
Draper, G, Wright, M, Chesterton, P and Atkinson, G

 The tracking of internal and external training loads with next-day player-
reported fatigue at different times of the season in elite soccer players

http://researchonline.ljmu.ac.uk/id/eprint/15530/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Draper, G, Wright, M, Chesterton, P and Atkinson, G (2021) The tracking of 
internal and external training loads with next-day player-reported fatigue at 
different times of the season in elite soccer players. International Journal of
Sports Science & Coaching, 16 (3). pp. 793-803. ISSN 1747-9541 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


1 
 

 1 

 2 

The Tracking of Internal and External Training Loads with Next-Day Player-Reported Fatigue at 3 

Different Times of the Season in Elite Soccer Players 4 

  5 



Elite Soccer Player Reported Fatigue During Different Time Points in a Season    2 
 

Abstract 6 

The aim was to assess factor structure of player-reported fatigue and quantify within-subjects 7 

correlations between changes in training load measures and next day player-reported fatigue at 8 

different time points of an elite football season.  Using longitudinal research design, twenty-four 9 

professional footballers, mean (SD) age of 25.7 (3.4) years, were monitored during their competitive 10 

season, including preseason.  Player-reported fatigue data and session ratings of perceived exertion 11 

(session-RPE) were collected via a mobile application. Heart rate (HR) and global positioning system 12 

(GPS) data were collected daily for each player in field sessions. Principal component analysis (PCA) 13 

indicated three components with Eigenvalues above 1.0; “soreness”, “mood, and “hydration”.  Within-14 

player correlations between training load values and next day player-reported fatigue values were trivial 15 

to moderate (r ≈ -0.42 to -0.04).  In-season we observed large correlations between Total Distance (TD) 16 

and PlayerLoad with Soreness (r=-0.55, 95% CI: -0.62 to -0.46; r=-.054, 95% CI: -0.62 to -0.46), but during 17 

pre-season, correlations were small (r=-0.15, 95% CI: -0.28 to -0.01; r=-0.13, 95% CI: -0.26 to 0.01).  The 18 

HR TRIMP, TD and session-RPE measures each showed trivial to moderate correlations (r ≈ -0.41 to -19 

0.08) with next day “mood”. Our in-house player-reported fatigue questionnaire was sensitive to the 20 

multi-dimensional nature of fatigue, identifying physiological (soreness), psychological (mood and 21 

stress) and nutritional (hydration and nutrition) components.  We found the in-season correlations with 22 

training load to be greater than previously reported in the literature, specifically with next day player-23 

reported “soreness”.  Nevertheless, correlations between the items of our scale and pre-season training 24 

load were small.  25 

 26 

Keywords: athlete monitoring, wellness, training load, performance, football 27 

 28 
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INTRODUCTION 29 

In professional football, training is designed to prepare players physically, technically and tactically for 30 

matches. A training session induces an internal psychophysiological response that provides the stimulus for 31 

acute yet transient adaptations while, chronic adaptations rely on the appropriate systematic exposure to 32 

training (27).  This overall psycho-physiological response may result in acute fatigue and, either desirable 33 

chronic adaptations to physiological systems (neuromuscular, metabolic, endocrine etc.) or, undesirable 34 

chronic stress-related symptoms (overtraining, injury, etc.) (31). Consequently, the ability to monitor the 35 

response to training, both physically and mentally, is important to the coach or practitioner (50). Indeed, 36 

the majority of practitioners working in team sports place an equal emphasis on monitoring the training 37 

load and the acute fatigue response (47).   38 

 39 

Quantifying the response to training is complex and multi-factorial. Objective biomarkers, such as Creatine 40 

Kinase, VO2max, often fail to accurately reflect the holistic response to the training process and recovery 41 

(43), and their practical feasibility has been questioned (48). A players’ fatigue status is a multi-component 42 

construct encompassing several variables that indirectly measure physical and psychological wellness (43). 43 

Player (or athlete) self-reported measures have been used to quantify constructs such as; stress, recovery, 44 

mood, and anxiety, primarily to detect symptoms of non-functional overreaching or overtraining. These 45 

include instruments such as the RESTQ-Sport (28), DALDA (41), POMS (24)  which have been shown to 46 

be more sensitive to acute changes in training load than objective measures (43), perhaps because they 47 

better reflect the complex multifactorial nature of fatigue (32).  Unfortunately, the practical application of 48 

these scales is limited for daily evaluation of athletes and interpretation generally falls outside of the scope 49 

of practice of a physical preparation or conditioning coach.  This has led to the popularity of short 50 

customized in-house questionnaires within team sport monitoring (47). These questionaires ask players’ to 51 

report their subjective ratings of constructs such as fatigue, recovery, muscle soreness, mood, stress as well 52 

as other factors that may affect the response to training including the quality of sleep and nutrition. Changes 53 
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in these self-reported outcome measures have been associated with changes in internal load (sRPE, HRex, 54 

Cortisol) and external load (Total Distance, High Speed Running) measures in elite soccer players (9). 55 

These outcome measures have also shown relationships with in-game technical performances (21) along 56 

with self reported decrements in scores the day after a matches in Austrailian Football players (20). These 57 

studies provide some evidence for the sensitivity of these athlete-reported measures despite little 58 

consistency between the type of scale, bi-polar and uni-polar, or the verbal anchors / number of points used 59 

on the scale both in research and, in practice (47). 60 

 61 

Previous studies have summed the scores of multiple items (survey questions) from player self-reported 62 

questionaires to described higher order constructs such as “wellness” or “wellbeing” (9, 20). These 63 

constructs are by definition complex and multi-factoral in nature thus, assuming unimensiality (e.g. Gallo 64 

et al., 2016).  This practice is questionable from a conceptual standpoint and “wellness” questionaires have 65 

been criticised for a lack of either theoretical reference framework or further robust validation (32).  66 

