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Abstract

It is current practice that researchers testing specific, theory-driven predictions do not

only use a planned contrast to model and test their hypotheses but also test the

residual variance (the C+R approach). This analysis strategy relies on work by Abelson

and Prentice (1997) who suggested that the result of a planned contrast needs to be

interpreted in the light of the variance that is left after the variance explained by the

contrast has been subtracted from the variance explained by the factors of the

statistical model. Unfortunately, the C+R approach leads to six fundamental problems.

In particular, the C+R approach (1) relies on the interpretation of a non-significant

result as evidence for no effect, (2) neglects the impact of sample size, (3) creates

problems for a priori power analyses, (4) may lead to significant effects that lack a

meaningful interpretation, (5) may give rise to misinterpretations, and (6) is

inconsistent with the interpretation of other statistical analyses. Given these flaws,

researchers should refrain from testing the residual variance when conducting planned

contrasts. Single contrasts, Bayes factors, and likelihood ratios provide reasonable

alternatives that are less problematic.
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Residual tests in the analysis of planned contrasts: Problems and solutions

Planned contrasts enable researchers to conduct tailored statistical tests of their

hypotheses (e.g., Abelson, 1995; Hays, 1988; Rosenthal & Rosnow, 1985; Winer, Brown,

& Michels, 1991). In contrast to the default ANOVA or GLM tests offered by many

statistical software packages as standard analysis tool, planned contrasts have often a

higher statistical power (e.g., Myers & Well, 1995) and allow researchers to address

their hypothesis with a single test. Proponents of contrast analysis agree on the utility

of the method. They disagree, however, regarding the specific analysis strategy. Some

authors suggested that only a single planned contrast is needed to demonstrate whether

the data support the hypothesis or not (single contrast approach; Furr, 2004; Furr &

Rosenthal, 2003; Rosenthal & Rosnow, 1985). Other authors argued that a single

contrast is not conclusive and that an additional, non-significant test of the residual

variance is needed before one may conclude that the data convincingly support the

hypothesis (C+R approach; Abelson & Prentice, 1997; Brauer & McClelland, 2005;

Niedenthal, Brauer, Robin, & Innes-Ker, 2002). The disagreement on the best contrast

analysis strategy is also reflected in the empirical literature. Six percent of all empirical

papers that were published in 2013 in the European Journal of Social Psychology, the

Journal of Experimental Psychology: General, Motivation and Emotion, the Personality

and Social Psychology Bulletin, and Psychological Science used planned contrasts to

model and test the predictions. Half of these papers followed the single contrast

approach and conducted only the contrast test. The other half adopted the C+R

approach and tested additionally the residual sum of squares.

The decision between the two approaches is not trivial given that it has important

implications for data interpretation. Imagine that a researcher, Dr. Mustermann, has

developed a theory about the time that students spend on preparing an exam. Her

theory claims that the time students invest is a function of the expected difficulty of the

exam: The higher the expected difficulty, the higher the number of hours that students

spend on preparing the exam. To test her theory, Dr. Mustermann runs a study in

which she assesses the number of hours that students spend on preparing an easy, a
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moderately difficult, a difficult, and a very difficult exam. She then models her

hypothesis with a planned contrast and conducts the corresponding statistical test. The

test is significant. According to the single contrast approach, she would have

convincingly supported her prediction. However, according to the C+R approach, she

would have to conduct an additional test. She would have to subtract the sum of

squares associated with her contrast from the total between-group sum of squares and

test the resulting residual sum of squares. Only if this residual sum of squares–the

variation explained by exam difficulty that is not captured by her contrast–does not

attain statistical significance, she could claim that her data unambiguously support her

hypothesis. In this paper, I will compare both contrast analysis strategies, discuss

problems associated with the C+R approach, and present alternatives.

Contrast analysis

Contrasts enable researchers to answer their specific research questions with

tailored statistical tests. The hypothesis of interest is first translated into contrast

weights (see Furr, 2004, for a tutorial on how to translate a research hypothesis into

adequate contrast weights). Dr. Mustermann’s research question, for instance, could be

modeled using a linear contrast with the weights -3 (easy exam), -1 (moderately

difficult exam), +1 (difficult exam), and +3 (very difficult exam). The only constraint

that the contrast weights have to meet is that they sum up to zero. After having

assigned the contrast weights, the sum of squares associated with the contrast is

calculated using the following formulas:

L =
k∑

i=1
ciMi (1)

w =
k∑

i=1

c2
i

ni

(2)

SScontrast = L2

w
(3)

where k is the number of groups or treatment levels, ci is the contrast weight of group i,

M i is the mean of group i, and ni is the number of participants in group i.1 Using the
1Rosenthal and Rosnow (1985) suggested that the harmonic mean of the number of participants in

the groups should be used instead of the individual ni if the ni are not equal.
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data of Dr. Mustermann’s first study presented in Table 1, one obtains for Dr.

Mustermann’s contrast L = 10.30, w = 1.67, and SScontrast = 63.65.

