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Abstract

According to motivational intensity theory, energy investment in goal pursuit is determined

by the motivation to avoid wasting energy. Two experiments tested this hypothesis by 

manipulating the difficulty of an isometric hand grip task across four levels in a 

between-persons (Study 1) and a within-persons (Study 2) design. Supporting motivational 

intensity theory’s prediction, the results showed that invested energy–indicated by exerted 

grip force–was a function of task difficulty: The higher the difficulty, the higher the 

energy investment. However, the data also indicated that participants invested 

considerably more energy than required, questioning the primacy of energy conservation.

Keywords: motivational intensity theory, goal pursuit, energy conservation, energy 

investment, task difficulty, hand grip task
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Goal pursuit and energy conservation: Energy investment increases with task

demand but does not equal it.

What drives energy investment in goal pursuit? Most motivation theories 

assume that goal characteristics (e.g., the value of the goal) or the individual's need 

state are crucial (see McClelland, Atkinson, Clark, & Lowell, 1953; Wigfield & 

Eccles, 2000, for examples). They postulate, more or less explicitly, that energy 

investment increases in proportion to the importance of attaining the goal. Brehm's 

motivational intensity theory (Brehm & Self, 1989; Richter, 2013; Wright, 1996, 

2008) sharply contrasts with this view by postulating that energy investment is 

governed by the motivation to avoid wasting resources. Brehm predicted that 

individuals mobilize exactly the amount of energy that is required for success because

investing more than required would waste resources (e.g., Brehm & Self, 1989; 

Wright, 2008). He concluded that task difficulty—an indicator of the required energy

—should be the direct determinant of energy investment. Motivational intensity 

theory acknowledges that goal characteristics and needs exert an impact on energy 

investment but this impact should be an indirect one. These and other factors affecting

success importance should set the upper limit of the relationship between task 

difficulty and energy investment. Energy investment should increase as a function of 

task difficulty as long as the required energy is justified by the importance of attaining

the goal. If success importance is not high enough, individuals should refrain from 

investing energy. Given that any energy investment is fruitless if task success is 

impossible, individuals should also not invest energy in impossible tasks.1

Motivational intensity theory has inspired a lot of empirical research and most 

1 These predictions only hold if task difficulty is fixed and known. A comprehensive discussion of 
all predictions of motivational intensity theory can be found in Richter (2013).
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of its predictions have been extensively tested (Gendolla, Wright, & Richter, 2012, for

a recent overview). However, despite more than two decades of research on the 

theory, the fundamental prediction that energy conservation concerns govern energy 

investment has not been addressed yet. A couple of studies have demonstrated task 

difficulty effects on cardiovascular responses (e.g., Gendolla, Richter, & Silvia, 2008; 

Richter, Friedrich, & Gendolla, 2008) but no study has specifically examined the 

question whether individuals invest only the energy that is required. The main reason 

for this lack of research on a central aspect of the theory are probably the measures 

that have been used in past research on motivational intensity theory. Drawing on 

work by Wright (1996), researchers have relied on sympathetic-driven cardiovascular 

measures to test motivational intensity theory's predictions. These measures have 

many advantages but it is hardly possible to use them to compare required and 

invested energy. Increases in sympathetic activity may reflect energy investment but it

is difficult to specify the level of sympathetic activity required to successfully perform

a task (e.g., to learn a series of fifteen random letters in one minute). Correspondingly,

the observation that an individual's pre-ejection period—an indicator of sympathetic 

activity—decreases during task performance by 10 ms, does not provide any 

information whether this increase in sympathetic activity was required or whether the 

individual would also have been able to successfully cope with the task with a less 

pronounced increase. Fortunately, there is an alternative to cardiovascular measures 

that enables the comparison between invested and required energy.

Energy refers to the potential to perform work, and there is agreement on the 

basic processes that provide the energy for human behavior (e.g., Maughan & 
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Gleeson, 2010). The energy that enables bodily functions and activities stems from 

carbohydrates, fats, and proteins contained in the food that we consume. However, 

human cells cannot directly use the energy stored in these macronutrients. The energy 

first has to be transfered to adenosine triphosphate (ATP), the chemical energy carrier 

that provides the energy for all kind of cellular work (e.g., muscle contraction, 

transmission of neural signals, or cellular reproduction). ATP is, thus, the fuel of 

human activity.

