

 Abstract—The use of multi-agent robotics for space

exploration creates the need for verification and validation

using formal methods and simulation-based testing of such

systems. This paper presents an asteroid exploration simulation

and visualisation tool that can facilitate agent research in an

approximated space setting. The software is able to simulate

and visualise multiple spacecrafts navigating a customisable

asteroid field environment under the control of either user or

agent commands and abiding to space physics constraints. A

built-in autopilot system implements Lambert’s algorithm to

allow autonomous orbital entry/transfer manoeuvres, and

collision-free long-range path-finding if the objective is distant.

A simulated scenario is described, involving two agents

observing multiple asteroids during a debris strike.

I. INTRODUCTION

Recent years have seen a proliferation of research into the
use of multi-agent systems for space exploration. Such
systems require verification and validation which can be done
through a combination of formal methods and simulation-
based testing [1, 2]. However, visualisation capabilities are
lacking from many projects, hindering researchers’
communication and prototyping abilities. Existing space
mission visualisation projects either do not support multi-
agent run-time simulation (e.g. [3, 4]), asteroid-rich
environment (e.g. [5]), or have restricted access to
researchers (e.g. [6]). This project aims at developing a tool
for space mission simulation and visualisation in the context
of an asteroid exploration mission.

II. DESIGN AND IMPLEMENTATION

AsteroidX consists of four basic components: a visualisation

engine, a space physics engine, an external control program,

and an autopilot. These are described in detail below.

A. Visualisation Engine

Visualisation was implemented using the Unity 3D
graphics engine [7] (see Figure 1). Customisation of every
visualisation detail, such as directional lighting, spacecraft
thruster flame, and virtual orbit is allowed. Users can set up
the viewpoint to follow the spacecraft or remain fixed in any
place. Stabilisation of the virtual camera provides a
comfortable and intuitive viewing experience. An

* Work supported by EPSRC under grant EP/R026092 (FAIR-SPACE)

for “Robotics and AI Hubs in Extreme and Hazardous Environments.”

T. Zhang is with the Department of Computer Science, University of

Liverpool, UK (e-mail: terryyy.zhang@gmail.com).

L.A. Dennis is with the Department of Computer Science, University of
Manchester, UK (e-mail: louise.dennis@manchester.ac.uk).

M. Webster is with the School of Computer Science and Mathematics,

Liverpool John Moores University, UK (e-mail: m.p.webster@ljmu.ac.uk).

information panel provides a wealth of information directly
during the simulation.

Figure 1. Visual modelling of asteroids, spacecraft, stellar sunlight, and

space background.

B. Space Physics Engine

The physical constraints describing space physics,
celestial mechanics, spacecraft behaviours and status are
scripted in C# to interact with Unity’s C/C++ core. The
default scaling system is the International System of Units
(m/kg/sec) but can be configured to the solar scaling system
(km/1024 kg/years). Newton's law of universal gravitation is
implemented to all objects in the scene unless specified.
Detection of spacecraft collision with asteroids will trigger
collision reports. Users can set orbital parameters (if in
autopilot mode, discussed later) by defining longitude, semi-
parameter, eccentricity, and inclination.

C. External Control Program

An external control program controlling spacecraft
actions can be provided in any programming language,
connecting to the simulator via TCP/IP software sockets. In
most cases, external control programs transmit commands to
the spacecraft, and the simulator sends back spacecraft sensor
data. High-level instructions are made possible by built-in
aided control programs such as autopiloting. This ability to
support external control software is key to the platform’s
ability to serve as a research platform for agent program
design. The socket interface also allows direct user control of
the spacecraft.

D. Autopilot

Autopilot is a built-in aided control program included in
the project with the help of software packages NBodyPhysics
[8] and Polarith AI [9]. This allows the external control
program to focus on high-level mission commands leaving
lower-level control to the simulation. It can also assist direct
users control when steering the spacecraft manually if their
focus is elsewhere. Autopiloting allows automatic navigation
of spacecraft to move towards targeted asteroids according to

Tianyu Zhang, Louise A. Dennis, and Matt Webster

AsteroidX: An Asteroid Exploration Simulation

and Visualisation Tool*

interplanetary orbital entry/transfer manoeuvres such as
Lambert Transfer, as shown in Figure 2. Simulation can be
speed up to 200 times faster during automated orbital
manoeuvres. Autopilot is also capable of collision-free long-
range path-finding if the objective is distant, as shown in
Figure 3. The sensor range can be limited to simulate the lack
of global knowledge. Users/external control programs can
disable the autopilot program and gain full control of the
spacecraft components such as thrusters and rotation, if
desired.

Figure 2. Autopilot orbital manoeuvre: before first burn (top) and after

first burn (bottom) during an orbital transfer using Lambert’s algorithm.

