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Abstract: The extent of wildfires cannot be easily mapped using field-based methods in areas with
complex topography, and in those areas the use of remote sensing is an alternative. This study
first obtained images from the Sentinel-2 satellites for the period 2015–2020 with the objective of
applying multi-temporal spectral indices to assess areas burned in wildfires and prescribed fires
in the Margalla Hills of Pakistan using the Google Earth Engine (GEE). Using those images, the
Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR), which are
often used to assess the severity of fires, were calculated for wildfires and prescribed fires. For each
satellite image, spectral indices values were extracted for the 5th, 20th, 40th, 60th, 80th and 95th
percentiles of pixels of each burned area. Then, boxplots representing the distribution of these values
were plotted for each satellite image to identify whether the regeneration time subsequent to a fire,
also known as the burn scar, and the severity of the fire differed between the autumn and summer
wildfires, and with prescribed fires. A statistical test revealed no differences for the regeneration
time amongst the three categories of fires, but that the severity of summer wildfires was significantly
different from that of prescribed fire, and this, for both indices. Second, SAR images were obtained
from the Sentinel-1 mission for the same period as that of the optical imagery. A comparison of the
response of 34 SAR variables with official data on wildfires and prescribed fires from the Capital
Development Authority revealed that the 95th percentile of the Normalized Signal Ratio (NSR p_95)
was found to be the best variable to detect fire events, although only 50% of the fires were correctly
detected. Nonetheless, when the occurrence of fire events according to the SAR variable NSR p_95
was compared to that from the two spectral indices, the SAR variable was found to correctly identify
95% of fire events. The SAR variable NSR p_95 is thus a suitable alternative to spectral indices to
monitor the progress of wildfires and assess their severity when there are limitations to the use of
optical images due to cloud coverage or smoke, for instance.

Keywords: wildfires; prescribed fires; Margalla Hills; SAR; optical images; spectral indices; NBR; NDVI

1. Introduction

Wildfires are a common natural occurrence in many environments and constitute a
vital component for their management. However, fires of high severity that cause devasting
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impacts over large areas have recently been documented, notably in the United States of
America, the Mediterranean region, Australia, and Pakistan [1–5], bringing into question
the effectiveness of current management practices, as these severe wildfires lead to an
undesirable alteration and degradation of the landscape [6]. Many variables influence
the severity of a fire, including elevation, slope and aspect [7], weather and climatic
conditions [8], the structural characteristics of the forest, such as the density of trees and
their diameter [9], and the history of fires in the area [10]. The last factor is particularly
important, as it affects the soil’s organic content, which fuels the fire. For this reason, fuel
treatments such as vegetation thinning and prescribed fires are commonly conducted in
order to alter fuel conditions and thus make wildfires less severe [11].

The severity level of large fires cannot easily be mapped using field-based methods, es-
pecially in areas with complex topography. Hence, remote sensing provides an opportunity
to assess the impact of wildfires. This is because a fire leads to changes in vegetation and
soil moisture, enabling the use of optical remote sensing images to assess its impact [12,13].
Moreover, with the increase in their spatial resolution, satellite data and their derived
products have made it possible not only to determine the spatial extent of the burned area
as a result of a fire, but also to provide valuable information for monitoring the progression
of wildfires and to assess their severity [14,15].

Optical images from the Sentinel-2 satellite, with a 10-m spatial resolution, together
with spectral indices have previously been used to assess fire severity. The most commonly
used indices for this purpose are the Normalized Burn Ratio (NBR) and the Normalized
Difference Vegetation Index (NDVI) [16,17], with the results of previous research identifying
NBR to be more sensitive than NDVI to the spectral changes produced by fires of moderate
and extreme severity [18,19]. Although it was found that optical imagery can satisfactorily
be used to monitor and assess the severity of a fire, there are limitations with regard to
their use, such as cloud coverage, smoke and haze, all of which limit the usefulness of
sensors in the visible and infrared domains of the electromagnetic spectrum. Moreover,
optical images from Landsat, with its 16-day repeat cycle, is a limitation for the monitoring
of burned areas. In addition, misinterpretation of burned areas with dark soils, shaded
regions and water bodies is common when using optical satellite imagery [20,21].