In physical, isometric exercise, the amount of consumed ATP is monotonically 

related to exerted muscle force (e.g., Boska, 1994; Jeneson, Westerhoff, Brown, Van 

Echteld, & Berger, 1995; Potma, Stienen, Barends, & Elzinga, 1994; Russ, Elliott, 

Vandenborne, Walter, & Binder-Macleod, 2002; Szentesi, Zaremba, van Mechelen, & 

Stienen, 2001). To exert a high force more ATP has to be consumed than to exert a 

low force. Given that the economy of muscle contraction depends on many factors 

(e.g., muscle fiber type, contraction speed, see Russ et al., 2002; Stienen, Kiers, 

Bottinelli, & Reggiani, 1996; Szentesi et al., 2001, for examples), exerted force does 

not constitute a measure of absolute ATP consumption but under controlled conditions

it enables the assessment of the relative amount of consumed ATP. Correspondingly, 

the assessment of exerted muscle force in an isometric task (i.e., in a task where the 

muscle contracts without a change in muscle length) enables the comparison of 

required and invested energy. If a participant has to exert a force of 80 Newton (N) for

task success but exerts a force of 120 N, it is evident that she or he invested more 

energy than required.

Assessing exerted muscle force in isometric exercise does not only enable a 
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test of motivational intensity theory's basic prediction that the motivation to avoid 

wasting resources underlies energy investment in goal pursuit, it also enables a more 

precise test of motivational intensity theory's energy-related predictions. As discussed 

above, researchers working on motivational intensity theory have mainly relied on 

sympathetic-driven cardiovascular measures. If one adopts the idea that ATP is the 

body's energy currency, these cardiovascular measures convey little information about

energy investment. Changes in sympathetic activity may parallel changes in energy 

investment but they do not necessarily do so. During heavy physical exercise, 

sympathetic activity enhances cardiac output to satisfy the increased oxygen demand 

of the working muscles. However, cardiac activity also increases during light physical

exercise but this increase is not driven by changes in sympathetic activity. It results 

from decreased parasympathetic activity (e.g., Fagraeus & Linnarsson, 1976; Victor, 

Seals, Mark, & Kempf, 1987). Performing a light exercise certainly requires energy 

but this increase in energy demand is not accompanied by an increase in sympathetic 

activity.

There is also evidence for exaggerated sympathetic activity. Research on 

Obrist's cardiac-somatic uncoupling hypothesis (e.g., Obrist, 1981) demonstrated that 

cardiac sympathetic activity may exceed energy demand. For instance, Sherwood and 

colleagues found that the increase in cardiac output, heart rate, and pre-ejection period

during a reaction time task exceeded the increase that one would have expected 

drawing on oxygen consumption (Sherwood, Allen, Obrist, & Langer, 1986). These 

findings show that sympathetic-driven cardiovascular measures are imperfect 

indicators of energy investment. Preceding studies on motivational intensity theory 
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thus do not constitute compelling tests of motivational intensity theory's energy-

related predictions. Assessing exerted force in an isometric task enables more precise 

tests of these predictions.

It is of note that there is already indirect support for motivational intensity 

theory's hypothesis that individuals are motivated to conserve energy. A couple of 

physiological studies demonstrated that practice decreases energy investment (e.g., 

Brener, 1987; Brener & Mitchell, 1989; Lay, Sparrow, Hughes, & O’Dwyer, 2002; 

Sherwood, Brener, & Moncur, 1983; Sparrow & Newell, 1994). The observed 

reduction in energy investment with increasing practice may reflect the organisms' 

motivation to become more efficient to conserve energy. Other physiological studies 

supported the predicted relationship between difficulty and energy investment (e.g., 

Backs & Seljos, 1994; Carroll, Turner, & Prasad, 1986; Fairclough & Houston, 2004; 

Scholey, Harper, & Kennedy, 2001; Sims & Carroll, 1990; Turner & Carroll, 1985). 

For instance, Turner and Carroll (1985) showed that oxygen consumption—an 

indicator of energy investment—in a physical task is proportional to task difficulty. In

their study, participants had to cycle on a bicycle ergometer at a constant pedaling rate

of 50 revolutions per minute. The difficulty of the task was manipulated by varying 

wheel friction across four levels. Oxygen consumption significantly increased with 

increasing task difficulty and differed between all task difficulty levels.