A F test for the contrast can be computed by dividing MScontrast by the

associated mean square of error (MSerror). Given that all contrasts are associated with

a single degree of freedom, SScontrast equals MScontrast and the numerator degrees of

freedom of Fcontrast are always one. The denominator degrees of freedom are the degrees

of freedom associated with the MSerror. The appropriate MSerror is the MSerror that is

used to test the general effect of the factors involved in the contrast (see Rosenthal &

Rosnow, 1985, for a detailed discussion on how to find the appropriate error term). In

Dr. Mustermann’s case, the associated MSerror is the MSerror that is used to test the

exam difficulty effect in a one-way ANOVA. If the tested prediction is directional, the F

test can be replaced by the equivalent t test:

Fcontrast = t2contrast = MScontrast

MSerror

(4)

Using the data of Dr. Mustermann’s first study, one obtains Fcontrast(1, 44) = 121.77

(or tcontrast(44) = 11.04), p < .001, MSerror = 0.52.

The C+R approach

The variance explained by any single factor of a fixed-effects analysis of variance

(ANOVA) can be decomposed into a set of k-1 orthogonal contrasts (k corresponds to

the number of factor levels or groups). Each contrast of the set is associated with one

degree of freedom of the ANOVA factor and explains a unique part of the variance

explained by the factor. The k-1 orthogonal contrasts explain together all variance

explained by the factor. In other words, the total variation between the different levels

of a factor–the sum of squares associated with the factor–can be partitioned into the

specific patterns of variation predicted by the orthogonal contrasts (see Equation 5).

Each contrast predicts a certain ranking of factor levels and explains a part of the total

sum of squares.

SSfactor = SScontrast 1 + · · · + SScontrast k−1 (5)
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Dr. Mustermann’s manipulation of exam difficulty can be conceptualized in a one-way

ANOVA as a between-persons factor with three degrees of freedom. One possibility to

decompose this factor into orthogonal contrasts is to use a set consisting of a linear

contrast (contrast weights -3, -1, +1, and +3)–corresponding to Dr. Mustermann’s

contrast of interest–a quadratic contrast (contrast weights +1, -1, -1, and +1), and a

cubic contrast (contrast weights -1, +3, -3, +1). However, this set constitutes only one

of many possible sets of orthogonal contrasts that explain the variance associated with

the exam difficulty factor. For any first contrast, orthogonal contrasts can be found.

For instance, a contrast with the weights +1, +1, -1, and -1, a contrast with the weights

-1, +1, -1, and +1, and a contrast with the weights -1, +1, +1, and -1 would also

constitute a set of orthogonal contrasts that accounts for all of the variance explained

by the exam difficulty factor.

The contrast that a researcher uses to model and to test her or his prediction thus

explains only a part of the total variation between the groups. The remaining variance

is explained by the other contrasts of the set of orthogonal contrasts. Abelson and

Prentice (1997) used the terms ”residual” and ”residual variance” to refer to this

amount of variance suggesting that the total explained variance should be partitioned

into variance explained by the researcher’s contrast and residual variance as shown in

Equation 6. Abelson and Prentice (1997) thus used the term ”residual” to refer to

explainable, non-error variance and not, like in many other statistical approaches, to

refer to error variance.

SSfactor = SScontrast + SSresidual (6)

Abelson and Prentice claimed that an analysis of the residual variance is crucial for a

valid interpretation of the outcome of the contrast test and that any contrast test

should be followed by a test of the residual variance. They argued that one may miss

systematic patterns of interest if one only tests the contrast. According to Abelson and

Prentice, a significant contrast and a non-significant residual–they call this pattern a

canonical outcome–show that the data fit the predictions and that deviations from the

predicted pattern are random. If both tests are significant–an ecumenical outcome in
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Abelson and Prentice’s terms–the data pattern resembles the theoretical predictions but

there is additional systematic variation beyond the expected pattern. Abelson and

Prentice thus differentiated between a pattern of results that provides full, parsimonious

support for the predictions and a pattern that provides less support. Niedenthal

(Niedenthal et al., 2002) and Brauer (Brauer & McClelland, 2005) took one step further

by suggesting that only a significant contrast that is accompanied by a non-significant

residual enables researchers to conclude that their hypothesis has been confirmed. If the

residual is significant, the researcher failed to provide evidence for her or his hypothesis.

The calculation of a test of the residual is straightforward. First, SSresidual is

calculated by subtracting SScontrast from SSfactor. SScontrast has already been computed

for the contrast test. SSfactor may be calculated by hand using the formulas provided in

various textbooks (e.g., Hays, 1988; Winer et al., 1991) but it might be easier to

calculated an ANOVA using one of the available statistics software packages and to

copy the sum of squares from the output. MSresidual is then calculated by dividing

SSresidual by the associated k-2 degrees of freedom. Finally, an F test is computed using

Fresidual = MSresidual

MSerror

(7)

For Dr. Mustermann’s study, one obtains SScontrast = 63.65, SSfactor = 74.49, SSresidual

= 10.84, and MSresidual = 5.42. The F test results in Fresidual(2, 44) = 10.36, p < .001.

Dr. Mustermann thus obtained significant results for the contrast and the residual.

Depending on the contrast analysis strategy that she favors, she would either conclude

that the data support her prediction (single contrast approach) or conclude that the

data do not fully support the prediction (C+R approach).

Problems associated with the C+R approach

Analyzing the residual sum of squares as suggested by Abelson and Prentice

might seem reasonable. Unfortunately, the C+R approach leads to six major problems.