However, elite team sport athletes compete weekly / biweekly inducing stress on multiple biological 67 

systems (aerobic, anaerobic and neuromuscular) and practitoners require time efficent, non-invasive 68 

methods of quantifying the fatigue status of their players (51). Constructs such as fatigue or soreness are 69 

known acute responses to demanding exercise and can be influenced by pscyho-physiological factors (30) 70 

or lifestyle (sleep and or nutrition). Despite their limitations self-reported outcomes measures appear to 71 

have practical value and are recommended for use with caution and, alongside other monitoring strategies 72 

(34, 49, 52).  73 

 74 

In an ideal world, robust psychometric evaluation of player self-report questionnaires should be conducted 75 

before implementation in practice and practitioners can use the COSMIN- COMMET criteria to assist (32). 76 

However, in practice self-report questionnaires are often already embedded into athlete monitoring (47) 77 
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and with turnover of coaching and support staff may even be inherited practices. It is critical practitioners 78 

evaluate these instruments within their own environment to understand the structure of the interrelationships 79 

(collinearity) amongst items within the questionnaire and determine its validity. A valid survey should be 80 

conceptually sound, reflecting the multi-dimensional nature of fatigue (43). Determining the factor structure 81 

of a survey is an important first step in evaluating the dimensionality of a questionnaire. Principle 82 

component analysis (PCA) provides a method of determining factor structure and reduces data to unique 83 

components containing variables which correlate with each other, whilst the principle components 84 

themselves do not correlate (55). These statistically derived components should represent constructs that 85 

can be explained theoretically. In the context of athlete self-reported measures, it would make sense that 86 

PCA would identify both psychological and physiological factors for the reasons outlined above. PCA also 87 

provides a rationale for reducing the items of a questionnaire reported whilst maintaining as much of the 88 

variation in the data as possible (17). Single-item reports are not without their limitations, particularly when 89 

measuring complex constructs, but they have practical value in communicating data between support staff, 90 

players and coaches. Indeed, these measures may help practitioners’ quickly priorities critical conversations 91 

with players which enable a deeper understanding of context.   92 

 93 

The travel and environmental constraints of Major League Soccer (MLS) constitutes an addition challenge 94 

to practitioners and athletes in their preparations for the season.  Due to its large geographic area, >3.7 95 

million miles2, variations in altitude (39’ to 5280’ above sea level), and seasonal variations in temperature, 96 

athlete responses to load should not be expected to be uniform throughout an MLS season due to the added 97 

physiologic stresses as compared to most European football leagues.  Currently there is a lack of applied 98 

research that evaluates existing fatigue monitoring in Major League Soccer. Studies that identify both the 99 

factor structure of player-reported questionnaires and their sensitivity to variations in training load over 100 

extended periods of time (50) are of practical relevance. Thus, our aims were two-fold; first, we wished to 101 

assess the factor structure of our player-reported fatigue questionnaire through PCA (Part A). Second, we 102 
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aimed to quantify the within-player association between changes in internal and external training load 103 

measures, and the player ratings in these key components of player-reported fatigue (Part B).  104 

 105 

METHODS 106 

Experimental Approach to the Problem 107 

A retrospective observational study over six-months in a Major League Soccer (MLS) club.  Data collection 108 

spanned the first six months of the 2018 season (Mid-January to Mid-June) and included a six-week 109 

preseason training camp.  Six months was selected as the data collection period, so as, to avoid the most 110 

congested periods of the season and create a more balanced comparison between the different types of 111 

training days in a competitive soccer season. 112 

 113 

Participants 114 

Twenty-four professional football players from a single club (Age: 26 ± 3.4 years Height: 171 ± 2.7cm, 115 

Body mass: 78 ± 7.1 kg) participated in this study and had played at least one first team match.  All players 116 

were registered with the same Major League Soccer club, which is the highest level of football in the United 117 

States of America.  We excluded goalkeepers from the data selection processes.  We used data from training 118 

sessions and games in the current analysis.  Data from on-field rehabilitation sessions and re-integration 119 

progressions, in which a player only completed a portion of training due to club’s return to play protocols, 120 

were excluded from this data set.  Athlete consent was obtained for all data collection and use in further 121 

research via an informed consent form and the study was approved by Teesside University’s School of 122 

Health and Life Sciences Ethics sub-committee (Study No 238/18).   123 

 124 

Procedures 125 
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During all on-field training sessions and games, players wore GPS units sampling at 10-Hz (S5, Catapult 126 

Innovations, Australia).  Prior to the analysis of sessions, data was expected to comply with the clubs pre-127 

existing data standards which checks for compliance within the metrics of Horizontal Dilution of Precision 128 

(HDOP) (<3) and #Sat (>9) set forth in the Catapult user manual.  The device was worn by players in the 129 

manufacturer’s vest, which holds the unit between the scapulae.  Validity and reliability of GPS units have 130 

been established in previous work, with specific attention to acceleration, deceleration, and constant 131 

running (10).  The use of GPS and accelerometry was further studied in team sport change of direction and 132 

non-linear running (7) and in high intensity efforts (53).  Variables selected for analysis were Duration 133 

(min), Total Distance (m), Relative Distance (m/min), “Jogging” Distance (9.7 km/hr-13.7 km/hr.) (m), 134 

“Running” Distance (13.68km/hr-20.16km/hr.) (m), “Striding” Distance between 20.2 km/hr. and 24.8 135 

km/hr. (m), “Sprinting” Distance above 24.8 km/hr. (m), (15,22).   We also selected PlayerLoad (AU) to 136 

reflect the accelerative nature of football (11,44).  Wundersitz et al. (57) found data of this nature, utilizing 137 

acceleration and decelerations, have been shown valid and reliable in team sports when measures exceed 138 

12Hz.  The metric “High Speed Running” (HSR) is the sum of the values “Striding” and “Sprinting”.  The 139 

variable Duration was derived via post session analysis and calculated by a summation of all active time 140 

periods during the session.  Rest periods, transition to other exercises and coaching stops were all eliminated 141 

from the total duration of the session during the analysis of the individual session by performance 142 

department staff.   143 

 144 

The measurement of player internal load was performed via heart rate monitoring and session ratings of 145 

perceived exertion (sRPE). HR monitors (T-34 Coded, Polar Electro, OY, Finland) sampling at 5 Hz - either 146 

held via the manufacturer’s belts or were fed into the built-in holsters on GPS vests - were worn in every 147 

session. Raw data were transmitted continuously to the GPS units and then exported from the GPS 148 

manufacturer’s software (Logan Plus Sprint, Catapult Sports, Australia).  A heart rate training impulse 149 