Even if these physiological studies provided supporting evidence for 

motivational intensity theory's energy-related predictions, they suffer from two 

shortcomings. First, the amount of energy required for success was not assessed in 

these studies. Consequently, they do not enable the comparison of the required energy
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with the invested energy that is crucial to test motivational intensity theory's 

prediction that individuals invest only the energy required for success. Second, 

participants were forced to perform at a certain workload level. For instance, 

participants in the study by Turner and Carroll (1985) had to cycle at a certain speed 

and against a certain resistance. They were not free to perform at their own speed or 

workload. It is obvious that this prevents a test of the prediction that individuals 

themselves choose to invest not more than required.

The aim of the present work was twofold. First, it aimed to close the gap in the 

literature by specifically testing motivational intensity theory's basic prediction that 

energy investment in goal pursuit is governed by the motivation to avoid wasting 

resources. In particular, I examined the prediction that individuals only invest the 

energy that is required and not more. Second, the work aimed to examine 

motivational intensity theory's energy-related predictions more accurately than in 

previous research using cardiovascular measures. To test these research questions, 

participants performed an isometric hand grip task under four different task difficulty 

conditions.  Drawing on the assumption that energy investment is driven by the 

motivation to avoid wasting resources, the following two hypotheses were tested. 

First, energy investment (operationalized as exerted grip force) should increase with 

increasing task difficulty. Second, once participants know about the amount of energy 

that is required for success, they should invest the energy that is required and not 

more.

Study 1

Method

Participants and design. Seventy-two University students (mean age: 22.38 
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years, range: 18-53) were randomly assigned to the four cells of a one-factorial design

(task difficulty: 60 N vs. 90 N vs. 120 N vs. 150 N). All participants but one were 

right-handed and 82% indicated French as their first language. The gender distribution

was as follows: 13 women and 5 men in the 60 N cell, 16 women and 2 men in the 90 

N cell, 17 women and 1 man in the 120 N cell, 14 women and 4 men in the 150 N 

cell. Participants received course credit for their anonymous and voluntary 

participation.

Grip force measurement. Grip force (in N) was assessed with a HD-BTA 

hand grip dynamometer (Vernier Software and Technology, Beaverton, OR) at a 

sampling rate of 10 Hz. The dynamometer was fixed in a vertical position at the 

participants' table allowing participants to use their dominant hand to squeeze it. The 

basic procedure of the individual trials was as follows: First, a countdown starting at 

six seconds was presented and announced the following measurement period. During 

the measurement period of two seconds, exerted grip force was assessed. After the 

measurement period, a feedback was presented for four seconds.

Procedure. After arriving at the laboratory, participants provided informed 

consent and indicated their age, gender, handedness, and mother tongue. The 

experimenter—who was hired and blind to the hypotheses—introduced the 

dynamometer and participants could familiarize themselves with the device. Then, 

participants' maximum force was assessed in three trials.2 The trials included a 

countdown, a measurement period, and a feedback as described above. Participants 

were asked to exert their maximum force during the measurement period. During the 

2 Participants' maximum force was assessed to assure that the requested force standards did not exceed 
participants' maximum force (i.e., to assure that task success was possible). It was also assessed to control 
for individual differences in maximum force in the statistical analysis of exerted force.
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feedback period, participants received a general feedback that grip force had been 

assessed. They did not receive a feedback about the force that they had exerted.

Participants then received instructions for the practice period. The purpose of 

this period was to provide participants with an opportunity to learn about the 

difficulty of exerting a certain force. Participants learned that the maximum force that 

they exert during the measurement period would be compared to a force standard and 

that they should try to attain this standard as precisely as possible. Depending on the 

respective difficulty condition, they were instructed to exert 60 N, 90 N, 120 N, or 

150 N. After each measurement period, participants received a feedback regarding the

difference between the maximum force that they had exerted and the force standard 

(e.g., ''You exerted 32 Newton more than requested'').

After having performed 20 practice trials, participants learned that they would 

now perform a different task but that the force standard would remain the same. They 

were informed that they would receive CHF 0.05 (about USD 0.05) for each trial 

where the peak force that they exert would match or exceed the force standard. 

