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ABSTRACT The complexity and changefulness of inland navigation environment in space and timemakes it
hard to guarantee the applicability and accuracy of existing ship speed models. In this paper, a novel method
for inland ship speed modelling under complex and changeful navigation environment is proposed. Firstly,
an unsupervised machine learning algorithm, Density-Based Spatial Clustering of Application with Noise
(DBSCAN), is utilized to cluster the environmental data including water level, water speed, wind speed and
wind direction, to get the segment division information, which greatly helps reduce the influence of other
uncertain environmental factors on the speedmodel. Then, Generalized RegressionNeural Network (GRNN)
is tailored and employed to build the ship speed estimation model with multiple input variables. Finally,
a detailed case study of a ship sailing in the Yangtze River trunk line is conducted to validate the proposed
methods. The results show that the ship speed model established based on machine learning methods works
effectively in speed estimation and analysis. Moreover, compared with other regression methods and neural
networks, the proposed GRNN model has the best performance in ship speed modelling.

INDEX TERMS Complex navigation environment, inland ship, speed modeling, DBSCAN, GRNN.

I. INTRODUCTION
Waterborne transportation, as a green and economical trans-
portation mode, plays an essential role in worldwide trade.
The waterway transportation system considering safe naviga-
tion, efficient transportation and energy saving puts forward
higher requirements for ship speed modelling, control and
optimization. Therefore, considering the influence of mul-
tiple factors to construct accurate and practical ship speed
models has become a key research issue. The Yangtze River
is the longest inland river in China, and also has the largest
hydropower plants of the world. The freight volume of this
river had achieved 1.92 billion tons in 2013, ranking first in
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the world for nine consecutive years [1]. The Yangtze River
trunk line has become the key water area of shipping research
and is also the target water area of this paper.

The movement of a ship is caused by sufficient power
output from the engine and is affected by resistance, includ-
ing hydrostatic resistance, wind resistance, wave-induced
resistance and shallow water resistance. In order to calcu-
late the resistance and ship speed, some researchers used
statistical analysis methods to summarize some mathemat-
ical formulas [2]–[7]. These formulas have been used in
some later studies. Fang and Lin [8] used ship hydrody-
namics formulas to calculate wave-induced resistance and
wind loads in a ship weather-routing optimization algorithm.
However, they neglected the heading errors caused by lateral
forces or yawing moments due to winds and currents. Meng

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 15643

https://orcid.org/0000-0002-8323-3955
https://orcid.org/0000-0002-0651-469X
https://orcid.org/0000-0002-6848-3147
https://orcid.org/0000-0002-6500-7460
https://orcid.org/0000-0001-6417-3750


Z. Yuan et al.: Practical Estimation Method of Inland Ship Speed Under Complex and Changeful Navigation Environment

et al. [9] applied the fundamentals to develop two regression
models for container ship fuel efficiency. It was conducted
based on the limited information conveyed by shipping logs.
Yan et al. [10] used the methods to calculate hydrodynamic
resistance forces, and established an optimization paradigm
for ship energy efficiency. However, they only studied part of
the voyage, and the data came from test ships. Li et al. [11]
used Kwon’s method to estimate involuntary speed loss, and
established ship speed optimizations with and without vol-
untary speed loss for a single voyage. However, the speed
studied in [11] refers to the ship speed in still water. In sum-
mary, the published formulas and methods have helped the
researchers achieve certain research results. However, there
are still some problems that cannot be ignored in the actual
implementation of these empirical formulas: (1) For many
parameters, it is difficult to select their values, and differ-
ent values have a great impact on the calculation accuracy;
(2) The data and information used in model elicitation are
limited; (3) The influence of changes in environmental factors
on the speed of the sailing ship is not considered.

In addition, it should be noted that the navigational envi-
ronment of the Yangtze River is very complicated, which is
mainly reflected in the following aspects:

(1) The width of the waterway is narrow and unevenly dis-
tributed. The narrowest area of the channel is only 50 meters,
while the widest part reaches 500 meters.

(2) The route is often curved, as shown in Fig. 1. The
bend angle of the local waterway is close to 90◦, such as Yin
Gongzhou Waterway in Zhenjiang City, Jiangsu Province.

(3) Across multiple elevations, the water level and water
speed of different waterways are quite different.

(4) It is difficult to conduct monitoring and data collection,
most of which come from hydrological stations and weather
stations.