(HRtrimp) was calculated using the methods outlined by Stagno, Thatcher and van Someren, (45) with  150 
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maximum heart rate calculated from the clubs preseason testing, in which players completed a field based 151 

intermittent fitness test (Yo-Yo IR 1) to volitional termination of the assessment.  Max HR was deemed the 152 

highest HR reached in the final 2 minutes of the assessment.  153 

 154 

sRPE were collected at the end of each training day, via phone application, to assess how hard players 155 

perceived the training session. The players provided rated the overall session exertion on the CR-100 scale 156 

using the data collection procedures as per McLaren et l. (32). Data were collected within two hours of the 157 

session or match. 158 

 159 

Each morning, players reported their perception of “Sleep”, “Mood”, “Energy”, “Recovery”, “Soreness”, 160 

“Nutrition” and “Hydration” on a Likert scale where 1 was “least optimal” and 10 “most optimal”, via a 161 

phone application.  These measures were selected based on their effectiveness in monitoring acute changes 162 

in athlete well-being (43).  All athletes were familiarized with the scales and questionnaires in a formal 163 

meeting prior to the beginning of the data collection period.  Though, many of the athletes in the current 164 

study had been a part of this club’s data collection processes for years prior.  Wording on the scale were 165 

selected to emulate a normal conversation, utilizing colloquialisms and “emojis” to help guide the athlete’s 166 

decision-making process.   167 

 168 

Players were also asked to complete this questionnaire on any “Off Day” following a match, upon waking 169 

to capture next day player-reported fatigue post-match loading.  When completing the surveys, the initial 170 

view of the questions showed the scale utilized in this survey and/or anchors were utilized in each question 171 

to give players reference to the scale again.  Both surveys were completed via personalized messages on 172 

player’s phones and social media communications (Facebook/Slack messenger) to simplify the data 173 

collection process for both players and researchers.  Players were asked to fill the survey out upon waking 174 
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up, before arriving in the facility each morning, as well as on any “off days” following a match.  175 

Supplemental Digital Content (see Text Supplemental Digital Content 1- Player Reported Fatigue) shows 176 

the player-reported fatigue questionnaire, anchors and the interface as seen by athletes when completing 177 

the scale. 178 

 179 

Statistical Analyses 180 

Part A: Principle Component Analysis  181 

The distribution of player-reported fatigue data are visualised in Figure 1. The internal consistency of the 182 

player-reported fatigue was evaluated by Cronbach’s alpha (0.84; 95% CI 0.82 to 0.86). We are aware that 183 

this Chronbach’s alpha has been calculated by pooling the time-points for each participant.  To control for 184 

any influence of pseudoreplication, we also analysed the data after averaging across time-points for each 185 

participant in line with Bland and Altman (5).  The Cronbach’s alpha following this adjustment was 0.86 186 

(95% CI 0.74-0.93). To determine the factor structure, a PCA was performed using SPSS version 26 (SPSS 187 

Inc., Chicago, IL, USA).  The Chi-sqaured value for Bartlett’s test of sphericity was 2258 (p < 0.0001) and 188 

Kaiser-Meyer-Olkin (KMO) values were greater than 0.5 for each test (0.62 to 0.90) thus, meeting the 189 

requirements previously established for the performance of a PCA in sport science research (55).  PCA is 190 

a method that can be used for data reduction for example, Williams, et al. (5) as it reduces data to unique 191 

components containing variables which correlate with each other, whilst the principle components 192 

themselves do not correlate (55).   193 

 194 

[Figure 1 about here] 195 

 196 
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There are various approaches for extracting principle components, based on thresholds for eigenvalues (for 197 

example greater than 1) or visual inspection of the scree plot (12) (see Text, Supplemental Digital Content 198 

1, which displays the produced scree plot and component analysis). It is also important to consider 199 

practitioner expertise within statistical models (52). Based upon our data we decided to extract three 200 

principle components (Eigenvalues 3.82, 1.44 and 0.97) explaining 78% of the variance (see Text, 201 

Supplemental Digital Content 2- PCA).  Varimax rotation revealed the factors weighing heaviest on each 202 

component were “soreness” on component 1, “stress” on component 2, and “hydration” on component 3 203 

(see Text, Supplemental Digital Content 2- PCA).   204 

 205 

Part B: Within-player associations between internal and external training load and physical, psychological 206 

and nutritional components of wellbeing.  207 

All model residuals were explored for parity with a Gaussian distribution and, deemed appropriate.  A 208 

general linear model was used to quantify within-player correlations between next-day player-reported 209 

fatigue and collected internal and external training loads (5,6).  We did not select predictors on the basis of 210 

statistical significance in a step-wise fashion. Rather, expert knowledge was used to select independent 211 

variables of practical interest, while also selecting variables which have shown to be important in previous 212 

research (52).  We then quantified univariate within-subject correlations between outcome and predictor 213 

variables according to the approach reported by Bland and Altman (5,6).   The following thresholds were 214 

used to interpret the magnitude of the correlation between variables: <.1 Trivial, .1 to .3 Small, .3 to .5 215 

Moderate, .5 to .7 Large, .7 to .9 Very Large, and .9 to 1.0 Almost Perfect.  All results are shown with 216 

Confidence Intervals of 95%, as required.  The statistical analysis software, SPSS (SPSS Inc., Chicago, IL, 217 

USA) was used for the statistical calculations. 218 

 219 

RESULTS 220 
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Descriptive data are presented for the current study in Table 1.  Within-player association between player-221 

reported fatigue and internal and external training loads are presented as a correlation coefficient with 95% 222 

confidence interval for soreness (figure 2), mood (figure 3), and hydration (figure 4) for all observations 223 

and separately for pre- and in-season (Overall n= 534, in-season n= 310, pre-season n= 224).   224 