Furthermore, they learned that they should try to imagine that they were squeezing a 

clogged Ketchup bottle to free it. If they would press the bottle hard enough, they 

would free the bottle and get some Ketchup. To support this cover story, a picture 

showing a hand holding a Ketchup bottle was displayed during the whole task. If the 

force exerted during the measurement period matched or exceeded the requested 

force, participants received a visual feedback showing a hand squeezing a Ketchup 

bottle that ejects Ketchup. If participants failed to exert the requested force, the 

default picture was displayed. A reminder (''If you exert at least XX Newton, you will 
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earn a reward of CHF 0.05'') was presented on the top of the screen during the whole 

task. Participants performed 30 trials of the Ketchup task. They then performed again 

three maximum force trials. Finally, they were carefully debriefed and received the 

money that they had earned.

Data preprocessing and data analysis. Given the sampling rate of 10 Hz, 20 

data points were collected during each measurement period. Peak force scores (i.e, the

highest value of the 20 data points) were averaged across practice and Ketchup task 

trials to yield the practice and Ketchup task scores, respectively. Additionally, force-

time integrals (FTI) were calculated as a second measure of energy investment by 

summing up all 20 data points of a given trial (Filion, Fowler, & Notterman, 1970). In 

contrast to peak force, FTIs reflect the energy investment during the whole two 

seconds of measurement. The arithmetic mean of all Ketchup task FTIs constituted 

the FTI task score.

An empirical test of the hypothesis that individuals invest only the energy that 

is required, requires the quantification of evidence for no difference between exerted 

force and required force. Given that p-values cannot provide this kind of information 

(e.g., Dixon, 2003; Johansson, 2011), I will report Bayes factors as measures of 

evidence. A Bayes factor (BF) provides information about the relative likelihood of 

the data under two competing hypotheses or models. For instance, a BFAB of 4 

indicates that the data are four times more likely to have occurred under model A than

under model B. To test the first prediction that energy investment is a function of task 

difficulty, I compared a model that predicts a linear relationship between task 

difficulty and exerted force (difficulty model, cell weights: -3, -1, +1, and +3) with a 
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model that does not predict an effect of difficulty on exerted force (null model). BFs 

were calculated using the Bayesian information criterion (BIC) as described in 

Wagenmakers (2007) and Masson (2011). To test the second prediction that 

individuals invest only the required energy and not more, I compared the force 

exerted during the Ketchup task with the force standard as well as with the force 

exerted during practice using one-sample Bayesian t-tests (Rouder, Morey, Speckman,

& Province, 2012; Rouder, Speckman, Sun, Morey, & Iverson, 2009). These t-tests 

contrasted the likelihood of the data under a model that predicts a difference 

(difference model) with the likelihood of the data under a model that predicts no 

difference (null model).3 BFs will be interpreted using the nomenclature of Raftery 

(1995).

Results

Practice. A BFDiffiNull of 6.18 x 1018 (∆BIC = 81.93) revealed that the peak force

data were much more likely under the difficulty model than under the null model. Cell

means and standard errors displayed in Table 1 and Figure 1 show that participants 

successfully learned during the practice trials to exert the requested force with a high 

precision.

Ketchup task. The comparison of the difficulty model with the null model for 

exerted peak force resulted in a BFDiffiNull of 9.84 x 103 (∆BIC = 18.39). The data were 

9838 times more likely under the difficulty model than under the null model 

providing strong evidence for the predicted impact of task difficulty on exerted peak 

force. The FTI data replicated this effect (BFDiffiNull = 21.27, ∆BIC = 6.11). Cell means 

3 Bayesian t-tests were conducted using a unit-information prior with known variance, the same 
prior that underlies the BIC calculation.
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and standard errors of exerted force during the Ketchup task are shown in Table 1 and 

Figure 1.4

Contrary to the predictions, Bayesian t-tests comparing exerted peak force with

the force standard provided strong to very strong evidence that participants exerted in 

all four difficulty conditions more force than required (BFDiffNull = 1.51 x 105 in the 60-

N-cell, BFDiffNull = 1.18 x 103 in the 90-N-cell, BFDiffNull = 2.51 x 103 in the 120-N-cell, 

BFDiffNull = 83.33 in the 150-N-cell). They also found positive to very strong evidence 

that participants exerted a higher force during the Ketchup task than during practice 

(BFDiffNull = 8.33 x 104 in the 60-N-cell, BFDiffNull = 6.62 x 103 in the 90-N-cell, BFDiffNull 

= 39.84 in the 120-N-cell, BFDiffNull = 6.54 in the 150-N-cell).5

Discussion

Study 1 provided strong evidence for the predicted impact of task difficulty on 

energy investment: Exerted force increased as a function of increasing task difficulty. 

