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Abstract. Analysis of sagittal lumbar spine MRI images remains an important 

step in automated detection and diagnosis of lumbar spinal stenosis. There are 

numerous algorithms proposed in the literature that can measure the condition of 

lumbar intervertebral discs through analysis of the lumbar spine in the sagittal 

view. However, these algorithms rely on using suitable sagittal images as their 

inputs. Since an MRI data repository contains more than just these specific im-

ages, it is, therefore, necessary to employ an algorithm that can automatically 

select such images from the entire repository. In this paper, we demonstrate the 

application of an image classification method using deep convolutional neural 

networks for this purpose. Specifically, we use a pre-trained Inception-ResNet-

v2 model and retrain it using two sets of T1-weighted and T2-weighted images. 

Through our experiment, we can conclude that this method can reach a perfor-

mance level of 0.91 and 0.93 on the T1 and T2 datasets, respectively when meas-

ured using the accuracy, precision, recall, and f1-score metrics. We also show 

that the difference in performance between using the two modalities is statisti-

cally significant and using T2-weighted images is preferred over using T1-

weighted images. 

Keywords: Medical Image Classification, Magnetic Resonance Imaging, Lum-

bar Spinal Stenosis, Transfer Learning, Deep Convolutional Neural Networks. 

1 Introduction 

Millions of people around the world suffer from chronic lower back pain. It is a chronic 

disease that is detrimental to the health, social life, and employment of its sufferers. 

Lumbar spinal stenosis (LSS), a narrowing of the lumbar spinal canal that is resulted 

from bone or soft tissue inflammation, is one of the most common causes of chronic 

lower back pain. The pressure on the spinal nerve roots caused by this inflammation is 

responsible for the pain that is experienced by patients with LSS. A diagnosis of LSS 

in these patients is often carried out through an inspection of Magnetic Resonance Im-

aging (MRI) of the patients’ lumbar spine by an expert radiologist. Recent advances in 

medical image processing allow the application of computer algorithms to help 



radiologists carried out this procedure. Some of these algorithms work only on mid-

sagittal MRI images [1–3] whereas some others work only on traverse images that cut 

through the mid-height of an intervertebral disc (IVD) [4–8]. Since a patient’s data re-

pository contains more than just these specific images, the process to select suitable 

images as inputs to these algorithms is often done manually. To make the whole process 

more automated it is, therefore, essential that a reliable algorithm to select such images 

is applied as well. 

The objective of this study is to design a suitable solution for selecting all suitable 

sagittal images from a database of sagittal images, that can be used as inputs to other 

algorithms that diagnose LSS. Our solution is using a pre-trained Deep Convolutional 

Neural Network (DCNN) model that has been developed for general image classifica-

tion and retraining it to make the model suitable for medical image classification. 

2 Literature Review 

The task of selecting medical images that possess certain characteristics from a collec-

tion of medical images falls into the category of image classification, which is a funda-

mental task in computer vision that categorizes images into one of several predefined 

classes. The traditional approach in image classification involves two stages, with the 

first being the extraction of relevant information from the images via the calculation of 

low-level handcrafted features [9–11]. This is then followed by a classification of the 

calculated features using trainable classifiers. Despite the success of this approach, it 

has a significant drawback when used in a wider image classification problem since the 

features are often task-dependent. In other words, the handcrafted image features that 

are optimized for a particular task often perform poorly when used in a different task, 

and the accuracy of the classification is very dependent on the design of these features. 

 The first DCNN model was originally proposed to overcome the problems associ-

ated with the traditional approach of image classification by allowing learning of such 

features through forward and backpropagation of information in a series of convolu-

tional and non-linear neural network layers [12, 13]. This approach however has a sig-

nificant practical problem due to its high computational cost and the amount of data it 

needs to create a general set of features applicable for typical images. But only recently, 

in the advent of huge computational power from using Graphics Processing Units and 

the large-scale acquisition and availability of image data resulting from the proliferation 

of the internet and social media, that this approach has gained renewed attention from 

the research community which generated faster and better algorithms [14]. 