[Table 1 about here] 225 

We observed small to moderate relationships with soreness overall, with the strongest associations in-226 

season. For example, moderate to large negative associations were observed for three variables that include 227 

training volume Total Distance (-0.55, 95% CI -0.62 to -0.46), PlayerLoad (-.54, 95% CI -.62 to -.46) and 228 

session RPE (-.46, 95% CI -.54 to -.36) as well as high-speed running (-.43, 95% CI -0.52 to -0.33). We 229 

also observed small but clear negative relationships between Total distance (-.40, 95% CI -.49 to -.30) and 230 

PlayerLoad (-.41, 95% CI -.50 to -.31) and mood for in-season but not pre-season associations between 231 

internal and external load and next day hydration were generally trivial or small (-0.16 to 0.16). 232 

Associations between our load measures and all player-reported fatigue can be viewed in Supplementary 233 

Digital Content 3- Partial Correlations).  234 

[Figure 2 about here] 235 

[Figure 3 about here] 236 

[Figure 4 about here] 237 

DISCUSSION 238 

We aimed to assess the factor structure of our player-reported fatigue questionnaire and to quantify the 239 

within-player associations between changes in internal and external training load measures, and changes in 240 

next day player-reported fatigue. A key finding was that our questionnaire represented three distinct 241 

components, with Eigenvalues close to or above 1 reflecting the multi-factorial nature of fatigue. Trivial to 242 

moderate within-player correlations were found between the next day player-reported fatigue measures and 243 
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training load variables when considering the data set as a whole.  However, when we separated data into 244 

“in-season” and “Pre-Season” subgroups, associations were strongest in the in-season period, rather than 245 

the pre-season period. (figures 3-5) and tended to be of a moderate to large magnitude for items loading on 246 

component 1 (e.g. soreness). Associations tended to be of small to moderate magnitude for component 2 247 

and trivial for nutrition or hydration (component 3).   248 

 249 

We extracted three principle components explaining 78% of the variance in the data. The item with the 250 

highest loading on component 1 was “soreness” (0.82) followed by “recovery” (0.80) and “energy” (0.77).  251 

Soreness is a well-known acute perceptual response to exercise that can be attributed to microdamage within 252 

the muscle (19) or damage to nervous system (e.g. at the neuromuscular junction) (14,27).  We should 253 

expect a valid measure of “soreness” to be sensitive to changes in loads as shown in previous research 254 

(36,48,51,42) and we observed moderate to large associations with load “in-season”. Item’s such as 255 

“recovery” and “energy” are more difficult to conceptualize and could be criticized for lacking in any clear 256 

definition. In their review on athlete reported outcome measures, Jefferies et al. (2020) reported that single 257 

items, “may possess acceptable face validity.”(29), which parallels our rationale for utilizing PCA to 258 

analyse the current player reported outcome measures.  Of note, constructs must be “unidimensional” and 259 

“unambiguous” to ensure quality responses, which seems to have been met by the three components we 260 

derived from the PCA (29). 261 

Despite the above observations, the items loaded strongly on component 1 with similar moderate-to-large 262 

associations with changes in load suggesting they represent, at least to an extent, physiological fatigue and 263 

share collinearity with “soreness”.  Fava et al. (2012) noted in their work on Clinimetrics, that 264 

responsiveness should be defined as “able to detect clinically relevant changes in [health] status over time” 265 

(16)   Considering both our data and the criticisms of some player-reported outcome measures for lacking 266 

clear definitions or any theoretical reference framework to support their use (32), practitioners may wish to 267 

consider the rationale for including items such as “recovery” and “energy” in their monitoring 268 
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questionnaires. Indeed, “energy” loaded on two principle components (component 1: 0.77 and 2: 0.45) 269 

suggesting it may be multi-factorial and difficult to assess within a single-item (16,23,29).   270 

 271 

The items that loaded strongest on principle component 2 were “mood” (0.87) and “stress” (0.86) which 272 

represent psychological constructs associated with fatigue (18,21).  Measures of psycho-social wellbeing 273 

remain a necessary part of fatigue assessment, as noted changes in measures like “sleep quality”, “stress”, 274 

“wellbeing” were effected by loading and general sporting conditions (i.e. wins/losses), which is an 275 

important consideration in applied sport science (18,21,51).  Sleep loaded relatively equally on both 276 

principal components 1 and 2 which, given the importance of sleep to both physical and psychological 277 

recovery makes intuitive sense (42).  Acute physiological responses such as delayed onset of muscular 278 

soreness have been shown to contribute to poor sleep quality (50) while poor sleep quality is known to 279 

affect psychological factors such as “mood” or “stress” (4).   280 

 281 

Thorpe et al (48,49,50,51,52) utilized “soreness”, “fatigue” and “sleep” as player reported outcome 282 

measures in elite football players.  Our findings would broadly support these choices but would suggest the 283 

inclusion of item(s) addressing psychological wellness such as mood or stress in subsequent questionnaires.  284 

The final component represented nutrition or hydration status with strong factor loadings for both of these 285 

items (0.94 and 0.95, respectively).  We observed trivial associations between load and either of these items, 286 

which is not surprising given there is no conceptual reason to expect load to affect nutrition status. However, 287 

nutrition can support recovery and or adaptation to training, and has been shown to be effected by over-288 

training and thus the inclusion of one or both of these items maybe informative to staff working with players 289 

on a daily-basis to reiterate good practices (13,26,38).    290 

 291 
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Several studies have highlighted relationships between internal and external training loads in player-292 

reported wellness (1,18,56).  We observed similar or slightly higher magnitude associations between player-293 

reported “soreness” and “mood” and internal and external training loads (figures 2 & 3), particularly in the 294 

in-season period, compared to those previously reported (36,42,43).  With respect to comparing 295 

correlations, it should be noted that due to the within player nature of this analysis, these comparisons are 296 

purely participantive.  The moderate and large magnitude correlations could be attributed to the inclusion 297 

of match data, which has been shown to be a large percentage (roughly 40%) of weekly training loads 298 