(5) Regional differences and seasonal changes are obvious.
There is no doubt that complex and changeable envi-

ronmental factors and uncertain parameters in empirical
formulas bring great difficulties to ship speed modelling.
Unsupervised learning algorithms and Artificial Neural Net-
works (ANNs) have powerful learning ability and have been
effectively applied in numerous fields for knowledge discov-
ery, data classification and time series analysis [12]–[17].
Moreover, ANNs also show great advantages in data-driven
modelling. Du et al. [18] built the feedforward ANN model
for fuel efficiency of vessels based on voyage report records,
and realized vessel speed optimization. Kim et al. [19] devel-
oped an Artificial Neural Network-based storm Surge Fore-
cast Model (ANN-SFM) with the 5, 12 and 24 h-lead times,
and applied it to the Sakai Minato region of Japan. Vieira
et al. [20] presented an alternative method for filling missing
data based on publicly available wind and wave information
using ANNs. To decrease the computational complexity and
increase the precision in forecasting failure envelopes of cais-
son foundations, Zhang et al. [21] proposed a method of Ran-
dom Forest (RF) to study the data extracted from calibrated
experiments and simulations. Uyanık et al. [22] applied vari-

ous machine learning methods to establish prediction models
for a container ship, and realized fuel consumption estima-
tion. Yuan et al. [23] analyzed three important tasks using the
Long Short-Term Memory (LSTM) neural network, includ-
ing engine speed and fuel consumption modelling, and vessel
trajectory repair. Hence, ANNs have been well employed in
the large shipping field. However, few studies have focused
on implementing machine learning methods to the specific
problem of Inland River ship speed modelling.

Moreover, the ANNs do not need to select subject-related
parameters in advance, it can be used to solve the problems
in traditional ship speed modelling, such as the difficulties in
the selection of parameters and the analysis of environmental
impacts. Therefore, this paper proposes a novel method for
modelling the speed of inland ships. First, a salient unsu-
pervised machine learning algorithm, Density-Based Spatial
Clustering of Application with Noise (DBSCAN), is used to
perform cluster analysis on the closely related environmen-
tal data, and the results are quantified into specific voyage
segment information. Subsequently, an accurate and robust
ANN, Generalized Regression Neural Network (GRNN), is
tailored to build high-precision ship speed model for inland
rivers. Then, the measured data including navigation status
data, environmental data and segment information are learned
in models’ training to find out the optimal model parameters.

In recent years, unsupervised learning algorithms have
been used for cluster analysis of multi-source data [24].
Similarly, we can use DBSCAN to analyze the environmental
data of Inland River to reveal their internal connections.
DBSCAN is a density-based clustering algorithm, which has
only two parameters and runs very fast, because it merely
need a linear number of range queries in data processing [25].
The DBSCAN algorithm has found a range of applications,
as it is able to obtain clusters with arbitrary shapes and
it does not require to predefine the number of clusters in
advance [26]–[29]. Luchi et al. [30] presented twomethods to
generate good samples for the DBSCAN algorithm, so that it
can be better applied to large data set sampling. Liu et al. [31]
used DBSCAN to simplify the computation of a framework
of regional collision risk identification. Sheridan et al. [32]
applied the DBSCAN clustering to flight trajectory analysis,
and realized flight anomaly detection during the approach
phase. Wen et al. [33] integrated DBSCAN and ANN capable
of automatic ship route design based on massive AIS data
between certain ports. Liu et al. [34] selected DBSCAN
to distinguish the normal points and unwanted outliers in
data processing, and realized the accurate detection of the
timestamped points degraded with random outliers in vessel
trajectories.

On the other hand, GRNN has shown good performance
in data-driven modelling [35]. It is a one-pass learning
algorithm with a highly parallel structure [36]. Valčić and
Prpić-Oršić [37] proposed a hybrid method for estimating
wind loads based on elliptic Fourier descriptors (EFD) and
GRNN, and obtained promising results. Borkowski [38]
presented an algorithm based on GRNN, and realized the
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FIGURE 1. The Yangtze River trunk line: the key water area for shipping research.

prediction of ship movement trajectory. Liang et al. [39]
used GRNN to build a hybrid model for short-term load
forecasting, which enhanced prediction accuracy. Parveen
et al. [40] developed the data-driven models to antici-
pate the bed depth profile of solids flowing in a rotary
kiln using GRNN and other networks, and accurately pre-
dicted the parametric effects on bed depth profile. Cepowski
[41] developed an ANN model to predict ship added
resistance using GRNN, and obtained the wave resistance
coefficient.

To sum up, the machine learning algorithms DBSCAN and
GRNN have been widely used in cluster analysis and data-
driven modelling, which have achieved good results. There-
fore, this paper takes the ship sailing on the Yangtze River
as the research object, and collects real-time status data and
related environmental data. First, the DBSCAN algorithm
is used to conduct cluster analysis on environmental data,
which can get the information of voyage segment division.
Then, GRNN is tailored and employed to build the ship
speed model under the complex environment. Finally, the
constructedmodels are verified and analyzed by themeasured
data set including navigation status data, environmental data
and segments information. The research framework is shown
in Fig. 2.