However, the study failed to provide evidence for the second hypothesis. Even if 

participants had learned during the practice trials to precisely exert the required force, 

they strongly increased their force when starting to perform the Ketchup task. Study 2

aimed to replicate Study 1 by employing a within-persons design and slightly 

increased force standards.

Study 2

Method

Participants and design. Forty-nine University students (mean age: 22.29 

4 Classical null hypothesis significance testing resulted in F(1, 68) = 25.16, p < .001, MSE = 1126.29 for the 
linear effect of task difficulty on peak force and F(1, 68) = 10.56, p = .002, MSE = 642391.26 for the linear 
effect of task difficulty on FTI.

5 For both experiments, all analyses were also conducted controlling for participant's maximum 
force. Given that this did virtually not change the results, only the uncorrected analyses are 
reported.
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years, range: 18-45, 10 men and 39 women) performed a Ketchup task at four 

different difficulty levels (70 N vs. 100 N vs. 130 N vs. 160 N). Six participants were 

left-handed, 88% were native speakers. Participants received course credit for their 

anonymous and voluntary participation.

Procedure. The procedure was similar to the procedure of Study 1 with the 

following exceptions. All participants received all four force standards. During the 

practice period, participants performed four blocks, each one consisting of 15 trials. 

The force standard during the first block was 70 N, during the second it was 100 N, 

during the third 130 N, and 160 N in the last block. As in Study 1, participants had to 

exert the requested force as precisely as possible and were informed about the 

difference between the exerted force and the force standard. During the Ketchup task, 

the four force standards were also presented in different blocks. However, the order of

the blocks was random. Each block included 15 trials with the same force standard. 

As in Study 1, participants could earn CHF 0.05 for each trial where the maximally 

exerted force equaled or exceeded the force standard.

Results

Practice. As in Study 1, participants learned to exert the required force with a 

high precision (BFDiffiNull = 4.12 x 1093, ∆BIC = 431.11).6 Table 1 and Figure 2 display 

cell means and standard errors of exerted force during practice and the Ketchup task.

Ketchup task. The exerted peak force data were much more likely under the 

difficulty model than under the null model (BFDiffiNull = 3.58 x 109, ∆BIC = 44.00) 

reflecting the strong impact of task difficulty on exerted force. The FTI data replicated

6 The mean of the individual coefficients of variation was 25.41. The ICC[1, 1] was .64.
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this effect ( BFDiffiNull = 2.28 x 1012, ∆BIC = 56.91).7

Replicating the results of Study 1, Bayesian t-tests comparing exerted peak 

force with the force standard found positive to very strong evidence that participants 

exerted in all four difficulty conditions more force than required (BFDiffNull = 2.75 x 

1015 in the 70-N-cell, BFDiffNull = 1.78 x 108 in the 100-N-cell, BFDiffNull = 7.63 x 106 in 

the 130-N-cell, BFDiffNull = 25.00 in the 160-N-cell). They also provided very strong 

evidence that participants increased exerted force from practice to Ketchup task 

performance (BFDiffNull = 2.22 x 1016 in the 70-N-cell, BFDiffNull = 6.67 x 108 in the 100-

N-cell, BFDiffNull = 8.70 x 107 in the 130-N-cell, BFDiffNull = 1.18 x 104 in the 160-N-

cell).

General Discussion

The results of the two studies provided mixed evidence for motivational 

intensity theory's predictions. On the one hand, the data strongly supported the 

hypothesis that task difficulty is a determinant of energy investment. In both studies, 

exerted force increased with increasing task difficulty. On the other hand, the data did 

not provide support for the prediction that individuals invest only the energy that is 

required. Participants always invested more energy than required. Despite the fact that

they had successfully learned to exert the required force with a high precision during 

the practice trials, they increased their force during the Ketchup task trials and 

invested more energy than required throughout the whole task.