Satellite images from the Sentinel-1 mission provide a potential alternative to optical
images in situations when the latter cannot be used due to cloud coverage or smoke, for
instance, or they can complement the optical images to gain more information from the
surface [22]. The Sentinel-1 mission provides C-band Synthetic Aperture Radar (SAR)
images [23], and satellite images from that mission as well as those from the Sentinel-2
mission are available in the Google Earth Engine (GEE), an integrated platform designed
to empower traditional remote sensing scientists and a wider audience [24] by providing
pre-processed satellite data free of charge.

The mapping of burned areas using SAR images relies on changes in the backscattering
of the radar signal, which varies depending of the severity of the fire [3,22]. C-band SAR
data have previously been used to investigate the extent of burned areas subsequent to fires
in Australia and California, and it was found that the vertical horizontal (VH) polarization
responded well to the occurrence of fires [3,22]. Other studies have also found that SAR im-
agery allowed for the detection and extent of burn scars in the landscape [25–28]. Previous
research has thus found that SAR provides an opportunity for detecting and assessing the
spatial extent and damage of wildfires without the limitations of atmospheric conditions
on their use, such as for remote sensing images in the optical range. Nonetheless, further
research is needed to assess the functionality associated with the use of those images and
how the damage assessment from wildfires using SAR images compares with that using
spectral indices.

Therefore, this study assesses areas burned in wildfires and prescribed fires using
optical (Sentinel-2) images, and the associated spectral indices typically used for that
purpose, and SAR (Sentinel-1) images. Specifically, the objectives are (1) to determine
whether there are significant differences in the backscatter signal of the Sentinel-1 images
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during wildfires and prescribed fires for their use in detecting burned areas and fire severity,
as well as to identify the best variable to detect burned areas when working with SAR
images, (2) to compare fire severity from fires as identified by SAR images versus that
from spectral indices, and (3) to determine whether the severity of the prescribed fires
is significantly different from that of wildfires, with a focus on the summer and autumn
seasons. This research evaluates fire severity based on vegetation recovery following a fire
only, hence a longer recovery period would be associated with a more severe fire.

2. Materials and Methods
2.1. Study Area

This study was conducted in the Margalla Hills of Pakistan (Figure 1), a region
15,883 hectares in size covering forests, grass and small bushes inhabited by the Genista
tribe. The region is not used as pasture and is regularly affected by fires [29]. The climate
of the region is subtropical; the average maximum summer temperature is 34.3 ◦C [4,5,30],
and total annual precipitation is, on average, 1200 mm [28,31,32], the majority of which
falls in July and August. Accordingly, the fire season occurs between May and July, when
the temperatures are warmest and before the beginning of the monsoonal rains [4,5,13,33].
Lightning and the hot and dry weather during the summer months combined with the
dry conditions in the autumnal months of September and October after the monsoon
season are the natural and primary causes for the ignition and spread of wildfires, while
anthropogenic causes coming in second place in reports of past fire incidents [34–36].
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2.2. Datasets

Data on the occurrence of wildfires and prescribed fires that took place during the
period 2015–2020 in the study region were collected from the website of the Capital
Development Authority (https://gis.cda.gov.pk/isl/; accessed on 18 February 2020) (CDA,
2020), with the attribute table of the dataset containing information such as the date of the
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fire, its cause, and the total area burned [4]. Wildfires with an incomplete attribute table
were not considered in this study. The CDA also provided data on land-use and land-cover
(LULC) type for the year 2018 at a 0.5 m resolution. Data from 30 prescribed fires, also
during the 2015–2020 period, were also obtained from the CDA (Figure 1). The prescribed
fires ranged in spatial extent from one to three hectares. The data on prescribed fires were
provided in shapefile format, containing both qualitative and quantitative information; the
latter describing the burned areas and the former the behavior and impacts of the fire. The
prescribed fire dataset also included information such as the slope of the area where the
fires took place as well as the aspect, altitude, and the date when the area burned.