The main contributions of this study are as follows. (1)
The machine learning methods are applied to build the speed
model of the inland ship, which not only improves the per-
formance of the speed model, but also increases the utiliza-
tion efficiency of inland river transportation data. (2) The
proposed method avoids the trouble of parameters selection
in the traditional formulas for calculating ship speed, and
reduces the influence of uncertain environmental factors on
the ship speed model. (3) The efficient ship speed model
under complex environment we constructed provides sup-
port for route planning, collision avoidance, fuel consump-
tion optimization and operational benefit analysis. It is also
helpful to promote the high-quality development of inland
shipping.

The remaining of the paper is organized as follows:
Section II collects the real-time status data and environmental
data of the ship sailing on the Yangtze River. Section III
designs a new voyage division algorithm using DBSCAN
clustering, and introduces the ship speed modelling method
in detail. Section IV provides the case study to verify
the proposed method and compare it with other modelling
approaches. Section V summarizes the study and suggests
some future research directions.

II. DATA COLLECTION AND PRE-PROCESSING
In this work, the research data were collected from a bulk
ship sailing on the Yangtze River trunk line, and the basic
parameters of the ship are as shown in Table 1. These data
include real-time status data and environmental data, which
were collected from the multi-source sensors installed on
the ship and hydrometeorological stations. The raw data set
includes 32,143 records, which come from a complete voyage
from September 11, 2019 to October 7, 2019. The departure
port of the voyage is Wusongkou of Shanghai, and the des-
tination port is Chongqing, which runs across upper reach,
middle reach and lower reach areas of the Yangtze River trunk
line, as shown in the Fig. 1. It is worth noting that there are
many abnormal, errors and noises in the navigation status
data, which were collected by multiple sensors in real-time.
The environmental data were collected from hydrological and
weather information released daily by hydrometeorological
stations, including water level, water flow, wind speed and
wind direction, which need to be further quantified. There-
fore, the process of data collection and pre-processing is as
shown in Fig. 3.

A. NAVIGATION STATUS DATA
In addition to static information, the navigation status data
(ship dynamic data) are more important for speed modelling,
which reflects the real-time status of the ship. Ship navi-
gation status data mainly include date, time, latitude, lon-
gitude, Course Over Ground (COG), Speed Over Ground
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FIGURE 2. The framework diagram of speed modelling for inland ships.

TABLE 1. Basic parameters of the target ship.

(SOG), engine speed, engine temperature, mileage, main
ports, etc. These data come from an inland ship monitoring
system which includes shipboard multi-source sensors and
the Global Positioning System (GPS) device. For the con-
venience of explanation, we mark two engines fitted to the
target ship as left engine and right engine. It is worth noting
that the navigation status data here include the temperature of
two engines. Because we believe that they also truly reflect
the running status of the engines and can be related to the
ship speed. Like other measured data, the status monitoring
data have some problems, such as data redundancy, noise
interference and data missing, as shown in Fig. 4. One of
the reasons lies in that the data come from different sen-
sors and devices and this often makes the data collection
asynchronous.

Fig. 4 shows the longitude, latitude, SOG, left engine speed
and right engine speed of the original sampled data. The
abscissa represents the sampling time with an interval of one
minute, from which we can see that the original sampled

data contain a lot of noise and outliers, as marked by the
red rectangles and ellipses. In Fig. 4(a), the regular range for
longitude is from 105 to 125 ◦ E, where zeros are clearly
abnormal values, while the latitude values are all normal.
In Fig. 4(b), there are many zero values for SOG, which
are noise. In Fig. 4(c) and Fig. 4(d), in addition to a lot of
noise data with zero values, there are also some erroneous
data below the normal range, which are shown in the red
ellipses. Hence pre-processing the raw data becomes neces-
sary. It must be aware the data collected by different sensors
have various attribute characteristics and value ranges, and
cannot be processed in the same way. For example, in a data
record with abnormal longitude, the SOG is normal. In the
same data record with a normal SOG, the engine speed may
be abnormal. If these data records with locally abnormal are
directly deleted, it will make the secondary loss of valuable
information. To obtain clean data, meanwhile, keep valuable
information as much as one can, the data pre-processing
approach is developed as Fig. 5.
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FIGURE 3. The process of inland ship multi-data collection and
pre-processing.

