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Abstract  

Accelerated degradation of solder joint interconnections in crystalline silicon 
photovoltaic (c-Si PV) modules drives the high failure rate of the system operating 
in elevated temperatures. The phenomenon challenges the thermo-mechanical 
reliability of the system for hot climatic operations. This study investigates the 
degradation of solder interconnections in c-Si PV modules for cell temperature rise 
from 25°C STC in steps of 1°C to 120°C. The degradation is measured using 
accumulated creep strain energy density (𝑊𝑎𝑐𝑐). Generated 𝑊𝑎𝑐𝑐 magnitudes are 
utilised to predict the fatigue life of the module for ambient temperatures ranging 
from European to hot climates. The ANSYS mechanical package coupled with the 
IEC 61215 standard accelerated thermal cycle (ATC) profile is employed in the 
simulation. The Garofalo creep model is used to model the degradation response of 
solder while other module component materials are simulated with appropriate 
material models. Solder degradation is found to increase with every 1°C cell 
temperature rise from the STC. Three distinct degradation rates in Pa/°C are 
observed. Region 1, 25 to 42°C, is characterised by degradation rate increasing 
quadratically from 1.53 to 10.03 Pa/°C. The degradation rate in region 2 ,43 to 63 
°C, is critical with highest constant magnitude of 12.06 Pa/°C. Region 3, 64 to 120°C, 
demonstrates lowest degradation rate of logarithmic nature with magnitude 5.47 at 
the beginning of the region and 2.25 Pa/°C at the end of the region. The module 
fatigue life, L (in years) is found to decay according to the power function                   
𝐿 = 721.48𝑇−1.343. The model predicts module life in London and hot climate to be 
18.5 and 9 years, respectively. The findings inform on the degradation of c-Si PV 
module solder interconnections in different operating ambient temperatures and 
advise on its operational reliability for improved thermo-mechanical design for hot 
climatic operations. 
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1. Introduction 

The annual electrical power consumption of the entire planet can be generated by the 

sun in just one hour (Harrington, 2015; Maehlum, 2013). Solar energy is abundant in 

addition to being clean, sustainable and renewable (Belward et al., 2011; Gujba et al., 

2011). However, some parts of the world are still struggling to meet their energy needs. 

Photovoltaic module (PVM) systems are capable of harnessing and converting the 

immense energy of the sun into useful electricity. Unfortunately, PVMs have 

demonstrated low performance in hot climates because elevated ambient temperature 

conditions significantly influence their performance. The conditions include the intensity 

of solar radiation, cell temperature magnitude, wind speed and humidity (Dubey et al., 

2013; Skoplaki and Palyvos, 2009a, 2009b). Normally, PV modules are designed to 

operate under standard test conditions (STCs) which are solar radiation of 1000 W/m², 

cell temperature of 25°C, wind speed of 1 m/s and air mass (AM) of 1.5. Cell temperature 

of 25°C is characteristic of European and other temperate climates. The operating 

conditions of PVMs in hot climate differ from STC and vary in different climatic zones 

(Eludoyin et al., 2014). High cell and ambient temperatures are considered critical to the 

reliability of PV solder interconnections.  

This study focuses on hot climates with high ambient temperatures ranging from 25 °C to 

45 °C which can force PV cell temperatures to increase to as high as 90 °C. Kurnik et al. 

(2011) in their outdoor testing of PV module temperature and performance under different 

mounting and operating conditions, reported that the temperature difference between 

ambient and module can be as high as 22 °C. The PV module has been described as a 

layered composite of different materials hence the different material combinations 

complicate stress distribution and concentration (Lenarda and Paggi, 2016; Ojo and 

Paggi, 2016a). Operations at high-temperatures increases the mismatch effect among 

crystalline silicon wafer, silver contacts, solder, copper ribbons and other component 

layers in the module occasioned by the differences in their coefficient of thermal 

expansion (CTE). In turn, the mismatch leads to thermo-mechanical induced fatigue 

loading of the interconnection in the PV module (Dubey et al., 2013; Kato, 2012). 

Consequently, PV modules operating in the hot climatic regions possess higher failure 

rates than those in temperate climates. Munoz et al. (2011), in their measurement of early 

degradation of crystalline silicon PV modules using visual inspection, I-V curve 

characteristics, thermal evaluations by Infrared imaging and electroluminescence, 

reported that early defects are caused by module operation in conditions that differ from 

standard test conditions. 

Ferrara and Philipp (2012) in their study of the reasons for PV module failures, grouped 

them into intrinsic and extrinsic factors. Intrinsic factors are based on material properties 

while extrinsic factors are based on climatic stress factors and defective installations. 

Highlighted climatic stress factors which include solar irradiation, humidity, wind, high/low 
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temperatures and temperature changes result in failure modes that can either be obvious 

to an observer or not. Obvious failures like discoloration, delamination, formation of 

bubbles and cracking of EVA showed no direct relation to power loss whereas, cell and 

interconnection breakage are responsible for the degradation of electrical performance of 

PV modules as well as reduction in fatigue life and lifespan. Solder interconnections 

perform structural and electrical functions in a PV module. Any degradation in the solder 

joint means the power generated by the PV cell cannot be accessed. Additionally, the 

solder joint holds the electrical components (i.e. PV cell, contact and interconnect ribbons) 

of PV modules together. 