What are the implications of these findings for motivational intensity theory's 

basic postulate that energy investment in goal pursuit is governed by the motivation to

7 Classical null hypothesis significance testing resulted in F(1, 48) = 50.03, p < .001, MSE = 388.92 for the 
linear effect of task difficulty on peak force and F(1, 48) = 78.99, p < .001, MSE = 96549.39 for the linear 
effect of task difficulty on FTI.
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conserve resources? The strong impact of task difficulty on energy investment 

suggests that the motivation to conserve resources plays an important role. If 

individuals did not care about conserving energy, one would expect that they would 

always exert a high force to guarantee success. There would be no reason to adapt the 

level of exerted force to the difficulty of the task. The observed impact of task 

difficulty on exerted force is particularly remarkable given the small differences in the

absolute amount of energy that were required to exert the different force standards. 

For example, one does not need much more energy to briefly squeeze the 

dynamometer with a force of 120 N than to exert 60 N. Participants would not have 

wasted much energy if they had always exerted the same high force (e.g., 180 N) 

independent of the respective trial difficulty. Even if the differences in required 

energy were small across the difficulty levels, participants modified their grip force in

response to changes in task difficulty. These findings suggest that task difficulty and 

energy conservation play an important role in goal pursuit and theoretical models 

should account for this.

However, the data challenge the postulate that resource conservation is the sole

motivation underlying energy investment. Participants always invested more energy 

than required, even after having learned in a practice period to invest exactly what is 

necessary. This is clearly in conflict with motivational intensity theory's prediction. It 

is tempting to come up with post-hoc explanations for this finding trying to save the 

theory's prediction. For instance, one might argue that the finding is due to task 

difficulty not being clear. Even if participants were able to exert the required force 

with a high precision during the practice trials, participant might have forgotten this 



Running head: ENERGY CONSERVATION

difficulty information when starting the Ketchup task. The task might not have been a 

task with a fixed difficulty but a task with an unclear difficulty. However, if this holds,

one should not find any difficulty effect at all. According to motivational intensity 

theory, success importance (i.e., reward value) should be the sole determinant if task 

difficulty is unclear. Given that reward value did not differ across the four difficulty 

conditions, one would expect that participants exert in all four conditions the same 

force. This was clearly not the case. An explanation of the findings in terms of unclear

task difficulty thus does not bring the findings in line with motivational intensity 

theory. If one argues that the findings were due to task difficulty being unclear, the 

observed task difficulty effect conflicts with motivational intensity theory.

One might also speculate that participants invested more energy than required 

to ensure that they will earn the monetary reward. Given that humans' sense of force 

is not accurate (Proske & Gandevia, 2012), participants might have chosen to always 

exert a high force to ensure success. This explanation might be correct but it does not 

resolve the conflict between the empirical findings and motivational intensity theory. 

According to motivational intensity theory, there is a sole motivation that governs 

energy investment in goal pursuit: the motivation to conserve energy. The theory does

not consider any other motivation. Given that the motivation to ensure success is not 

part of motivational intensity theory, it does not enable an explanation of the findings 

within the scope of the theory. The supposition of a motivation to ensure success 

challenges motivational intensity theory but it does not question the conclusion that 

the observed findings conflict with motivational intensity theory.

A third explanation that one might propose to defend motivational intensity 
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theory's prediction is that individuals did not invest the required force because the 

processes required for precisely adapting the exerted force would have consumed 

much energy. If the energy requirement of the adaption process is higher than the 

energy that is wasted by exerting a higher force than required, it would actually 

conserve energy not to adapt exerted force. However, this explanation conflicts with 

the observed difficulty effect on exerted force. The explanation suggests that 

participants refrained from adapting their force to the force standard but the data 

demonstrate that participants adapted their force as a function of task difficulty. The 

notion that participants exerted a higher force than required because the adaption 

would have required (and wasted) much energy offers thus an explanation for the 

observed difference between exerted and required force but it fails to explain the task 

difficulty effect on exerted force.

It is tempting to come up with post-hoc explanations for the finding that 

participants invested more energy than required. However, a reasonable alternative 

should also be able to account for other empirical findings that support motivational 

intensity theory (e.g., Gendolla et al., 2012, for an overview). To my knowledge, there

are no models that offer a comprehensive explanation of the finding that individuals 

invest more than required as well as of the other empirical findings that motivational 

intensity theory can explain (e.g., the interaction of reward value and task difficulty 

on effort mobilization, Eubanks, Wright, & Williams, 2002, or the impact of reward 

on effort under conditions of unclear task difficulty, Richter & Gendolla, 2009). In 

any case, the observation that participants invested more energy than required contests

the primacy of resource conservation suggested by motivational intensity theory and 



Running head: ENERGY CONSERVATION

might give rise to future theory development.