As demonstrated in Fig. 5, the proposed data pre-
processing approach consists of 5 steps, as follows:
Step 1: Sorting data according to sampling time. Firstly,

all data are sorted to ensure the chronological order of the
sampling data.
Step 2: Deleting duplicated data. Duplicated data should

be deleted to improve data utilization.
Step 3: Extracting the characteristic data. The char-

acteristic data include longitude, latitude, SOG, etc.,
which have different value ranges, need to be dealt with
separately.
Step 4: Identifying and cleaning problematic data. The

problematic data include abnormal data such as longitude
with zero values in Fig. 4(a), error data such as engine speed
in Fig. 4(c) and Fig. 4(d), and noise data such as zero values
for SOG and engine speed. It must be noted that the data with
different problems should be processed in different ways,
such as abnormal data repair, error data removal and noise
data filtering.
Step 5: Integrating multiple data. Finally, the cleaned mul-

tiple characteristic data should be integrated into one data set
to prepare for ship speed modelling.

B. NAVIGATION ENVIRONMENT DATA
The navigation environment has a great influence on the
status data of the sailing ship. In particular, the naviga-
tion environment of inland rivers is complicated, and the
environmental factors that affect the speed of sailing ships
mainly include wind and current. However, the equipment
for measuring navigational environment data is expensive
and cannot be reused, it is normally not installed in ships
except for the test ships. However, the captain can receive
the hydrometeorological data of the waterway where the ship
is sailing, including real-time water level, water speed, wind
speed, and wind direction. In this paper, the environmental

TABLE 2. Wind angle corresponding to the direction.

data of many key waterway nodes in the actual route of the
ship are collected. Among them, thewater level data are based
on the Yellow Sea Datum, and the unit is meter (m); the unit
of water speed is meter per second (m/s). The wind direction
includes north, northeast, east, southeast, south, southwest,
west and northwest, and the unit of wind speed is Beaufort
scale (BS). In order to be effectively used in later modelling,
the wind directions are quantified into specific angles as
shown in Table 2. The environmental data collected in this
paper are as shown in Fig. 6.

III. METHODS
In this paper, DBSCAN and GRNN are employed to con-
struct the accurate ship speed model under the complicated
environment, as shown in Fig. 7. Firstly, DBSCAN is used
for environmental data clustering to get segment numbers.
Then, GRNN is tailored and implemented to build the SOG
model. To analyze the influence of multiple sources variables
on the SOG modelling, some groups of feature variables
are extracted as inputs of the model. Initially, the variables
without segment division are divided into three groups and
presented to the model. Then, the information of different
segments division is added to the input variables, and the
corresponding results are obtained and analyzed. Finally, the
performance of the constructed SOG models are verified by
the measured data and compared with other methods. In order
to verify the applicability of the proposed method in different
scenarios, some cases with different numbers of training and
testing data are studied and analyzed.

A. SEGMENTS DIVISION BASED ON DBSCAN
In Section II, we successfully obtained the ship’s navigation
status data and the environmental information of the main
waterways in the voyage, including water level, water speed,
wind speed and wind angle. However, the Yangtze River has
more complicated navigation environment. It also contains
other factors that have some influence and are not easy to
measure, such as waves. Some areas are also affected by tides.
In order to reduce the impact of uncertain environmental
factors on the ship speed model, the DBSCAN algorithm is
adopted to divide the trajectory into some segments through
the acquired environmental variables.

DBSCAN is an unsupervised machine learning algorithm
that can find all the dense areas of the input sample points
and treat these dense areas as clusters one by one [42].
The DBSCAN algorithm has three advantages: (1) It is not
necessary to know the number of clusters beforehand; (2)
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FIGURE 4. Raw sampled data: (a) longitude and latitude; (b) SOG; (c) left engine speed; (d) right engine speed.

It works on the basis of density information, which is not
sensitive to abnormal points in the data set; (3) It can obtain
clusters with an arbitrary shape. The content of DBSCAN can
be summarized as ‘‘one, two, three and four’’, as follows.
One core idea: DBSCAN clustering is a density-based

spatial clustering, which divides the areas with sufficient
density into different clusters. It can obtain clusters with an
arbitrary shape from the data with noise.
Two algorithm parameters: Eps, neighbourhood radius,

specifies the value of neighbourhood radius of each object.
MinPoints, the threshold of neighbourhood density, is the
minimum number of points in each cluster.
Three classes points:There are core point, border point and

noise point. The core point is where the number of sample
points is no less than MinPoints within Eps. The border point

is not a core point but is in the Eps of another core point. The
noise point is neither the core point nor the border point. The
three classes’ points of DBSCAN are as shown in Fig. 8.
Four point relationships: These are directly-density-

reachable, density-reachable, density-connected and non-
density-connection relationships. For the sample points p and
q, if p is a core point and q is within Eps of p, which is
NEps (p) ≥ MinPoints, q ∈ N (p), then the relationship
between p and q is directly density-reachable. It should
be noted that the relationship between any core point and
itself is directly density-reachable, and the relationship of
directly density-reachable is not symmetrical. For the points
p1 and q, if there are core points p2, p3, · · · pn, and the
relationships of p1 to p2, p2 to p3, pn−1 to pn, and pn to q
are directly density-reachable, then the relationship between
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FIGURE 5. The mechanism of pre-processing inland ship status data.

