functions of the WS 𝑤𝑤𝑣𝑣 and the 423 

magnitude 𝑚𝑚𝑙𝑙 normalized with respect to the corresponding maximum values that are 𝑤𝑤𝑣𝑣 = 𝑤𝑤𝑣𝑣/25  [0, 1] and 424 

𝑚𝑚𝑙𝑙 = 𝑚𝑚𝑙𝑙/100  [0, 1].  425 

Two VFP-AR  models are identified for tendons 6 and 8. The dependence of indicative VFP-AR  426 

models parameters as a function of WS and damage magnitude, is depicted in Figure 9. PSD magnitudes of the 427 
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two VFP-AR  models as a function of frequency and WS, are depicted in Figures 10(a),(b) and of 428 

frequency and damage magnitude in Figure 10(c),(d). Full details on the VFP-AR models identification are 429 

presented in Table 3.  430 

 431 

Figure 7. (a) Welch based PSD estimate ( ) for the healthy state 𝐹𝐹4 and the FP-AR  model’s PSD 432 

estimate ( ); (b) Welch based PSD estimate ( ) for the healthy state 𝐹𝐹18 and the FP-AR  model’s 433 

PSD estimate. 434 

 435 

4.2   Inspection phase  436 

Step 1: Damage detection. A response signal corresponding to an unknown structural state is driven through 437 

the FP-AR  model which is re-parametrized in terms of 𝑘𝑘 (Equation (8)). Then 𝑘𝑘 is estimated based on 438 

the NLS estimator of Equation (9) which searches for the estimate 𝑘𝑘� leading to the minimum of the estimation 439 

criterion. Finally, damage detection is achieved through the corresponding Q statistic based on the normalized 440 

autocorrelation of 𝑒𝑒𝑢𝑢�𝑡𝑡,𝑘𝑘�� (Matlab function: autococorr.m; see subsection 3.2 and details in Table 3). Thus, it 441 
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is checked if the model trained to describe healthy dynamics under varying EOCs, is able to describe the current 442 

unknown dynamics as well.   443 

 444 

Figure 8. (a) Indicative AR parameter of the FP-AR  model as function of WS and (b) PSD magnitude 445 

of the FP-AR  model as function of frequency and WS. 446 

 447 

Figure 9. (a) Tendon 6 - VFP-AR  model and (b) Tendon 8 - VFP-AR  model indicative AR 448 

parameter as function of WS and damage magnitude. 449 

 450 
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 451 

Figure 10. PSD magnitudes of the two VFP-AR  models representing the structural dynamics under 452 

damaged tendons 6, 8 as function (a),(b) of frequency and WS and (c),(d) of frequency and damage magnitude. 453 

 454 
39 healthy and 394 damage cases are examined (see Table 2) with the damage detection results presented 455 

through the corresponding Q statistics in Figure 11(a). It must be noted that the Q statistics corresponding to 7 456 

damage cases of magnitude [10-15] % from tendon 8, are not separable from the Q statistics corresponding to 457 

healthy cases. This happens due to the effects of the varying EOCs on the healthy FOWT dynamics, fully 458 

’masking’ the effects of damages of magnitude [10-15] % (see subsection 2.4). 459 
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The damage detection results are also presented through a Receiver Operating Characteristic (ROC) curve 460 

(Figure 11(b)) and the Area Under the ROC Curve (AUC) (Figure 11(c)).  The ROC curve represents the true 461 

positive rate (percentage of damages detected correctly) versus the false positive rate (percentage of false alarms) 462 

for varying decision threshold, with the perfect detection (no false alarms or missed damages) confirmed when 463 

the ROC curve includes the (0,1) point (Matlab function: perfcurve.m) [56, 57]. The AUC ranges from 0 to 1 464 

with values close to 1 indicating great performance and values close to 0.5 poor performance (Matlab function: 465 

perfcurve.m) [57]. In Figure 11(b), the ROC curve is very close to the best possible point (0,1) with the true 466 

positive rate (correct detection rate) being 98.2 % for false positive rate (false alarm rate) equal to 0 %. The 1.8 467 

% missed damages correspond to the aforementioned 7 damages of magnitude [10-15] %.  In Figure 11(c), the 468 

AUC is 0.9957. The ROC and AUC based results are excellent and they show that damage detection in the 469 

tendons of a FOWT under varying EOCs, is almost perfect.  470 

  471 

Figure 11. Damage detection performance of the FMBM: (a) the method’s Q statistic, (b) the ROC curve and 472 

(c) the AUC value (39 healthy and 394 damage cases). 473 
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Step 2: Damaged tendon identification. When a damage is detected, damaged tendon identification starts. 474 

The response signal corresponding to the unknown detected damage, is driven through each considered baseline 475 

