
Brown, ST, McCarthy, IG, Stafford, SG and Font, AS

 Towards a universal model for the density profiles of dark matter haloes

http://researchonline.ljmu.ac.uk/id/eprint/15617/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Brown, ST, McCarthy, IG, Stafford, SG and Font, AS (2021) Towards a 
universal model for the density profiles of dark matter haloes. Monthly 
Notices of the Royal Astronomical Society, 509 (4). pp. 5685-5701. ISSN 
0035-8711 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


MNRAS 509, 5685–5701 (2022) https://doi.org/10.1093/mnras/stab3394 
Advance Access publication 2021 No v ember 26 

Towards a universal model for the density profiles of dark matter haloes 

Shaun T. Brown , ‹ Ian G. McCarthy , Sam G. Stafford and Andreea S. Font 
Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK 

Accepted 2021 No v ember 19. Received 2021 November 19; in original form 2021 August 23 

A B S T R A C T 

It is well established from cosmological simulations that dark matter (DM) haloes are not precisely self-similar and an additional 
parameter, beyond their concentration, is required to accurately describe their spherically averaged mass density profiles. We 
present, for the first time, a model to consistently predict both halo concentration, c , and this additional ‘shape’ parameter, α, 
for a halo of given mass and redshift for a specified cosmology. Following recent studies, we recast the dependence on mass, 
redshift, and cosmology to a dependence on ‘peak height’. We show that, when adopting the standard definition of peak height, 
which employs the so-called spherical top hat (STH) window function, the concentration–peak height relation has a strong 

residual dependence on cosmology (i.e. it is not uniquely determined by peak height), whereas the α–peak height relation is 
approximately universal when employing the STH window function. Given the freedom in the choice of window function, we 
explore a simple modification of the STH function, constraining its form so that it produces universal relations for concentration 

and α as a function of peak height using a large suite of cosmological simulations. It is found that universal relations for the two 

density profile parameters can indeed be derived and that these parameters are set by the linear power spectrum, P ( k ), filtered 

on different scales. We show that the results of this work generalize to any (reasonable) combination of P ( k ) and background 

expansion history, H ( z), resulting in accurate predictions of the density profiles of DM haloes for a wide range of cosmologies. 

Key words: methods: numerical – cosmology: theory – dark matter. 
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 I N T RO D U C T I O N  

he mass density profile of dark matter (DM) haloes is a key
rediction of the current concordance Lambda cold dark matter 
 � CDM) cosmology. The density distribution has been shown to 
epend on both the mass of a halo and redshift, with the precise
ependences being set by the cosmological parameter values that 
pecify the initial conditions and expansion rate of the Universe (e.g. 
renk et al. 1988 ). 
It has been shown in many previous studies that the density profiles

f DM haloes can be reasonably well approximated by an NFW 

rofile (Navarro, Frenk & White 1996 , 1997 ): 

( r ) = 

ρ0 

( r /r s )(1 + r/r s ) 2 
, (1) 

here r s is the scale radius, often quoted as a concentration c =
 / r s (where R is the halo radius, usually defined using a spherical
 v erdensity definition), and ρ0 is the normalization, which can be 
onstrained by the total mass of the halo. A key prediction of this
ormalism is that the structure of DM haloes, as a function of mass,
equires a single free parameter, the scale radius or concentration. 
onsequently, many empirical and analytical models have been 
eveloped to try to accurately predict the concentration of haloes 
s a function of mass, redshift, and cosmological parameters (e.g. 
ullock et al. 2001 ; Eke, Navarro & Steinmetz 2001 ; Prada et al.
012 ; Ludlow et al. 2014 ; Correa et al. 2015 ; Diemer & Kravtsov
015 ). 
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Although it is common to describe the density profiles of DM
aloes through a scale radius (i.e. a single parameter), it has
een demonstrated that DM haloes are not perfectly self-similar 
nd that a second parameter (other than concentration) is required 
o accurately describe the density profiles. This is true for both
ndividual and stacked density profiles (e.g. Gao et al. 2008 ; Navarro
t al. 2010 ). The Einasto profile (Einasto 1965 ) has been shown
o better reproduce the density profiles observed in high-resolution 
imulations: 

ln ( ρ( r) /ρ−2 ) = − 2 

α

[(
r 

r −2 

)α

− 1 

]
. (2) 

ere, r −2 is again a scale radius, defined to be the radius where
he logarithmic slope d ln ρ/d ln r is equal to −2, and is therefore
qui v alent to r s used in the NFW parametrization. The parameter α
s commonly referred to as the ‘shape’ parameter and describes how
uickly the slope of the density profile varies as a function of radius.
or α ≈ 0.18, the Einasto profile closely resembles an NFW form 

 v er radii typically sampled in cosmological simulations. 
As shown in Gao et al. ( 2008 ), the parameter α exhibits a

lear dependence on both halo mass and redshift, and also has a
ependence on the underlying cosmology as later demonstrated by 
udlow & Angulo ( 2017 ). Therefore, both c and α depend on mass,

edshift, and cosmology, moti v ating a model that can consistently
redict both parameters for a general cosmology. Compared to the 
alo concentration, the shape parameter has recei ved relati vely little
ttention in the literature and as such there does not yet exist a
odel aimed at predicting α for a general cosmology, only empirical 
odels that predict the α–M relation for a specific cosmology (e.g.
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Table 1. Summary of the various cosmological parameters for the majority 
of simulations presented in this work. The main two parameters varied are 
n s and A s . Along with k pivot , they specify the initial power spectrum for a 
� CDM cosmology. We also present values of σ 8 for these cosmologies. All 
cosmologies have the same background expansion: h = 0.7, �m 

= 0.2793, 
�b = 0.0463, and �� 

= 0.7207. 

Simulation suite n s A s k pivot σ 8 

( ×10 −9 ) ( h Mpc −1 ) 

WMAP 9 best fit 0 .96 2.392 2.86 × 10 −3 0.801 
Planc k piv ot 0 .5 2.103 7.14 × 10 −2 0.687 
Planc k piv ot 0 .75 2.103 7.14 × 10 −2 0.743 
Planc k piv ot 1 .25 2.103 7.14 × 10 −2 0.904 
Planc k piv ot 1 .5 2.103 7.14 × 10 −2 1.016 
Planc k piv ot 1 .75 2.103 7.14 × 10 −2 1.154 
k pivot = 1 h Mpc −1 0 .5 1.892 1.00 1.261 
k pivot = 1 h Mpc −1 0 .75 1.892 1.00 0.980 
k pivot = 1 h Mpc −1 1 .25 1.892 1.00 0.616 
k pivot = 1 h Mpc −1 1 .5 1.892 1.00 0.498 
k pivot = 1 h Mpc −1 1 .75 1.892 1.00 0.407 
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uffy et al. 2008 ; Ludlow et al. 2013 ; Dutton & Macci ̀o 2014 ).
ote that a significant number of models infer the concentration
f haloes from simulations adopting a fixed shape parameter when
tting to the density profiles, which can lead to biased estimates of
oncentration (as the two parameters are not independent). 1 Clearly,
and c should be modelled in a consistent way to be able to reliably

redict the density profiles of DM haloes. 
In this paper, we aim to link changes to both the initial density

uctuations, i.e. the linear power spectrum P ( k ), and the background
xpansion, H ( z), to the resulting density profiles of DM haloes
nd to quantify the dependence on halo mass and redshift. Ideally,
redictions for both c and α should fit into a consistent and physically
oti v ated theoretical frame work. Follo wing recent work, we recast

he dependences on halo mass and redshift into a single dependence
n ‘peak height’, a quantity that characterizes the amplitude of den-
ity fluctuations with respect to some critical threshold for collapse
see Section 3 for a general definition). The use of peak height is well
oti v ated by the spherical collapse model (Gunn & Gott 1972 ) and

lays an important role in the successful (extended) Press–Schechter
ormalism (Press & Schechter 1974 ). Previous simulation work has
hown that peak height correlates very strongly, though not perfectly,
ith both c and α (e.g. Gao et al. 2008 ; Prada et al. 2012 ). In this work,
e re-examine the definition of peak height and explore the freedom

herein in order to derive accurate universal relations (i.e. applicable
or wide ranges of cosmological parameters) for c and α. Specifically,
e exploit the freedom in the form of the window function that is
sed to filter the linear power spectrum when computing the peak
eight. We will show that the standard window function, the so-
alled spherical top hat (STH) function, is not the optimal choice
or predicting the density profile parameters and that a relatively
imple modification thereof results in a substantially impro v ed
odel. 
The paper is organized as follows. In Section 2, we discuss the

echnical details of the simulations and how they are processed,
articularly focusing on how the density profiles are stacked and
tted to obtain values and errors for c and α. In Section 3, we
iscuss the definition and key properties of peak height and how
t is calculated for a given cosmology. In Section 4, we present
ow the two density parameters, c and α, vary with peak height
or the cosmologies using the standard definition. In Section 5, we
oti v ate the use of an alternative window function when defining

eak height and quantitatively determine an optimal choice so that
oth c and α are universally described by this new definition of peak
eight. We additionally develop and present the model to predict
alo concentration and shape parameter for a general cosmology.
n Section 6, we test our model using additional cosmologies with
ery different background expansion rates to those used to calibrate
ur model. Finally, in Section 7, we conclude and summarize our
esults. 

 SIMULATION  A N D  ANALYSIS  DETA ILS  

n this section, we present the various cosmologies studied as well
s the technical details of the simulations used in this work. We
lso describe how the density profiles are calculated and fitted to
etermine values for halo concentration, c , and shape parameter, α. 
 In principle, the radius where the logarithmic slope is −2 can be directly 
stimated independent of α, and the concentration can be defined with this 
adius. Ho we ver, in practice this is very rarely done and when fitting the 
easured density profile o v er a wide radial range c and α are not independent. 
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d
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.1 Cosmologies 

n this work, we primarily study a subset of the cosmologies first
resented in Brown et al. ( 2020 ), particularly examining the two
uites closest to our own Universe. We discuss here briefly these
ifferent cosmologies. For a more in-depth description of how these
osmologies were chosen, we refer the reader to section 2.3 of Brown
t al. ( 2020 ). 