Two of the problems–the first two that I will present–are not specific to the C+R

approach. They reflect general shortcomings of p value based hypothesis testing and are

common to all p value based procedures. The other four problems are consequences of

the logic of the C+R approach.
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Problem 1: The C+R approach asks researchers to interpret non-significant

results as evidence for no effect

The C+R approach requires researchers to demonstrate with a non-significant

residual test that there is no systematic variance beyond the pattern modeled by their

contrast. Researchers are thus asked to interpret a non-significant statistical test as

evidence for no effect. A large number of authors questioned this interpretation of

non-significant tests arguing that failing to reject the null hypothesis does not imply

that one has found evidence in favor of it (e.g., Aberson, 2002; Dixon, 2003; Johansson,

2011; Nickerson, 2000; Wagenmakers, 2007). I will not reiterate all the concerns that

have been raised but I will briefly elaborate on two points that demonstrate why

interpreting a non-significant test as evidence for no effect is disputable.

First, p values are uniformly distributed if there is no true effect (e.g., Rouder,

Morey, Speckman, & Province, 2012, 2009). All p values are equally likely if the null

hypothesis of no effect is true. For instance, it is as likely to obtain a high p value in the

range from .95 to 1 as to obtain a low and significant p value (in the range from 0 to

.05). Consequently, a high and non-significant p value provides as much evidence for the

hypothesis that there is no systematic residual variance as a low and significant p value.

Showing that the test of the residual yields a particular, non-significant p value (e.g.,

.90) does not provide more evidence in favor of no systematic residual variance than

showing a significant p value (e.g., .03).

Second, small and non-significant p values are, under certain conditions, more

likely if there is a small true effect than if the null hypothesis of no effect is true (e.g.,

Hung, O’Neill, Bauer, & Köhne, 1997; Rouder et al., 2012; Sellke, Bayarri, & Berger,

2001). If there is a true non-zero effect, the p value distribution is right-skewed and its

shape depends on sample size and the size of the true effect. The higher the sample size

and the higher the size of the true effect, the more likely are low p values compared to

high p values. A consequence of this characteristic of the p value distribution under a

non-zero effect is that the probability of finding a small but non-significant p value

varies with sample size and the size of the true effect. In contrast, the probability of
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finding a small but non-significant p value is independent of sample size if the null

hypothesis of no effect is true. For instance, the probability of obtaining a p value

between .05 and .10 is always 5% if there is no true effect. If there is a true non-zero

effect, the probability of finding a p value within this range will be smaller than 5% if

the true effect is large or if sample size is large. However, if the true effect is small or if

sample size is low, the probability of finding a p value between .05 and .10 will be

higher than 5% (Sellke et al., 2001). Small, non-significant p values can thus be more

likely if there is a non-zero true effect than if there is no true effect. Consequently,

non-significant p values may provide more evidence for a true effect (or systematic

residual variance) than for no effect (or no systematic residual variance).

It follows that non-significant p values do not necessarily constitute evidence for

no systematic residual variance–as suggested by the C+R approach. They may even

constitute more evidence for a small amount of systematic residual variance than for no

systematic residual variance. It is of note that the problematic interpretation of

non-significant results as evidence for no effect is not unique to the C+R approach.

Many statistical procedures interpret non-significant p values as evidence for no effect

or no difference. For instance, tests for normality that are conducted to check model

assumptions are often interpreted in this manner. A non-significant result is interpreted

as evidence that the population distribution is not different from a normal distribution.

Problem 2: The outcome of the residual test depends on sample size

According to the C+R approach, testing the residual provides information about

the performance of the contrast. A significant residual is interpreted as evidence that

the contrast performed poorly leaving some systematic variance unexplained. A

problem for this interpretation arises from the relationship between p values, effect

sizes, and sample size. For a given (non-zero) effect size, the p value is a function of

sample size: Small sample sizes lead to high p values, whereas large sample sizes result

in low p values (e.g., Hung et al., 1997). This also holds for the test of the residual

variance. If the residual variance is associated with a non-zero population effect, the

probability of getting a significant residual test increases with increasing sample size.
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The following example illustrates this problem. Imagine that a researcher

manipulates a variable across three levels and predicts a linear effect across the three

groups. The linear contrast weights would be -1, 0, and +1. The between-groups

variance that would not be captured by this linear contrast, that is, the residual

variance, would be associated with a second, quadratic contrast (contrast weights +1,

-2, and +1) (e.g., Rosenthal & Rosnow, 1985). Let us also assume that the true

(population) relationship between the manipulated variable and the dependent variable

is a combination of a strong linear effect and a small quadratic effect. In this case, the

likelihood of finding a significant linear effect as well as the likelihood of finding a

significant quadratic (residual) effect would both increase with increasing sample size.

The results and their interpretation would strongly depend on the size of the collected

sample. If the sample size was small, the contrast may be significant but the residual

variance may fail to reach significance. The researcher would be allowed to conclude

that the data convincingly support the predictions. If the sample size was large, both

tests probably would be significant and the researcher would not be allowed to conclude

that the data provide full support for her or his prediction.

For researchers following the C+R approach, two problems arise from the

described relationship among p values, effect sizes, and sample size. First, whether a

researcher can provide full support for her or his hypothesis depends on sample size.