Ndiaye et al. (2013, 2014) buttressed on the economic importance of PV module fatigue 

life and lifespan. They indicated that in the choice of energy sources, consumers consider 

cost effectiveness and return on investment, so fatigue life and lifespan are determining 

factors. Further findings from their review of silicon photovoltaic module degradation in 

Senegal, includes identifying temperature and humidity as the most dominant factors 

responsible for all observed modes of PV module degradation of which interconnection 

breakage topped the list. They also reported that current literature on PV module 

degradation focuses on the degradation of the entire module and not on a single mode of 

degradation. They recommended that in the study of PV module degradation, one mode 

of degradation should be focused on at a time as this will provide better understanding 

and thorough research. 

The majority of previous literature (Jordan et al., 2010; Jordan and Kurtz, 2013; Kurnik et 

al., 2011; Skoplaki et al., 2008; Ye et al., 2014) have studied the electrical power 

degradation of PV modules considering various component parts but have neglected the 

effect of solder joints degradation. The PV failure modes observed in field operations 

include delamination and discolouration of EVA, solder bond and ribbon degradation and 

cracking as well as burn marks (Bosco, 2010; Marc Köntges et al, 2014). Other 

researchers which include Jeong et al., (2012); Zarmai et al., (2015) reported that the 

solder interconnection is the most susceptible part of the PV Module and responsible for 

over 40% of module failures. Chandel et al. (2015), in their degradation analysis of 28-

year field exposed mono-c-Si photovoltaic modules directly coupled with solar water 

pumping system in western Himalayan region of India, reported that interconnection 

degradation is responsible for increase in shunt and series resistances which imply 

decrease in short circuit current and power output of PV Module. They further argued that 

contact and interconnection degradation are the primary degradation modes of PV 

modules operating in tropical climates - known for their hot and humid characteristics. 

Figure 1 presents a schematic showing the operation of a PV module in hot climate. The 

PV module functions to harness only the light energy of the sun into useful electrical 

power – which is the functional design. However, field operations in a hot climatic region 

exposes the module to both the heat and light energies of the sun. Such operation 

exposes the module to conditions outside its designed intents. The figure shows that the 

PV module converts the light energy into useful electrical power, but the unwanted heat 
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energy impedes power generation and accelerates the interconnection degradation which 

leads to interconnection rupture. 

 

 

 

The significant effect high temperature operation has on the electrical conductivity of the 

solder interconnection and thus power output of the entire PV module is buttressed in our 

previous study (Ogbomo et al., 2017). In that study, the performance of PV module 

contacts and interconnection technologies in tropical climate were scrutinised. At high 

temperatures, electrons in the material are thermally excited and energised thus, they 

vibrate and collide with one another. This activity increases the electrons’ resistance to 

the flow as electric current and impedes the electrical conductivity of the material. This 

implies that as temperature increases, resistivity and electrical resistance increase. These 

relations are represented in Eqs. (1) and (2).  As a result of the inverse relationship 

between electrical resistance and electric current, an increase in resistance leads to a 

corresponding decrease in current and hence power output. Equations (3) and (4) 

represent these relations. 

𝜌 = 𝜌0 [1 + 𝛼(𝑑𝑇)]         (1) 

𝑅 = 𝑅0 [1 + 𝛼(𝑑𝑇)]         (2) 

𝐼 =
𝑉

𝑅
            (3) 

𝑃 =  𝐼2𝑅           (4) 

Where  𝜌0  is initial resistivity (Ωm), 𝜌 is final resistivity (Ωm), 𝑅0  is initial resistance (Ω), 

𝑅 is final resistivity (Ω), 𝛼 is temperature coefficient of resistivity (K-1) and 𝑑𝑇 is 

temperature change (K). I is electric current (amp.), V is voltage (volts) and P is electrical 

power (watts). 

Although there are literature on the electrical power degradation of PV module which 

include (Bastidas-Rodriguez et al., 2017; Jordan et al., 2017; Sander et al., 2010), the 

Fig. 1: Schematic showing the operation of PV modules in hot climate 

Cracked PV module  
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present study focuses on the thermo-mechanical degradation of the PV solder 

interconnections in high temperature climates. The effect of non-STC operating 

temperatures on the PV module performance and reliability is critical and drives the 

module high failure rate in hot climate. There is therefore the need to critically investigate 

the effect of operations of PV modules in hot climate on its performance with focus on 

solder interconnection reliability. The rationale to investigate the degradation for every 

1°C rise from STC is borne out of the realisation that Dubey et al. (2013) and Kato (2012) 

reported that the temperature coefficient pMax of crystalline silicon PV modules is -0.5%. 

Implying that for every 1°C rise from the STC, the power conversion efficiency (PCE) of 

the PV module decreases by 0.5%. This observation necessitates urgent research to 

ascertain the relationship between operating temperature and thermo-mechanical 

degradation of PV solder joints, hence provide information to improve the performance 

and reliability of PV module in hot climate. The claim is strengthened  by the reports of 

(Huld et al., 2010; Hussein et al., 2004; King et al., 2002; Obinata et al., 2010; Pacca et 

al., 2007; Woyte et al., 2013) that the deviation of modules cell and ambient temperatures 

in the hot climate from the STC calls for research aimed at providing more information to 

predict the performance and fatigue life of modules in the climatic zone accurately.   

This study aims to investigate the effect of high-temperature on degradation of solder 

joints in photovoltaic module for improved reliability in hot climate. In addition, the 

research seeks to identify the numerical relationship between cell temperature rise from 

STC and the solder joint degradation.  