(46,50).  Of note, Total Distance, PlayerLoad and the session-RPE all tended to have larger correlations to 299 

player-reported soreness when compared to other independent variables (Figure 2, 3, 4) which aligns with 300 

previously published work (1,39,40).  Major League Soccer provides unique challenges with regards to 301 

playing matches across time zones, climates and at different altitudes which may increase the response to 302 

loading in players in comparison with other leagues (37,54).  Indeed, future research should look to 303 

investigate the effects of these environmental challenges on both load, and response to football matches. 304 

 305 

In contrast, during the “preseason” period, the associations between training load and all player-reported 306 

items were either trivial or small with the exception of RPE measures which tended to be small to moderate 307 

(see Figures 2-4).  McMahon et al. reported in their study of a week leadup to World Cup Qualifying 308 

matches in international elite women’s football players that their player-reported items were not sensitive 309 

enough to detect changes in lower load training days, which would correspond with our study’s small 310 

magnitude correlations in the pre-season sub group (33).  Practitioners should account for musculoskeletal 311 

fatigue that may be present in “preseason” which may affect both performance in session and responses to 312 

that load acutely (27).  The weaker associations in the “preseason” data may be caused by other contextual 313 

variables (examples: temperature, fitness levels, previous loading, or other variables) which have effects on 314 

responses to loading.  Indeed, Buchheit et al. have noted the importance of context in understanding training 315 

data, specifically in preseason, as there are many contextual variables which must be understood to connect 316 
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the relationship to “response” (9).  Potentially, a combination of these factors could explain the lack of 317 

associations observed here in pre-season.  318 

 319 

We observed that Total Distance and PlayerLoad had similar magnitude of associations with “soreness” 320 

(see Figure 2).  These measures are comparable values when discussing load monitoring in the applied 321 

setting and have been used interchangeably to discuss the concept of volume previously in the research (3)  322 

These two external training load variables show the strongest relationships with both mood and soreness, 323 

high speed running and sprint distance (see Figures 2 and 3).  The measure of session-RPE had a moderate 324 

correlation with “soreness” during the in-season period (Figure 2). Bartlett et al. (3) found that the measure, 325 

total distance, most strongly associated with RPE in their study, but also noted the importance of select 326 

intensity measures, such as high-speed running, as important in the relationship with RPE.  Thus, it is 327 

unsurprising that RPE, in this study had moderate magnitude correlations with “soreness” as all measures 328 

of external load were shown to have moderate to large correlations with “soreness”.  Volume based metrics 329 

such as Total Distance and PlayerLoad will tend to give the best understanding of the amount of work done, 330 

and thus, in a sport such as soccer, be representative of muscular damage, more so than some of the intensity 331 

based metrics such as High Speed Running, which could represent tactical or environmental changes 332 

(2,8,25).  These similarities may indicate a potential combination effect of the external load measures which 333 

is identified through participantive assessments.  334 

 335 

A potential limitation of this study lies in the questionnaire, which did not undertake the thorough selection 336 

and psychometric validation recommend by others (32).  However, the questionnaire was developed in 337 

practice and based upon previous literature (50,51,52), through requirements of the coaching and support 338 

staff and, conversations with players.  Validated questionnaires such as the POMS, RESTQ-s and DALDA 339 

are time consuming and impractical for daily monitoring therefore short-format or single-item measures 340 
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have practical value (50,51,42).  Further research could investigate the validity of our single-items against 341 

these multi-item scales, perhaps at certain points throughout a season, particularly for items in component 342 

2 such as “stress” or “mood”.   Despite these limitations our study provides an important first step in 343 

evaluating and refining practice. 344 

A further limitation of this study, which consistently occurs in the applied setting, is compliance in player-345 

reported fatigue and session-RPE questionnaire completion.  While reminders for the athletes were 346 

established throughout the process by the researchers, there are times where gaps in the data occurred.  Non-347 

compliance occurred particularly around travel and off days.  A difficulty of the next day player-reported 348 

fatigue is off days, due to the fact that players and staff are away from their normal routines.  This together 349 

with the long and physically demanding season meant we observed ebbs and flows in survey compliance.  350 

Within normal schedules, there are imbalanced counts in training sessions and games, and between in-351 

season and pre-season sessions.  Compliance issues can potentially magnify these discrepancies, creating 352 

shifts in correlation magnitudes due to the imbalanced counts in session data (in-season n=310, pre-season 353 

n=224).  Despite this, we were able to track a substantial number of observations for both pre-season and 354 

in season.  Finally, it should be noted that these data are taken from one squad playing in the MLS and 355 

caution should always be taken when extrapolating findings more broadly.  Standardizing player monitoring 356 

practices across leagues would enable larger multi-site evaluations in the future. 357 

 358 

Conclusions 359 

Our in-house player-reported fatigue questionnaire was sensitive to the multi-dimensional nature of fatigue 360 

identifying physiological (soreness), psychological (mood and stress) and nutritional (hydration and 361 

nutrition) components.  In-season correlations from the current study were greater than previously reported 362 

in the literature, specifically with next day player-reported “soreness” however, the items of our scale were 363 

not associated with pre-season training load.  364 
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 365 

Future Considerations 366 

In-season correlations from the current study were greater than previously reported in the literature, 367 

specifically with next day player-reported “soreness”.  This may be related to the specific challenges within 368 

the MLS and other North American sport leagues as it pertains to travel, scheduling, and environmental 369 

issues and further research to evaluate these contextual factors is warranted. Furthermore, it is recognized 370 

this is a first step in assessing the validity of our player reported fatigue questionnaire and deeper 371 

psychometric evaluation of these scales and their ability to measure complex constructs is required.  Indeed, 372 

further research may wish to investigate players coach and clinician perceptions of these constructs in 373 

greater detail and work towards a consensus on their measurement.  374 

 375 

PRACTICAL APPLICATIONS 376 

In the current sport science environment, many data points are collected throughout a training period, and 377 

thus ensuring the utility of these measures is of key importance.  Practitioners must continually evaluate 378 

their current practices to ensure the data they are collecting can answer important performance questions. 379 