VFP-AR  model which is re-parametrized in terms of 𝒌𝒌 (Equation (10)). Based on each re-parametrized 476 

model, the NLS estimator of Equation (11) obtains the estimate 𝒌𝒌� (see details in Table 3). Then the identification 477 

of damaged tendon is achieved through the D statistic based on the partial autocorrelation of 𝑒𝑒𝑢𝑢�𝑡𝑡,𝒌𝒌�� (Matlab 478 

function: parcocorr.m; see subsection 3.2 and Table 3). 479 

In Figure 12 (a),(b), estimation of 𝒌𝒌 results are presented for two damage cases from tendons 6, 8. For 480 

each damage case, the 𝒌𝒌 estimation is presented based only on the VFP-AR  model of the actual 481 

tendon. The NLS computes the estimation criterion while searching for the minimum criterion value (criterion 482 

values are color coded with the darkest value corresponding to the minimum) on the examined range. Evidently, 483 

the actual WS 𝑤𝑤 and magnitude 𝑚𝑚 and their e stimates 𝑤𝑤� ,  𝑚𝑚�  are very close, practically coinciding with 484 

each other. Moreover, for each damage case, the agreement of the VFP-AR  model based PSD 485 

with its Welch-based counterpart in Figure 12(c),(d), shows the high accuracy in modelling the damaged 486 

structural dynamics under varying EOCs through the selected VFP-AR model.  487 

Due to the fact that the considered damages in this study affect the FOWT dynamics in a highly similar way 488 

(see subsection 2.4), damaged tendon identification is achieved through the Portmanteau test by selecting the 489 

tendon with the lowest D statistic. Indicative damaged tendon identification results based on damage cases from 490 

tendon 6 and 8, are provided in Figure 13 and it is evident that the lowest D statistic leads to the identification 491 

of the actual damaged tendon. In this step, the total number of 387 damage cases is considered (the 7 undetected 492 

damages are excluded from the 394 damage cases examined in step 1), 197 cases from tendon 6 and 190 cases 493 

from tendon 8. Damaged tendon identification is achieved successfully in 184 damage cases from tendon 6 with 494 

a success rate of 93.4 % and in 188 damage cases from tendon 8 with a success rate of 98.94 %. The no-495 

identification of the actual tendon for the 15 damage cases, happens due to the fact that damages on different 496 

tendons similarly affect the platform’s structural dynamics (see subsection 2.4). The total success rate 96.12 % 497 
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 498 

Figure 12. Indicative estimation of 𝒌𝒌 results for two damage cases: (a), (c) 𝐹𝐹11.4, 25
6  and (b), (d) 𝐹𝐹18, 45

8 . (a), (b) 499 

The estimation criterion values are shown using a color code (the darkest color indicating minimum, and thus 500 

the estimated damage magnitude). The actual WS and damage magnitude (- - -) and theirs estimates (· – · – ·) 501 

are also numerically provided over each plot. (c), (d) Welch–based PSD magnitude for the considered WS and 502 

damage magnitude (—) compared to that of the VFP-AR  model (– –). 503 
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 504 

Figure 13. Indicative damaged tendon identification results for 14 damage cases. The actual structural state is 505 

presented below each pair of bars. The dark arrow shows the tendon selected as the actual damaged tendon in 506 

each case. 507 

 508 

 The fact that there are 372 from the 387 damage cases is very high and this shows that damaged tendon 509 

identification in a FOWT is achievable in spite of the effects of the varying EOCs and the similarity between 510 

the effects of the considered damages. An overview of the corresponding results is provided in Table 4. 511 

 512 

Table 4. Damaged tendon identification and damage precise quantification results. 513 

 514 

 515 

 516 

 517 

 518 

Step 2: Damaged tendon identification Step 3: Damage precise quantification 

Tendon Model Identification 

Quantification error 

 for wind speed 

 (sample mean ± std) 

Quantification error  

for damage magnitude 

(sample mean ± std) 

6 VFP-AR(171)9 184/197 (93.4 %) 0.19 ± 0.64 (m/s) 4.21 ± 3.02 (%)  

8 VFP-AR(171)9 188/190 (98.94 %) 0.17 ± 0.6 (m/s) 4.06 ± 2.90 (%) 
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 519 

Step 3. Damage precise quantification. After the identification of the damaged tendon, the corresponding 520 

estimate 𝒌𝒌� (Equation (11)) is accepted and the confidence intervals are constructed (Equation (12)). 521 

Indicative damage precise quantification results in terms of WS and damage magnitude estimates and 522 

confidence intervals, are provided in Figure 14. It is obvious that damage precise quantification is achieved at 523 

α = 1 × 10−2 as the estimated and the actual WSs and damage quantities are very close, with the actual values 524 

being within or just outside of the obtained confidence intervals. A summary of all damage precise 525 

quantification results based on the 372 considered damage cases (the 15 unidentified damages are excluded 526 

from the 387 damage cases examined in step 2), is presented in Table 4 and Figure 15. The quantification error 527 

for WS is the error between the actual WS 𝑤𝑤 and its estimate 𝑤𝑤� , whereas the quantification error for damage 528 

magnitude is the error between the actual damage magnitude 𝑚𝑚 and its estimate 𝑚𝑚� . In Figure 15 where the 529 

distribution of the quantification error for damage magnitude is presented based on the 372 cases, the error 530 

remains smaller than 9 % for 91.31 % of the 184 cases from tendon 6 and for 92.01 % of the 188 cases from 531 