A potential limitation of the presented research might be the use of exerted 

force as an indicator of energy investment. Given that the economy of muscle 

contraction depends on various factors (e.g., muscle fiber type, contraction speed), 

exerted force does not enable inferences about the absolute amount of consumed 

energy. However, given that these factors are either stable or randomly distributed 

across conditions in randomized experimental and within-persons designs, 

comparisons between conditions enable inferences regarding the relative amount of 

invested energy. For instance, if a participant exerted a higher force in the first trial 

than in the second trial it is likely that she or he expended more energy in the first trial

than in the second trial. Alternative ways to assess energy investment, like measures 

of oxygen consumption (e.g., Sherwood, Allen, et al., 1986) or 31P magnetic 

resonance spectroscopy (e.g., Prompers et al., 2006), reflect the process of ATP 

consumption more directly but they are less comfortable for the participant and less 

economic. Moreover, in the case of oxygen consumption, they reflect whole body 

energy metabolism and cannot specifically assess the energy invested in one specific 

instrumental action.

The employment of a physical task might constitute another limitation of the 

presented research. One might wonder whether the findings from a physical task can 

be generalized to mental tasks. Given that motivational intensity theory has mainly 

been used to examine effort investment in mental tasks, employing a mental task 

would have created a stronger link to preceeding research on the theory. However, 

mental tasks have a serious drawback. With the methodology that is currently 
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available, it is impossible to know a priori the energy that is required to successfully 

execute a mental task. How much energy is needed to successfully perform a Stroop 

task, to read a book, or to pass an exam in motivation psychology? One could assess 

the energy that individuals invest in these tasks but one would not know if the 

invested energy reflects the minimum energy that is required or if individuals invested

more than needed. There is thus a trade-off if one aims at examining motivational 

intensity theory's prediction that individuals invest only the energy required for task 

success. Using a mental task does not enable a precise test of the hypothesis. Using a 

physical task where one can quantify the required minimum energy enables a precise 

test but comes with the drawback that some researchers might doubt that the findings 

can be generalized to mental tasks. It is of note that motivational intensity theory does

not have such doubts. The theory does not differentiate between physical and mental 

tasks. Its predictions should hold for any kind of goal-directed action.

The presented studies extend the literature on motivational intensity theory by 

demonstrating the impact of task difficulty on a measure more closely related to 

energy investment than the cardiovascular measures that have been used in preceding 

research. They also constitute the first test of the prediction that individuals do not 

invest more energy than required. The findings underline that energy conservation and

task demand play an important role for energy investment in goal pursuit but they also

challenge the prediction that energy conservation is the sole motivation that underlies 

energy investment in goal pursuit.
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Table  1

Cell means and standard errors (in parentheses) of exerted force.

Force Standard Practice PF Task PF Task FTI

Experiment 1a

60 N 67.90 (3.65) 123.73 (8.36) 1322.87 (192.65)

90 N 91.82 (2.91) 131.53 (9.02) 1699.09 (188.17)

120 N 127.87 (6.16) 153.38 (6.03) 1735.90 (161.84)

150 N 147.90 (6.10) 175.59 (8.92) 2225.64 (209.85)

Experiment 2b

70 N 76.43 (2.06) 153.74 (6.05) 1565.91 (114.96)

100 N 100.81 (0.95) 160.79 (7.37) 1754.63 (124.28)

130 N 127.45 (1.01) 170.55 (5.54) 1911.29 (120.88)

160 N 154.10 (1.75) 180.19 (6.01) 2101.82 (129.37)

Note.  PF  = mean peak force, FTI  = mean force-time-integral. aN  =

72. b 
N = 49.
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Figure 1. Mean peak force in Experiment 1. The dashed line indicates the force

standards of the difficulty conditions. Error bars represent standard errors of 

the mean.
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Figure 2. Mean peak force in Experiment 2. The dashed line indicates the force

standards of the difficulty conditions. Error bars represent standard errors of 

the mean.