p1 and q is density-reachable. The relationship of density-
reachable is also not symmetrical. If there is a core point s
makes s to p and s to q density-reachable, then the relation-
ship between p and q is density-connected. Different from
directly density-reachable and density-reachable, the density-
connected relationship is symmetrical, and two points that are
density-connected belong to the same cluster. If two points
do not belong to the relationship of density-connected, then
the relationship is non-density connection. It should be noted
that the two points with non-density connection belong to
different clusters.

On the basis of the above definition, we regard a group of
environmental variables as objects, and design the segments
division algorithm based on DBSCAN as described in Algo-
rithm 1.

B. SHIP SPEED MODELLING USING GRNN
GRNN is a radial-basis-function neural network with forward
propagation. The GRNN has three advantages: (1) based on
the radial basis function, it has good nonlinear approximation
performance; (2) it does not need to back propagate to find
model parameters, and its convergence speed is fast; (3)
it has good mapping ability for few samples and unstable
data. The network structure of GRNN has four layers: an
input layer, a pattern layer, a summation layer and an out-
put layer. For a data set with m samples, the feature set is
{X1,X2, · · · ,Xm} ,Xi =

[
x1i , x

2
i , · · · , x

n
i

]
, i = 1, 2, · · · ,m,

the label set is {Y1,Y2, · · · ,Ym} ,Yi =
[
y1i , y

2
i , · · · , y

k
i

]
, i =

1, 2, · · · ,m. The structure of GRNN can be described as
Fig. 9, where n denotes the dimension of each feature sample,
k denotes the dimension of each label sample.

Algorithm 1 Segment Division Algorithm Based on
DBSCAN
Inputs: EnvirDateSet , Eps,MinPoints
Output: {S1, S2, · · · , Sk}, segments data set, k represents the
clusters

[1] Normalize the EnvirDateSet to NorEnvirDateSet
[2] Make all objects in NorEnvirDateSet as unvisited
[3] for (each object p in NorEnvirDateSet) do
[4] if (p has been classified into a cluster or marked as
a noise point) then

[5] continue
[6] else

// check the NEps(p) (neighbourhood of p)
[7] if (NEps (p) < MinPoints) then

[8] Make p as a border point or a noise point
[9] else

[10] Make p as a core point
[11] Create a new segment cluster S
[12] Add all objects in NEps (p) into S
[13] for (each unvisited object q in NEps (p)) do
// check the NEps(q) (neighbourhood of q)
[14] if (NEps (q) ≥ MinPoints) then

[15] Add each unclassified object in NEps (q)
into S

[16] end if
[17] end for

[18] end if
[19] end if

[20] end for

The working principle of each network layer is as follows.
Input layer: It is used to input the sample data, and the

number of nodes is equal to n, the dimension of a feature
sample.
Pattern layer: It is used to calculate the value of the Gaus-

sian function of each sample in the training samples and the
testing samples. The Gaussian value is the output value of the
nodes in this layer. The number of nodes is m, the number of
training data. The Gaussian function value of the ith testing
sample TeX i and the jth training sample TrX j is calculated
following Equation (1), where δ is hyperparameter of the
GRNN network, which needs to be set in advance or can be
obtained through an optimization process.

Gauss
(
TeX i − TrX j

)
= e−

‖TeXi−TrXj‖
2δ2 . (1)

Summation layer: The number of nodes is k + 1. The
output of the summation layer includes two parts: the output
of the first node is the arithmetic sum of the output of the
pattern layer, and the output of the remaining k nodes is
the weighted sum of the pattern layer’s output of the pattern
layer. Assuming that for the testing sample TeX i, the output
of the pattern layer is

{
g1, g2, · · · , gm

}
, then the output of the

first node and the remaining k nodes are calculated following
Equation (2) and (3). Where yij is the weighting coefficient
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FIGURE 6. Environmental data for the entire voyage: (a) Water level and water speed, (b) Wind speed and wind angle.

FIGURE 7. Modelling method of speed for inland ships.

of the ith node of the pattern layer corresponding to the jth

element of the label in the training sample.

SD =
∑m

i=1
gi, (2)

FIGURE 8. Three classes points of the DBSCAN clustering.