The outcome of the statistical analysis (canonical vs. ecumenical) does not only depend

on the performance of the researcher’s hypothesis but also on the size of the collected

sample. Given that a large sample size will render even small amounts of residual

variance significant, it will be almost impossible to provide full support (i.e., a canonical

outcome) with a large sample size. Second, the C+R approach confronts researchers

with an unsolvable approach-avoidance conflict. On the one hand, they are motivated

to collect few data to keep the likelihood of finding a significant residual low. On the

other hand, they are interested in conducting a contrast test that has a high statistical

power to detect true effects and are thus motivated to have a large sample size.
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Problem 3: The meaning of type I and type II error differs between the

contrast test and the residual test

A central motivation for hypothesis testing is researchers’ interest in avoiding

erroneously claiming that they have found support for their predictions. Tests that

follow the Neyman-Pearson paradigm satisfy this interest by offering a tool that enables

the control of the long-term rate of making a wrong decision. Within this paradigm,

researchers formulate two mutually exclusive hypotheses (the null and the alternative

hypothesis) and control two types of long-term error rates: the long-run probability of

rejecting the null hypothesis when it is true (type I error) and the long-run probability

of not rejecting the null hypothesis when it is false (type II error). Given that in most

cases the alternative hypothesis corresponds to the researcher’s hypothesis of interest,

controlling type I error offers researchers a mean to control the long-run probability of

erroneously claiming that they found support for their predictions.

The single contrast approach (and the contrast part of the C+R approach) is in

line with this logic. Rejecting the null hypothesis if it is true corresponds to erroneously

claiming that one has found support for one’s prediction. Correspondingly, researchers

can control the long-run probability of erroneously claiming that the data support their

prediction by setting the type I error rate of the contrast test. However, to control the

same type of error in the residual test, one has to control type II error instead of type I

error. Researchers following the C+R approach expect and predict that their contrast

explains all systematic variance and that there is no residual variance. They thus

predict that the null hypothesis of no effect is true when testing the residual.

Correspondingly, rejecting the null hypothesis when it is true (type I error) has a

different meaning than in the contrast test. It corresponds to erroneously rejecting the

researcher’s hypothesis and not to erroneously claiming that one has found support for

it. To control the long-term rate of erroneously claiming that one has found support for

no residual variance, researchers have to control the type II error rate of the residual

test instead of controlling type I error rate. Given that type II error control requires

researchers to predict a specific, non-zero effect for the alternative hypothesis, this leads
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to an awkward situation: Researchers expect and predict no residual effect but they

nevertheless have to formulate a prediction about a non-zero effect to control type II

error rate.

There is also a practical problem. Most funding agencies ask their applicants to

run a priori power analyses to determine required sample sizes. As far as I know, there

is no commercial software package that offers a tool that controls at the same time the

type I error rate of one test and the type II error rate of another test. Researchers thus

have to develop their own tool that enables them to conduct the required power

analysis and to determine the sample size needed to detect a canonical outcome.

Problem 4: Residual tests often examine effects that lack a meaningful

interpretation

Brauer and McClelland (2005) argued that it is important to test the residual

variance because one might miss important information if one does not test it. A

significant test of the residual is interpreted as evidence that there are other effects that

are worth exploring. Given that the residual variance may be associated with effects

that lack a meaningful interpretation, it is questionable whether a significant residual

test implies in general that it is important to explore the variance associated with the

residual. Dr. Mustermann’s linear contrast (contrast weights -3, -1, +1, and +3)

constitutes together with a quadratic contrast (weights +1, -1, -1, and +1) and a cubic

contrast (-1, +3, -3, +1) a set of orthogonal contrasts that accounts for all variance that

is explained by the manipulated variable (e.g., exam difficulty). The variance that is not

explained by the linear contrast, the residual variance, thus includes variance associated

with the quadratic and the cubic effect. It may be possible to interpret the quadratic

contrast in a reasonable manner but I cannot think of a meaningful interpretation of the

cubic contrast. Why should students invest less time in preparing a difficult exam than

in preparing an easy exam but invest more time in preparing a very difficult exam than

in preparing an easy exam? Why should they spend more time on preparing a very

difficult exam than on preparing a difficult exam but spend less time on preparing a

very difficult exam than on preparing a moderately difficult exam? This example
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demonstrates that the residual variance may be associated with patterns that lack a

meaningful interpretation. I doubt that it is fruitful to examine effects that cannot be

interpreted in a meaningful manner. Examining effects that cannot be interpreted does

not seem to be helpful for advancing the understanding of a phenomenon.

Problem 5: The C+R approach may lead researchers to erroneously

conclude that their prediction offers the best explanation of the data

The C+R approach does not only suggest that a significant residual indicates that

there are other effects worth exploring, it also suggests that a non-significant residual

test means that other (residual) effects are unimportant. There is a risk that researchers

misinterpret this notion. They may be inclined to interpret a non-significant residual as

evidence that all other effects are negligible and that their prediction provides the best

explanation of the data. Given that meaningful alternative hypotheses may share

variance with both the contrast and the residual, this conclusion is not warranted.

Imagine that there is an alternative theory to Dr. Mustermann’s theory. Drawing

on the idea that there is an upper limit of the time that students are willing to invest

for an exam, the alternative theory postulates that students disengage and do not invest

any time in preparing an exam if exam difficulty is too high. Applying this theory to

Dr. Mustermann’s manipulation of exam difficulty, one could predict that preparation

time increases with exam difficulty across the first three exam difficulty conditions. In

the fourth condition where exam difficulty is very high, participants should disengage

because of the very high exam difficulty and, correspondingly, preparation time should

be very low in this condition. This prediction of the alternative theory may be modeled

and tested using the contrast weights -3, +1, +5, and -3 (a tutorial on how to translate

theoretical predictions into contrasts can be found in Furr, 2004).