  

2. Thermal Load 

Studies report that operations of crystalline silicon PV (c-Si PV) module in hot climate is 

characterised with high failure rates that results in short fatigue lives and lifespan of the 

module. These high failure rates are attributed to deviant operating conditions in hot 

climates from the STCs. The operating PV cell temperatures in the tropics can be as high 

as 90°C. In a previous research (Ogbomo et al. 2017) on PV module technologies for 

increased performance in tropical climate, cell, contact and solder interconnection 

technologies are investigated. The low performance of crystalline silicon PV modules in 

hot climates was highlighted hence the authors proposed that a PV module comprised of 

Cadmium Telluride cell, back contact and back-to-back solder interconnection is better 

performing in hot climate when measured on energy payback time, contact recombination 

losses and thermo-mechanical reliability of solder interconnection. However, with 

crystalline silicon PV modules still possessing about 84% of total market share and 

Cadmium Telluride only 6%, c-Si PV modules remain the utmost interest (Ogbomo et al., 

2017). Several reasons account for the dominance of c-Si PV modules over Cadmium 

Telluride PV modules in the market. Some of which include c-Si PV modules being around 

longer and are ahead of the others in research and development. The others being 

considerations on the cost of raw materials and toxicity of elemental Cadmium. 
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The c-Si PV modules comprise different materials with respective material properties. 

These materials include silicon cell, silver contacts, copper ribbon interconnects, glass, 

EVA encapsulant and Tedlar back sheet. Of these component parts, the solder 

interconnection has been reported as the most susceptible part of the module and 

responsible for over 40% of failures (Dubey et al., 2013; Kato, 2012; Jeong et al., 2012; 

Zarmai et al., 2015). The susceptibility of the solder interconnections - which comprises 

silver contact bonded to copper ribbon interconnects via lead free solder - is linked to the 

mismatch between the coefficients of thermal expansions (CTE) of the bonded materials 

in the solder joint. The bonded materials in the solder joint expand and contract at different 

rates during field operation. The deformation leads to crack formation, crack propagation 

and eventual failure of the solder joint and the PV module. Ike (2013) measured the effect 

of temperature on the performance of PV solar systems operating in eastern Nigeria for 

a year. He reported a proportionality between power output and ambient temperature and 

suggested that PV systems be installed where air currents can keep ambient 

temperatures low to increase power output.  

The thermal load conditions applied for the investigation are presented in sections 2.1 

and 2.2. Section 2.1 discusses the thermal load applied on the PV module with every step 

rise of cell temperature from STC while section 2.2 focuses on the thermal load due to 

temperature cycling.    

 

2.1. Step rise thermal load, T for 25 °C ≤ T ≤ 120 °C 

The degradation of solder joint is determined at each 1 °C temperature rise from 25°C 

STC.  To fully understand and quantify the effect of high temperature on PV solder joint 

degradation, the relationship between solder joint degradation and each 1°C rise in c-Si 

PV cell temperature from STC is described numerically. For each 1°C step rise from 25°C 

STC, the corresponding value of solder joint degradation is generated from the simulation 

output. Applied PV cell temperature loads range from 25°C to 120 °C. Section 4.1 

presents the results and discusses the effect of step cell temperature rise on solder joint 

degradation using equivalent stress, equivalent strain and maximum strain energy 

density. The numerical relationship and graphical plots between PV cell temperature and 

solder joint degradation are then presented. 

 

2.2. Thermal Cycling 

The actual operating temperature condition of a PV module is better described by a 

temperature cycle where temperatures continuously rise and fall over the lifetime of the 

module. The IEC 61215 standard (Arndt and Robert Puto, 2010) utilised for the fatigue 

life tests and lifespan tests of crystalline silicon PV module is applied. Figure 2 is a plot of 

the applied thermal load profile showing plot of temperature against time. The current IEC 
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61215 standard test employs a thermal load profile commencing at 25°C. The hot (or 

high) dwell is set at 85 °C while the cold (or low) dwell is at -40°C. The ramp rate is 1.667 

°C/min, upper and lower dwell times are 10 minutes each for 200 cycles at a standard 

ambient operating temperature of 25°C. For this study, the ambient temperature has been 

varied from 25 °C to 45 °C. Previous researchers (Amalu and Ekere, 2012a, 2012b) 

studied flip chip solder joints and applied thermal cycling with high dwell as high as 157 

°C and cold dwell of -38 °C with ramp rate of 15 °C/min. For c-Si PV module solder joints, 

the IEC 61215 standard with steady ramp rate of 1.667 °C/min demonstrates closer real 

life operational temperatures. 

In addition to solder interconnection degradation, cyclic loading has been reported to 

cause the deformation of various component layers in the PV module thereby impeding 

the performance of the system. Paggi et al., (2014), in their study on the fatigue 

degradation and electric recovery in silicon solar cells embedded in photovoltaic modules, 

postulated that cyclic loads which caused cracks in the silicon cell layer of PV modules 

are responsible for 10% of field failures and result in electrical performance degradation. 