The popularity of DCNN compared to the more traditional approach of image clas-

sification is that the features are no longer manually handcrafted but instead are auto-

matically learnable. These features are sufficiently general that they can be used in 

many different types of image classification tasks through Transfer Learning. Transfer 

Learning is a widely accepted method in Machine Learning where a model developed 

for a task, often by training using a very large dataset, is used as a starting point for 

developing another model to solve a different task. This approach is less data-and-label-

dependent than other more traditional machine learning approaches and gains 



popularity recently, especially when a deep learning model is concerned because de-

veloping one from scratch requires a vast amount of computational and time resources 

[15]. One example application of a bespoke DCNN for medical image classification is 

CheXNet [16]. It is a 121-layer DCNN trained on a dataset with more than 100,000 

frontal-view chest X-rays and is claimed to achieve a better performance than the aver-

age performance of four radiologists. 

3 Material and Method 

The material used in this research is taken from our Lumbar Spine MRI Dataset 

which is available publicly [6, 17]. This dataset contains anonymized clinical MRI stud-

ies of 515 patients with symptomatic back pains. The dataset consists of 48,345 T1-

weighted and T2-weighted traverse and sagittal images of the patients’ lumbar spine. 

The images were taken using a 1.5 Tesla Siemens Magnetom Essenza MRI scanner 

mostly when the patients were in Head-First-Supine position. From the entire dataset, 

we took 19,176 sagittal images for this study. This consists of 9,903 T1-weighted and 

9,273 T2-weighted images. The summary of the technical information of the scanning 

parameters carried out when recording these images is provided in Table 1. 

Table 1. Sagittal MRI Scanning Parameters 

Sequence Types T1-weighted T2-weighted 

Number of Echoes (ETL) 3 15 to 18 

Repetition Time (ms) 330 to 926 3190 to 4000 

Echo Time (ms) 9.2 to 12.0 67.0 to 96.0 

Slice Thickness (mm) 3.0 to 4.0 3.0 to 5.0 

Spacing Between Slices (mm) 3.3 to 4.8 3.3 to 6.5 

Field of View (mm) 280 280 

Matrix (Freq. x Phase) 100% 100% 

Imaging Frequency (MHz) 63.7 63.7 

Number of Phase Encoding Steps 288 to 540 408 to 544 

Scanning Sequence SE SE 

Sequence Variant SK\SP\OSP SK\SP\OSP 

Scan Options SAT1\FS SAT1 

Number of Averages 1, 2, 3 or 4 2 

Echo Train Length 3 15 or 17 

Percent Sampling 50 to 70 66 to 90 

Percent Phase Field of View 100 100 

Pixel Bandwidth 150 or 235 150, 160 or 195 

Flip Angle 150 150 

 

Based on the advice from an expert radiologist, we categorize the sagittal images 

into two groups, namely Mid and Lateral groups, corresponding to their suitability for 

the analysis of the IVD. The first group consists of midsagittal slices that divide the left 

and right sides of an IVD into two symmetrical parts. It also contains neighboring sag-

ittal slices to the midsagittal slice which still show clear cross-sectional views of the 

lumbar vertebrae and discs. The second group consists of other sagittal slices that do 



not meet this requirement. An example of this grouping is shown in Fig. 1 and Fig. 2. 

The first figure shows the intersection lines of fifteen sagittal images with the shown 

traverse image whereas the second figure shows a collage of the fifteen sagittal images. 

The midsagittal slice is identified as slice number 8 in the figures. That slice and four 

nearest adjacent slices, highlighted in yellow in the figures, are then put in the Mid 

group. The other ten sagittal slices, highlighted in red, are then put in the Lateral group. 

The population distribution of these classes for both T1-weighted and T2-weighted da-

tasets is shown in Table 2.  

 

 

Fig. 1. A traverse image of a lumbar spine showing its intersection lines with fifteen sagittal 

images that are shown in Fig. 2. The yellow lines mark the sagittal images that are categorized 

in the Mid group and the red lines mark those categorized in the Lateral group. 