2.3. Sampling and Preprocessing

Polygons from Sentinel-1 and Sentinel-2 images less than one hectare and with a
distance from border less than 10 m were removed from the study to reduce border impacts.
This value of 10 m was selected given the 10 m spatial resolution of the Sentinel-2 images.
After that, an inner buffer of 10 m was added to the remaining polygons for the Sentinel-1
and Sentinel 2 analysis. Following the creation of this inner buffer zone, the number of
pixels for each polygon was checked, and polygons with less than five pixels were not
considered, resulting in more robust statistics that are less susceptible to outliers. For
Sentinel 1, all 10 polygons had more than 20 pixels and therefore could be used, while for
Sentinel-2 (Table 1), 10 polygons could also be analysed. The analysis returned 48 images for
Sentinel 1 between 24 April 2015 and 31 December 2020 and 70 images between 11 May 2015
and 2 August 2020 for Sentinel-2.

Table 1. Number of pixels for each polygon for the Sentinel-1 and Sentinel-2 images.

Sentinel-1 Sentinel-2

Polygon Name Number of Pixel Polygon Name Number of Pixels

Summer_18_1 1294 Summer_18_1 1294
Summer_19_1 518 Summer_19_6 1929
Summer_19_3 1930 Summer_19_12 516

PF_18_1 158 PF_18_1 152
PF_18_6 223 PF_18_6 220

PF_18_12 1178 PF_18_12 1160
PF_19_1 580 PF_19_1 581

Autumn _18_2 27 Autumn _18_2 33
Autumn _19_1 39 Autumn _19_1 48
Autumn _20_6 46 Autumn _20_6 58

(Note: The polygon name refers to the “season_ year_sample number”).

Because clouds can prevent radiation from active fires from reaching the thermal
sensors on satellites, the algorithm was designed with a backup approach to deal with the
lack of flames for a particular land cover type and detection period. However, in order
for the approach to work, flames for each land cover class must be present at some point
during the fire season being examined.

2.4. Analysis
2.4.1. Sentinel-1 Images Using GEE

The pre-processing step includes Ground Range Detected (GRD) data downloaded
from GEE and radiometric normalization to gamma nought (γ0) using the gamma nought
lookup table provided in the product metadata. Over land, only SAR images collected in
the interferometric broad swath mode, the default acquisition mode of Sentinel-1, were
used. Using elevation data from the Shuttle Radar Topography Mission (SRTM) one-arc-
second DEM and the bicubic interpolator, the calibrated images were orthorectified to
ground geometry as in [37,38]. The orthorectified images were clipped to the processing
tile, and data collected along the same orbital route but in separate slices were mosaicked
(i.e., slice assembly). The burned area algorithm uses temporal backscatter differences of
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the same relative orbit, so terrain-flattening [39,40] was not required because the DEM-
derived normalization (illumination) area for a given pixel is constant in time, so the pre-
to post-fire backscatter coefficient variations are not affected. The GEE product was then
converted to provide γ0 values, which corrected for the local incidence angle in SRTM and
removed the bias between ascending and descending orbits that was visible in the plots.

A temporal decorrelation between fire events and backscatter coefficient change
was discovered during the algorithm development [39]. Such decorrelation events could
be the result of a delay in the decrease of the backscatter signal after the fire due to a
variety of factors, notably: (1) pre-fire conditions, such as drier than usual weather, which
could result in low values for the pre-fire backscatter coefficient; (2) post-fire weather,
such as precipitation, which could temporally increase the backscatter coefficient; and
(3) vegetation-dependent backscatter response to fire. VH backscatter reduction may be
delayed in forested areas, for example, since there are still enough scattering components
(tree trunks and branches) present following a fire. Trunks and branches dry out with time,
resulting in less vegetation backscatter.

This subsection discusses the behavior of the C-band backscatter coefficient after fire
occurrences in order to better understand the proposed algorithm, its development, and
the decision-making process that led to it. Depending on the polarization, the surviving
vegetation, and the climatic conditions (i.e., temperature and rainfall) at the time that the
SAR image was taken, fire in vegetated regions can cause either an increase or decrease in
the backscatter coefficient.