Let us suppose that Dr. Mustermann runs a second study collecting the data

presented under Study 2 in Table 1. Analyzing her data, Dr. Mustermann finds a

significant linear contrast, F(1, 44) = 4.20, p = .046, MSE = 0.41, and a non-significant

residual, F(2, 44) = 2.66, p = .08. Drawing on the C+R approach, she might now be

inclined to state that the statistical analyses show that her theory provides the best



PLANNED CONTRASTS AND RESIDUAL TESTS 14

explanation of the data. However, a test of the alternative prediction would also be

significant, F(1, 44) = 6.35, p = .02. A comparison of the variance that is explained by

the two competing hypotheses reveals that the alternative hypothesis performs even

better than Dr. Mustermann’s hypothesis (SSalternative = 2.62, SSMustermann = 1.73).

Dr. Mustermann’s canonical outcome–a significant contrast and a non-significant

residual–does not imply that her theory provides the best explanation of the

relationship between exam difficulty and preparation time. Given that researchers are

normally interested in demonstrating the superiority of their theoretical account, I am

afraid that the C+R approach may lead researchers to erroneously interpret a canonical

outcome as evidence that their explanation is the best one.

Problem 6: Researchers do not (want to) consistently apply the C+R logic

The C+R approach asks researchers to demonstrate a significant contrast and a

non-significant residual. Only if they can show this pattern, they are allowed to conclude

that the data convincingly support their prediction. Consider the application of this

reasoning to other kinds of statistical analyses, a conventional 2 x 2 between-persons

ANOVA, for instance. In a 2 x 2 ANOVA the default tests of the two main effects and

the interaction effect constitute a set of orthogonal contrasts that accounts for all

explained variance (contrast weights are -1, -1, +1, and +1 for the first main effect, -1,

+1, -1, and +1 for the second main effect, and -1, +1, +1, and -1 for the interaction). If

a researcher predicts an interaction, the C+R logic would require her or him to show a

significant interaction without a significant residual. The test of the variance associated

with the main effects should thus be non-significant. If the researcher finds a significant

interaction but also significant main effects, the outcome would be an ecumenical one.

The researcher would not be allowed to conclude that the data provide full support for

the predictions. Following Brauer and McClelland (2005), the researcher would even

need to conclude that she or he failed to provide evidence for the predicted effect.

I know many studies where researchers stated that significant main effects were

qualified by an interaction but I do not know any study where a researcher toned down

the interpretation of a predicted interaction because of the presence of significant main
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effects. According to the C+R approach, researchers should do that. Whenever the

significant predicted effect is accompanied by a significant other, orthogonal effect,

researchers failed to provide full support for their predictions (or even failed to provide

any evidence for the predicted effect according to Brauer & McClelland, 2005). The

C+R approach thus suggests an analysis strategy that researchers do not consistently

apply to other kinds of statistical analyses. It is questionable whether it is reasonable to

adopt a strategy for the analysis of planned contrasts that is not applied to other

statistical analyses.

Solutions

As outlined in the preceding sections, the C+R approach is associated with several

serious drawbacks. Fortunately, there are alternatives that avoid many of the problems

associated with the C+R approach. I will present in the following the single contrast

approach, likelihood ratios, and Bayes factors as alternatives to the C+R approach and

I will discuss their performance with respect to the six described problems.

The single contrast approach

Instead of using the C+R approach, researchers could follow the single contrast

approach advocated by Rosenthal, Rosnow, and others (e.g., Furr, 2004; Furr &

Rosenthal, 2003; Rosenthal & Rosnow, 1985). They could test only the contrast that

models their hypothesis of interest and refrain from conducting a statistical test of the

residual. This approach also corresponds to the approach that many textbooks

introduce as standard tool for the comparison of group means (e.g., Hays, 1988;

Maxwell & Delaney, 2004; Winer et al., 1991). As explained in the preceding sections,

testing the residual does not provide information that researchers testing specific

hypotheses are interested in. It does neither enable them to demonstrate that their

hypothesis provides the best explanation of the data (problem 5), nor does it enable

researchers to evaluate the performance of their hypothesis by showing that the variance

that is not explained by the contrast is negligible (problems 1 and 2). Researchers

interested in testing a single, theory-driven hypothesis will, consequently, not lack

important information if they do not test the residual. Moreover, not testing the
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residual will allow researchers to get around the problem related to the meaning of type

I and type II error (problem 3) and will render problems 4 and 6 obsolete. The single

contrast approach also avoids to some extent problem 5. Given that it does not suggest

that testing residual variance allows the researcher to demonstrate that the variance

that is not captured by her or his prediction is negligible, researchers will be less at risk

for concluding that their explanation provides the best explanation of the data.

Even if the single contrast approach avoids many of the problems associated with

the C+R approach, both approaches also have some problems in common. The

problems described in the preceding sections that reflect general problems of p value

based hypothesis testing apply to any procedure that relies on p values–including the

single contrast approach. Adopting the single contrast approach would therefore not

avoid problem 1. A researcher testing a hypothesis that predicts no difference between

conditions would have to interpret a non-significant result as evidence for no difference.