Player-reported “soreness” and “mood” were sensitive to changes in load and may be useful as part of a 380 

player-monitoring strategy to understand portions of multifactorial fatigue. The context of pre-season and 381 

in-season showed varying levels of relationships, displaying the importance of further context in data 382 

collection.  We would advise sports scientists and strength and conditioning practitioners view these as 383 

crude but potentially useful tools for monitoring large teams however, they should not be viewed as the 384 

only measure of fatigue in a program without further research into their utility and added contextual 385 

variables in collection.  386 

  387 



Elite Soccer Player Reported Fatigue During Different Time Points in a Season    18 
 

References 388 

1. Abbott, W. et al. (2018) ‘The independent effects of match location , match result and the 389 

quality of opposition on participantive wellbeing in under 23 soccer players : a case study’, 390 

Research in Sports Medicine. Routledge, pp. 1–14. doi: 10.1080/15438627.2018.1447476. 391 

2. Arruda, A. F. S. et al. (2014) ‘Effects of a Very Congested Match Schedule on Body-Load Impacts , 392 

Accelerations , and Running Measures in Youth Socce ....’, International Journal of Sports 393 

Physiology and Performance, (August). doi: 10.1123/ijspp.2014-0148. 394 

3. Bartlett, J. D. et al. (2016) ‘Relationships Between Internal and External Training Load in Team 395 

Sport Athletes: Evidence for an Individualised Approach’, International Journal of Sports 396 

Physiology and Performance. doi: : http://dx.doi.org/10.1123/ijspp.2015-0791. 397 

4. Benjamin, C. L. et al. (2020) ‘Sleep Dysfunction and Mood in Collegiate Soccer Athletes’, Sports 398 

Health. SAGE Publications Inc., 12(3), pp. 234–240. doi: 10.1177/1941738120916735. 399 

5. Bland, J. M. and Altman, D. G. (1995) ‘Calculating Correlation Coefficients with Repeated 400 

Observations: Part 1- Correlation within Participants’, British Medical Journal, 310, p. 446. 401 

6. Bland, J. M. and Altman, D. G. (1996) ‘Measurement Error and Correlation Correlation’, British 402 

M, 313, pp. 41–42. doi: 10.1002/anie.201005078. 403 

7. Boyd, L. J., Ball, K. and Aughey, R. J. (2011) ‘The reliability of minimaxx accelerometers for 404 

measuring physical activity in australian football’, International Journal of Sports Physiology and 405 

Performance, 6(3), pp. 311–321. doi: 10.1123/ijspp.6.3.311. 406 

8. Buchheit, M. et al. (2011) ‘Physiological and performance adaptations to an in-season soccer 407 

camp in the heat: Associations with heart rate and heart rate variability’, Scandinavian Journal 408 

of Medicine & Science in Sports, (June). doi: 10.1123/IJSPP.2013-0284. 409 

9. Buchheit, M. et al. (2013) ‘Monitoring fitness, fatigue and running performance during a pre-410 

season training camp in elite football players’, Journal of Science and Medicine in Sport, 16(6), 411 



Elite Soccer Player Reported Fatigue During Different Time Points in a Season    19 
 

pp. 550–555. doi: 10.1016/j.jsams.2012.12.003. 412 

10. Chambers, R. et al. (2015) ‘The Use of Wearable Microsensors to Quantify Sport-Specific 413 

Movements’, Sports Medicine, 45(7), pp. 1065–1081. doi: 10.1007/s40279-015-0332-9. 414 

11. Colby, M. et al. (2017) ‘Multivariate modelling of participantive and objective monitoring data 415 

improve the detection of non-contact injury risk in elit ....’, Journal of Science and Medicine in 416 

Sport. Sports Medicine Australia, (May). doi: 10.1016/j.jsams.2017.05.010. 417 

12. Costello, A. B. and Osborne, J. W. (2005) ‘Best practices in exploratory factor analysis: Four 418 

recommendations for getting the most from your analysis’, Practical Assessment, Research and 419 

Evaluation, 10(7). 420 

13. Djaoui, L. et al. (2017) ‘Monitoring training load and fatigue in soccer players with physiological 421 

markers’, Physiology and Behavior. Elsevier, 181(November), pp. 86–94. doi: 422 

10.1016/j.physbeh.2017.09.004. 423 

14. Drew, M. K. and Finch, C. F. (2016) ‘The Relationship Between Training Load and Injury, Illness 424 

and Soreness: A Systematic and Literature Review’, Sports Medicine. Springer International 425 

Publishing, 46(6), pp. 861–883. doi: 10.1007/s40279-015-0459-8. 426 

15. Dwyer, D. B. and Gabbett, T. J. (2012) ‘Global Positioning System Data Analysis: Velocity Ranges 427 

and a New Definition of Sprinting for Field Sport Athletes’, Journal of Strength and Conditioning 428 

Research, 26(3), pp. 818–824. 429 

16. Fava, G. A., Tomba, E. and Sonino, N. (2012) ‘Clinimetrics: The science of clinical measurements’, 430 

International Journal of Clinical Practice, 66(1), pp. 11–15. doi: 10.1111/j.1742-431 

1241.2011.02825.x. 432 

17. Federolf, P. et al. (2014) ‘The application of principal component analysis to quantify technique 433 

in sports’, Scandinavian Journal of Medicine and Science in Sports, 24(3), pp. 491–499. doi: 434 

10.1111/j.1600-0838.2012.01455.x. 435 



Elite Soccer Player Reported Fatigue During Different Time Points in a Season    20 
 

18. Fessi, M. S. and Moalla, W. (2018) ‘Post-match Perceived Exertion, Feeling and Wellness in 436 

Professional Soccer Players’, International Journal of Sports Physiology and Performance, 13, pp. 437 

631–637. doi: 10.1123/ijspp.2017-0725. 438 

19. Fletcher, B. D. et al. (2016) ‘Season Long Increases in Perceived Muscle Soreness in Professional 439 

Rugby League Players: Role of Player Position, Match Characteristics and Playing Surface’, 440 

