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Abstract

The nature of turbulence in molecular clouds is one of the driving factors that influ-

ence star formation efficiency. It is speculated that the high star formation efficiency

observed in spiral-arm clouds is linked to the prevalence of compressive (curl-free) turbu-

lent modes, while the shear-driven solenoidal (divergence-free) modes appear to be the

main cause of the low star formation efficiency that characterises clouds in the Central

Molecular Zone (CMZ). Similarly, the analysis of the Orion B molecular cloud confirmed

that the dominant solenoidal turbulence is compatible with its low star formation rate.

However, turbulent modes vary locally and at different scales within the cloud, and tur-

bulent motions surrounding the main star-forming regions display a strongly compressive

nature. This evidence points to inter-and intra-cloud fluctuations of the solenoidal modes

being an agent for the variability of star formation efficiency and cloud collision being a

facilitator of stars’ formation through the production of highly compressive gas flows.

This thesis presents a quantitative estimation of the relative fractions of momentum

density in the solenoidal and compressible modes of turbulence in the plane molecular

clouds found in the 13CO/C18O (J = 3→ 2) Heterodyne Inner Milky Way Plane Survey

(CHIMPS). This calculation is achieved through a statistical method that allows us to

reconstruct the 3-dimensional distribution of the density momentum from its line-of-

sight projected counterparts (zeroth, first, and second velocity moments) provided by

the observations, producing an estimate of the power contained in the solenoidal and

compressive turbulent modes within each cloud.

The project investigates how different fractions of compressive and solenoidal modes

in CHIMPS clouds probe the variation of the star formation efficiency across clouds
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with varying environments. A negative correlation between the solenoidal fraction and

star formation efficiency is found. This feature is consistent with the hypothesis that

solenoidal modes prevent or slow down the collapse of dense cores. In addition, the

relative power in the solenoidal modes of turbulence (solenoidal fraction) appears to be

higher in the inner Galaxy declining with a shallow gradient with increasing Galacto-

centric distance. Outside the Inner Galaxy, the slowly, monotonically declining values

of the solenoidal fraction suggest that the solenoidal fraction is unaffected by the spiral

arms.

The sample of clouds considered is extracted via the dendrogram-based Spectral Analysis

for Interstellar Molecular Emission Segmentation (SCIMES).

The comparison of the geometrical and physical properties of the SCIMES extracted

13CO (3-2) clouds in CHIMPS with the results originally obtained with the FellWalker

method show that the SCIMES segmentation includes a wider range of cloud sizes. In

crowded fields, SCIMES produces more detailed maps of the structure of molecular

cloud, by identifying and tracing out more rarefied features and avoiding “clump lo-

calisation” with artificial boundaries arising in the FellWalker extraction. The physical

properties defined by the volume and mass of individual clouds mirror this feature. The

survey-wide distributions of physical properties of the 13CO emission however are similar

in the two segmentations. To compare the properties of the extracted clouds to those

identified using a different tracer, a SCIMES segmentation of the 12CO(3− 2) emission

from the CO High Resolution Survey (COHRS) through SCIMES is considered (where

the data are available).

Raffaele Rani November 2021
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Chapter 1

Introduction

The conversion of molecular gas into stars is one of the fundamental baryonic processes

that shape the visible Universe, driving cosmic evolution from the epoch of re-ionisation

to present-day Galactic systems.

Despite progress on the broad scenarios of formation and collapse of molecular clouds, the

physical processes that initiate and drive the formation of stars and how efficiently they

convert gas into stars are still poorly understood. Star formation efficiency (SFE) along

with the initial stellar mass function (IMF) are the essential ingredients to construct a

predictive model of star formation. To this day, only observations within the Milky Way

are able to detect and resolve both gas and stars on size scales of individual star-forming

regions. Galactic surveys and single object observations are thus the only means to

estimate the relative importance of the physical processes that may impact SFE from

local (parsec) scales within individual giant molecular clouds (temperature, turbulence,

etc.) to Galaxy-wide scales (> 1 kpc, spiral density wave).

A potential driving agent of star formation has been identified as the relative fraction

of turbulence modes in the interstellar molecular gas. In this framework, the high star

formation efficiency (SFE) observed in spiral-arm clouds is linked to the prevalence of

compressive (curl-free) turbulent modes. In contrast, the low SFE that characterises

clouds in the Central Molecular Zone (CMZ) is related to the shear-driven solenoidal

(divergence-free) component. The application of statistical methods to the study of

turbulence in line-of-sight projected data requires the accurate identification of molecular

clouds and their structure in emission maps. A wide range of algorithms has been

1
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devised to ’extract’ molecular and their physically significant substructures embedded

in the emission. Each of these approaches has its own particular features and performs

best under particular circumstances.