The cosmologies presented in Brown et al. ( 2020 ) were chosen to
ystematically study the effects of changes to both the amplitude and
hape (i.e. slope) of the linear power spectrum at different k -scales on
he internal properties of DM haloes, such as the density and velocity
ispersion profiles. The amplitude and shape were changed by using
 combination of free parameters in the � CDM model: the primordial
mplitude, A s , the primordial spectral index, n s , which directly affects
he slope of the linear power spectrum, and k pivot , which is the k -scale
sed for normalizing the linear power spectra. The cosmologies used
n this work are split into two suites: the ‘ Planc k piv ot’ and ‘ k pivot =
 h Mpc −1 ’ suites. For each suite, the primordial spectral index, n s ,
s systematically varied from 0.5 to 1.75 with a fixed A s and k pivot .
he n s = 0.96 case represents the best-fitting WMAP 9-yr results and

s therefore a close match to what we believe is our own Universe.
e present the values of A s , n s , k pivot , and σ 8 for these different

osmologies in Table 1 . These cosmologies share the same best-
tting WMAP 9-yr background expansion (Friedmann) parameters:
 = 0.7, �m 

= 0.2793, �b = 0.0463, and �� 

= 0.7207 (Hinshaw
t al. 2013 ). 

In Fig. 1 , we present the z = 0 linear power spectra (top panels)
or the k pivot = 1 h Mpc −1 (left-hand panels, purple lines) and Planck
ivot (right-hand panels, green lines) suites. The different shades
epresent the different values of n s , as shown by the colour bars
bo v e each column. The two different pivot points can clearly be
een at k pivot = 1 h Mpc −1 and k pivot = 0.05 Mpc −1 ( Planck pivot
oint), allowing for the power spectra to be normalized at different
hysical scales. Additionally plotted in the bottom panels is the root-
ean-square (rms) density fluctuations as a function of Lagrangian

adius. Note that σ ( R ), which is formally defined in equation (6)
elow, correlates strongly with the expected amount of structure and
bundance of haloes at different scales and masses, with larger mass
aloes corresponding to larger Lagrangian radii, and vice versa. We
iscuss these quantities further in Section 3. 
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Figure 1. Top: The z = 0 linear power spectra for the various cosmologies studied in this work. Bottom: The rms density fluctuations in spheres of radius R . 
The left-hand and right-hand panels represent the two different suites (introduced in Brown et al. 2020 ), which use different pivot points for the linear power 
spectrum (see label in bottom left). For each suite (or pivot point), the primordial spectral index, n s , is systematically varied from 0.5 to 1.75, with n s = 0.96 
being the best-fitting WMAP 9-yr value. The different shades represent different values of n s ; see colour bar. 
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As can be seen in Fig. 1 , the cosmologies studied in this work
epresent a wide range of different shapes and amplitudes to the 
inear power spectrum, which in turn results in a diverse amount 
f expected structure, as described through σ ( R ). This results in
 sample of haloes with widely different evolutions and formation 
istories, offering a broad context in which to study the cosmological 
ependence of the density profiles of DM haloes. 

.2 Simulation details 

he simulations studied in this work are virtually identical to those 
resented in Brown et al. ( 2020 ); the only difference being that all
osmologies from the original work have been re-run with a box twice
he size (but with the same mass resolution), resulting in a factor of 8
ncrease in volume. This was done to increase the number of haloes
n each simulation, allowing larger mass haloes to be studied as well
s impro v e the statistics at all masses. Other than the box size, the
echnical details are the same as for the simulations presented in 
rown et al. ( 2020 ), which we describe below. 
The linear power spectra are generated using the Boltzmann code 

AMB (Lewis, Challinor & Lasenby 2000 ). Initial particle positions 
nd velocities are calculated using a modified version of N-GenIC 

2 

Springel 2005 ) at a starting redshift of z = 127. The initial conditions
nclude second-order Lagrangian perturbation theory corrections and 
dentical phases are adopted for all simulations. The collisionless, 
r ‘DM-only’, N -body simulations have been run with a modified
ersion of the GADGET -3 code (Springel 2005 ; McCarthy et al. 2017 ).
he simulations have been run with a co-moving periodic volume 
f size 400 h 

−1 Mpc on a side with 1024 3 particles. For a WMAP
-yr background cosmology (Hinshaw et al. 2013 ), as used for the
ajority of cosmologies in this work, this corresponds to a particle
ass of 4 . 62 × 10 9 h 

−1 M �. The gravitational softening is fixed to
 h 

−1 kpc (in physical coordinates for z ≤ 3 and in co-moving at
igher redshifts). 
All haloes are identified with the SUBFIND algorithm (Springel 

t al. 2001 ). In this work, we present the spherically averaged density
rofiles of DM haloes, using the most bound particle of the central
alo as the halo centre. The central halo is defined as the largest
MNRAS 509, 5685–5701 (2022) 

art/stab3394_f1.eps
https://github.com/sbird/S-GenIC


5688 S. T. Brown et al. 

(  

d  

t  

t  

c  

fi  

l  

s

2

A  

m  

e  

t  

e
 

p  

p  

s
i  

p  

a  

a  

a  

m

ψ

h  

i  

e  

d  

s  

u  

s  

T  

d  

a  

a
 

a  

a  

w
i  

n  

b
 

p  

t  

T  

r  

n  

l  

c  

i

w  

a  

o  

L  

c  

t  

a  

s  

i
=  

f  

a  

d  

t  

i  

t  

d  

a  

i  

c  

d  

b  

s  

s  

f  

t  

d  

s  

s  

a  

s  

a  

p  

i  

t
 

t  

s  

f  

r  

o  

t  

p  

f  

T  

t  

r
 

h  

r  

b  

h  

o  

t  

C  

m  

C  

a  

e  

3 Using κP03 = 7 means that the cosmologies with the highest halo contrac- 
tions, specifically the n s = 1.75 cosmology in the Planck pivot suite, have 
r conv ∼ r −2 . Ho we v er, the scale radii are well resolv ed for the majority of 
haloes. 
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sub)halo in the friend-of-friends (FOF) group. We calculate the
ensity using all particles within the given spherical shell, whether
hey are identified as belonging to a subhalo or not. In principle,
he density of the smooth component with substructure remo v ed
an also be calculated (e.g. Fielder et al. 2020 ). In general, the halo
nder is primarily used to initially identify the FOF group, provide the

ocation of the centre of potential (CoP) and calculate bulk properties
uch as halo mass and radius (for a given definition). 

.3 Fitting density profiles 

s already stated, the goal of this work is to accurately study and
odel both c and α for a wide range of cosmologies. It is therefore

ssential that the simulation data are processed in an appropriate way
o obtain reliable and robust measures of c and α with their associated
rrors. 

Throughout this work we will e xclusiv ely fit ‘stacked’ density
rofiles, described as follows. The spherically averaged density
rofile of individual haloes are calculated using 32 logarithmically
paced bins o v er the radial range 10 −2.5 < r / R 200c < 0.7, where R 200c 

s a measure of the halo size (see Section 3 for definition). The stacked
rofile is then calculated as the median density in each radial bin from
ll the haloes in the stack of a given halo mass bin. The values of c
nd α are then calculated by fitting the stacked density profiles with
n Einasto profile (see equation 2) such that the following figure of
erit, ψ , is minimized: 

 

2 = 

∑ 

i 

[ log ρi ( r) − log ρEinasto ( r)] 2 , (3) 

ere ρ i ( r ) is the density profile from the simulation and ρEinasto ( r )
s the Einasto profile for a given set of parameters. To estimate the
rrors on c and α we use bootstrap resampling. Specifically, 1000
ifferent realizations of the stacked profile are generated by randomly
ampling (with repetition) haloes within the mass bin (or stack)
sing the same number of haloes. Hence, the number of haloes in the
tacked profile depends strongly on mass, redshift and the cosmology.
he values of c and α are then estimated as the median of the resulting
istribution with the lower and upper errors calculated as the 16th
nd 84th percentiles, respecti vely, equi v alent to a 1 σ uncertainty for
 Gaussian distribution. 

Although the stacked density profiles are calculated o v er a rel-
tively large radial range only a subset of these radial bins are
ctually used when fitting to obtain values for c and α. In this
ork we fit o v er the radial range r conv < r < 0.7 R 200c , where r conv 

s the convergence radius and dictates the minimum radius before
umerical uncertainties affect the density profiles, which is discussed
elow. 
The maximum radius of 0.7 R 200c was chosen to a v oid the very outer

arts of a halo that are potentially not in equilibrium and do not follow
he NFW or Einasto forms particularly well (e.g. Ludlow et al. 2010 ).
he minimum radius we adopt is the so-called convergence radius,
 conv , that specifies the radius at which the density profile is subject to
umerical effects. Specifically, at small radii two-body interactions
ead to a resolution dependent density core. The convergence radius
an therefore be expressed as a ratio of the time-scale of two-body
nteractions and the Hubble time via 

r conv 

R 200c 
= 4 

(
κP03 ln N c √ 

N 200c N c 

)2 / 3 

, (4) 

here N c is the number of particles below the convergence radius
nd κP03 is the ratio of the collisional relaxation time and the age
f the universe (Power et al. 2003 ; Ludlow, Schaye & Bower 2019 ).
NRAS 509, 5685–5701 (2022) 
arger values of κP03 represent a more conservative convergence
riterion. Power et al. ( 2003 ) propose that a value of κP03 = 0.6 leads
o convergence for individual haloes, while Ludlow et al. ( 2019 ) find
 similar, though smaller, value of κ = 0.18 for the convergence of
tacked density profiles. Ho we ver, in this work we find a larger value
s needed to provide unbiased estimates for c and α. We find that κP03 

 7 3 provides reliable results and this value has also been suggested
or impro v ed conv ergence by Navarro et al. ( 2010 ). It is found that,
s well as a clear numerical core forming at the centre of haloes as
ocumented in these works, there also occurs a slight enhancement in
he density at larger radii of r ≈ r conv (for κP03 = 0.6), as is expected
n order to conserve halo mass. Using κP03 = 0.6 does a v oid fitting
o the density profile where there is a significant suppression in the
ensity but typically does not avoid fitting to the region exhibiting
n enhancement in density. Although this enhancement in density
s relatively small, typically at most ≈ 5 per cent , the difference
an propagate through to ≈ 20 per cent systemic differences when
etermining the best-fitting values of c and α. This appears to only
e a significant issue when fitting the density profiles with a free
hape parameter, due to the increased versatility of the fit. If a fixed
hape parameter is used, either by explicitly fixing α or using a fitting
ormula without an equi v alent ‘shape’ term, such as an NFW profile,
hen the determination of c is only mildly affected by the systematic
ifferences in the inner density profile. It is likely that κP03 = 7 is
omewhat o v erly conservativ e, but it does ensure that there are no
ystematic errors associated with either the numerical core or the
forementioned enhancement in density. In this work we explicitly
olve equation (4), with κP03 = 7, for all individual haloes within
 stack and use the median r conv when fitting the stacked density
rofiles. For a more detailed discussion of the convergence radius,
ncluding deri v ations and alternati ve forms to equation (4), we refer
he reader to Power et al. ( 2003 ) and Ludlow et al. ( 2019 ). 