Backscatter values may be used as a signal in analysis to identify a significant dif-
ference from the background noise. The natural fluctuation of backscatter across many
detections may be considered to represent noise. GEE was used to derive six percentiles
for each polygon. Outliers and null values may come from regions on the edge of an
image, even if they are inside the image footprint. Within the footprint, the image/area
pair utilized in the map reduce process will be included, but null or extremely low values
will be produced, which must be deleted.

The values extracted by “map reduce” were six percentiles Pn = {p5, p20, p40, p60,
p80 and p95}. These were available for both VV and VH polarizations. The following
Equations (1)–(5) were used for the SAR percentile analysis:

IPr1 = Yp75 − Yp25 (1)

IPr2 = Yp90 − Yp10 (2)

NSRpn =
YVV

pn − YVH
pn

YVV
pn + YVH

pn
(3)

RATIOpn =
YVV

pn

YVH
pn

(4)

DIFFpn = YVV
pn − YVH

pn (5)

where: P is the percentile and n = (5th, 20th, 40th, 60th, 80th, 95th); NSR is Normalized
Signal Ratio (NSR); IPr1 and IPr2 are Inter Percentile range for the 20th 80th and the 5th to
95th ranges, respectively. Thirty four variables were tested, and the explanation for each
one of them is presented in Table 2. Six major VH and VV polarization over the percentiles
were extracted from the Sentinel-1 data.

To account for temporal decorrelation and enhance identification results over difficult
land cover such as vegetation regions, post-processing was required. After that, this tech-
nique was used to choose one or a few of the best variables to compare them to the spectral
indices, since comparing all variables to the spectral indices would be a daunting task.
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Table 2. The 34 variables used to analyze SAR data.

Name of Variables Explanation

VH_p5; VH_p20; VH_p40; VH_p60; VH_p80;
VH_p95

VH polarization over various percentiles taken
directly from the Sentinel-1 database in GEE

VH Range_p80p20; VH Range_p95p5 Inter-percentile ranges over VH polarization
VV_p5; VV_p20; VV_p40; VV_p60; VV_p80;
VV_p95

VV polarization over the six percentiles taken
directly from the Sentinel-1 database in GEE

VVdivVH_p5; VVdivVH_p20; VVdivVH_p40;
VVdivVH_p60; VVdivVH_p80; VVdivVH_p95 RATIO over the six percentiles

VVminusVH_p5; VVminusVH_p20;
VVminusVH_p40; VVminusVH_p60;
VVminusVH_p80; VVminusVH_p95

DIFF over the six percentiles

VVnormDiffVH_p5; VVnormDiffVH_p20;
VVnormDiffVH_p40; VVnormDiffVH_p60;
VVnormDiffVH_p80; VVnormDiffVH_p95

NSR over the six percentiles

VVRange_p80p20; VVRange_p95p5 Inter-percentile ranges over VV polarization
(Note: VV = Vertical transmit and Vertical receive; VH = Vertical transmit and Horizontal receive).

The smoothed Z-score method, as described in [41], was used for data evaluation
to identify backscatter levels that differ substantially from “normal” values. Backscatter
values, by giving a consistent surface feature across time, are thought to give a regularly
distributed population with a particular average and standard deviation. The method
must account for snow and rain, which alter the surface characteristics and may lead to
false positives. The detection method employs a Z-score derived from the average (µ) and
standard deviation (σ) of values preceding the value to be tested across a moving window
p of size N. The backscatter value may be substantially different from previous readings
if Z is over a particular threshold. We utilized three criteria to obtain a confidence level
of 99% or higher. This method is utilized in a variety of applications, including detecting
acceleration [42] and recognizing ribosome footprint anomalies [43].

2.4.2. Validation of the Spectral Indices

The following spectral indices were calculated using Sentinel-2 images: NDVI (Equation (6)),
NBR (Equation (7)), and delta NBR (dNBR) (Equation (8)), because they are the most
common indices to assess the severity of a fire in the literature [18].