Electrical performance degradation is measured by parameters including increase in 

series and shunt resistance, decrease in electric current and power output. They reported 

that silicon cell cracking led to 7% increase in series resistance, 4% power output loss 

and 3% decrease in fill factor. These parameters for electrical performance degradation 

are measured experimentally utilising cyclic bending tests and non-destructive monitoring 

techniques like electroluminescence and thermal infrared imaging. Our present study 

focuses on the thermo-mechanical degradation of solder interconnections which is 

responsible for over 40% of PV module field failures. Creep strain energy values and 

fatigue life predictions under non-STC loads, which are obtained in ANSYS finite element 

modelling environment, are utilised for our investigation.  

Section 4.2 further discusses the solder joint degradation under the thermal cycling load. 

Equivalent stress, equivalent strain and accumulated creep strain energy density are the 

parameters used to quantify solder joint degradation. Fatigue lives under the various 

ambient temperatures are also predicted. 



8 
 

 

 

3. Finite Element Analysis 

Finite element modelling (FEM) is employed to investigate the effect of non-standard 

ambient and cell temperatures on the degradation of c-Si PV solder interconnections. In 

recent years, FEM has been utilised to investigate parameters that would otherwise be 

expensive and time consuming to investigate using laboratory experiments. These 

experiments can take several years and a lot of money when performed in laboratory. 

SolidWorks package is used to design the Finite Element (FE) model while ANSYS 

mechanical package is utilised to simulate the response of the FE model to the applied 

loads. Solder joint damage is quantified by accumulated creep strain energy generated 

from the ANSYS FEM.  

Section 3.1 presents and discusses the material properties in the FE model while section 

3.2 describes the FE modelling and methodology.  

 

3.1. Materials and their Properties 

The PV module architecture from top-to-bottom comprises glass, EVA encapsulant, 

copper ribbon interconnect, solder, silver front contact, crystalline silicon wafer, aluminium 

back contact and Tedlar back sheet. PV solder interconnection consist of copper ribbons 

joined to silver contacts by Sn3.5Ag0.5Cu solder alloy. The interconnection is shown in 

Fig. 6. The various component layer materials in the PV module and their respective 

properties are presented in Table 1. The table shows properties which include coefficient 

of thermal expansion (CTE), Young’s Modulus and Poisson Ratio. These properties 

constitute part of the input for the ANSYS FEM analyses. Material components are 

modelled using linear elastic, viscoelastic and temperature dependent material 

properties.  
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Fig. 2: Thermal Cycle Loading showing temperature (°C) against time (sec)  
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3.2. Finite element modelling and methodology  

The PV module component layers with respective dimensions are shown in Table 2. 

Figure 4 shows different views of the PV module architecture with component layers from 

the SolidWorks software environment. The PV module architecture from SolidWorks is 

converted to an acceptable format which forms the geometry input for ANSYS FEM 

environment. In ANSYS, all the respective material properties of component layers in the 

PV module are inputted as Engineering Data. Lenarda and Paggi, (2016), proposed a 

geometrical multi-scale numerical method for coupled hygro-thermo-mechanical 

problems in photovoltaic laminates. They presented advanced model schemes of 

imperfect sealing between PV component layer interfaces. These interfaces that can de-

bond thereby allowing moisture diffusion and chemical oxidation, require much finer mesh 

sizes to handle non-linearities of the problem. In our present study, all the interfaces 

between the component layers are assumed to be fully bonded with perfect adhesion, 

deformation is shear free and one dimensional, and the fixed support is on the Tedlar 

back sheet layer. Utilising a less advanced model and in neglecting non-linearities, our 

finite element investigation is represented by a relatively coarse mesh model as presented 

in Figs. 5b & 6b. 

The residual stresses accumulated in the PV module during encapsulation, especially, 

have been studied. Ojo and Paggi, (2016b) predicted residual compressive stresses 

between 40MPa and 60MPa in photovoltaic modules after lamination utilising a thermo-

viscoelastic shear-lag model. In their later  study (Ojo and Paggi, 2016a), a 3D coupled 

thermo-viscoelastic shear-lag formulation for the prediction of residual stresses in 

photovoltaic modules after lamination, they observed mean compressive stresses 

between 40MPa and 65MPa at the edges of the silicon cell, and 140MPa at the centre. 

In our present investigation, the focus is on the degradation of solder under non-STC 

temperatures and so the variations in stress and strain from the initial configuration (i.e. 

STC conditions) are considered only. Hence the residual stresses have been assumed to 

be negligible since the absolute values of stress and strain are not taken into 

consideration.  

Equation (5) presents the Garofalo creep model (Dudek et al., 2003). Where, 𝜀𝑐𝑟 is the 

creep strain rate, C1, C2, C3, C4 are the Garofalo creep parameters for SnAgCu solder, σ 

is the equivalent Von Mises Stress and T is the absolute temperature.  

       𝜀𝑐𝑟 = 𝐶1[sinh (𝐶2𝜎)𝐶3exp (−
𝐶4

𝑇
)       (5) 

Garofalo creep model was utilised to simulate the degradation response of solder while 

other material responses were modelled using appropriate models. Garofalo creep model 

is used to determine the maximum creep strain energy density which measures the solder 

joint damage.  Table 3 presents the Garofalo creep constants (C1, C2, C3, and C4) 

employed. Further discussions on creep strain energy density are carried out in section 

4. 
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Syed (2004, 2001) extensively studied fatigue life prediction of SnAgCu flip chip ball 

solder joints in printed circuit boards (PCBs). Equations (6) and (7) represent fatigue life 

prediction utilising accumulated creep strain and accumulated creep strain energy 

density, respectively. The constants of fatigue life prediction (C and W) were derived after 

linear multiple regression analysis of the hyperbolic sine and double power law 

constitutive creep models.  