As discussed abo v e, we focus on studying stacked density profiles
o derive both the c and α mass relations. For most of the cosmologies
tudied we use logarithmically spaced mass bins of width 0.3 dex
or haloes with at least 5000 particles. For our simulations, this
esults in a minimum mass of M 200c = 2 . 31 × 10 13 h 

−1 M �. The
nly exception to this is the most extreme cosmology considered in
his work, using a primordial spectral index of n s = 1.75 with a Planck
ivot point, where we apply a cut of 10 000 particles (see Appendix A
or details). We also only consider mass bins with at least 100 haloes.
he maximum halo mass considered therefore depends strongly on

he halo mass function and varies as a function of cosmology and
edshift. 

As well as imposing a cut on both the number of particles within a
alo as well as the number of haloes within a stack, we also apply a
elaxation cut to discount haloes that have been significantly affected
y ongoing or recent major mergers. Specifically, we only consider
aloes with a normalized offset of the centre of mass (CoM) to CoP
f | x CoP − x CoM 

| /R 200c < 0 . 07. This relaxation criterion is similar to
hat presented in Neto et al. ( 2007 ), who applied the same cut to the
oP and CoM of fset but with additional criteria based on the relati ve
ass of substructure and the virial ratio. We find that simple cut on the
oM to CoP of fset is suf ficient to remo v e sev erely unrelax ed haloes
nd gives unbiased estimates for c and α. Additionally, applying the
xtra criteria proposed in Neto et al. ( 2007 ) does not significantly
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Figure 2. Stacked density profiles for a range of masses (see legend) at z 
= 0 for a WMAP 9-yr cosmology. The log M 200c = 13.25, 13.75, and 14.25 
mass bins constitute stacks of 5713, 1318, and 211 haloes, respectively. 
The profiles are only plotted up to their convergence radius (equation 4) 
that varies strongly with halo mass. For each density profile, r −2 and ρ−2 

are estimated non-parametrically from the logarithmic slope. The density 
profiles are normalized by their respective scale radii, r −2 , and plotted as ρr 2 

to reduce the dynamic range. Normalizing the radial coordinate in this way 
remo v es the dependence on concentration. As can be seen, there is a clear halo 
mass dependence to the normalized density profiles, demonstrating that the 
density profiles are not self-similar and that an additional ‘shape’ parameter 
is required to fully describe them. Plotted as dashed lines are Einasto profiles 
that approximately follow the simulated density profiles. In these units, the 
Einasto profile has only one free parameter, α (see legend). 
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hange the inferred c and α values, a similar conclusion to that found
n Duffy et al. ( 2008 ). 

In Fig. 2 , we present examples of the density profiles that are
t in this work. Here, we have plotted the profiles for a range of
asses at z = 0 for a WMAP 9-yr cosmology, normalized by r −2 and
−2 . The radius r −2 and is taken to be where the logarithmic slope
quals −2 and is found by directly interpolating the logarithmic 
lope of the stacked density profiles. 4 This allows for r −2 and ρ−2 

o be determined empirically from the density profiles directly, 
ithout any assumptions about the parametric form the o v erall 
ensity profile may take. Plotting in these units, i.e. r / r −2 and ρ/ ρ−2 ,
emo v es the dependence on halo concentration. If the density profiles
ere perfectly self-similar they should be indistinguishable when 
lotted in this manner. Ho we ver, as sho wn in Fig. 2 the density
rofiles (solid lines) do not follow the same radial dependence as
ach other, with higher (lower) masses resulting in profiles where 
he ρr 2 profile varies more quickly (slowly) with radius. This 
ifference demonstrates the need for an additional parameter other 
han concentration; i.e. the shape parameter. When plotted in these 
nits, i.e. r −2 and ρ−2 , the Einasto profile has only one free parameter,
(see equation 2). Additionally plotted as dashed line in Fig. 2 is

 number of Einasto profiles with values for α chosen by eye to
pproximately follow to observed density profiles. It can be seen that 
he role of α is to control how quickly ρr 2 varies with radius. 

If one uses the definition that the scale radius is where the
ogarithmic slope is −2 then the concentration of haloes can, in 
rinciple, be determined separately from the shape parameter and 
 To reliably estimate the slope of the profiles, we use a Savitzky–Golay filter, 
ith a window length of 3 and a second-order polynomial. 

5

d
c

ny assumptions about the density profile, as we have done above.
o we ver, practically it is often more reliable to determine c and α
y fitting directly to the density profiles, as is done in this work (see
ection 2) and many others. When determining c and α in this way

hey are no longer independent, and there will be a certain amount of
e generac y between the two parameters. Additionally, the value of c
nferred by fitting to the density profile will depend on the assumed
ensity profile, including, for an Einasto profile, if α is allowed to be
ree or not. 

Fig. 2 also demonstrates the main sources of errors when fitting to
tacked profiles at different mass scales. Specifically, the number 
f haloes within the stack and the limited radial range fit o v er.
or higher mass bins (green line), the main limiting factor is the
elatively small number of haloes within the mass range, resulting in
 somewhat noisy density profile with relatively large fluctuations. 
or lower masses (red line) there are many more systems resulting

n a much smoother density profile, ho we ver, there is a significantly
educed radial range o v er which the profiles can be reliably measured
ue to the low number of particles in each halo and hence a larger
onvergence radius. 

In Appendix A, we present a resolution study to check the
onvergence of both our simulations and analysis and we moti v ate
urther some of our selection choices, such as only considering haloes
ith at least 5000 particles. 

 PEAK  H E I G H T  DEFI NI TI ON  

hroughout this work we discuss how the density profiles of haloes
ary as a function of peak height for a range of cosmologies. Here,
e discuss the definition of peak height and highlight some of the

ree aspects of the formalism where certain choices, or assumptions, 
ave to be made; primarily the halo mass definition and window
unction used. 

Peak height, ν, is traditionally defined as 

( M , z) = 

δc 

σ ( M , z) 
, (5) 

here δc is the critical density for collapse, as predicted by the
pherical collapse model, 5 and σ is the rms o v erdensity associated
ith the halo, and is calculated from the linear power spectrum via 

2 ( R , z) = 

1 

2 π2 

∞ ∫ 
0 

k 2 P ( k , z) | W ( k R ) | 2 d k . (6) 

n the abo v e, P ( k , z) is the linear power spectrum and W ( kR ) is the
indow function (sometimes referred to as the filter function). R is

he so-called Lagrangian radius defined as 

 

3 = 

M 

4 / 3 πρm , 0 
, (7) 

here M is the halo mass (e.g. the virial mass or that corresponding to
ome other spherical o v erdensity) and ρm,0 is the mean background
ensity of the universe today. 
The redshift evolution of the linear power spectrum can be written

s 

 ( k, z) = D 

2 ( z) P ( k, z = 0) , (8) 
 We take δc = 1.68 and ignore the mild cosmology dependence. We also 
o not consider any additional dependence on mass present in ellipsoidal 
ollapse models. 
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here D ( z) is the linear growth factor, which can be calculated from
he background expansion, i.e. H ( z), and is normalized to unity at the
urrent epoch. The redshift evolution of peak height can therefore
lso be expressed in terms of the growth function, where 

( M, z) = ν( M, z = 0) /D( z) . (9) 

ence for a given cosmology, with P ( k ) and H ( z) specified, the peak
eight of a halo can be straightforwardly calculated from the abo v e
quations. 

There are a few key aspects in the abo v e equations that are open
o interpretation and therefore certain choices must be made. The
rst of these is how the mass of a halo is defined. It is common to
efine the mass as an o v erdensity with respect to either the critical
r mean density of the universe at a given redshift. The mass, and in
urn radius, of the halo is defined to obey the following: 

ρc / m 

= M  c / m 

/ (4 / 3 πR 

3 
 c / m 

) , (10) 

here  is the adopted o v erdensity. We will use the notation specified
n this equation to identify the given mass definition, identifying both
he o v erdensity parameter (from the number in the subscript) and
eference density (with either denoting c or m for using the critical
r mean density, respectively). Common choices are M 200c/m 

and
 500c/m 

. The definition with respect to the higher o v erdensity and
maller radius, M 500c/m 

, is typically used for galaxy clusters (since
-ray observations typically probe the hot gas within this radius),
hile M 200c/m 

is often used when examining the properties of DM
aloes, of all sizes, in cosmological simulations. It has been shown
hat large-scale properties of DM haloes, such as the abundance
t a given mass or the position of the splashback radius, correlate
ore strongly with an M 200m 

definition (e.g. Tinker et al. 2008 ;
iemer & Kravtsov 2014 ; Diemer 2020 ). On the other hand, internal
roperties, such as halo concentration, tend to correlate more strongly
ith an M 200c mass definition (e.g. Diemer & Kravtsov 2015 ). Why
ifferent properties of DM haloes seem to prefer a mass definition
ith respect to either the critical or mean density is unclear and is an
pen question in the field. In this work, we are focused on studying
nd developing a model for the density profiles of DM haloes and we
se a mass definition of M 200c . We leave the exploration of alternative
ass definitions for future work, though we do briefly discuss this

ossibility in the context of our results in Section 5.3. 
The second aspect of peak height formalism for which there is

reedom is in the choice of the window function, W ( kR ), which is
he main focus of this paper. It has become common place in the
iterature that W ( kR ) is chosen so that it represents a STH function
n configuration (real) space. With this choice, the window function
akes the following form: 