These methods are complex and comparing their relative efficiency is often problematic,

both because few have been applied to the same dataset and because no common stan-

dard of calibration exists. Furthermore, it is exceedingly difficult to cross-correlate the

properties of individual clouds between the various catalogues, as these are likely to be

defined in different ways.

The work presented in this thesis covers two projects. One aimed to compare two

emission extraction algorithms applied to the same CO survey: the dendrogram based

Spectral Clustering for Interstellar Molecular Emission Segmentation (SCIMES) and the

more well-established watershed FellWalker algorithm. The second project is an attempt

to present the first full sample study of the turbulent modes and their relation to SFE

in Galactic clouds, thus testing the hypothesis that the SFE depends on the ratio of

solenoidal to compressive turbulence within clouds. This has already been suggested for

one CMZ cloud and is thought to be consistent with the assumption that the majority

of power in SFE variations is concentrated on cloud scales.

1.1 Molecular clouds

The earliest stages of star formation see neutral gas in the the interstellar medium

(ISM) aggregating in dense molecular clouds through large-scale hydrodynamic, ther-

modynamic, or gravitational instabilities.
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These perturbations are associated with colliding, or shearing flows or shocks caused by

the gas entering the spiral arms. Dissipative shocks in the supersonic turbulence result-

ing from the cloud-formation process, then (or concurrently, Heitch et al., 2008) form

fragmented, compressed layers, and filaments. Dense fragments become gravitationally

self-bound and collapse into the clumps and cores that eventually create stars, while

more rarefied structures are transient and dissipate. Since the paradigm characterizing

the interstellar medium (ISM) has shifted towards the picture of an inherently dynamic

environment, the view of molecular clouds as naturally, largely transient features has

succeeded their older characterisation as extant structures in a state of quasi-equilibrium

preceding collapse and the formation of stars. One defining characteristic of molecular

clouds is that they are not independent isolated entities in space but instead, they are

dense condensations in the more widely distributed, mostly atomic gas. Although many

molecular clouds appear to have sharp boundaries, these confines do not mark the end

of the gas distribution, but they constitute transitions from the molecular gas to the

surrounding atomic gas, which forms envelopes of comparable mass (Blitz, 1988). The

amount of molecular gas in clouds is predicted to depend on both the local gas density n

and the column density N of the material shielding molecular gas from dissociating ul-

traviolet radiation. These densities also influence the composition of the cloud. A cloud

is expected to be predominantly molecular when N = n2/3 exceeds a critical threshold

that depends on the ultraviolet radiation flux and the dust abundance (Elmegreen, 1989,

1993). Thus, the condition for a cloud to be constituted predominantly by molecular gas

does not require that it be gravitationally bound 1. The molecular content of a cloud (or

region of a cloud) could rapidly change because of its sensitivity to varying local condi-

tions (radiation and magnetic fields, for instance, Elmegreen, 1993). Molecular clouds

are found in various forms and sizes. The range from small globules (Bok globules) with

mass ∼ 10 M� contained within ∼ 0.5 pc (Clemens & Barvainis, 1988; Clemens et al.,

1991), to giant molecular clouds (GMCs) which comprising a total mass of ∼ 106 M�

within ∼ 100 pc (Roman-Duval et al., 2010) (see also table 1.1). Molecular clouds have

highly irregular and complex shapes. Many of them possess wispy filamentary structures

that resemble those of atmospheric clouds (see Figure 1.1). The irregular boundaries of

molecular clouds found on contour maps show fractal properties (Dickman et al., 1990;

Falgarone et al., 1991, 1992; Zimmermann & Stutzki, 1992; Elia et al., 2018). The fractal

1The converse holds too: the gas content in a gravitationally bound cloud does not necessarily have
to be molecular.
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dimension estimated for these clouds presents similar values to those found at various

interfaces in turbulent flows (Falgarone et al., 1991; Sreenivasan, 1991; Lee et al., 2016),

suggesting that turbulence plays a fundamental role in the formation and evolution of

molecular clouds. Commonly, velocity dispersions within molecular clouds are about

ten times larger than expected by solely considering thermal properties (Larson, 1981;

Rathborne et al., 2009). This is generally interpreted as evidence of turbulence being a

prominent factor in creating and sustaining a cloud’s internal structure. The complex

hierarchical structure (see section 1.2) characterizing molecular clouds is thought to arise

as a consequence of complicated interactions of gravity, magnetic fields (Elmegreen &

Scalo, 2004; Mac Low & Klessen, 2004; McKee & Ostriker, 2007; L. et al., 2011; Heyer

& Brunt, 2012) and supersonic turbulent motions driven at different scales from stellar

feedback to Galactic shear (Scalo & Elmegreen, 2004).