SNj =
∑m

i=1
yijgi, j = 1, 2, · · · , k. (3)

Output layer: The number of nodes is k , which is the same
with the dimension of the label vector. The output of each
node is equal to the output of the corresponding summation
layer which is divided by the output of the first node in the
summation layer, as follows:

Yj =
SNj
SD
, j = 1, 2, · · · , k. (4)

The modelling process using GRNN is described as the
following steps:
Step 1: Setting the feature (input) variables and the label

(output) variables.
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FIGURE 9. The structure of the GRNN.

Step 2:Normalizing the feature and label data to [0, 1],
which can reduce the error caused by different dimensions
of multi-source variables.
Step 3: Dividing the samples into a training data set and a

testing data set randomly.
Step 4: Training the GRNN. Taking the cross-validation

method to train the network, and finding the best ‘‘spread’’
through the loop training, which is the distance between the
input values.
Step 5:Verifying the network with the separate testing data

set, and denormalizing the results.
Step 6: Evaluating the developed model in its performance

using somemeasures, includingMeanAbsolute Error (MAE),
Root Mean Square Error (RMSE) and coefficient of determi-
nation (R2).
In the above steps, the normalization,MAE, RMSE and R2

can be calculated by the following.

x(t)∗ = (x (t)−Min (x(t))) / (Max (x(t))−Min (x(t))) .

(5)

RMSE =
(
1
T

∑T

t=1
(yt − ŷt)2

)1/2

, (6)

MAE =
1
T

∑T

t=1
|yt − ŷt | , (7)

R2 = 1−

∑T
t=1 (yt − ŷt)

2∑T
t=1 (yt − ȳt)

2
. (8)

where, X (t)∗ and X (t) denote the normalized data and the
initial sample data, respectively. t denotes the index of a
datum and T denotes the number of output data; Yt and Ŷt
represent the measured value and the forecasted value of the
t th datum, respectively; Ȳt denotes the average value of Yt .

IV. CASE STUDY
The implementation platform in this work was a desktop
computer, with the CPU being Inter (R) Core (TM) i5-8500,
the main memory being 16.0GB RAM and the operating
system being Windows 10 64-bit. Python 3.7 was the pro-
gramming language, and the open-source libraries of neupy
and sklearn were employed.

The original sampling data contains 32,143 records. After
the proposed data pre-processing, one got a clean data set

TABLE 3. The results of environmental data clustering.

with 15,521 records, including real-time status monitoring
data and basic environmental information of the ship from the
beginning to the end of the voyage. Next, we will use these
measured data to conduct a detailed case analysis using the
proposed approach.

To obtain the specific segments of the entire route of the
sailing ship, we extracted the navigation environment data,
and used Algorithm 1 to carry out cluster analysis. The input
variables of Algorithm 1 are {WaL,WaS,WiS,WiA}, where
WaL denotes water level, WaS denotes water speed, WiS
denotes wind speed, and WiA denotes wind angle. To ensure
that the segments obtained by clustering have practical sig-
nificance, we believe that the data records in each segment
should be more than 200. Thus the parameterMinPoints is set
to 200. That is to say, each divided segment contains at least
200 ship trajectory points. The clustering results of different
neighborhood radiusEps are shown in Table 3. Since the input
data are normalized inAlgorithm 1, theEps here are relatively
small.

It can be seen from Table 3 that the smaller the Eps is,
the more clusters there are. When it is 2.0, the environment
data is divided into 6 clusters. When it is 0.01, 16 clusters is
obtained. Then, we correspond each cluster to a segment in
the actual sailing trajectory, and the results of trajectory divi-
sion of 6 segments and 16 segments are obtained, as shown
in Fig. 10 and Fig. 11, respectively. In the figures, we marked
the starting point of each segment with a number. From them
we can conclude that: (1) The general outlines of 6 segments
and 16 segments are consistent. For example, the starting
point of the 2nd segment in the 6-segment case corresponds to
the starting point of the 6th segment in the 16-segment case,
the 3rd of the 6-segment case corresponds to the 11th of the
16-segment case, the 4th of the 6-segment case corresponds
to the 12th of the 16-segment case, the 5th of the 6-segment
case corresponds to the 13th of the 16-segment case, and the
6th of the 6-segment case corresponds to the 15th of the 16-
segment case. It can be seen that the 16 segments division is
a finer division of some segments on the basis of 6 segments.
(2) The segments divided are not completely connected in
sequence, such as 1-2-3-2-3-4, 11-12-13-12-13-14, and 14-
15-16-15 in Fig. 11. (3) In the middle reach of the Yangtze
River (as shown in Fig. 11), more segments are divided.
In fact, the waterway in the middle reach is more curved, and
its topography is more complicated than the lower reach and
upper reach. All these proved the rationality and applicability
of segments division.