 STH ( k R ) = 

3 

( k R ) 3 
[ sin ( k R ) − k R cos ( k R )] . (11) 

This choice of window function provides a very obvious and
lear interpretation of equation (6); it represents the rms o v erdensity
v eraged o v er a sphere of radius R for the giv en linear power
pectrum. This choice also makes it clear how to compare to and
se the spherical collapse model, which considers the evolution
f a top hat perturbation in an otherwise homogeneous expanding
ni verse. Ho we ver, the spherical collapse model does not offer a
omplete picture of how real haloes assemble, particularly ignoring
he hierarchical growth that is at the heart of our current cosmological
aradigm. It is therefore not clear that this is the correct choice of
indow function for such a cosmology and potentially a different

hoice of window function would better represent (or correlate with)
he growth and structure of haloes in a CDM-dominated universe. 
NRAS 509, 5685–5701 (2022) 
Throughout this paper we will use a subscript to identify the win-
ow function used to calculate peak height. For instance νSTH refers
o peak height values calculated using the standard STH window
unction. We reserve the use of ν without a subscript when discussing
eak height in a general sense with, in principle, any choice of
indow function, as we have above. 

 PEAK  H E I G H T  R E L AT I O N S  

efore proceeding to study if c and α can be better modelled by an
lternati ve windo w function, it is worth studying how these density
arameters vary as a function of peak height using the standard STH
efinition. 
In Fig. 3 , we present how c and α vary as a function of νSTH for

he main cosmologies studied in this work (see Section 2.1), at z =
 and z = 1. We have chosen not to plot individual errors (the mean
rror is plotted in black at the top left of each row) to impro v e the
eadability of the plot, but note that not all values here are equally
eliable with some data points having significantly larger fractional
rrors than others. In general, larger values of νSTH result in fewer
aloes within the mass bin and therefore larger uncertainties. The
elation between α and νSTH proposed by Gao et al. ( 2008 ) is shown
s the dotted black line, specifically α = 0 . 0095 ν2 

STH + 0 . 155. 
Focusing initially on the concentration of the haloes at z = 0

top panels, solid lines), we see that there is a clear cosmological
ependence to the c –νSTH relation. This is particularly clear for the
lanc k piv ot suite where the different cosmologies are significantly
tratified. Additionally, for a given cosmology, νSTH does not appear
o completely describe the redshift evolution. This is most easily seen
or the k pivot = 1 h Mpc −1 suite where haloes at z = 1 (dashes lines)
ave significantly lower concentrations at a fixed νSTH than at z = 0
solid lines). 

The dependence of α on νSTH (bottom panels) is much closer to
niversal than for c . In general both the cosmological and redshift
ependences appear to be well described by νSTH with no obvious
rend of a certain cosmology or redshift lying distinct from the

ain distribution, as is observed for c . Our α–νSTH relation matches
easonably well that previously proposed by Gao et al. ( 2008 ). 

From these results there is clearly room for improving the
niversality of the relation between c and peak height, which may
otentially be achieved by altering the window function (away from
he standard STH case) in the peak height definition. On the other
and, the standard definition of peak height already correlates very
ell with α in a way that is apparently independent of cosmology

nd redshift. This suggests that the STH window function is already
lose to optimal for α. Taken together, these results suggest that c
nd α fa v our separate and distinct window functions. Indeed, this is
hat we find in the next section. 

 OPTI MAL  W I N D OW  F U N C T I O N S  

n a � CDM universe, where the initial density fluctuations are
ssumed to be small and Gaussian in nature, the initial density
eld can be, statistically, described by the power spectrum alone.
he subsequent gravitational evolution depends only on these initial
onditions and the background expansion history, given a theory for
ra vity. Hence, the a veraged internal structure of haloes as a function
f mass depends only on the linear power spectrum, P ( k ), and Hubble
xpansion, H ( z), which together form a given cosmology. 

The aim of this study is to determine how the averaged structure
f haloes depends on P ( k ) and H ( z) in a quantitative fashion. A
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Figure 3. Halo concentration, c , and shape parameter, α, as a function of peak height computed using the standard STH window function, νSTH . The main 
cosmologies used in this work are plotted, with the specific cosmology given by the colour and shade of the lines. In purple is the suite using k pivot = 1 h Mpc −1 

while in green the suite using a Planck pivot, the shade of the colour indicates the primordial spectral index, as shown by the colour bar abo v e each panel. The 
line style indicates the redshift for the given cosmology (see legend). Additionally plotted as the black dotted line is the relation between α and νSTH presented in 
Gao et al. ( 2008 ). For each data point shown here there is an associated error that we have not shown to impro v e the clarity and le gibility of the plot. F or reference 
the mean error is shown as the black error bar in the top left of each panel. In general, it can be seen that there is both a cosmology and redshift dependence to the 
c –νSTH relation. Ho we ver, there is not a clear dependence on either redshift or cosmology for the α–νSTH relation, with all data points following approximately 
a single function. 
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romising theoretical framework to use is the Press–Schechter for- 
alism (Press & Schechter 1974 ). In the Press–Schechter formalism, 

he abundance of haloes is predicted to be a universal function of
eak height. This has moti v ated pre vious studies to also correlate
alo properties with peak height, as it is expected that peak height
ill account for a significant part of the cosmological dependence. 
o we ver, the abundance of haloes is only approximately universal 

nd numerical simulations have shown that there is a clear redshift
nd cosmology dependence when using the standard Press–Schechter 
ormalism, i.e. an STH window function (e.g. Tinker et al. 2008 ).
here have been a number of suggestions for how to improve this
odel, with a notable extension being the use of an alternative 
indow function. For instance, Leo et al. ( 2018 ) found that using a

mooth k -space filter can accurately model the abundance of haloes in 
osmologies with truncated power spectra (e.g. due to non-standard 
nflation scenarios). By allowing the window function to vary, we are 
ble to study what aspects of P ( k ) are most important for setting the
ensity parameters, where it is found that both density parameters are
pproximately set by the amplitude of P ( k ) at an associated k -scale
see Section 5.3). 

As demonstrated in the previous section, the density parameters, 
articularly c , are clearly not universal as a function of peak height
hen using an STH window function. Similar to how Leo et al.

 2018 ) found the abundance of haloes can be closer to universal with
n alternative window function, it is possible that a different window
unction will result in c –ν and α–ν relations that are universal; i.e.
o not depend on redshift or cosmology. 
It is worth considering if the use of an alternative window function

s consistent with some of the key results from the literature as well
s the features already observed in Section 4. 

The first result we consider is from Diemer & Kravtsov ( 2015 ),
ho study the concentration of haloes in scale-free cosmologies, that 
eing a cosmology with a power-law linear power spectrum and an
instein de Sitter background expansion (i.e. �� 

= 0 and �m 

= 1).
MNRAS 509, 5685–5701 (2022) 
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hey find that for a single cosmology the redshift evolution closely
ollows a single function of νSTH . However, the particular relation
etween c and νSTH exhibits a clear dependence on the choice of the
lope of the linear power spectrum (see fig. 3 of Diemer & Kravtsov
015 ). Their interpretation was that it is the ef fecti ve slope of the
inear power spectrum at an associated k -scale that affects the c –ν

elation and led Diemer & Kravtsov ( 2015 ) to develop a model that
ncorporates an ef fecti ve slope in addition to peak height in order
o better predict halo concentration. Ho we ver, this is not the only
nterpretation of their results, it is also consistent with the possibility
f using a dif ferent windo w function. For a power-law linear power
pectrum, P ( k ) = Ak n , calculating σ (see equation 6) is somewhat
implified: 

2 ( R , z) = 

A 

2 π2 
D 

2 ( z) R 

−( n + 3) 

∞ ∫ 
0 

x n + 2 | W ( x ) | 2 d x . (12) 

herefore, σ ( R , z) ∝ D 

2 ( z) R 

−3 −n . It is clear that for these cosmolo-
ies the window function only plays a role in the normalization of the
eak height. Therefore, for a giv en cosmology, an y choice of window
unction would preserve ν–c being redshift independent. Ho we ver,
hen comparing different cosmologies, i.e. different values of n , the
indow function and its effect on the normalization will play a role,

s can be seen by the x n + 2 term within the integrand. It is therefore
ikely that the window function could be chosen appropriately so
hat the normalization between different values of n would result in a
ingle c –νSTH relation independent of n , or the normalization of the
ower spectrum. 
Another key result that should be accounted for, or preserved, is

he redshift evolution of c and α in a standard � CDM cosmology. It
s well established that the redshift evolution of c is not perfectly
escribed by νSTH , while νSTH offers a good description of the
edshift evolution of α. Therefore, developing a model to predict c
nd α must predict this general behaviour. For a � CDM cosmology,
he linear power spectrum is no longer a power law, meaning that
he window function contributes in a more complex way to the
eak height of different mass haloes than simply by a different
ormalization. Therefore, changing the window function from the
tandard STH case can potentially change the relationship between
eak height and mass in such a way as to resolve the discrepancy
n the redshift evolution of c ; meanwhile if the window function
emains relatively close to the STH case then the redshift evolution
f α can be preserved. 
One potential limitation of any model that links the density profiles

f DM haloes to only P ( k ) and H ( z), as is the goal of this work, is
hat the density profiles of individual haloes cannot be predicted.
ue to the statistically averaged nature of the power spectrum, our
odel predicts averaged quantities for c and α. As such, in this paper
e focus e xclusiv ely on modelling the averaged density parameters

s a function of mass and redshift. Ho we ver, it seems inevitable
hat the density profiles of individual haloes depends, in detail, on
he initial o v erdensity in the linear power spectrum with which
hey are associated. Therefore, differences in these o v erdensities
ould correspond to differences in individual halo density profiles.

t is therefore likely that the theoretical framework presented in
his paper could be extended to describe the expected scatter in c
nd α for a fixed mass, ho we ver, this is beyond the scope of this
aper. 