The dependency on sample size (problem 2) and its consequences are also common to

the single contrast approach and the C+R approach. Researchers using the single

contrast approach to test their hypothesis that variable A has an impact on variable B

might be inclined to aim for a large sample size to increase the probability of finding a

significant effect. If the sample size is large enough, even the smallest effect will become

significant. For a researcher predicting no relationship between the two variables, it

might be more tempting to go for a small sample size to increase the probability of

getting a non-significant result. In sum, adopting the single contrast approach enables

researchers to avoid some of the problems associated with the C+R approach but it

does not solve the problems related to the underlying statistical framework. Table 2

provides a summary of the performance of the single contrast approach with respect to

the six problems.

Likelihood ratios and Bayes factors

Bayes factors and likelihood ratios are measures of evidence that enable

researchers to provide evidence for their hypotheses without leading to the problems

associated with the C+R approach. Both measures contrast the probability of the
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observed data under one hypothesis (or model), p(D|H1), with the the probability of

the results under a second hypothesis, p(D|H2). Their interpretation is straightforward.

A Bayes factor or a likelihood ratio greater than one implies that the observed results

are more likely under hypothesis 1 than under hypothesis 2. A value smaller than one

implies that the results are more likely under hypothesis 2 than under hypothesis 1. For

instance, a Bayes factor or a likelihood ratio of two indicates that the observed results

are twice as likely under hypothesis 1 as under hypothesis 2. A Bayes factor or a

likelihood ratio of exactly one indicates that the observed results are as likely under the

two hypotheses and that the evidence does not support either hypothesis over the other.

To facilitate communication some authors suggested descriptive categories for Bayes

factors and likelihood ratios. For instance, Royall (1997) suggested that likelihood ratios

of less than eight should be interpreted as weak evidence, likelihood ratios between

eight and 32 as moderate evidence, and likelihood ratios of 32 or more as strong

evidence. Raftery (1995) suggested a similar classification for Bayes factors. According

to his classification, Bayes factors represent weak evidence if they are between one and

three, positive evidence if they are between three and 20, strong evidence if they are

between 20 and 150, and very strong evidence if they are 150 or higher. However, it is

of note that these descriptive categories are only useful for communication purposes and

do not represent qualitative differences in the strength of evidence.

Only two of the described problems (problem 2 and 5) apply to Bayes factors and

likelihood ratios. Like p values, Bayes factors and likelihood ratios vary with sample

size. For instance, Rouder et al. (2009) showed that–if there is a small true effect–the

Bayes factor favors the null hypothesis of no effect for small sample sizes but favors the

alternative hypothesis for high sample sizes. Researchers aiming at providing evidence

for no effect might thus be inclined to keep sample size low, whereas researchers aiming

at providing evidence for an effect might be interested in having a large sample. Like

the C+R approach, Bayes factors and likelihood ratios are vulnerable to

misinterpretations. Researchers might be inclined to erroneously interpret a high Bayes

factor or likelihood ratio as evidence for the general superiority of their hypothesis or
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model (problem 5). However, Bayes factors and likelihood ratios reflect the relative

evidence in favor of one hypothesis compared to a second hypothesis. They only enable

conclusions regarding the relative performance of the two compared hypotheses. They

do not enable conclusions regarding the performance of the compared hypotheses in

relation to other hypotheses. The comparison of two hypotheses may result in a high

Bayes factor or likelihood ratio–strongly favoring one of the two hypotheses over the

other–even if the two hypotheses perform poorly when compared to a third hypothesis.

Bayes factors and likelihood ratios provide, however, a solution to the other four

problems. They enable researchers to demonstrate evidence for no effect by comparing

the null hypothesis of no effect with any other hypothesis (problem 1). Given that

Bayes factors and likelihood ratios are not concerned with long-run error control

problem 3 does not apply. They also attenuate problem 4 and 6. Given that researchers

need at least two hypotheses to calculate a Bayes factor or a likelihood ratio, they are

forced to reflect upon alternative hypotheses or models. Researchers may choose to

compare their primary hypothesis with the null hypothesis but it might be more likely

that using Bayes factors and likelihood ratios will encourage researchers to compare

meaningful hypotheses. Table 2 summarizes how Bayes factors and likelihood ratios

perform with respect to the six described problems.

There are excellent papers that introduce Bayes factors and likelihood ratios and

that elaborate on how these measures may replace p value based hypothesis testing

(e.g., Blume, 2002; Glover & Dixon, 2004; Goodman, 1999; Masson, 2011;

Wagenmakers, 2007). These papers explicitly discuss how Bayes factors and likelihood

ratios can be used to examine hypotheses that are normally tested using the C+R

approach or the single contrast approach. In particular the papers by Glover and Dixon

(2004) and Masson (2011) provide tutorials that are very accessible so that even

researchers who are not familiar with Bayesian or likelihood statistics will encounter no

problems in understanding the described methods and in applying them to their own

work. Drawing on the work of these authors, I will briefly demonstrate in the following

how Bayes factors–to be precise, an approximation of Bayes Factors–and likelihood
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ratios can be used to address Dr. Mustermann’s research questions.