 



 

Fig. 2. An example of fifteen sagittal images of a patient’s lumbar spine which intersections with 

a traverse image are shown in Fig. 1. The yellow rectangles highlight the sagittal images that are 

put in the Mid group and the red rectangles highlight those put in the Lateral group. 

Table 2. Class Distribution in the Dataset 

Class \ Sequence Types T1-weighted T2-weighted 

Mid 4,667 5,236 

Lateral 4,316 4,957 

Total 9,903 9,273 

 

We performed validation of this dataset by checking the Slice Location information 

that is stored as part of the DICOM metadata. The value of the slice location attribute 

of a DICOM image metadata is the relative position, expressed in mm, of the image 

plane in the patient 3D axis system. In the absence of the slice location attribute in the 

DICOM image metadata, we calculated its value from the Image Position and Image 

Orientation attributes of the DICOM image metadata using the following technique. 



Let us denote 𝑝 as the 3D coordinate of the top-left point on the plane specified in the 

Image Position attribute. Also, let 𝑢 and 𝑣 be two orthogonal unit vectors that lie on the 

sagittal plane as specified in the Image Orientation attribute. The slice location 𝑠 of the 

plane is defined as the shortest distance from the origin point of the patient coordinate 

axes to the plane and can be calculated as the dot product 𝑛 ∙ 𝑝, where 𝑛 is the unit 

vector perpendicular to the plane which can be calculated as the cross product 𝑢 × 𝑣. 

The directions of the patient coordinate axes themselves are defined by the patient’s 

orientation. The positive direction of the x-axis goes from the right-hand side of the 

patient to the left-hand side. The positive direction of the y-axis goes from the anterior 

side of the patient to the posterior side, whereas the z-axis is increasing from the feet 

toward the head of the patient. The position and orientation of the elements used in this 

calculation with respect to the patient’s coordinate axes are illustrated in Fig. 3. 

Using either the stored or the calculated slice location information, we could confirm 

that the sagittal planes in the Mid groups of the dataset are within the acceptable range 

of normal IVD width [18]. 

 

 

Fig. 3. An illustration of the position and orientation of the elements used to determine the Slice 

Location 𝑠 with respect to the patient’s coordinate axes. 

 

Once the dataset has been developed, we then use it to train an Inception-ResNet-v2 

model. Inception-ResNet-v2 [19] is a convolutional neural architecture that improves 

on the Inception family of architectures by incorporating the ResNet approach of using 



residual connections to replace the filter concatenation stage of the Inception architec-

ture. Inception-Resnet-v2 is one of the newer generations of deep convolutional neural 

networks that is gaining popularity in the classification and annotation of medical im-

ages [20]. We adopted a methodology called Transfer Learning that transfers the 

learned network parameters of the model that was pre-trained using the ImageNet da-

tabase [21] and then retrain the whole model after replacing its classification layers 

using the new dataset. The flowchart of the process is illustrated in Fig. 4. 

 

Fig. 4. A flowchart illustrating a) the retraining process of a pre-trained deep convolutional neural 

network and b) the classification of the images in the test dataset using the retrained model. 

To evaluate the suitability of the method, we use four performance metrics namely 

overall accuracy (𝐴), precision (𝑃), recall (𝑅), and f1-score (𝐹). Using the standard 

notations of true positive (𝑡𝑝), true negative (𝑡𝑛), false positive (𝑓𝑝), and false negative 

(𝑓𝑛), the metrics are calculated as: 
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where 𝑖 ∈ {1,2} is the index of the 𝑖𝑡ℎ class and 𝑃𝑖 , 𝑅𝑖 and 𝐹𝑖 are the class precision, 

class recall, and class f1-score of the 𝑖𝑡ℎ class, respectively and are defined as: 
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We applied the aforementioned transfer learning approach on the T1-weighted da-

taset and T2-weighted dataset separately and compare the two results. To allow statis-

tical analysis of the results, we carried out the process twenty times, each with different 

subsets of training and test data. 