An alternative approach to that presented in this work is to identify
n appropriate mediator that correlates strongly with the density
rofiles of haloes. For example, it is common to attribute halo
oncentration with the formation history of the halo (e.g. Navarro
NRAS 509, 5685–5701 (2022) 
t al. 1997 ; Wechsler et al. 2006 ; Ludlow et al. 2014 ). This therefore
ffers a natural explanation for the general mass dependence, with
maller haloes forming earlier and resulting in higher concentrations,
s well as the observed scatter in c at fixed mass corresponding
o an equi v alent scatter in formation time. Ho we ver, formation
istory is not a fundamental property and depends on the given
osmology. Hence, to make a prediction for a given cosmology [i.e.
 ( k ) and H ( z)], some theoretical framework is required to predict

he formation history as a function of mass, redshift and cosmology.
xtended Press–Schechter theory (e.g. Lacey & Cole 1993 ) is one
uch theoretical framework that aims to predict the distribution of
ormation histories. A prescription for the link between formation
istory and halo concentration can therefore be used alongside such
 theoretical framework to predict the distribution of expected halo
oncentrations (e.g. Benson, Ludlow & Cole 2019 ). 

.1 Smooth k -space window function 

ssuming a correct choice of window function exists there is
o obvious way to derive, from first principles, the form that it
hould take. As such we use a more heuristic approach by using
 versatile parametrization for the window function that maintains
ey properties that are expected to be present for a realistic window
unction. 

We use the smooth k-space window function originally proposed
n Leo et al. ( 2018 ) to study how the c –ν relation changes for various
hoices of window function. The smooth k -space window function
s defined as the following: 

 smooth ( k R ) = 

1 

1 + ( μk R / 2 . 50) 3 . 12 β
. (13) 

he smooth k -space window function behaves very similarly to a
tep function (in Fourier-space), with β determining how quickly the
ransition from 0 to 1 occurs 6 and μ the scale at which the transition
appens. When defining equation (13) we have normalized the free
arameters to resemble closely the standard STH window function
hen μ and β are unity. This is done so that for μ = 1, β = 1 the scale
here W ( kR ) = 0.5 and the first deri v ati ve at that scale match the

tandard STH window function. This results in the factors of 2.50 and
.12. In practice, this means that the results for a choice of μ = 1 and
= 1 when using the smooth k -space window function will resemble

losely the STH case, allowing for an easier interpretation of these
arameters compared to the standard definition for peak height. In
he left-hand panel of Fig. 4 , we show the smooth k -space function
or a few combinations of μ and β, and discuss the inset panel
ater in Section 5.3. The standard STH function (see equation 11) is
lotted for comparison. As can be seen in Fig. 4 , the smooth k -space
indow function can closely resemble the standard STH filter (by

onstruction at μ = 1, β = 1). One feature that cannot be replicated
s the series of ‘wiggles’ at high values of kR , however these do not
ontribute significantly to the peak height calculation. 

In the right-hand panel of Fig. 4 , we show the resulting peak height
alues as a function of mass for the standard WMAP 9-yr cosmology
t z = 0, normalized by the peak height at M = 10 13 . 5 h 

−1 M �.
his demonstrates that the relation between mass and peak height
epends intimately on the choice of window function. When the
indow function is changed significantly so does the relationship
etween mass and peak height, which therefore propagates through
o changes in the c and α peak height relations. Note that ν( M ) is
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Figure 4. Left: The smooth k -space window function (equation 13) for a few combinations of μ and β (see le gend). Qualitativ ely, μ changes the scale at which 
the transition occurs, with smaller values of μ resulting in the transition occurring at higher values of kR (corresponding to smaller physical scales), while β
controls how quickly the transition from W = 1 to W = 0 occurs. Plotted for reference is the standard STH window function (shown in black). Additionally 
plotted in the inset panel is ( kR ) 2 W 

2 ( kR ) for the same window functions in the main plot, with each curve has been normalized by its global maximum. No units 
have been plotted for the inset, as the purpose of the figure is to demonstrate that ( kR ) 2 W 

2 ( kR ), for all window functions studied here, exhibits a clear peak, 
with the location of that peak depending on both μ and β. Right: The resulting relation between peak height and mass, normalized at M = 10 13 . 5 h −1 M � for 
the WMAP 9-yr cosmology. The STH (black lines) and smooth k -space window function with μ = 1 and β = 1 (blue lines) follow a very similar ν( M ) relation. 
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lmost indistinguishable when using the STH window function or 
he smooth k -space filter with μ = 1 and β = 1. 

.2 Quantitati v ely determining uni v ersality 

s mentioned previously, the aim of this paper is to determine if, with
n appropriate window function, the density profiles are universal 
ith peak height. Practically this means that both c and α follow 

 single function of peak height, ν, for any P ( k ) at any redshift.
he cosmologies studied previously in Brown et al. ( 2020 ) (see
ection 2.1) offer a wide range of different linear power spectra that

s ideal to constrain the optimal window function(s). 
To determine the optimal window function and constrain the 

ssociated parameters we require an appropriate figure of merit that 
uantitatively describes how close to a single function, and hence 
o w uni versal, the resulting c and α–peak height relations are. We
hoose to fit a second-order polynomial, in log space, that minimizes 
he χ2 error. The fitting formula is specifically 

log ( y) = a 2 log ( ν) 2 + a 1 log ( ν) + a 0 . (14) 

ere, y represents the parameter being constrained, either concen- 
ration, c , or the shape parameter, α. The χ2 value for a given choice
f a 0, 1, 2 and window function is calculated as 

2 = 

∑ 

i 

( y − y i ) 2 

σ 2 
i 

, (15) 

ith the sum o v er all data points. y is the given prediction for a choice
f a 0,1,2 , y i , and σ i represent the value and error of the given data
oint. a 0,1,2 are then chosen to minimize equation (15) for the given
indow function. Throughout the paper we will quote the reduced 
2 error, χ2 

r = χ2 / DoF , with the number of degrees of freedom 

emaining constant. 
In this work, we want to study whether an appropriate choice of

indow function can lead to a universal relation between the two 
ensity parameters, c and α, and peak height, ν. Therefore, the exact
orm that the c –ν or α–ν relations take is of secondary importance 
ompared to it obeying a single function for all cosmologies and
edshifts studied. As such, we do not consider a 0,1,2 free parameters
f the model, as they are only used to quantitatively determine
universality’. 

Using a second-order polynomial in log space offers a fitting 
unction that is versatile enough to describe the data without 
ntroducing higher order terms that could lead to o v erfitting. Ideally,
 non-parametric method that does not impose a functional form on
he c –ν and α–ν relations would be used. One such method would be
o minimize the Spearman rank correlation coefficient, which makes 
o assumptions about the functional form of the underlying data 
other than the relation being monotonic). Ho we ver, it is important
o incorporate the associated errors for the density parameters, and 
t is unclear how to reliably include these in such a ranked statistic. 

.3 An optimal window function 

n Fig. 5 , we sho w ho w χ2 
r changes as a function of μ and β when

sing a smooth k -space window function (equation 13). The optimal
indow function is constrained separately for c and α (left-hand 

nd right-hand panels, respectively). First, it is clear that there does
ndeed appear to be a choice of window function that results in
 universal c –ν and α–ν relation with minimum values of χ2 

r ≈
 for both c and α. This is more clearly shown in Fig. 7 , which
resents the resulting c –ν and α–ν relations for an optimal choice 
f window function parameters (we discuss this in detail in the next
ubsection). 

Although the minimal values of χ2 
r are comparable for c and 

, there are significant differences in the range of χ2 
r values. This

oes not appear to be a reflection of the smooth k -space filter better
escribing one parameter o v er the other, but rather features that are
ntrinsic to the data, independent of the choice of window function.
he primary reason for this difference is that c varies o v er a much

arger dynamic range than α, meaning that relatively small changes 
n peak heights result in large differences to how universal the c –ν

elation is, while α is much less sensitive to these changes. 
MNRAS 509, 5685–5701 (2022) 
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Figure 5. Parameter space demonstrating how χ2 
r varies with the free parameters of the smooth k -space window function, μ and β, for the two density 

parameters c ( left ) and α ( right ). χ2 
r is used to quantitatively determine how close to universal the resulting peak height relations are, with smaller values of 

χ2 
r corresponding to more universal relations. To first order the value of peak height is set by the amplitude of the linear power spectrum at an associated k -scale, 

with that scale depending on the gi ven windo w function. The key property is where ( kR ) 2 W 

2 ( kR ) is a maximum, as described through the parameter κ (see 
equation 17). Plotted as dashed black lines are contours of constant κ (see equation 18), with κ = 9 and κ = 2 for c and α, respectively. These contours follow 

very closely the observed degeneracies between μ and β. 
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Focusing initially on the parameter space for the smooth k -space
indow function constrained by halo concentration (left-hand panel
f Fig. 5 ), it is clear that there are strong degeneracies in determining
he optimal values of μ and β. Ho we ver, a choice of parameters
lose to the standard STH case ( μ = 1, β = 1) is clearly disfa v oured,
s expected from the earlier discussion (see Section 4). For β �
, the value of μ is relatively well determined and the optimal
alues appear to be independent of β, fa v ouring a value of log μ

−0.7. Ho we v er, in this re gion there is little constraint on β
ith all values sampled performing similarly well. It is clear that
 k ey f actor in determining the concentration is the k -scale of the
ransition of the window function, how ‘quickly’ this transition
ccurs is of secondary importance. There also exist degeneracies
n the region β � 1. Here, the form of the de generac y is much more
omplicated than for β � 1, exhibiting a non-trivial dependence
n μ and β. We discuss the origin and form of this de generac y
hortly. 