Star formation occurs in the densest regions of molecular clouds. The characteristic

physical conditions under which these regions collapse are determined by the competition

between self-gravity and thermal pressure. This assumption allows us to define the

characteristic length (Jeans length, determined by the speed of sound in the gas cs, the

density ρ or number density n of the gas and the gravitational constant G)

λJ =

√
πc2

s

Gρ
∼ 2.2pc

(
cs

0.2kms−1

)√
102cm−3

n
(1.1)

and the corresponding spherical Jeans mass, above which an isothermal fluid parcel

collapses under its self-gravity (Draine, 2011)

MJ =
4π

3
ρ

(
λJ
2

)3

∼ 34M�

(
cs

0.2kms−1

)3
√

102cm−3

n
. (1.2)

played by other physical mechanisms, collapse occurs on timescales ranging from 0.1

Myr for densest cores of ∼ 105 cm−3 up to 3 Myr for the regions within GMCs that have

volume-averaged densities of ∼ 102 cm−3 (Cheavance, 2020). This ’free-fall timescale’

(see 4.4.3) is thus a lower bound of the actual collapse time. The early stages of collapse

are slowed down by the thermal pressure gradient, magnetic fields (Inoue & Inutsuka,

2012; Vàzquez-Semadeni et al., 2011; Girichidis et al., 2018), turbulence (Klessen et al.,

2000; Dobbs & Baba, 2014), Galactic differential rotation through shear and Coriolis
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forces (Dobbs & Baba, 2014; Meidt et al., 2018, 2020), and the non-spherical (planar or

filamentary) shape of the clouds (Toalà et al., 2012; Pon et al., 2012).

Clearly, star formation is highly disruptive to molecular clouds and the outset of collapse

marks a fundamental transition in the evolution of a molecular cloud, leading to it being

destroyed or largely restructured (Krumholz, 2019). This transition phase, during which

mass gain and mass loss are in approximate equilibrium, may last millions of years before

the star-forming cores acquire high enough masses and densities to trigger the formation

of (massive) stars (Vàzquez-Semadeni et al., 2017; Krause, 2020). At the end of this

stage, the input of energy and momentum from stellar feedback from the newly created

star-forming regions (massive stars) becomes prominent and the host cloud is dispersed

(Krumholz, 2019; Lopez et al., 2014; Rahner et al., 2017, 2019; Grudič et al., 2018; Haid

et al., 2018; Kim et al., 2018; Kruijssen et al., 2019a; McLeod et al., 2020). Stellar

feedback consists mainly of three processes: ultraviolet radiation, stellar winds (in the

early stage of star formation), and supernovae (SNe). Each mechanism provides a source

of energy and momentum that opposes gravity (Krumholz, 2019; Krumholz et al., 2019).

The transition between molecular clouds and young stellar regions is rapid, driven by

photo-ionisation and stellar winds, it disperses the clouds within a few million years.

This cycle is however not universal, but the physical mechanisms controlling the different

phases of this process are likely to depend on the environmental conditions. Since the

timescales for the formation, internal evolution, and destruction of molecular clouds are

all of the same order, these processes cannot be clearly separated in time, and they may

all go on simultaneously in different parts of a star-forming complex (Cheavance, 2020).

1.2 Structure of molecular clouds

The distribution and properties of gas within molecular clouds regulate, in part, the

characteristics of newly formed stars, their numbers and masses, and the location of

star-forming sites. The connection between the features of molecular gas and both the

initial mass function and formation rate of new stellar populations has prompted a wide

range of theoretical and observational studies geared towards the characterisation of

the structure of molecular clouds. Multi-tracer surveys have revealed the hierarchical

nature of these structures, showing how high-density, small-scale features are always

nested within more rarefied, larger envelopes (Blitz & Stark, 1986; Lada, 1992). This
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Mass
(M�)

Size
(pc)

Density
(cm−3)

Temperature
(K)

Velocity width
(km s−1)

Cloud 102 − 106 1− 50 50− 800 4− 8 0.3− 3.0

Clump 30− 102 0.3− 3 102 − 104 10− 20 0.3− 3.0

Core 0.2− 30 0.03-0.2 104 − 106 8− 13 0.1− 0.3

Table 1.1: Physical properties of molecular clouds, clumps and cores (Roman-Duval
et al., 2009; Bergin & Tafalla, 2007; Dunham et al., 2011; Polychroni et al., 2013).
In general, clumps are thought to be the precursors of star clusters, while cores are
expected to give rise to individual or multiple star systems.