 

𝑁𝑓 = (𝐶𝜀𝑎𝑐𝑐)−1          (6) 

𝑁𝑓 = (𝑊𝜔𝑎𝑐𝑐)−1          (7) 

 

Where 𝑁𝑓 is the Mean Fatigue Life (cycles), 𝜀𝑎𝑐𝑐 is the accumulated creep strain per cycle, 

𝜔𝑎𝑐𝑐 is the accumulated creep strain energy density per cycle, and the constants of fatigue 

life prediction are C = 0.0405 and W = 0.0014. 

Several studies have been published on the fatigue life assessment of ball solder joints 

in PCBs and other surface mount electronics (Menka et al., 2011; Mi et al., 2014; Syed, 

2004, 2001; Wang and Wu, 2011; Wong et al., 2016; Zhao et al., 2002) but there is none 

on composite solder joints in PV modules especially under various non-standard ambient 

and cell temperatures. Our study applies hyperbolic sine creep model and accumulated 

creep strain energy density for the fatigue life prediction of composite PV solder joints 

under non-standard ambient temperatures. 

Equation (8) presents the relation between creep strain energy and creep strain energy 

density. Where 𝐸 is the maximum creep strain energy density (Pa), 𝐸𝑐 is the maximum 

creep strain energy per cycle (Joule) and 𝑉 is the solder volume (m3).  

𝐸 =
𝐸𝑐

𝑉
           (8) 

The accumulated creep strain energy density (i.e. measure of solder damage) is derived 

from the relations in Eqs. (9) and (10). 

𝐸𝐴 = ∑ |𝐸𝑖 − 𝐸𝑖+1|𝑛
𝑖=1           (9) 

∑ |𝐸𝑖 − 𝐸𝑖+1| = |𝐸1 − 𝐸2| + |𝐸2 − 𝐸3| + |𝐸3 − 𝐸4| + ⋯ + |𝐸𝑛−1 − 𝐸𝑛|𝑛
𝑖=1  (10) 

Equation (9) presents accumulated creep strain energy density, 𝐸𝐴, as the sum of the 

absolute difference between the maximum creep strain energy density value in a cycle 

and the successive cycle. n is the number of cycle.  

Equation (11), which forms part of the Engineering Data Input to ANSYS finite element 

environment, presents the temperature dependence of Young’s Modulus of solder 

(Schubert et al., 2001; Wiese et al., 2001).  
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𝑌 = 62348 − 54.6𝑇         (11) 

Where Y is the Young’s Modulus and T is the absolute temperature.  

EVA material, known for its unique thermo-viscoelastic rheological properties, has been 

used as the encapsulation layer for PV modules providing stiffness and flexibility 

depending on application conditions (Eitner et al., 2010; Jamshidi et al., 2015). EVA is 

the most commonly used material for PV encapsulation because of relative low cost, high 

light transmittance, and good thermal conductivity (Agroui and Collins, 2014, 2013; 

Yuwawech et al., 2015). However, the degradation of the EVA layer in PV modules under 

non-STC conditions has been reported as discoloration, debonding and delamination 

(Gagliardi et al., 2017; Matsunaga et al., 2011; Rajput et al., 2017; Sinha et al., 2016). 

Paggi and Sapora, (2015), proposed an accurate thermo-viscoelastic rheological model 

for EVA based on fractional calculus. They described the viscoelasticity of EVA using 

power law behaviour by applying fractional dashpot model (i.e. spring pot) instead of the 

spring and dashpot models in the Prony series. Their results indicate EVA’s constitutive 

behaviour significantly influences the stress and deformation of PV silicon cells, 

responsible for the non-linear variation in cell gap which leads to solder interconnection 

failure and its degradation has been attributed to electrical power output loss. 

Paggi et al., (2011) in their study of the thermomechanical deformations in photovoltaic 

laminates, demonstrated the strong temperature-dependant behaviour of the EVA layer. 

They produced a chart of the relationship between Young’s Modulus (E) of EVA and 

temperature which is presented in Fig. 3. Values of Young’s Modulus of EVA at 

corresponding temperatures points on the thermal cycle load as shown in Fig. 2, are 

derived from the chart in Fig. 3, and form part of the Engineering Data input for the ANSYS 

finite element modelling. At each non-STC load condition, the FEM solver calls for the 

data as required. Modelling EVA as temperature dependent instead of linear elastic, FEM 

results demonstrated close results with experimental values (Eitner et al., 2011; Paggi et 

al., 2011). In previous research on the viscoelastic behaviour of EVA, the model of PV 

module utilised have comprised of glass, EVA, silicon cell and back sheet. In our present 

study, our model of PV module includes all the component layers: glass, EVA 

encapsulant, copper ribbon interconnect, solder, silver front contact, crystalline silicon 

wafer, aluminium back contact and Tedlar back sheet. We shall place emphasis on 

considering the influence that the constitutive viscoelastic behaviour of EVA has on the 

PV solder interconnection. 