Examining the constraints on μ and β when optimizing for the
hape parameter α (right-hand panel of Fig. 5 ), we see the same
eneral behaviour as for concentration. The o v erall shape of the
e generac y in the parameter space is almost identical, except with
t being translated to larger values of μ from what is found for c .
nterestingly, the (approximate) STH window function ( μ = 1, β =
) lies almost perfectly on the observed degeneracy and is therefore
lose to an optimal choice of parameters. Again we observe for β �
 that there is no constraint on β, but μ is relatively well constrained.
he optimal value in this region is μ ≈ 1 as opposed to log μ ≈ −0.7,
s was observed for halo concentration. The optimal window function
ppears to be somewhat at odds with the results of Ludlow & Angulo
 2017 ), who found that the α–νSTH relation was not universal. There
s no ob vious e xplanation for this, but may be linked to the very
ifferent cosmologies studied in their work, specifically scale-free
osmologies with EdS background expansions. 

To further understand the observed degeneracies between μ and
we must consider what are the most important features when

alculating peak height. From equation (6), it can be seen that
eak height is ef fecti vely a convolution between P ( k ) and k 2 W 

2 ( kR ).
or both a smooth k -space and an STH window function k 2 W 

2 ( kR )
 1

NRAS 509, 5685–5701 (2022) 
xhibits a clear maximum at a specific scale, 7 where the associated
cale is at ( kR ) max ≡ κ . This can clearly be seen in the inset panel
f Fig. 4 , where we have plotted ( kR ) 2 W 

2 ( kR ) for a few different
hoices of window functions and parameters. Hence, to first-order
eak height is set by the amplitude of the linear power spectrum at
he associated k -scale: 

2 ∝ R 

3 /P ( k 0 ) , (16) 

here 

 0 = 

κ

R 

. (17) 

ere, R is the Lagrangian radius (see equation 7) and κ corresponds to
here ( kR ) 2 W 

2 ( kR ) is a maximum. κ is a dimensionless quantity and
epends on the choice of window function and associated parameters.
or an STH window function, κ = 2.08. For the smooth k -space
indow function, κ depends on both μ and β and is found to be 

= 

2 . 50 

μ

(
1 

3 . 12 β − 1 

)1 / 3 . 12 β

. (18) 

If we consider contours of constant κ , we see this equation provides
 relationship between μ and β that has the general behaviour of
he observed degeneracy, a roughly μ = 1/ β behaviour. Indeed,
e find that this relationship follows almost perfectly the observed
e generac y for an appropriate choice of κ . This is shown in Fig. 5
here we have plotted lines of constant κ . The values of κ have been

hosen by eye to approximately follow the optimal μ–β relation
nd correspond to κ = 9 and 2 for constraining c (left-hand panel)
nd α (right-hand panel), respectively. In detail, it appears that the
e generac y at β ≈ 0.5 is not completely characterized by this relation.
n this region of the parameter space the peak in ( kR ) 2 W 

2 ( kR ) is
ot as clearly defined and therefore higher order terms will play
 more significant role, implying that the simple approximation of
∝ R 

3 / P ( k 0 ) will not be as accurate. 
/3.12. 
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Figure 6. Variation of χ2 
r as a function of μg for the generalized spherical 

top-hat window function (see equation 19) for the two density parameters c 
(solid line) and α (dashed line). χ2 

r is used to quantitatively determine how 

close to universal the resulting peak height relations are, with smaller values 
of χ2 

r corresponding to more universal relations. These distributions exhibit 
clear minima at log μg = −0.67 and log μg = −0.01 for c and α, respectively. 
Note that log μg = 0 ( μg = 1) corresponds to the standard spherical top-hat 
window function. 
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The abo v e results suggest a rather simple interpretation of what
ets the average density profiles of DM haloes. It is, to a good
pproximation, the amplitude of the linear power spectrum at an 
ssociated k -scale, given by equation (17), with the one complication 
hat c and α appear to be set by fluctuations on different scales. The
oncentration of DM haloes is set by smaller scale fluctuations than 
he shape parameter, by roughly a factor of 4.5, with the shape
arameter matching closely the same value of κ for the standard 
TH windo w function. Ho we ver, it is not clear why this should be

he case, and the physical origin of these two preferences requires 
urther study. 

The result that at β ≈ 1 there are optimal choices for the smooth k -
pace window function where μ �= 1 (for halo concentration at least), 
s well as the dominant factor not being μ or β directly but rather the
esulting value of κ , implies that an STH-like window function can 
lso lead to universal behaviour if an equi v alent parameter to μ is
ntroduced. Let us generalize the STH window function as follows: 

 STH , general ( k R ) = 

3 

( μg k R ) 3 
[ sin ( μg k R ) − μg k R cos ( μg k R )] . (19) 

ere, the window function is identical to the standard definition (see 
quation 11) but with an additional free parameter, μg , that behaves 
he same as the parameter μ for the smooth k -space window function.
n Fig. 6 , we allo w μg to v ary to minimize χ2 

r , as was done for the
mooth k -space window function. Unlike the smooth k -space window 

unction, the generalized STH does not exhibit any degeneracies and 
here are clearly defined optimal values for μg . We find that for the
oncentration the optimal value is log μg = −0.67 with χ2 

r = 2 . 12,
hile for the shape parameter log μg = −0.01 with χ2 

r = 1 . 83. The
ptimal values for χ2 

r are comparable to those found for the smooth 
 -space filter. The associated values of κ are κ = 9.73 and 2.13 for
he concentration and shape parameters, which are again comparable 
o the values of κ that match the observed degeneracy between μ and 

for the smooth k -space window function. 
In the abo v e discussion, and throughout the paper, we have adopted 

 single halo mass definition ( M 200c ) and argued that the two density
arameters are ef fecti vely set by fluctuations at different physical 
cales, as described by the optimal window function. However, there 
s an alternative interpretation that is consistent with the results and
ormalism presented. As mentioned in Section 3, the parameter μ, 
r μg , is equi v alent to changing the mass associated with the halo.
herefore, an alternative interpretation from the abo v e discussion is

o assign a different masses, with a fixed STH window function, for
he two density parameters. The shape parameter would therefore 
se the standard M 200c definition, while halo concentration would 
a v our a mass definition of μ3 

g , c = (10 −0.67 ) 3 ≈ 0.01 M 200c , i.e.
reating the halo as two orders of magnitude smaller mass. A rough
alculation, assuming and Einasto profile with c = 5 and α = 0.18,
uggests that this would require an o v erdensity definition of  ∼
0 5 , which is significantly larger than most standard mass definitions
ommonly used. Additionally, this mass definition would represent 
nly a fraction of the amount of accreted matter in virial equilibrium
ithin the halo, and therefore would not represent a physically 
eaningful quantity. For both these we prefer the interpretation that 
 single mass definition is used, specifically M 200c , with α and c being
et by fluctuations at different associated scales. 

.4 Predicting the density profile of DM haloes 

o develop a model that is able to predict halo concentration and
hape parameter for a general cosmology a choice for the best
indow function must be made. As there are strong degeneracies 
etween μ and β there is no unique choice. We therefore choose to
nstead use the generalized STH window function, which we have 
emonstrated provides equally as universal c –ν and α–ν relations. 
sing this window function also has the advantage that it reduces

he number of free parameters in the model as well as allowing
or a more intuitive interpretation of its results, i.e. it corresponds
o the density rms av eraged o v er a sphere. For this, we use the
ptimal parameters found in the previous section, specifically log μg 

 −0.67 and −0.01 for c and α. We denote the peak height values
alculated with these two choices of window function as νc and να ,
espectively. 

In Fig. 7 , we present the resulting c –νc and α–να relations in
eft-hand and right-hand panels, respectively. In the top row of each
lot, we show c and α as a function of their respective peak height
or all eleven cosmologies studied at z = 0, 0.5, 1, 1.5, and 2. Each
ata point represents a mass bin from its associated cosmology. The
hoice of cosmology is specified by the colour, matching that from
igs 1 and 3 . The redshift is then specified by the style of the data
oint (see legend). In general, both c and α are very close to a single
unction, as expected from the small χ2 

r values for these choices of
indow function; χ2 

r = 1.83 and 2.12 for c and α, respectively. 
In general most data points lie within 10 per cent of the prediction

black dashed line) and the data points that lie significantly further
way than this tend to be those with particularly large error bars,
ut still within a few standard deviations. It is clear from Fig. 7 that
sing these window functions leads to significantly more universal c 
nd α peak height relations compared with using the standard STH 

unction in Fig. 3 . 
Plotted with black dashed lines in each panel of Fig. 7 are the

est-fitting relations that we use in our model to predict c and α.
pecifically, we use 

 = 4 . 39 ν−0 . 87 
c (20) 

nd 

= 8 . 52 × 10 −4 ν4 
α + 0 . 166 . (21) 
MNRAS 509, 5685–5701 (2022) 

art/stab3394_f6.eps


5696 S. T. Brown et al. 

Figure 7. Resulting c –νc , left-hand panel, and α–να , right-hand panel, relations for the optimal choice of window function. The data points presented are all 
those used to constrain the window function. The colour indicates the given cosmology, matching those in Fig. 3 , while the marker style corresponds to the 
redshift (see legend). The black dashed lines represent the empirical relations used for our model to predict c and α for a general cosmology. The fractional 
difference from the data and the empirical fits are shown in the bottom panels, for both c and α. 
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ere, νc and να are calculated using equations (5)–(7) and a gener-
lized STH window function (equation 19). νc uses the parameters
og μg = −0.67, while να uses log μg = −0.01. 