Likelihood ratios and approximate Bayes factors can be obtained by comparing

the unexplained variation of one model with the unexplained variation of a second

model. Researchers who have conducted a classical contrast analysis have already

computed all the information that is needed to calculate the two indices. Likelihood

ratios can be obtained with the equation

λ =
(
model 1 unexplained variation
model 2 unexplained variation

) n
2

(8)

where n corresponds to sample size (Glover & Dixon, 2004). If Dr. Mustermann were

interested in comparing her hypothesis with the null hypothesis, she could compare her

linear contrast with a model that predicts no differences among the exam difficulty

factor levels. The null hypothesis assumes that exam difficulty has no effect and,

consequently, the variation that is not explained by the null model equals the sum of

SSexam difficulty factor and SSerror. Dr. Mustermann’s linear contrast leaves only SSresidual

and SSerror unexplained. Applying Equation 8 to the data of Study 1, one obtains

λ =
(
SSexam difficulty factor + SSerror

SSresidual + SSerror

)n
2

=
(74.49 + 23.00

10.84 + 23.00

) 48
2

= 10.68× 1010

(9)

Given that more complex models (i.e., models with more free parameters) always fit the

data better than less complex models, the likelihood ratio should be corrected for

differences in model complexity before interpreting it. Hurvich and Tsai (1989)

suggested the following equation to correct for model complexity:

λcorrected = exp
[
k1

( n
n− k1 − 1

)
− k2

( n
n− k2 − 1

)]
λ (10)

where k1 is the number of free parameters of model 1, k2 is the number of free

parameters of model 2, and n is the sample size.2 Using this correction, one obtains a

λcorrected of 3.42×1010. Dr. Mustermann’s data are thus 3.42×1010 times more
2The formula proposed by Hurvich and Tsai (1989) is only one of several corrections for model

complexity that have been proposed (Glover & Dixon, 2004, for a short discussion).
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likely–after correcting for model complexity–given her hypothesis than given the null

hypothesis. This provides evidence that Dr. Mustermann’s model should be preferred

over the null model and could be interpreted as strong evidence in favor of Dr.

Mustermann’s hypothesis (e.g., Royall, 1997). Comparing Dr. Mustermann’s hypothesis

with the null hypothesis using the data of her second study results in a λcorrected of 2.28.

The data of Study 2 also favor Dr. Mustermann’s hypothesis over the null hypothesis.

However, the evidence is much weaker than the evidence provided by the data of Study

1.

Dr. Mustermann could also compute a likelihood ratio to compare the two

components that are important in the C+R approach. She could calculated a likelihood

ratio that compares her contrast with a model that explains the residual variance. Such

a residual model would include all the contrasts that constitute together with Dr.

Mustermann’s contrast a set of orthogonal contrasts. Given Dr. Mustermann’s linear

contrast, the residual model would include the prediction of a quadratic and a cubic

contrast. She could thus compute a likelihood ratio to compare her contrast with a

model that includes a quadratic and a cubic contrast. However, given that there is

probably no meaningful interpretation of a model that predicts that exam difficulty has

at the same time a quadratic and a cubic effect on exam preparation time (see the

discussion of problem 4), Dr. Mustermann might not be interested in this comparison

and refrain from computing a likelihood ratio that compares her contrast with the

residual. She might be more interested in comparing her model with another

meaningful model. For instance, she could compute a likelihood ratio to compare her

model with the alternative theory presented in the discussion of problem 5. Applying

Equation 8 to the data of Dr. Mustermann’s second study, one obtains

λ =
(

alternative contrast unexplained variation
Mustermann contrast unexplained variation

)n
2

=
(
SSresidual alternative + SSerror

SSresidual contrast + SSerror

)n
2

=
(1.31 + 18.15

2.20 + 18.15

) 48
2

= 0.34

(11)
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The data that Dr. Mustermann obtained in Study 2 are thus 1/0.34 = 2.94 times more

likely given the alternative model than given Dr. Mustermann’s model. Given that both

models are of the same complexity, it is not necessary to correct for differences in model

complexity. Drawing on the likelihood ratio, Dr. Mustermann would thus conclude that

the data provide (weak) evidence in favor of the alternative model and against her

theory.

Computing an approximation of the Bayes factor using the Bayesian information

criterion (BIC) is as straightforward as computing a likelihood ratio (see Masson, 2011;

Wagenmakers, 2007). Again, the variance that is not explained by one model is

compared with the variance that is left unexplained by a second model. The

approximate Bayes factor is calculated using

4BIC = n ln
(
model 1 unexplained variance
model 2 unexplained variance

)
+ (k1 − k2) ln(n) (12)

and

BF ≈ e(4BIC)/2 (13)

where k1 is the number of free parameters of model 1, k2 is the number of free

parameters of model 2, and n is the sample size (Masson, 2011). The approximate

Bayes factor can be directly interpreted as relative evidence for the two models.

Alternatively, the approximate Bayes factor can be used to obtain posterior

probabilities for the two competing models using

pBIC(H1|D) = 1− BF
BF + 1 (14)

and

pBIC(H2|D) = BF
BF + 1 (15)

Applying the preceding equations to compare the evidence for Dr. Mustermann’s

contrast and the null hypothesis using the data of Study 1, one obtains BF =

1.55×1010, p(null hypothesis|D) < .001, p(contrast hypothesis|D) > .99. Using the data

of Study 2 for the same comparison results in BF = 1.03, p(null hypothesis|D) = .49,

p(contrast hypothesis|D) = .51. Using Raftery’s (1995) descriptive categories, one
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would interpret the result of Study 1 as very strong evidence in favor of Dr.

Mustermann’s hypothesis relative to the null hypothesis. The results of Study 2 did not

provide conclusive evidence in favor of Dr. Mustermann’s hypothesis. Using the data of

Study 2 to compare Dr. Mustermann’s model with the alternative model presented in

the discussion of problem 5, one obtains BF = 0.34, p(Mustermann’s hypothesis|D) =

.26 p(alternative hypothesis|D) = .74. This could be interpreted as weak evidence in

favor of the alternative model.