In the following research, the GRNN network is tai-
lored to build the ship speed model according to the pro-
cess designed in Section 3.2, and a detailed estimation and
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FIGURE 10. Trajectory division results of 6 segments (Eps = 1.5 ).

FIGURE 11. Trajectory division results of 16 segments (Eps = 0.01).

analysis of the ship speed are performed based on the mea-
sured data and divided segments. First of all, the SOG
models of inland ship are constructed and analyzed based
on the measured data without segment division. To ana-
lyze the influence of different variables on the SOG model,
three groups of different feature variables were extracted
as inputs, and the estimation results of the training and
the testing as shown in Table 4. Among them, the out-
put of all groups is SOG, the input feature variables
of the first group are {LES,RES}, those of the second
group are {LES,RES,LET ,RET }, and those of the third
group are LES,RES,LET ,RET ,WaL,WaS,WiS,WiA. LES
denotes left engine speed, RES denotes right engine speed,
LET denotes left engine temperature, RET denotes right
engine temperature, WaL represents water level, WaS repre-
sents water speed,WiS represents wind speed, andWiA repre-
sents wind angle. 80 % (12,416 data records) of the available
data were randomly selected to be the training data set and the
remaining 20% (3,105 data records) were the testing data set.
To find the optimal value of the parameter ‘‘spread’’, we per-
formed a loop test with a step size of 0.001 between 0.001 and

1. After cyclic testing and cross-validation, the ‘‘spread’’ is
determined to be 0.002. The training and testing results of
third group are as shown in Fig. 12.

Secondly, we added the segment information which
obtained by environmental data clustering to the data set,
and carry out modelling and analysis for the SOG in the
same steps as above. The SOG modelling results of different
divided segments are shown in Table 5. The input feature
variables of the model are LES,RES,LET ,RET ,WaL,WaS,
WiS,WiA, SID, and SID represents the segment number.
Among them, the SOG estimation results of the 6-segment
division and the 16-segment division are shown in Fig. 13 and
Fig. 14.

From Table 4 we can see that adding the real-time engine
temperature to the input variables greatly reduces the SOG
estimation error. After further increasing the navigation envi-
ronmental data, the training RMSE and MAE dropped to
0.5192 and 0.3312, respectively, and the testing RMSE and
MAE also dropped to 0.6844 and 0.4447, respectively. Com-
pared with Table 5, it is found that after adding the segment
information, the performance of the SOG model has been
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TABLE 4. Comparison of different feature variables in SOG modelling (segment undivided).

FIGURE 12. The performance of the developed SOG model (segment undivided, and the inputs feature variables being left engine
speed, right engine speed, left engine temperature, right engine temperature, water level, water speed, wind speed and wind angle.):
(a) measured SOG vs. predicted SOG in training and (b) measured SOG vs. predicted SOG in testing.

significantly improved, and the finer the segment division,
the better the performance of the model. Especially, when
the trajectory was divided into 16 segments, the RMSE and
MAE of training decreased to 0.2197 and 0.1040 respectively,
the RMSE and MAE of testing also decreased to 0.5264
and 0.3459 respectively, and the R2 increased to 0.9856 and
0.9111 respectively. Compared Fig. 14 with Fig. 13 and
Fig. 12, the SOGmodel with added segments information has
better performance in both training and testing, and 16 seg-
ments are better than 6 segments.

In addition, we compared the GRNN approach with
other well-known regression methods and neural networks,
such as Linear Regression (LR), Interaction Linear Regres-
sion (ILR) [43], Stepwise Regression (SR) [44], Pure
Quadratic Regression (PQR) [45], Coarse Tree (CT), Fine
Tree (FC) [46], Elman neural network (ENN), Back Prop-
agation neural network (BPNN), Radial Basis Function
network (RBFN) [47], Recurrent Neural Network (RNN),
Long-Short Term Memory (LSTM) [48] and Gate Recur-
rent Unit (GRU) [17]. In all comparison experiments,
the inputs of the models contain 9 feature variables,

which are LES,RES,LET ,RET ,WaL,WaS,WiS,WiA, SID,
and the number of training data is 12,416 (80% of the whole
data) and the number of testing data is 3,105 (20% of the
whole data) with 16 segments being divided. To verify the
performance of the proposed method statistically, the mod-
elling experiment was repeated 10 times. In each run, we ran-
domly divided the data into a training data set and a testing
data set and the same sets were used by all the modelling
methods. In the regression methods, the time step in each
input is set to 1. The neurons number of ENN and BPNN is
set to 150. In RBFN, the ‘‘spread’’ parameter is set as 4 (the
best value frommany experiments). The parameter settings of
RNN, GRU and LSTM are as follows: the number of neurons
is 150, the time step is 1, and the batch size is 100. The epochs
of all neural networks are set to 3000. The performance of
different methods is shown in Table 6.