 

 



12 
 

 

 

 

 

 

 

 

 

Fig. 4: PV Module Architecture end view (a) 3D view (b) 

Fig. 3: Young’s modulus (MPa) of EVA versus temperature (°C), for different relaxation times 

(Paggi et al., 2011) 
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Component Height (μm) 

Silver Front contact 50 

Copper Ribbon 200 

Solder (Sn3.5Ag0.5Cu) 46 

Aluminium Back Contact 25 

Silicon Wafer 200 

Glass 3000 

EVA Encapsulant 460 

Tedlar Back Sheet 190 

Intermetallic compound (IMC) 5 

 

 

 

 

 

 

Material 
CTE 

(10-6/K-1) 

Young’s 

Modulus 

(GPa) 

Poisson 

Ratio 

Thermal 

conductivity 

(W/mK) 

Shear 

Modulus 

(GPa) 

Silver 10.4 7 0.37 429 30.29 

Copper 17 85.7 0.34 399 48.1 

Solder (Sn3.5Ag0.5Cu) 23.2 See Eqn.11 0.30 60 See Eqn.11 

Aluminium 11.9 6 0.33 237 2.2556 

Silicon 3.5 130 0.22 148 53.279 

Glass 8.5 73.3 0.21 1.8 30.289 

EVA 270 See Fig. 3 0.4999 0.35 See Fig. 3 

Tedlar 30 1.4 0.4 0.2 0.5 

Intermetallic compound 

(IMC) 
16.3 85.56 0.309 34.1 50.21 

Parameter C1 (s-1) C2 (MPa)-1 C3 C4 (K) 

Value 277984 0.02447 6.41 6500 

Table 3: Garofalo creep parameter values for SnAgCu solder (Dudek et al., 2003) 

 

Table 1: PV Module Component Materials and respective properties (Smith and Madeni, 2002) 

Table 2: PV module components dimensions (Hren, 2011; SEAI, 2014) 
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Fig. 5: PV module 3D view (a) showing mesh (b) 

 

Fig. 6: PV module end view (a) showing mesh (b) 
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4. Results and discussion 

The effect of c-Si PV module operation outside the STCs, and the magnitude of operating 

temperatures (cell and ambient) on the degradation of PV solder interconnections are 

investigated using ANSYS FEM. This section presents results of the investigation. 

Section 4.1 discusses the solder joint degradation due to the PV cell temperature step 

rise from STC. Section 4.2 discusses solder joint degradation under various ambient 

temperatures while corresponding fatigue lives are predicted.  

 

4.1. Solder joint degradation under PV cell temperature rise range of 

25 °C ≤ T ≤ 120 °C 

Solder joint degradation is determined at every 1 °C temperature rise from 25°C STC. At 

each temperature load step, the creep strain energy is generated from the ANSYS FEM. 

Equation (8) is employed to derive the values for creep strain energy density. Figure 7 

shows the creep strain energy distribution on solder in the ANSYS environment. The 

coloured key on the left-hand side of the figure indicates the graduation of damage with 

red as greatest and royal blue as least. 

It is observed that for each 1°C rise in PV cell temperature, there is a corresponding 

increase in the maximum creep strain energy density. The positive correlation between 

the parameters is presented in Fig. 8. Figure 8 presents the plot of maximum creep strain 

energy density (Pa) against PV cell temperatures. Three damage regions signifying three 

distinct PV cell temperature ranges can be seen.  These discrete regional parameters are 

evident in the change of shape of the plot as it progresses from Region 1 through to 

Region 3. In Region 1 (25 to 42 °C), the relationship between solder degradation and PV 

cell temperature is quadratic, and solder degradation rate increased from 1.53 to 10.03 

Pa/°C. Region 2 (43 to 63 °C) is the critical region because the solder degradation rate is 

highest and constant at 12.06 Pa/°C. Thus, a linear relationship between solder 

degradation and PV cell temperature is observed. Solder degradation rate in Region 3 

(64 to 120 °C) decreases from 5.47 to 2.25 Pa/°C, and the relationship between solder 

degradation and PV cell temperature is logarithmic. The decrease in damage within this 

range may be explained from stress relaxation point of view. Amalu and Ekere (2012) 

reported on the increase in ambient temperatures of solder increasing solder homologous 

temperatures and thus decreases its hardness. Decrease in solder hardness decreases 

its accumulated creep strain energy density. 

 

The critical region, with the highest solder degradation rate, has been established as 

Region 2. It is of utmost importance to understand the behaviour of PV modules operating 

with cell temperatures in Region 2 to improve their fatigue life and reliability. This is 

because the range constitutes the hot climate ambient temperatures. Thus, the 

temperatures from region 2 are the range used in the ambient temperature experiment 

discussed in section 4.2.   
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Fig. 8: Max. strain energy density against cell temperature showing three damage regions 

 

Fig. 7: Creep strain energy (solder damage) in ANSYS FEM environment 
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4.2. Fatigue life prediction at ambient temperature range of 25 °C ≤ T 

≤ 45 °C 

The degradation of solder joints at ambient temperatures is investigated and quantified 

using the solder joint fatigue life. The temperature difference between the ambient and 

solar cells can be as high as 22 °C (Kurnik et al., 2011). Equation (12) presents the 

relation between these two parameters. 

𝑇𝑐𝑒𝑙𝑙 ≈ 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 + 22 °C         (12) 

 

Ambient temperatures between 25 °C and 45 °C are used for the investigation. They are 

used also to generate a model that predicts the fatigue life of c-Si PV module outside this 

range. The region is used because the temperatures fall into the Critical Region 2. This 

has been described in detail in section 4.1 and seen in Fig. 8.  Applying Eq. 7, the fatigue 

lives (cycles) at the various ambient temperatures are predicted.  