Figure 3. Autopilot path-finding: spacecraft avoiding debris strike using

spatial proximity sensor.

E. Setup

The initial environment is defined by the positions,
masses, and shapes (based on 3D models) of asteroids within
the asteroid belt, as well as the spacecraft. Template
environments are provided, and modification of those
attributes can be achieved by changing these templates. Unity
also provides an intuitive user interface that requires minimal
effort to learn to configure those parameters in the initial
environment. A detailed guide to setup can be seen on the
project webpage1.

III. SIMULATION SCENARIO

The constructed visualisation scenario in AsteroidX
echoes the design of Lincoln et al. [10], in which rational
agents were able to react to the environment according to

1 https://github.com/TerryyyZhang/AsteroidX-Asteroid-Exploration-

Simulation-and-Visualisation-Tool

sensor data in real-time. In the scenario presented here, two
autonomous agents were able to negotiate and distribute
responsibility while exploring a partially unknown asteroid
field (see Figure 4). They could orbit the same asteroids
together for close observation or orbit different asteroids.
During all operations, notification of an approaching debris
strike overrided all current activities, forcing the spacecraft to
engage a collision avoidance mode. Figure 4 shows the
screenshot for a simulated scenario where an external control
program written in Java was used to instruct two spacecraft
agents to orbit different asteroids. The commands sent to the
agents in control of the spacecraft are shown in Table 1.

Figure 4. Simulated scenario where a Java program uses software sockets

to instruct two spacecraft agents to orbit different asteroids.

Table 1. Agent commands within the simulated scenario.

Command Command Type Agent Additional

Information

Agent 1 to Site 1 Move 1 Site 1

Agent 1 to Site 2 Move 1 Site 2

Agent 2 to Site 1 Move 2 Site 1
Agent 2 to Site 2 Move 2 Site 2

Agent 1 stand by Abort 1

Agent 2 stand by Abort 2

Agent 1 report status Report 1 Status

Agent 2 report status Report 2 Status

IV. CONCLUSION

AsteroidX is a 3D visualisation tool for simulation of
asteroid exploration based on customisable models and visual
effects settings. Space physics models were constructed to
simulate the real-world behaviours of spacecraft and
asteroids. A built-in API allows external programs running at
the same time to exchange spacecraft commands and
simulation information. The autopilot can take over the
navigation tasks and ease the control. Setup is relatively
straightforward while maintaining a high degree of
customisation and flexibility. AsteroidX can be applied to
more simulation-based space exploration research,
development, and prototyping, and can be used to validate
scenarios for verification and validation. The software could
be extended by improving functionality through refinement
of the template environment and the development of
improved information panels and software sockets.

REFERENCES

[1] M. Fisher et al., “An Overview of Verification and Validation

Challenges for Inspection Robots,” Robotics , vol. 10, no. 2. 2021.

[2] M. Webster et al., “A corroborative approach to verification and

validation of human–robot teams,” Int. J. Rob. Res., vol. 39, no. 1,

pp. 73–99, Nov. 2019.
[3] S. Cooley et al., “General Mission Analysis Tool (GMAT).”

[Online]. Available:

https://github.com/TerryyyZhang/AsteroidX-Asteroid-Exploration-Simulation-and-Visualisation-Tool
https://github.com/TerryyyZhang/AsteroidX-Asteroid-Exploration-Simulation-and-Visualisation-Tool

https://opensource.gsfc.nasa.gov/projects/GMAT/index.php.

[4] “Mixed Reality Exploration Toolkit (MRET).” [Online].
Available: https://software.nasa.gov/software/GSC-18602-1.

[5] “42: Simulation for spacecraft attitude control system analysis

and design.” [Online]. Available:

https://sourceforge.net/projects/fortytwospacecraftsimulation/.

[6] “Exploration Visualization Environment Version 2.15.” [Online].
Available: https://software.nasa.gov/software/LAR-19859-1.

[7] “Unity3D,” v2020.1. [Online]. Available: https://unity.com.

[8] P. Musgrave, “NBody Physics,” v8.0, 2014. [Online]. Available:

http://nbodyphysics.com/.

[9] M. Kirst and F. Pieper, “Polarith AI,” v1.7.1, 2010. [Online].
Available: https://polarith.com/ai/.

[10] N. K. Lincoln, S. M. Veres, L. A. Dennis, M. Fisher, and A.

Lisitsa, “Autonomous Asteroid Exploration by Rational Agents,”

IEEE Comput. Intell. Mag., vol. 8, no. 4, pp. 25–38, Nov. 2013.

	I. INTRODUCTION
	II. Design and Implementation
	A. Visualisation Engine
	B. Space Physics Engine
	C. External Control Program
	D. Autopilot
	E. Setup

	III. Simulation Scenario
	IV. Conclusion
	References