Note that, although a general second-order polynomial was used to
alculate χ2 

r values when determining the optimal window function,
e re-parametrize these here to better represent the observed trends as
ell as to have empirical relations that will more reliably extrapolate
eyond the values of νc and να sampled in this work. For instance,
he c –νc relation appears to follow very closely a simple power law,
llowing the relation to be expressed with only two free parameters.
dditionally, using a second-order polynomial in log space for the
–να relation would predict an increase in the value of α as να → 0.
here is no indication from this or other work (e.g. Gao et al. 2008 ;
udlow & Angulo 2017 ) that such an increase would occur, and it
eems more likely that α approaches a constant as να approaches zero.
uch a behaviour is better represented in our chosen parametrization

n equation (21). Using these alternative parametrizations to predict
 and α gives consistent χ2 

r values as found in the previous section
sing a more complex second-order polynomial. 
There is much debate in the literature around the form of the c –M

elation at high masses ( M 200c � 10 14 at z = 0 for a cosmology close
o our own Universe), with some works reporting and upturn in halo
oncentration at high values of νSTH (e.g. Prada et al. 2012 ; Diemer
 Kravtsov 2015 ) while others see no evidence for an upturn but,

n some cases, do report a minimum concentration (e.g. Zhao et al.
009 ; Ludlow et al. 2014 ; Correa et al. 2015 ). The nature of the high-
ass end of the c –M relation depends on how the data are processed;

f an unbiased sample of haloes is used then there is expected to
e an upturn, while if a relaxation cut is applied (as adopted in this
ork) the preference for an upturn disappears (see Ludlow et al. 2012

or more details). In this study, we see no clear evidence of either
n upturn or a minimum concentration. 8 A potential explanation for
his is that the inferred values of c depend on whether a free or fixed
 We hav e quantitativ ely v erified this by fitting a power la w plus a constant 
to represent a minimum concentration) and a double power law (to represent 
n upturn in concentration) to the c –νc relations observed in Fig. 7 . In both 
ases, a single power law is preferred. 
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hape parameter is used, hence the largest discrepancy between our
ork and those using a fixed shape parameter is expected at high
alues of νSTH where α exhibits the strongest mass dependence. But
e note that it is also possible that such features may be present at

ufficiently large values of peak height not sampled in this work. 
In Table 2 , we present the χ2 

r values calculated from the halo
oncentration for few choices of the window function as well as
omparing to some models in the literature. Specifically, the models
f Ludlow et al. ( 2016 ) and Diemer & Joyce ( 2019 ). The publicly
vailable code COLOSSUS (Diemer 2018 ) has been used to generate
he quantitative predictions of these two models. We compare to
hese models as they are designed to predict halo concentration
or a general cosmology and were found in Brown et al. ( 2020 )
o reproduce the general behaviour observed in those simulations. It
s clear by the χ2 

r values shown in Table 2 that our new model matches
ore closely the concentrations observed in these simulations. 
There are a few key differences between how the concentration of

aloes are inferred in our analysis and in these previous studies. First,
oth these models infer the concentration–mass relation averaged
 v er fits to individual haloes, whereas we have used stacked density
rofiles. Secondly, the y hav e adopted a fix ed shape parameter, α,
hen developing and calibrating their models, as was also done

or the concentrations presented in Brown et al. ( 2020 ). This was
chieved either by explicitly fixing α in the Einasto profile or by
sing a fitting formula without a comparable shape parameter (i.e. an
FW profile). Allowing both the concentration and shape parameter

o be free in this study, this has arguably led to more accurate
easurements of both parameters, which in turn has led to a more

ccurate model for these quantities. 

 TESTING  T H E  M O D E L  

n this section, we study the predictions of our empirical model for
 and α and check that they generalize to cosmologies not already
tudied here. One key aspect that remained fixed in the cosmologies
sed to develop and calibrate the model was the background expan-
ion, with all simulations sharing the same best-fitting WMAP 9-yr
osmological parameters: h = 0.7, �m 

= 0.2793, �b = 0.0463, and
� 

= 0.7207. We therefore test the model against two additional
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Table 2. Optimal χ2 
r values for different choices of window functions, with the associated optimal parameters. The value of χ2 

r is calculated by fitting a 
second-order polynomial. For the smooth k -space filter there is no unique choice of μ and β that gives a minimum value of χ2 

r , the parameters provided here 
are just one such possible combination. We have also provided the χ2 

r values for the prediction of c for two models from the literature for comparison. 

Model or window function χ2 
r for c χ2 

r for α Parameters for c Parameters for α

Smooth k -space (equation 13) 2.10 1.83 log μ = −0.64, β = 2 log μ = −0.02, β = 2 
Standard spherical top hat (equation 11) 31.4 1.83 – –
Generalized spherical top hat (equation 19) 2.12 1.83 log μg = −0.67 log μg = −0.01 
Diemer & Joyce ( 2019 ) 23.8 – – –
Ludlow et al. ( 2016 ) 8.30 – – –
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osmologies with distinctly different background expansions. We 
onsider cosmologies with higher and lower matter densities, �m 

. 
pecifically, we study cosmologies with �m 

= 0.2, �� 

= 0.8, h = 

.79 and �m 

= 0.4, �� 

= 0.6, h = 0.61. Here, we have chosen �m 

and
hen varied h to keep the same distance to the surface of last scattering
which is well determined from the cosmic microwave background), 
e have also enforced that the cosmologies are spatially flat. 
dditionally, these cosmologies are normalized to the same value 
f σ 8 , so that there are approximately the same abundance of haloes
n the simulations. We have also kept the ratio of DM to baryons, i.e.

c / �b , fixed. The technical details of the simulations are the same as
hose studied throughout this paper (e.g. a box size of 400 h 

−1 Mpc
ith 1024 3 particles, see Section 2 for details). 
There are multiple ways in which the different background 

xpansions will affect the evolution and final density profiles of 
he DM haloes. The most obvious aspect is the redshift evolution 
f the density fluctuations, as described through the linear growth 
actor, which will be distinctly different for these cosmologies. This 
ifference will in turn affect the evolution and growth of the internal
roperties of the DM haloes. Ho we ver, a more subtle way that
hanging the background expansion affects both the model and the 
esults is through the mass definition. In this work we have chosen
o use an M 200c mass definition, meaning that the halo mass and
adius are defined so that the mean density within R 200c is 200 ρcrit .
herefore, changing the background expansion not only changes 
ow density fluctuations grow but also the density used to define the
ass of the halo, which in turn affects the associated Lagrangian 

adius and ef fecti ve scale in the liner po wer spectrum that sets the
eak height value. Testing against these cosmologies will allow us 
o assess whether both these aspects, the change in growth of the
ensity fluctuation and change in the mass definition, are accurately 
odelled for a general H ( z). 
In Fig. 8 , we present the results for these cosmologies, with the

ssociated errors, alongside our predictions for c and α. Compared 
o the fiducial WMAP 9-yr cosmology, the �m 

= 0.2 cosmology 
atches very closely the mass and redshift evolution while the �m 

 0.4 one exhibits a much clearer difference, particularly resulting in 
igher concentrations than the two other cosmologies. It can be seen 
hat our model accurately predicts the mass and redshift evolution for
hese cosmologies. Most points are well within the errors, with any 
utlying point being of approximately only one standard deviation 
way or within 5 per cent of the observed value. It appears that the
odel and results of this paper therefore do generalize to cosmologies
ith distinct background expansions. As can be seen in Fig. 8 , the

volution of c and α as a function of mass and redshift for multiple
osmologies is rather complex. Ho we ver, this complexity is naturally 
xplained as a single dependence on νc and να , as demonstrated by 
he accuracy of the model. 

Although the changes studied in this work demonstrate significant 
ifferences to the underlying cosmology, both through the linear 
t
ower spectrum and the background e xpansion, we hav e not tested it
or even more extreme variations than presented here. The accuracy 
f the model may be reduced in these regimes, particularly for
ignificantly larger or smaller peak height values than sampled by 
hese simulations. F or e xample, in a cosmology with a truncated
ower spectra (typically associated with warm DM), the c –M relation
s not expected to be monotonic but instead exhibit a maximum
oncentration (e.g. Ludlow et al. 2016 ). For such a cosmology,
c would tend to a constant at small masses. Hence, our model,
ith a single relation between c and νc , would not fully capture the
 xpected turno v er. 

 SUMMARY  A N D  C O N C L U S I O N S  

he aim of this work has been to create a model that links the
uctuations in the initial linear power spectrum with the resulting 
ensity profile of DM haloes, modelling the dependence as a function
f mass, redshift, and cosmology. To fully describe the density 
rofiles observed in cosmological simulations, two parameters are 
equired: halo concentration, c , and the shape parameter, α. We
herefore aimed to create a model that consistently predicts both 
 and α in a consistent and physically moti v ated frame work. To
his end, we have studied how c and α vary as a function of
eak height, ν, a quantity pre viously sho wn to correlate strongly,
hough not perfectly, with both c and α and which is used in the
ress–Schechter formalism (see Section 3 for definitions). We have 
xplored free aspects of the formalism, focusing particularly on the 
indow function, to determine whether the relation between both c 

nd α and peak height can be made to be universal, i.e. are a single
unction for all cosmologies and redshifts. The results of our work
an be summarized as follows: 

(i) In this work, we have used a subset of the cosmological
imulations first presented in Brown et al. ( 2020 ) to study the
osmological dependence of the density profile of DM haloes, 
pecifically using the ‘ Planck pivot’ and ‘ k pivot = 1 h Mpc −1 ’
uites. For these simulations, the slope and amplitude of the initial
inear power spectrum have been systematically varied, resulting in 
aloes with a diverse range of formation and evolution histories. In
ection 2, we present the details of the simulations and how the
ata have been processed to obtain robust and reliable estimates for
 and α. 

(ii) To explore a wide range of possible window functions, we 
sed a versatile functional form known as the smooth k -space
indow function (equation 13; see also Leo et al. 2018 ), which

s introduced and discussed in Section 5.1 (see Fig. 4 ). There are two
ree parameters associated with the smooth k -space window function: 

and β. μ determines the ef fecti ve scale of the transition from unity
o zero in the window function, while β controls how quickly this
ransition occurs. 
MNRAS 509, 5685–5701 (2022) 
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Figure 8. Resulting c –M 200c ( top ) and α–M 200c ( bottom ) relations for the WMAP 9-yr cosmology ( left ), �m 

= 0.2 ( middle ), and �m 

= 0.2 ( right ) cosmologies. 
For each cosmology, the relations are shown at z = 0 and 1 (see legend). The solid lines with errors represent the data from the simulations while the dashed lines 
the predictions from the model. In general, both c and α are accurately predicted by the model with any differences being within 5 per cent (or approximately 
1 σ ), demonstrating that the model generalizes to cosmologies with different background expansions as well as changes to the linear power spectrum. 
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(iii) To quantify how close to universal the c –ν (or α–ν) relation
s, we fitted a second-order polynomial and e v aluated the χ2 error
quoting the reduced χ2 value throughout) for the given relation (see
ection 5.2). We studied how χ2 

r varied as a function of μ and β (see
ig. 5 in Section 5.3). It was found that there are indeed choices of
and β that result in universal c –ν and α–ν relations with minimal

alues of χ2 
r = 2.10 and χ2 

r = 1.83 for c and α, respectively. 
(iv) It was observed that there is a strong de generac y between μ

nd β (again, see Fig. 7 ) with multiple values providing similarly
ptimal values of χ2 

r . It was found that the dominant factor in setting
he peak height is the scale where the window function is a maximum,
hen plotted as k 2 W 

2 ( kR ). Therefore, to first order, the peak height
s set by the amplitude of the linear power spectrum at the associated
 -scale described by ν∝ R 

3 / P ( κ/ R ). κ is where the window function
specifically k 2 W 

2 ( kR )] is a maximum and depends on the given
indow function (see Section 5.3 and equations 16 and 17). For the

mooth k -space window function, κ depends on both μ and β, with
ontours of constant κ matching closely the observed degeneracy. 