Conclusion

In the preceding sections, I elaborated on several problems and consequences of

the C+R approach and discussed alternatives. I pointed out that exploring the residual

variance does not allow researchers to demonstrate that their hypothesis provides the

best explanation of the data (problem 5). It also does not enable researchers to evaluate

the performance of their hypothesis by showing that the variance that was not captured

by the contrast is negligible (problems 1 and 2). Moreover, the C+R approach does not

provide a reliable tool to detect other meaningful effects (see problems 2 and 4). Instead

of providing benefits, testing the residual comes with several drawbacks. Researchers

have to interpret a non-significant result as evidence for no effect (see problem 1), face

the problem that a priori power analyses are difficult (problem 3), and are required to

adopt a strategy that they do not apply to other kinds of statistical analyses (problem

6). In sum, conducting an additional residual test after a significant planned contrast

does not provide valuable information but leads to several problems. Given that there

are alternatives that avoid at least some of the described problems, researchers could

easily replace the C+R approach by one of the alternatives.

The single contrast approach avoids the problems that are associated with the

residual test (Problem 3, 4, 5, and 6). Furthermore, it has the advantage that it

constitutes a standard method for the comparison of group means that is discussed in

many textbooks (e.g., Hays, 1988; Maxwell & Delaney, 2004; Winer et al., 1991) and

statistics courses. Correspondingly, reviewers and editors are familiar with this method

and it is unlikely that researchers will encounter problems when submitting manuscripts
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that present single contrasts. However, the single contrast approach suffers from the

same p value related problems as the C+R approach. The outcome of the contrast test

depends on sample size (problem 2) and researchers have to interpret a non-significant p

value as evidence for no effect (problem 1) if they test predictions of no differences

among group means.

Like the single contrast approach, Bayes factors and likelihood ratios avoid the

problems of the residual test (problem 3, 4, and 6). Additionally, Bayes factors and

likelihood ratios enable researchers to provide relative evidence for a hypothesis of no

effect and, consequently, solve problem 1. In contrast to the single contrast approach,

Bayes factors and likelihood ratios enable researchers to compare different models or

hypotheses. Their focus on the comparison of hypotheses (or models) fosters an

examination of alternative theoretical accounts and decreases the probability that

researchers focus on a single model neglecting alternative theoretical accounts.

However, Bayes factors and likelihood ratios also have drawbacks. First, they

share with the two other methods the dependency on sample size (problem 2). Bayes

factors and likelihood ratios thus do not solve the problem that researchers might aim

for the sample size that maximizes the probability of finding positive evidence for their

predictions. Second, Bayes factors and likelihood ratios avoid the residual test that

might lead researchers to misinterpret their results as evidence that their prediction

provides the best explanation of the data (problem 5). However, researchers might also

erroneously interpret a high Bayes factor or a high likelihood ratio as evidence for the

general superiority of their prediction. Third, many reviewers and editors are still less

familiar with Bayes factors and likelihood ratios than with p value based tools. Trying

to publish using Bayes factors or likelihood ratios might thus be more challenging than

publishing using p values.

In sum, the single contrast approach, Bayes factors, and likelihood ratios provide

good alternatives to the C+R approach. Researchers who would like to minimize the

risk of a conflict with editors and reviewers or who are interested in controlling the

long-term error rates of their decisions might go for the single contrast approach.
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Researchers who are interested in comparing different models or in avoiding the

problems of p value based hypothesis testing should go for Bayes factors and likelihood

ratios. In any case, the residual variance test suggested by the C+R approach should be

avoided in the context of a contrast analysis.
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Table 1

Cell means and standard deviations (in parentheses) of Dr. Mustermann’s studies.

Exam Difficulty Study 1 Study 2

Easy 4.75 (0.72) 4.82 (0.64)

Moderate 6.75 (0.72) 5.12 (0.64)

Difficult 7.75 (0.72) 5.62 (0.64)

Very Difficult 7.85 (0.72) 5.22 (0.64)

Note. n = 12 in each cell. Raw data in the easy exam condition of Study 1 were 3.5, 4.0, 4.0,

4.5, 4.5, 4.5, 5.0, 5.0, 5.0, 5.5, 5.5, and 6.0. The data of the other conditions of Study 1 were

created by adding 2.0, 3.0, or 3.1 to these values. Raw data in the easy exam condition of

Study 2 were 4.0, 4.0, 4.2, 4.4, 4.5, 4.8, 4.8, 5.0, 5.0, 5.5, 5.6, and 6.0. The data of the other

three conditions of Study 2 were created by adding 0.3, 0.8, or 0.4 to these values.
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Table 2

Relevance of the six presented problems for the C+R approach, the single contrast

approach, Bayes factors, and likelihood ratios.

Problem C+R single contrast BF/LR

Interpreting a non-significant result as evidence for

no effect (problem 1)

* * –

Dependency on sample size (problem 2) * * *

Meaning of type I and type II errors varies (problem

3)

* – –

Residual may lack a meaningful interpretation (prob-

lem 4)

* – –

Vulnerability to misinterpretations (problem 5) * – *

Underlying logic is not applied in other statistical

procedures (problem 6)

* – –

Note. BF/LR = Bayes factors and likelihood ratios. * problem applies. – problem does not

apply.