𝐿 = (
𝑡𝑐

𝑦
) 𝑁𝑓           (13) 

Equation (13) presents the relation between mean fatigue life, L (in years) and mean 

fatigue life, 𝑁𝑓 (in cycles). 𝑡𝑐 is the time per cycle (in seconds), and 𝑦 is one year (in 

seconds). It is important to convert fatigue life from cycles to years so that the values can 

be easily understood and used in real life operations by actual consumers. Thus, Eq. (13) 

yields the lifetime of c-Si PV module in years.  

Figure 9 is a plot of ambient temperature (°C) and mean fatigue life (years). Fatigue life 

is observed to decay according to a power function. The power function in Eq. (14) is 

used to describe the relationship between the fatigue life and corresponding ambient 

temperatures.  

𝐿 = 721.48𝑇−1.343         (14) 

Where: L is the Mean Fatigue Life (in years) and T is the Ambient Temperature (°C). The 

function provides a projection of mean fatigue life with a correlation coefficient of 0.9025. 

The power function curve is plotted alongside the curve for the measured values of mean 

fatigue life from FEM. 

Equation (14) is a handy relation that can easily be applied by consumers to predict the 

lifespan of a c-Si PV module operating in their region.  

Table 4 displays the accumulated creep strain energy density and fatigue lives at 

respective ambient temperatures. Equations (9) and (10) are employed to calculate the 

accumulated creep strain energy density under each corresponding ambient temperature 

load condition. The lowest solder damage of 0.01203 Pa was recorded at 25 °C while the 

highest damage of 0.05207 Pa was at 45 °C. The fatigue life, the longest of 59355 cycles 
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to failure (9.6 years) was recorded at 25 °C while at 45 °C, the shortest of 13718 cycles 

to failure (4.3 years) was recorded. Figure 10 presents the variation of Mean Fatigue Life 

with Ambient Temperature. Figure 11 is a plot of equivalent stress (Pa) against equivalent 

strain; also known as hysteresis loops, at ambient temperatures 25 °C and 45 °C. The 

area under the loops represents the creep strain energy dissipated and accumulated in 

the PV solder joints. The larger area and hence the greatest solder joint degradation is 

observed at 45 °C. This is in agreement with research on the relationship between 

hysteresis loop size and temperature (Mustafa et al., 2011)(Vandevelde et al., 2007).  
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Ambient 

Temperature 

(°C) 

Accumulated Max. 

Strain Energy 

Density (10-2Pa) 

Mean fatigue 

life 

(104cycles) 

Mean fatigue 

life (Years) 

25 1.20 5.93 9.6 

27.5 2.23 3.20 8.4 

30 2.84 2.52 7.5 

32.5 3.57 2.00 6.7 

35 4.37 1.63 6.1 

37.5 4.32 1.65 5.6 

40 4.54 1.57 5.1 

42.5 4.74 1.51 4.7 

45 5.21 1.37 4.3 
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Fig. 10: Mean Fatigue Life variation with Ambient Temperature (°C) 

Table 4: Solder joint degradation and mean fatigue lives at corresponding ambient temperatures 
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4.3. Effect of cycle number on determination of accurate degradation 

of solder joint in PV module 

Figure 12 is the plot of equivalent stress (Pa) over cycle number at various ambient 

temperatures. The plot demonstrates highest equivalent stress magnitudes at 25 °C and 

lowest at 45 °C in the first cycle. A transition domain can be observed from the end of 

cycle one to the the end of cycle four with a turning point at cycle three. At cycle three, all 

the stress curves converge at a magnitude. Subsequently, cycling shows the curve 

diverge with 45 °C being the highest and the 25 °C the lowest at the end of cycle four. 

The trend continues for the rest of the thermal cycles. The observation is in line with 

reports by (Amalu and Ekere, 2016; Zhang et al., 2003) that equivalent stress values are 

highest from cycle 3 onwards and at least six thermal cycles are sufficent to qualify solder 

joint degradation (Amalu and Ekere (2012b).  

Figure 13 is the plot of equivalent strain over cycle time at various ambient temperatures. 

The strain curves show little disparity until cycle 3 where there is divergence which is 

sustained throughout the remainder of the cycle load. In addition, Figs. 14a and 14b show 

the equivalent stress and equivalent strain distribution respectively in the ANSYS FEM 

environment at 45 °C. The coloured key shows the graduation with red as highest and 

royal blue as lowest. 

This behaviour of the solder can be partly attributed to the nature of the IEC 61215 test 

standard thermal load. The thermal load with the slow ramp rate of 1.667 °C/min causes 

the stress to be accumulated in the joint gradually. In such a case thermal shock is 

minimal. It is noteworthy therefore, that accelerated thermal cycling (ATC) in FEM should 

not be carried out with cycle number less than 3. Otherwise results may be misleading. 

The claim can be observed in Fig. 12 where before cycle 3, the maximum stress values 

were at the lowest ambient temperature of 25 °C and the minimum stress values at the 
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Fig. 11: Equivalent stress (Pa) versus equivalent strain at ambient temperatures 25 °C and 45 °C 
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highest ambient of 45 °C. However, after cycle 3, the expected trend is observed with the 

maximum stress values at the highest ambient temperature of 45 °C. 