(v) The optimal window functions, and associated values of κ ,
re different for c and α. This strongly suggests that these two
uantities are set by fluctuations on different physical scales in the
inear power spectrum. The optimal values are κ = 8.85 and κ =
.0 for c and α, respectiv ely. F or α, the optimal window function
and value of κ) matches very closely the standard STH window
NRAS 509, 5685–5701 (2022) 
unction, while for c the optimal values correspond to smaller scales.
n particular, our analysis indicates that the concentration of haloes is
et by fluctuations on scales ≈4.5 times smaller than those that set for
, or ≈ 1 per cent of the halo mass. As an example, for a WMAP 9-yr
est-fitting cosmology for a halo with mass M 200c = 10 13 h 

−1 M �,
he concentration is set by fluctuations in the linear power spectrum
t a scale of k ≈ 3.1 h Mpc −1 , while the shape parameter is set by
uctuations at k ≈ 0.7 h Mpc −1 . 
(vi) As the relations between peak height and the density param-

ters can be made to be approximately universal, we are able to
reate a simple model where c and α depend only on peak height,
ith the appropriate choice of window function. Specifically, we

ntroduced a generalized STH window function (equation 19) with
he optimal parameters log μg = −0.67 and log μg = −0.01 for c
nd α, respectively (see Section 5.4). The values for c and α can
hen be predicted by empirical relations, given in equations (20) and
21). The smooth k -space window function also produces similarly
ccurate relations, the only disadvantage being that it requires two
ree parameters that are strongly degenerate. 

(vii) In Section 6, we tested the reliability and accuracy of
ur model. When determining the optimal window function, all
osmologies used shared the same background expansion histories,
ut with systemically varied initial linear power spectra. As such, we
hose to test the predictions of our model against two cosmologies

art/stab3394_f8.eps
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ith a higher and lower matter density, resulting in distinctly different 
volutions of the Hubble parameter H ( z). It was found that the model
losely matches the observed c –M 200c and α–M 200c relations, with an 
ccuracy typically better than 10 per cent . 

It is common to attribute the concentration of a halo to its
ormation time, with this interpretation offering an explanation for 
oth the average halo mass dependence and scatter in concentration 
f individual haloes (e.g. Navarro et al. 1997 ; Wechsler et al. 2006 ;
udlow et al. 2014 ). Initially, this view may seem at odds with the

esults presented in this work (as we do not discuss formation time),
ut the two pictures are not incompatible. In our model, we attribute
he density of collapsed DM haloes directly to properties of the 
nderlying cosmology [i.e. P ( k )], quantitatively described through 
he peak height variables νc and να . The halo formation time, on 
he other hand, can be viewed as a mediator between changes to the
osmology and the resulting response of the density profiles of DM 

aloes. Indeed, it seems likely that the idea of the halo concentration
eing set by fluctuation on a particular scale in the linear power
pectrum is roughly equi v alent to it being set by the formation time
f the halo. One limitation of our model, as it is presented here, is
hat it only described the average density profiles at a fixed mass.
here is expected to be scatter at fixed mass, something that can
e explained by an equi v alent scatter in formation time. Ho we ver,
ormation time is not a fundamental quantity but rather depends on 
he given cosmology. As such, any prediction for the density profiles
using halo formation time) will require some theoretical framework 
o predict halo formation time (such as extended Press–Schechter 
heory), with its own potential systematics and limitations. 

Interestingly, multiple studies that link concentration with halo 
ormation time (e.g. Navarro et al. 1997 ; Ludlow et al. 2016 )
ndependently identify the same mass scale in their accretion history, 
pecifically ≈ 1 per cent of their current mass, as being important 
see the papers for the detailed definitions of formation time). Simi-
arly, we find that the concentration of haloes is set by the ef fecti ve
patial scale that is (traditionally) associated with ≈ 1 per cent of the 
alo mass. In our view, it seems unlikely to be a coincidence that
oth these models pick out similar mass scales as being in some sense
special’, though the physical significance of this finding remains to 
e elucidated. 
To accurately predict the density profile of DM haloes, both c 

nd α are required. Our model can therefore be used to impro v e the
redicti ve po wer of man y other cosmological tools and probes. F or
xample, by incorporating it into predictions from the halo model 
e.g. Smith et al. 2003 ; Mead et al. 2015 ) to improving the fit to
tacked weak lensing maps (e.g. von der Linden et al. 2014 ; Hoekstra
t al. 2015 ; McClintock et al. 2019 ). Having a model that accounts
or changes in α is particularly important for galaxy cluster mass 
cales. At these masses, α has the strongest mass dependence as 
ell as deviates significantly from a value that closely resembles 

n NFW profile; i.e. the prediction is that α > 0.18 at cluster
asses. 
One interesting application would be to use the concentration (or 

hape parameter)–mass relations inferred from observations along 
ith the predictions of our (or similar) models to constrain the 
nderlying cosmological parameters. Although baryonic changes are 
xpected to play a non-negligible role in setting the total (DM and
aryons) density and masses of haloes, these effects are much smaller 
n the DM component. Therefore, these issues can be mitigated by 
tting to the DM- only component in galaxies/clusters and comparing 

he inferred mass profiles from a DM-only simulation, as discussed 
.g. in Debackere, Schaye & Hoekstra ( 2021 ). Fitting for both
alo concentration and cluster abundances is a promising way to 
elp further constrain the cosmology of our Universe, as well as
dentifying potential systematics (as both should infer the same 
osmological parameters). 

Our work demonstrates the link between the linear power spectra 
nd the extremely non-linear formation and evolution of the internal 
ensity profiles of DM haloes. We have demonstrated that there is a
lear universality that exists in the density of haloes in cosmologies
ominated by collisionless DM, offering deeper insights into the 
rigin of the structure of our own Univ erse. This univ ersality leads
o robust predictions for the density of DM haloes for a wide range
f cosmologies that can be in turn used to further constrain the
nderlying cosmology of our own Universe. 
Finally, we present a publicly available PYTHON module to 

alculate the predictions of our model for c and α called CASPER

Concentration And Shape Parameter Estimation Routine). All 
ele v ant information about installation and usage can be found at
ttps://github.com/Shaun- T- Brown/CASPER . 
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PPENDI X  A :  RESOLUTI ON  A N D  BOX  SIZE  

TUDY  

n this section, we present the c –mass and α–mass relations as a
unction of varying box size and mass resolution for a few of the
osmologies presented in this paper. We will use the following
otation to specify box size and number of particles used in
he simulations: L < Boxsize > N < particle number > . For instance,
400N1024 denotes a simulation using a 400 h 

−1 M � with 1024 3 

articles, which is the box size and number of particles used
hroughout the main part of this work. Presented here are simulations
ith L200N512, L400N1024, and L200N1024. The details of the

imulations and how they are analysed to determine values for c
nd α are identical to that described in Section 2 with the softening
ength changed appropriately for the higher resolution L200N1024
imulation, with this simulation using 2 h 

−1 Mpc as opposed to the
 h 

−1 Mpc used for the other two simulations. With these three
imulations we can test both the effects of box size and mass
esolution to make sure that neither systematically affect our results.
he L400N1024 and L200N512 simulations have the same mass

esolution with a different box size, while the L200N1024 and
200N512 simulations share the same box size b ut ha ve different
ass resolutions. 
The c –mass and α–mass relations are presented in Fig. A1 for

he three different combination of box size and resolution for the
tandard WMAP 9-yr best fit and the Planck pivot with n s = 1.75
osmology. As can be seen, both c and α are well converged for all
imulations for haloes resolved with an adequate number of particles.
t is found that for the most extreme cosmology we study, i.e. the
reen lines presented here, at least 10 000 particles are needed to get
uf ficiently resolved v alues for c and α. Although not sho wn here, it is
ound that only 5000 particles are required for all other cosmologies
tudied. We therefore use the associated mass cuts when analysing
he simulations in this study. 
utions to test the convergence and robustness of our results. Presented here 
ines) and one that adopts a Planck pivot point and n s = 1.75 (green lines), 
t the simulation box size and resolution (see legend). Data points have been 
 with the L200N1024 and L200N512 multiplied by an arbitrary constant of 
mology have been increased by a constant of 0.15 with respect to their true 
he two vertical dashed lines represent haloes with 5000 and 10 000 particles 
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As mentioned the analysis is identical for all simulations. A key 
art of the analysis is the radial range fit o v er, which we use r conv < r <
.7 R 200c , where r conv is the convergence radius (see equation 4). r conv 

rimarily depends on the number of particles that the halo is resolved
ith, meaning that the higher resolution simulation (L200N1024) is 
t o v er a wider ef fecti ve range for the same mass halo. We do not
nd any systematic difference with mass resolution demonstrating 

hat the c and α are robust to the radial range fit o v er, as long as
n appropriately conserv ati v e conv ergence criterion is used to a v oid
tting to the numerical core present. We also do not observe any
e generac y between c and α that is correlated with the radial range
eing fit o v er as found in other works (e.g. Udrescu et al. 2019 ). We
ttribute this primarily to fitting to stacked density profiles, resulting 
n smooth profiles without any discernible features from substructure. 
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