Journal of Sport Sciences, 34, pp. 1067–1072. 441 

20. Gallo, T. F. et al. (2016) ‘Pre-training perceived wellness impacts training output in Australian 442 

football players’, Journal of Sports Sciences, 34(15), pp. 1445–1451. doi: 443 

10.1080/02640414.2015.1119295. 444 

21. Gastin, P., Meyer, D. and Robinson, D. (2013) ‘Perceptions of Wellness to Monitor Adaptive 445 

Responses to Training and Competition in Elite Australian Football’, Journal of Strength and 446 

Conditioning Research, 27(9), pp. 2518–2526. 447 

22. Gaudino, P. et al. (2013) ‘Monitoring training in elite soccer players: Systematic bias between 448 

running speed and metabolic power data’, International Journal of Sports Medicine, 34(11), pp. 449 

963–968. doi: 10.1055/s-0033-1337943. 450 

23. Govus, A. D. et al. (2018) ‘Relationship between Pre-Training Participantive Wellness Measures, 451 

Player Load and Rating of Perceived Exertion Training Load in American College Football’, 452 

International Journal of Sports Physiology and Performance, 13, pp. 95–101. doi: 453 

10.1123/ijspp.2015-0012. 454 

24. Grant, C. et al. (2012) ‘The Profile of Mood State (POMS) questionnaire as an indicator of 455 

Overtraining Syndrome (OTS) in Endurance Athletes’, African Journal for Physical, Health 456 

Education, Recreation and Dance, March, pp. 23–32. 457 

25. Gregson, W. et al. (2010) ‘Match-to-Match Variability of High-Speed Activities in Premier League 458 

Soccer’, International Journal of Sports Medicine, 31, pp. 237–242. 459 



Elite Soccer Player Reported Fatigue During Different Time Points in a Season    21 
 

26. Halson, S. L. (2014) ‘Monitoring Training Load to Understand Fatigue in Athletes’, Sports 460 

Medicine, 44, pp. 139–147. doi: 10.1007/s40279-014-0253-z. 461 

27. Hills, S. and Rogerson, D. (2018) ‘Associatons between Self-Reported Wellbeing and 462 

Neuromuscular Performance During a Professional Rugby Union Season’, Journal of Strength 463 

and Conditioning Research. doi: 10.1519/JSC.0000000000002531. 464 

28. Impellizzeri, F. M., Marcora, S. M. and Coutts, A. J. (2019) ‘Internal and external training load: 15 465 

years on’, International Journal of Sports Physiology and Performance, 14(2), pp. 270–273. doi: 466 

10.1123/ijspp.2018-0935. 467 

29. Jeffries, A. C. et al. (2020) ‘Athlete-Reported Outcome Measures for Monitoring Training 468 

Responses: A Systematic Review of Risk of Bias and Measurement Property Quality According to 469 

the COSMIN Guidelines’, International Journal of Sports Physiology and Performance, 15(9), pp. 470 

1203–1215. doi: 10.1123/ijspp.2020-0386. 471 

30. Kellmann, M. and Kallus, W. (2001) Recovery-Stress Questionnaire for Athletes. Edited by H. 472 

Kinetics. Champaign, IL. 473 

31. Kiely, J. (2018) ‘Periodization Theory : Confronting an Inconvenient Truth’, Sports Medicine. 474 

Springer International Publishing, 48, pp. 753–764. doi: 10.1007/s40279-017-0823-y. 475 

32. McLaren, S. J., Coutts, A. J. and Impellizzeri, F. M. (2020) ‘Chapter 9i: Perception of Effort and 476 

Participantive Monitoring’, in French, D. N. and Torres-Ronda, L. (eds) NSCA’s Essentials of Sport 477 

Science. Champaign, IL: Human Kinetics. 478 

33. McMahon, G. et al. (2018) ‘Relationship between match week load, perceived load and markers 479 

of wellness during the FIFA World Cup 2018 Qualifying Stage’, in European College of Sport 480 

Science. 481 

34. Le Meur, Y. et al. (2013) ‘Evidence of parasympathetic hyperactivity in functionally overreached 482 

athletes’, Medicine and Science in Sports and Exercise, 45(11), pp. 2061–2071. doi: 483 



Elite Soccer Player Reported Fatigue During Different Time Points in a Season    22 
 

10.1249/MSS.0b013e3182980125. 484 

35. Noon, M. et al. (2018) ‘Next Day Participantive and Objective Recovery Indices Following Acute 485 

Low and High Training Loads in Academy Rugby Union Players’, Sports, 6(2), p. 56. doi: 486 

10.3390/sports6020056. 487 

36. Noon, M. R. et al. (2015) ‘Perceptions of Well being and Physical Performance in English Elite 488 

Youth Footballers across a season’, Journal of Sport Sciences. 489 

37. Nuccio, R. P. et al. (2017) ‘Fluid Balance in Team Sport Athletes and the Effect of Hypohydration 490 

on Cognitive, Technical, and Physical Performance’, Sports Medicine. Springer International 491 

Publishing, 47(10), pp. 1951–1982. doi: 10.1007/s40279-017-0738-7. 492 

38. Peterson, K. D. and Evans, L. C. (2019) ‘Decision Support System for Mitigating Athletic Injuries’, 493 

International Journal of Computer Science in Sport, 18(1), pp. 45–63. doi: 10.2478/ijcss-2019-494 

0003. 495 

39. Rabbani, A. et al. (2018) ‘Monitoring collegiate soccer players during a congested match 496 

schedule: Heart rate variability versus participantive wellness measures’, Physiology and 497 

Behavior. Elsevier, 194(July), pp. 527–531. doi: 10.1016/j.physbeh.2018.07.001. 498 

40. Rabbani, A., Kargarfard, M. and Twist, C. (2018) ‘Fitness Monitoring in Elite Soccer Players: 499 

Group vs. Individual Analyses’, Journal of Strength and Conditioning Research, pp. 1–8. 500 

41. Rushall, B. R. (1990) ‘A tool for measuring stress tolerance in elite athletes’, Journal of Applied 501 

Sport Psychology, 2, pp. 51–66. 502 

42. Saw, A. E., Halson, S. L. and Mujika, I. (2018) ‘Monitoring Athletes during Training Camps: 503 

Observations and Translatable Strategies from Elite Road Cyclists and Swimmers’, Sports 2018, 504 