NDVI =
(

BandRED − BandNIR)
(BandRED + BandNIR)

(6)

where NIR refers to the near-infrared, BandNIR denotes 0.76–0.90 µm wavelengths,

NBR =

(
BandNIR − BandSWIR)
(BandNIR + BandSWIR)

(7)

where SWIR refers to short wave infrared and BandSWIR refers to wavelengths in the
following range: 2.09–2.35 µm. The NDVI and NBR values vary from −1 to 1, with
1 representing the greatest level of vegetative activity, and negatives values and those close
to zero indicating little or no chlorophyll activity [24,44]. Burned frequency and severity
are determined by differentiating between these two index layers:

dNBR =
(

NBRPre− f ire − NBRPost− f ire
)

(8)

A high dNBR value indicates a more severe fire and negative values suggest decreased
vegetation productivity subsequent to a fire. “Non-processing zones” contains portions
of the background covered by fog or haze or wet areas. Field survey data based on the
Normalized Burned Ratio—Field survey Data (NBR-FD) as provided by CDA, were also
used to calculate the burned area after a forest fire. Normalized Burned Ratio—Sentinel-1
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data (NBR-S1), Normalized Burned Ratio—Sentinel-2 data (NBR-S2), Delta Normalized
Burned Ratio—Sentinel-1 data (dNBR-S1), Delta Normalized Burned Ratio—Sentinel-2 data
(dNBR-S2), Delta Normalized Burn Ratio- Field survey Data (dNBR-FD) were extracted
from the pre and post fire field survey difference and both files (NBR and dNBR) were
provided to us in the form of shape files of the burned area.

Processed satellite data and the CDA field data were grouped into two clusters. The
first cluster shows the calculated indices of NDVI, NBR and dNBR, and the second cluster
used ground field derived data including NBR-FD and dNBR-FD. Correlation matrices
between Sentinel images and CDA field data were computed. Correlation coefficients with
absolute values greater than 0.6 were tallied within the field and image categories were
named by sensor type and strength of the Pearson’s correlation coefficient.

After obtaining the Sentinel-1 data as well as the NDVI and NBR plots from the
Sentinel-2 images, a comparison was conducted to see whether SAR provides a suitable
signal during a fire occurrence. Figure 2 summarizes the approach.
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Figure 2. Summary of the methodology used in this paper.

3. Results
3.1. NDVI

Table 3 shows the NDVI values prior to and after wildfires and prescribed fires over
the study area. A decrease in the NDVI may sometimes be linked to an increase in water
stress, with the resulting increase in the risk of fire. According to Table 3, a “mean before
fire” was calculated by utilizing values that had previously stabilized from all prior data
before the fire, indicating that if in the past that same polygon had experienced a fire, it
was excluded from the “mean before fire” calculation. For the “minimum after a wildfire,”
we used the minimum value of the 40th and 60th percentile (the median) after a wildfire,
and we took into consideration all pixels inside each region. Since it is less sensitive to
outliers, we selected the 40th and 60th percentile (e.g., unburned parts) [45,46]. The “days
for recovery” were computed using the 40th and 60th percentile value of the first day of
the fire until the day when the 60th percentile value reaches the “mean before the fire.” In
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the end, the intensity of the fire in that region was determined by the difference between
Minimum and Mean (“Min–Mean”).

Table 3. Each polygon utilized in the NDVI studies was given its own set of data.