From Table 6, we can find that, all regression models
and neural networks have relatively high errors in training
and testing, compared with the proposed GRNN. Among
all other methods, the best performance of training comes
from FT, where the RMSE and MAE are 0.3936 and 0.2300
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TABLE 5. The results of different segments division applied to SOG modelling.

FIGURE 13. The results of SOG modelling with 6 voyage segments.

FIGURE 14. The results of SOG modelling with 16 voyage segments.

respectively, the R2 is as high as 0.9505, but the R2 of testing
is only 0.8584. The best performance of testing comes from
BPNN, where the RMSE is only 0.5675 and the R2 is 0.8981.

The training RMSE of other models are between 0.7680 and
1.5136, the training R2 are 0.3202 and 0.9055; the testing
RMSE of other models are between 0.6691 and 1.4583, the R2
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TABLE 6. Comparison among different methods in SOG modelling.

FIGURE 15. RMSE of SOG prediction for different cases (Case 1: 80% training and 20% testing; Case 2: 70% training and 30% testing; Case 3:
60% training and 40% testing; Case 4: 50% training and 50% testing).

are between 0.3251 and 0.8584. In addition, the RNN, LSTM
andGRU,which are good at dealingwith time series, have not
exerted their advantages here, and their results are even infe-
rior to BPNN. These results show that the proposed GRNN
approach outperforms others in the ship speed modelling.

In order to further verify the applicability of the proposed
method in different problem settings, we tested the modelling
strategy with different proportions of training data to testing
data. Five methods that perform relatively well in Table 6
were selected and used in verification and comparison. The
results of four case studies are shown in Fig. 15 and Fig. 16,
where the specific data division is as follows: Case 1: ran-
dom 80% for training and the remaining 20% for testing;
Case 2: random 70% (10,865 data records) for training and

the remaining 30% (4,656 data records) for testing; Case 3:
random 60% (9,313 data records) for training and the remain-
ing 40% (6,208 data records) for testing; Case 4: random
50% (7,761 data records) for training and the remaining 50%
(7,760 data records) for testing. From Fig. 15 and Fig. 16,
we can find that, with the reduction of training data, the train-
ing RMSE gradually decreases, and the training R2 gradually
increases. However, the testing RMSE of the correspond-
ing case gradually increased, and the testing R2 gradually
decreased. Importantly, the model presented in this paper is
superior to other methods in both the training data and the
testing data.

In addition to the above, we used the constructed GRNN
model to analyze the data of each segment of the 16 segments
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FIGURE 16. R2 of SOG prediction for different cases (Case 1: 80% training and 20% testing; Case 2: 70% training and 30% testing; Case 3:
60% training and 40% testing; Case 4: 50% training and 50% testing).

TABLE 7. Ship speed modelling results of each segment (divided into 16 segments).

with the same steps, and all the results (mean and standard
deviation of 10 experiments) are good, as shown in Table 7.
80% of the data were randomly selected and set as training
data and the remaining 20% were set as testing data in each
segment. These results fully demonstrate that: (1) In addition
to engine speed, the engine temperature and navigation envi-
ronment data also have a significant impact on ship speed
model of inland ships. (2) The segment information obtained
by environmental data clustering can be well applied to ship
speed modelling.

V. CONCLUSION AND FUTURE WORK
In this study, an attempt has been made to build the ship speed
model under the complex navigation environment using

machine learning algorithm and neural networks in the field
of inland waterway transportation. First, the unsupervised
learning algorithmDBSCANwas used for clustering analysis
of navigation environment data to obtain the segment division
information of the entire voyage. Then, GRNN was tailored
and employed in ship speed modelling. Finally, these works
were successfully validated using measured data. The case
study results show that the accuracy of the SOG model was
greatly improved by adding environment data and segment
information to input feature variables. When the route was
divided into 16 segments, the testingRMSE andMAE dropped
by 23.07 % and 22.21 %, respectively. In addition, com-
pared with other regression methods and neural networks,
the model we built has better performance in ship speed
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modelling. Moreover, the contribution of engine temperature
to ship speed modelling has also been verified. To the best
of our knowledge, for the first time, engine temperature was
used for ship speed modelling.

The modelling methods proposed in this paper can also
be applied to other inland rivers, as long as the relevant
measured data are available. The obtained ship speed models
can be exploited in navigation planning and optimization of
fuel consumption, where ship speed is not only an important
control variable for transportation time, but also an important
decision variable for the fuel consumption optimization prob-
lem. Applying the method and results of segment division
to constructing the fuel consumption model for inland ships
will be the next step of this study. In addition, exploring
more machine learning methods for data modelling in inland
waterway transport is also important content of future work.
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