tendon 8. The mean quantification errors for magnitude are 4.21 % for tendon 6 and 4.06 % for tendon 8 and 532 

the mean errors for WS for tendons 6 and 8 are close to 0 (Table 4). These errors are quite small for large 533 

structures such as a FOWT operating under varying EOCs and damages affecting the structural dynamics in a 534 

similar manner. They show that damage precise quantification under varying EOCs, can be achieved with a 535 

high precision. 536 

 537 
 538 

 539 

 540 

 541 

 542 

 543 



31 
 

 544 

 545 

Figure 14. Indicative damage precise quantification results for 10 damage cases (    : true WS / damage 546 

magnitude;        : point estimate;             : confidence interval). The true and estimated WS and damage magnitude 547 

are numerically provided above each plot. 548 
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 549 

Figure 15. Damage precise quantification results in terms of the quantification error for damage magnitude (%) 550 

which is the error between the actual and its estimated damage magnitude (184 damage cases based on tendon 551 

6 and 188 damage cases based on tendon 8). 552 

 553 

5. Conclusions 554 

The combined problem of damage detection, damaged tendon identification and damage precise 555 

quantification in a new type of a FOWT under varying EOCs has been investigated for the first time through 556 

the novel FMBM. The method has been formulated to operate using a single response signal from the FOWT 557 

received via a single sensor instead of two signals received via two sensors as in the method’s previous version. 558 

The examined structure is a new concept of FOWT with its tower supported by an improved version of the 559 

multibody floating TELWIND platform that consists of two tanks connected via 12 tendons. The FOWT has 560 

been subjected to varying EOCs corresponding to seven different WSs and irregular SWHs and current of 561 

constant speed and direction, thus reflecting normal and the most severe EOCs of the selected site located in the 562 

northern coast of Scotland. The formulated FMBM has been based on FMs where only the WS have been 563 

considered as an operating parameter due to the dependence of SWH on WS. Thus, the FMs have represented 564 
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the structural dynamics under varying EOCs of any potential WS and under any magnitude of the considered 565 

damages. 566 

Various damage scenarios have been simulated via the stiffness reduction (%) at the tendon’s connection 567 

point to the upper tank of the platform. Two out of the total 12 tendons have been examined. A numerical 568 

coupled model of the FOWT has been used for the simulation of the healthy and damaged structure under 569 

varying EOCs. Surge acceleration signals have been collected from the upper tank of the platform, within a 570 

limited bandwidth of low frequencies in the range [0-5] Hz corresponding to realistic operating conditions under 571 

physical excitation. Furthermore, it is observed that the tendons intersect each other and form an “x-cross” 572 

connection. Thus, the caused interference between the crossing tendons is capable of creating wears and it is 573 

recommended the effect to be further investigated.  574 

The FMBM has been applied under challenging conditions corresponding to i) effects of the varying EOCs 575 

on the healthy FOWT, fully “masking” the effects damages of magnitude less than 20 %, ii) small effects of 576 

damages of magnitude [20-80] %, on the dynamics due to the high number and robustness of the existing 577 

tendons, iii) damages of magnitude [20-80] % on the one tendon under constant WS, having similar effects on 578 

the structural dynamics and iv) damages of magnitude [10-100] % on different tendons, having similar effects 579 

on the structural dynamics. 580 

The main achievements of the study, are presented below: 581 

• The modeling of the healthy structural dynamics under varying EOCs of any potential WS in the 582 

continuous WS range of [4-25] m/s, has been realized via a single, data-based, response-only, FP-AR 583 

model. 584 

• More advanced VFP-AR models with an operating parameter vector that includes varying EOCs of any 585 

potential WS and damage of any magnitude at a tendon’s connection point, have been employed for the 586 

representation of the structural dynamics under damage and varying EOCs. 587 
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• Damage detection has been remarkable with correct detection for 98.2 % of the considered damage cases 588 

(394) and zero false alarms achieved. This achievement has happened in spite of the subtle nature of the 589 

considered damages causing slight changes on the structural dynamics and the effects of EOCs on the 590 

dynamics being confused with the effects of the damages. 591 

• Damaged tendon identification, that is the determination of the specific tendon that is damaged, has been 592 

achieved for 96.12 % of the damage cases (387). This has been, independent from the fact that there has 593 

been great similarity in the effects caused to the structural dynamics by the considered damages on the 594 

different tendons and the difficulty added by the varying EOCs. 595 

• The mean error in damage precise quantification has been approximately 4% in terms of tendon stiffness 596 

reduction for both tendons and all considered cases (372). The obtained damage magnitude confidence 597 

intervals have included in most cases (or they are too close) the actual damage magnitude. Based on this 598 

along with the previously mentioned difficulties of the subtle damages and the varying EOCs, the 599 

obtained damage precise quantification results have been judged as very good. 600 

• This study has confirmed that advanced stochastic methods such as the FMBM can successfully perform 601 

SHM under varying EOCs and achieve complete diagnosis of damages in FOWTs’ tendons, using 602 

limited (even a single) vibration measurements. 603 
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