Samples
Regeneration Before Fire After Fire

(Min–Mean)
No of Days Dates Mean SD Mean SD

Summer_18_1 48 2018/05/02 0.554 0.057 0.339 0.025 0.215
Summer_19_3 93 2019/05/06 0.570 0.073 0.363 0.026 0.207
Summer_19_1 163 2019/07/12 0.712 0.075 0.335 0.023 0.377

PF_18_1 34 2018/07/20 0.681 0.065 0.275 0.021 0.406
PF_18_6 432 2018/05/14 0.657 0.082 0.470 0.031 0.187
PF_18_12 152 2018/05/18 0.611 0.056 0.303 0.020 0.308
PF_19_1 247 2019/07/20 0.705 0.070 0.389 0.027 0.316

Autumn _18_2 135 2018/10/14 0.657 0.045 0.393 0.027 0.264
Autumn _19_1 69 2019/11/13 0.698 0.059 0.355 0.026 0.343
Autumn _20_6 66 2020/10/04 0.739 0.041 0.418 0.028 0.321

Figure 3 shows the regeneration time subsequent to prescribed and forest fires in the
autumn and summer using NDVI. Wildfires that occurred in the autumn took an average
of 223 days to recover from the fire, whereas wildfires that occurred in the summer took an
average of 188 days, and prescribed fires took an average of 165 days to recover [47]. The
Tukey-Kramer (T-K) test did not identify statistically significant differences in the number
of days between the three categories of fires at the 95% confidence level.
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Figure 4 indicates that the average pre- and post-fire NDVI differences for autumn
wildfires, summer wildfires, and prescribed fires were 0.398, 0.278, and 0.156, respectively.
The T-K test revealed that the severity of the autumn wildfires was not statistically different
from that of the prescribed fires. Summer wildfires, however, differed considerably in
severity from prescribed fires, but the difference between summer and autumn wildfires
was not found to be statistically significant.

3.2. NBR

All of the variables in Table 4 were generated following the previously described
approach, but this time using NBR.
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Table 4. Data for each polygon used in NBR analyzes.

Samples
Regeneration Before Fire After Fire

(Min–Mean)
No of Days Dates Mean SD Mean SD

Summer_18_1 130 2018/05/01 0.508 0.098 −0.143 0.12 0.651
Summer_19_3 129 2019/05/08 0.581 0.061 −0.322 0.23 0.903
Summer_19_1 62 2019/07/18 0.437 0.083 −0.158 0.13 0.595

PF_18_1 34 2018/07/26 0.336 0.127 −0.205 0.15 0.541
PF_18_6 55 2018/05/03 0.350 0.154 −0.125 0.11 0.475
PF_18_12 87 2018/05/28 0.534 0.079 −0.225 0.16 0.759
PF_19_1 49 2019/07/29 0.494 0.066 −0.167 0.17 0.661

Autumn _18_2 15 2018/10/06 0.511 0.061 0.185 0.18 0.326
Autumn _19_1 24 2019/11/11 0.390 0.071 −0.206 0.19 0.596
Autumn _20_6 111 2020/10/15 0.518 0.075 −0.196 0.18 0.714

Figure 5 shows that areas with autumn wildfires took an average of 255 days to recover
from the fire, whereas areas with summer wildfires and prescribed fires took an average of
310 and 150 days, respectively.

For Figure 6, the difference between pre-fire and post-fire responses for autumn
wildfires, summer wildfires and prescribed fires had an average of 0.789, 0.735 and 0.635,
respectively. The autumn wildfires were considered by the T-K test of similar severity to the
prescribed fires. As for the other index, the severity of summer wildfires was found to be
significantly different from the severity of prescribed fires, while no statistically significant
difference was found between the autumn and summer wildfires.

3.3. SAR

The SAR images depict an example from one area for each of the 34 variables. The
Z-score of each value was calculated using the mean and standard deviation of the
previous 34 values; a Z-score more than three was considered substantially different.
When the 34 variables were analyzed, the variable VVnormDiffVH p_95 (NSR p_95)
produced the best results (p-value = 0.003), detecting fire events 20 times out of the
40 areas (50% of correct responses) when comparisng with the data from CDA. VVnor-
mDiffVH_p60, VH_p80, VH_p95, VV_p60, VV_p80, VV_p95, VH_p60, VVdivVH_p80,
VVdivVH_p95, VVdivVH_p80, VVdivVH_p95, VVdivVH_p80, VVdivVH_p95, VVdivVH_p80,
VVHRange_p95p20, VHRange_p95p5, VVRange_p80p40, and VVRange_p95p20 had more
incorrect reactions to fires, with an average of just four instances of proper replies to fires.
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Figure 6. Results of fire severity levels using NBR.