Vol. 6, Page 63, 6(3), p. 63. doi: 10.3390/SPORTS6030063. 505 

43. Saw, A. E., Main, L. C. and Gastin, P. B. (2016) ‘Monitoring the athlete training response: 506 

Participantive self-reported measures trump commonly used objective measures: A systematic 507 



Elite Soccer Player Reported Fatigue During Different Time Points in a Season    23 
 

review’, British Journal of Sports Medicine, 50(5), pp. 281–291. doi: 10.1136/bjsports-2015-508 

094758. 509 

44. Sawczuk, T. et al. (2018) ‘The influence of training load, exposure to match play and sleep 510 

duration on daily wellbeing measures in youth athletes’, Journal of Sports Sciences. Routledge, 511 

36(21), pp. 2431–2437. doi: 10.1080/02640414.2018.1461337. 512 

45. Stagno, K. M., Thatcher, R. and van Someren, K. A. (2007) ‘A modified TRIMP to quantify the in-513 

season training load of team sport players’, Journal of Sports Sciences, 25(6), pp. 629–634. doi: 514 

10.1080/02640410600811817. 515 

46. Stevens, T. G. A. T. G. A. et al. (2017) ‘Quantification of in-season training load relative to match 516 

load in professional Dutch Eredivisie football players’, Science and Medicine in Football. 517 

Routledge, 1(2), pp. 117–125. doi: 10.1080/24733938.2017.1282163. 518 

47. Taylor, K. et al. (2012) ‘Fatigue monitoring in high performance sport: a survey of current 519 

trends’, J Aust Strength Cond, 20(1), pp. 12–23. 520 

48. Thorpe, R. T. et al. (2015) ‘Monitoring fatigue during the in-season competitive phase in elite 521 

soccer players’, International Journal of Sports Physiology and Performance, 10(8), pp. 958–964. 522 

doi: 10.1123/ijspp.2015-0004. 523 

49. Thorpe, R. T. (2015) ‘Monitoring Fatigue Status in Elite Soccer Players Moores University for the 524 

degree of’, (December). 525 

50. Thorpe, R. T. et al. (2016) ‘Tracking morning fatigue status across in-season training weeks in 526 

elite soccer players’, International Journal of Sports Physiology and Performance, 11(7). doi: 527 

10.1123/ijspp.2015-0490. 528 

51. Thorpe, Robin T. et al. (2017) ‘fatigue status in elite team sport athletes : Implications for 529 

practice’, International Journal of Sports Physiology and Performance, 12(S2), pp. 27–34. doi: 530 

10.1123/ijspp.2016-0434. 531 



Elite Soccer Player Reported Fatigue During Different Time Points in a Season    24 
 

52. Thorpe, Robin T et al. (2017) ‘The Influence of Changes in Acute Training Load on Daily 532 

Sensitivity of Morning-Measured Fatigue Variables in Elite Soccer Players’, International Journal 533 

of Sports Physiology and Performance. Human Kinetics Publishers Inc., 12, pp. 107–113. doi: 534 

10.1123/ijspp.2016-0433. 535 

53. Varley, M. C. et al. (2017) ‘Methodological considerations when quantifying high-intensity 536 

efforts in team sport using global positioning system technology’, International Journal of Sports 537 

Physiology and Performance, 12(8), pp. 1059–1068. doi: 10.1123/ijspp.2016-0544. 538 

54. Watanabe, N., Wicker, P. and Yan, G. (2017) ‘Weather conditions, travel distance, rest, and 539 

running performance: The 2014 fifa world cup and implications for the future’, Journal of Sport 540 

Management, 31(1), pp. 27–43. doi: 10.1123/jsm.2016-0077. 541 

55. Weaving, D. et al. (2014) ‘Combining internal- and external-training-load measures in 542 

professional rugby league’, International Journal of Sports Physiology and Performance, 9(6), pp. 543 

905–912. doi: 10.1123/ijspp.2013-0444. 544 

56. Williams, S. et al. (2017) ‘Evaluation of the Match External Load in Soccer: Methods 545 

Comparison’, Journal of Science and Medicine in Sport. Sports Medicine Australia, 2(3), pp. 550–546 

555. doi: 10.5604/20831862.1127284. 547 

57. Wundersitz, D. W. T. et al. (2015) ‘Validation of a Trunk-mounted Accelerometer to Measure 548 

Peak Impacts during Team Sport Movements’, International Journal of Sports Medicine, 36(9), 549 

pp. 742–746. doi: 10.1055/s-0035-1547265. 550 

 551 

 552 

 553 

  554 



Elite Soccer Player Reported Fatigue During Different Time Points in a Season    25 
 

Figure 1: Distribution and individual data points for all items of the wellness data with mean and 555 

95% confidence intervals (black dots and error bars).   556 

 557 

 558 
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Figure 2: Partial Correlations (95%, CI)  for the relationship between Next Day reported  560 

Soreness and selected independent variables for Overall, In-Season and Pre-Season periods. 561 

 562 

 563 
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Figure 3: Partial Correlations (95%, CI) and Magnitude for the relationship between Next Day 565 

Measured Perceived Mood and selected independent variables for Overall, In-Season and Pre-566 

Season periods 567 

  568 
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Figure 4: Partial Correlations (95%, CI) for the relationship between Next Day Measured 569 

Perceived Nutrition and selected independent variables for Overall, In-Season and Pre-Season 570 

periods 571 
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Table 1:  Descriptive Statistics (Mean ± Standard Deviation, Range) are shown for training load 573 

variables.  574 

  575 

Metric 

 Mean ± Standard 

Deviation   Range 

Total Distance (m) 4872 ± 2351 609-11493 

High-speed running distance 

(m) 

190 ± 151 0-738 

Sprint distance (m) 55 ± 69 0-415 

Player Load (AU) 497 ± 217 60-1078 

HR trimp (AU) 78 ± 67 28-316 

session RPE (AU) 61 ± 21 10-100 
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