Another contributor to the behaviour of solder is that it was modelled using the 

temperature dependent model in Eq. (11). Also, EVA encapsulant which has been 

reported to influence the behaviour of the solder interconnection has been modelled as 

viscoelastic as opposed to linear elastic which means results tally with those from 

laboratory experiments. Figure 3 shows the plot of Young’s Modulus of EVA against 

temperature. 

The experimental characterisation of material degradation as a result of cyclic 

deformation has been studied by several researchers (Borri et al., 2018; Paggi et al., 

2014, 2013; Phinikarides et al., 2014). Borri et al., (2018), in their study on the fatigue 

crack growth in silicon solar cells and hysteretic behaviour of busbars, focused on the 

plastic deformation of PV module busbars. The investigation was performed 

experimentally utilising cyclic bending tests, non-destructive monitoring techniques based 

on thermal infrared imaging and electroluminescence. Their reported responses of PV 

busbar include increase in strain with cycle number, widening of the region between two 

silicon PV cells from 2mm at room temperature to up to 2mm + 60 µm at the maximum 

field temperature of 80°C. Our present study focused on the degradation of solder under 

non-STC temperature loads using finite element modelling environment. The values for 

temperature dependent Young’s Modulus of solder derived from Eq. (11) reveal values 

lower than that of the copper busbar which means said deformation of solder occurs 

before the plastic region of copper busbar. Additionally, the stress-strain levels shown in 

the hysteresis loops of Fig. 11, which indicate the creep strain energy accumulated in the 

solder layer, are lower than those of the plastic regime of the copper busbar. However, 

the authours have ear-marked for future research, the experimenatal determination of 

solder interconnection degradation taking into account material properties interactions 

involving creep behaviour, plastic and cyclic deformations. 

Several researches have investigated the effect of intermetallic compound (IMC) layer on 

solder joint reliability (Amalu et al., 2011; Amalu and Ekere, 2012a, 2012b; George, 2010; 

Nadimpalli and Spelt, 2011; Xiao et al., 2013). Amalu and Ekere, (2012a), in their 

prediction of damage and fatigue life of high-temperature flip chip assembly 

interconnections at operations, utillised 3D flip chip models simulated in ANSYS 13 to 

investgate the damage of bonded materials. They ascertained the IMC layer between 

solder and copper die as most vulnerable to crack initiation and propagation. In their later 

study (Amalu and Ekere, 2012b) on the damage of lead-free solder joints in flip chip 

assemblies subjected to high-temperature thermal cycling, they evalauted the effect of 

IMC layer thickness on solder joint reliability. They varied IMC layer thickness in the five 

flip chip models simulated in ANSYS and they observed that models with the thickest and 

thinnest IMC layers impacted the reliability of solder joints. Previous studies have been 

published on the effect of IMC layer on ball solder joints in PCBs and other surface mount 

electronics but there is none on composite solder joints in PV modules especially under 
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various non-standard ambient and cell temperatures. Our present study focuses on the 

degradation of PV solder interconnections under non-STC loads but has left the effect of 

the IMC layer for future investigations. We aim to combine laboratory experiments, which 

include apparatus like the Scanning Electron Microscope, with finite element modelling to 

ascertain the influence of the IMC layer on solder and overall PV module reliability.  
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Fig. 13: Equivalent strain over cycle number at various ambient temperatures  
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5. Conclusion 

An investigation on the effect of PV cell temperature and ambient temperature on the 

degradation of solder joint interconnection for improved crystalline silicon PV module 

operation in hot climate was carried out using ANSYS FE modelling.  

Based on the results and findings of the research, conclusions can be drawn. Elevated 

operating temperatures in excess of the 25 °C STC accelerates degradation of solder 

joint interconnections in c-Si PV module. Operations resulting in cell temperature between 

43 °C and 63 °C are critical and induce maximum damage in the solder joint. This range 

is characteristic of hot climate and explains the high failure rate of c-Si PV module 

observed in the region. Consequently, operation in the range should be avoided. The 

authors advise for incorporation a system capable of cooling the c-Si PV module 

operating in the region.  

A model 𝐿 = 721.48𝑇−1.343 is generated. The model demonstrates capability of quick 

prediction of the life of c-Si PV module in years under different ambient temperature 

conditions. The model can be used by consumers for quick name plate rating. The model 

predicts module life in London and hot climate to be 18.5 and 9 years, respectively. The 

London module life is close to the 25-year warranty within 1.4 factor of design/safety. The 

9 years predicted in hot climate gives an indication of the high failure rate observed in the 

region.  

Analyses on the degradation of PV module component layers considering the interactions 

between layer interfaces provides a more robust but complex investigation; and hence is 

the subject of future investigation. In addition, a combined research method involving 

laboratory experiments and finite element modelling will be utilised for more advanced 

Fig. 14: Equivalent stress (a) Equivalent Strain (b) at 45°C ambient temperature 
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models that consider imperfect bonding of component layer interfaces, paying particular 

interest to the influence of the IMC layer on solder and overall PV module reliability under 

non-STC load conditions.   Also, experimental determination of the thermo-mechanical 

degradation of the PV module considering material properties interactions including 

viscoelasticity, plasticity and fatigue life prediction in the plastic regime.  

These findings inform on the degradation of PV solder joints in different operating 

temperatures and advise on module operations. To ensure longevity of lifespan and 

attractive return on investment, the thermo-mechanical reliability and performance of 

crystalline silicon PV modules in hot climates requires improvement. 
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