Time series analysis techniques developed for optical imagery are somewhat appli-
cable, although SAR characteristics of backscatter sensitivity to structure and moisture
warrant a closer look at new methods. As is typical for deforested areas at C-band, lower
backscatter at higher variability is observed in the C-band profile after the deforestation
event. This disturbance observation can be identified from the longer trends visible com-
pared to more short-term random noise due to moisture variations. After applying a kernel
filter to smooth the time series somewhat, a cumulative sum curve can be constructed from
the residuals of the time series data minus the mean observation of the entire time series.

Figure 7 shows the smoothed time series profile and the mean of the time series
SAR data used to calculate the response of fire. The cumulative sum of the response is
shown as the peaking red curve in the bottom panel. A way to establish the validity and
significance of a candidate change point is to perform an analysis in which the time steps
are randomly reordered and cumulative sums of the randomized response are computed.
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If the randomization (n > 0.005) shows few or no curves reaching the same maximum value
of the peak of the cumulative sum curve (which is the change point in time) the point
can be labeled valid. As can be seen in Figure 7, the 34-fold SAR variables shows that all
randomized curves are significantly lower in their peak values compared to the candidate
change point in the observed time series. Applying this approach to all pixels in the subset
results in the identification of change pixels and the detected dates of change. The left panel
in this figure shows a multitemporal color composite of Sentinel-1 ascending/descending
VV/VH polarization acquisitions from 2015 to 2020. Note that many of the red color tones
in this multitemporal composite correspond to the expected and detected deforestation and
forest degradation events. However, some red tones also are more associated with changes
in agricultural patterns, which were correctly not mapped as forest degradation events, as
their time series profiles did not match the type of curves seen in the previous profiles.
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3.4. Comparison between Spectral Indices and SAR

For this part of the study, only the NSR p_80 was used to make the comparison easier.
Also, only areas with NDVI and NBR data and SAR data were used (20 in total). Figure 8
shows that the NBR and NDVI plots were adapted to look more similar to the SAR plots
and make the visual interpretation easier. For that reason, the plots now are presented with
the mean value before the fire and its standard deviation in green. The grey region is the
20th percentile, and the 95th for the black line represents the percentile 60. The red line
indicates the fire event that was the focus of comparison, and the red dotted line, which
is shown in some plots, indicates a fire identified by the spectral indices and confirmed
by the official data from the CDA. In some cases, it is possible to see that even though the
spectral indices behave like there was a fire occurrence (e.g., Summer Wildfire 2019_18,
Winter Wildfire 2018_1), there is no indication of a fire with the red dotted line—because,
according to the official data from CDA, there was no fire on that day.
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Figure 8 shows a sample of two comparisons in which Sentinel-1 performed correctly,
another in which SAR did not correctly detect a fire, and a third in which the spectral
indices decreased to negative values, indicating that a fire had not occurred in theory,
and SAR exhibited the same behavior. When the NSR p_95 and the spectral indices are
compared, the rating of correct responses for SAR improves significantly, as SAR responded
correctly to NBR 19 out of 20 times (95% of correct responses), with the “Prescribed Fire
20_6” being the only one that differed significantly from NBR and NDVI values, and also
one of the areas with lower fire severity.

3.5. Burned Area Comparison

The NBR-S1, dNBR-S1, NBR-S2, and dNBR-S2 burn severity indices indicated a higher
proportion of significant correlations greater than 0.6 within the variables (Table 5). NBR
correlation with field attributes immediate post fire effects after capturing post fire images,
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as indicated by comparing the dNBR and NBR for various individual fires. dNBR produced
better correlations after several weeks had elapsed since burning.

Table 5. Pearson’s correlation coefficient between satellite derived and ground based derived results.