4 Experimental results, discussion, and analysis 

For each experiment repeat, each dataset was randomly split into two sub-groups 

namely the training and test dataset by an 80:20 ratio. When training the Inception-

ResNet-v2 model, the training set was further split into a smaller training set and a 

validation set. The validation set was used solely to provide an unbiased estimate of the 

trained model’s accuracy during training and was not used to adjust the model’s weights 

or biases. They were instead adjusted by backpropagating the errors calculated using 

the training set which process was optimized using the stochastic gradient descent with 

momentum technique. The training is done in small batches of ten samples for up to 

four epochs. The order of the samples in the training set was shuffled in every epoch to 

prevent the model from learning the order of the samples. The initial learning rate of 

the transferred (feature extraction) layers was set to 10-4 and that of the new classifica-

tion layer was set 20 times higher. The training duration for the twenty repeats ranges 

from 750 to 765 minutes when run on a Windows 10 PC with an Intel i9-7900X CPU 

@ 3.30GHz with 128 GB RAM and four NVIDIA Titan XP GPUs. A plot showing the 

validation accuracy during the training process is shown in Fig. 5. As can be seen from 

this figure, the accuracy values for both datasets plateau roughly before the final epoch. 

The final recorded validation accuracy for the T1 and T2 datasets is 0.92 and 0.91, 

respectively. 

Once the training process is completed, it is used to predict the classes of each sam-

ple in the test set. These predicted classes are then used to calculate the four perfor-

mance metrics defined in Eq. (1) to (4). The results are shown as box plots in Fig. 6 

and Fig. 7. The figures show the minimum, the maximum, the sample median, and the 

first and third quartiles of each metric for ease of visual inspection of the classification 

performance. 

We performed a statistical test to show that the difference in the classification results 

produced by using the T1 and T2 datasets is statistically significant. We use the Kol-

mogorov-Smirnov (KS) test [22] and the Bartlett’s test for Homogeneity of Variance 

[23] to check if the populations follow a Normal distribution and if they have identical 



variances, respectively. Satisfying both tests allows us to use the standard t-test hypoth-

esis testing to prove or disprove the null hypothesis. The null hypothesis here being 

there is no difference between the two results. If any one of the two populations does 

not satisfy the KS and Bartlett’s tests then we use the Welch's t-test [24] instead. 

 

 

Fig. 5. A history of the validation accuracy during the training process. 

The results of the statistical test are provided in Table 3. From the table, we can 

conclude that the classification performance using the T2-weighted dataset as measured 

using four performance metrics is statistically better than that using the T1-weighted 

dataset. 

Table 3. Summary of the statistical tests 

Metrics T1 Mean T2 Mean Difference  t-test Type p-value 

Accuracy 0.90 0.93 0.03 t-test < 0.05 

Precision 0.91 0.93 0.02 Welch's t-test < 0.05 

Recall 0.90 0.93 0.03 t-test < 0.05 

F1-Score 0.90 0.93 0.03 t-test < 0.05 
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Fig. 6. A box plot showing the statistics of classification performance using the T1 dataset. 

 

Fig. 7. A box plot showing the statistics of classification performance using the T2 dataset. 

5 Conclusion 

We have detailed a method to automatically select suitable sagittal images from a col-

lection of lumbar spine sagittal MRI images that can be used as inputs to other algo-

rithms that detect abnormalities in lumbar intervertebral discs. The method is based on 

transfer learning of a pre-trained Inception-Resnetv2 deep convolutional neural 



network model. We experimented with this method on a subset of a publicly available 

lumbar spine MRI dataset that consists of 9,903 T1-weighted and 9,273 T2-weighted 

MRI images. Our experimental results show that the average classification performance 

is 0.90 and 0.93 on the T1 dataset and the T2 dataset, respectively. We have also shown 

through statistical analysis of our experimental results that the classification perfor-

mance using the T2 dataset is statistically better than that using the T1 dataset. We plan 

in the future to expand the method to include a wider range of deep convolutional neural 

network models as well as investigate the effect of applying the dimensionality reduc-

tion method on the generalization performance of this approach. We will also explore 

the possibility of applying the method to classify lumbar spine traverse MRI images. 
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