NBR-S1 dNBR-S1 NBR-S2 dNBR-S2 NBR-FD dNBR-FD

NBR-S1 1.0000 0.0735 0.8651 0.8325 0.0536 0.0825
dNBR-S1 0.0735 1.0000 0.8932 0.6231 0.0725 0.0539
NBR-S2 0.8651 0.8932 1.0000 0.0421 0.0852 0.0759

dNBR-S2 0.8325 0.6231 0.0421 1.0000 0.0425 0.0679
NBR-FD 0.0536 0.0725 0.0852 0.0425 1.0000 0.6481

dNBR-FD 0.0825 0.0539 0.0759 0.0679 0.6481 1.0000

4. Discussion

The variable NSR p95 (VVnormDiffVH_p95) was determined to be the best out of the
34 variables examined to identify the area burned during both wildfires and prescribed
fires using SAR imagery from the Sentinel-1 mission. This contrasts with the findings of
Stroppiana et al. [48], who showed that VH polarization alone was ineffective in responding
to flames. Furthermore, despite the fact that NSR p_95 only correctly responded to fire
occurrences 50% of the time, the approach employed for the identification of fire on official
CDA data was accurate 50% of the time. It didn’t accept false positive responses, such as if
one value fell without any evidence of fires on CDA’s official data [5].

Therefore, 48% of the times when NSR p_95 showed a fire event or an absence of fires,
the presence/absence of fire was confirmed on the official data. Although this was the
method used to evaluate what variable would be the best one between all the 34, once
the chosen variable (NSR p_95) was compared with the spectral indices (i.e., NBR and
NDVI), the percentage of correct responses increased significantly [49]. When the NSR
p_95 and spectral indices were compared, the rating of accurate answers for SAR increased
significantly, as SAR replied to NBR 95% of the time [23]. As a result, if NBR is the most
commonly used index for its correct reactions to fire, NSR p_95 might also be a suitable fit.
Moreover, in some cases, it is possible to see that even though the spectral indices behave
like there was a fire occurrence (e.g., NBR 19_18 summer), there is no indication of a fire in
the official data from the CDA.

This issue may be similar to another situation in which official reports do not match
the responses of spectral indices. A future study would be required to explore this issue.
It is also worth noting that the current study only looked at burned regions with grasses
and small shrubs. As a result, future research should concentrate on employing SAR and
comparing its values to those of spectral indices under various land-use/land-cover types.

Even though the number of days to recover from a fire for the three categories (au-
tumn wildfires, summer wildfires and prescribed fires) were not found to be statistically
different, the autumn wildfires are considered of equivalent intensity when compared
to the prescribed fires. Summer wildfires, however, are very different from prescribed
fires, whereas autumn fires are comparable. As a result, it may be claimed that summer
wildfires have a greater impact on the surface, but this has no bearing on the time it takes
to recover [50].

Because forest managers lack the means to treat the necessary area of the landscape
every year, the fact that autumn wildfires are equivalent in severity to prescribed fires,
this might be exploited to their advantage. Autumn wildfires might thus be utilized as a
treatment to mitigate the severity of summer wildfires, but it is critical to remember that
there is no prior delimitation for any wildfire, and the danger to people and infrastructure
must still be considered, even if the blaze is of moderate severity.

5. Conclusions

This paper found the variable NSR p95 to be adequate to identify burned areas in the
study region. It is worth noting that the SAR variable NSR p_95 was initially considered
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as correctly responding to fire events only 48% of the times where the official fire data
from CDA was used as support, but after comparing the SAR values to NBR values, the
percentage of “right” responses increased significantly—to 95%. That could be either due
to a real difference between NBR and the official fire data, or it could be due to bias. In
order to investigate this issue diminishing the human bias, the comparison between NSR
p_95 and NBR could be automatized in future studies.

Second, autumn wildfires have a severity close to the severity of prescribed fires.
Therefore, they could reduce summer wildfires as far as they are controlled. What can be
concluded from this finding is that meteorological conditions are responsible for defining
the severity of fires since all other variables (altitude, slope, aspect, area, shape, and land
use) were equal or similar for all areas analyzed.

Future studies may build upon our work by introducing and considering other recov-
ery parameters like species composition to enhance the reliability of the method.
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