structural hierarchy is, however, a non-trivial one: at any scale, there appear to be more

high density and compact ’clumps’ than larger and less dense structures. The densest

clumps in a cloud’s hierarchy are compact cores, the seeds of star formation. In these

regions, over scales of about 0.1 pc (see also table 1.1, the turbulence in the cloud becomes

dominated by thermal motions (Goodman et al., 1998; Tafalla et al., 2004; Lada et al.,

2008). The physical conditions inside these cores determine the mechanisms that occur

in the conversion of molecular gas into stars (di Francesco et al., 2007; Ward-Thompson

et al., 2007; Bigiel et al., 2008; Schruba et al., 2011; Urquhart et al., 2018).

At the bottom of the density hierarchy, lie the low-density envelopes that surround

the denser regions. The chemical change that characterises the formation of molecular

clouds has led to the cataloguing of molecular emission by dividing the interstellar gas

into independent, discrete entities. Although this separation provides a useful theoret-

ical distinction between giant molecular clouds and the diffuse multi-phase interstellar

medium, it is still unclear whether the density hierarchy continues past this “chemical

boundary ”(Blitz et al., 2007) extending into the diffuse ISM (Ballesteros-Paredes et al.,

1999; Hartmann et al., 2001). In this picture, the molecular phase of the ISM would

not be enough to define the bottom of the density hierarchy needed to treat a molecular

cloud as an independent, separate entity. This argument is supported by discrepancies

between estimated crossing times and expected lifetimes of molecular clouds in some

sets of observations. However, the apparent contradictions in the estimated cloud life-

times in diverse datasets can be reconciled when models of rapid star formation bursts

in long-lived clouds (≈ 30 Myr) are considered (Elmegreen, 2007).

Although the hierarchical structure of the ISM continues to large scales past the molec-

ular phase, linking the density of atomic gas in the ISM to molecular clouds is often
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difficult, and the analysis of structure within star-forming clouds is restricted to molec-

ular emission. In particular, molecular line emission studies that are to be compared

to the 21 cm atomic gas emission are usually affected by degraded spatial resolution

due to the long wavelength of the emission. Moreover, fore- and background confusion

often makes these studies unreliable. The atomic gas related to molecular clouds can

thus only be identified in particular circumstances where either the cloud geometry is

known (Pound & Goodman, 1997), self-absorption can be quantified (Li & Goldsmith,

2003a) or a model for photo-dissociation exists (Bensch, 2006). The large spatial dy-

namic range required in the investigation of the internal structure of molecular clouds

constrains useful observation to Galactic samples.

Studies of the Herschel infrared Galactic Plane Survey (Hi-GAL Molinari et al., 2010a)

and the Herschel Gould Belt Survey (André et al., 2010), revealed that the morphology

of the interiors of molecular clouds is pervaded by networks of filamentary structures

(André et al., 2010; Molinari et al., 2010b; Men’shchikov et al., 2010; Arzoumanian et al.,

2011). In addition, it was found that the vast majority of star-forming cores reside within

filaments (Polychroni et al., 2013; Könyver et al., 2015). The ubiquity of such features,

observed in highly-sensitive high-angular resolution submillimetre dust continuum sur-

veys, has rekindled the interest in both observational and theoretical studies on gas flows

in filaments.

1.3 Molecular emission

The main species that constitute a molecular cloud are molecular hydrogen, H2 and

inert atomic helium. At the typical temperature of cold ISM (∼ 10 K) emission from

these species is practically absent2. The next most common molecule in the ISM is

carbon monoxide (CO). CO possesses low rotational energy level and radiates at ∼ 5

K. Carbon monoxide emission possesses several transitions detectable at millimetre and

submillimetre wavelengths. As CO is always associated with the presence of H2, these

features make it an optimal tracer for the observation of molecular clouds (Draine,

2011). The relative CO-to-H2 abundance can be calculated from the the column density

2The H2 molecule cannot radiate through rotational transitions of the dipole moments as it lacks a
permanent dipole moment. Quadrupole transitions also have small transition probabilities and require
exceedingly high excitation temperatures (> 500 K) for this molecule to radiate in the cold phase of the
ISM (Draine, 2011).
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of H2 (derived from dust extinction or emission, assuming a dust-to-gas ratio, see below)

divided by the column density of CO. This ratio, however, is not constant: it depends on

the balance between the formation and destruction processes that govern the amount of

CO and H2. Variations in the CO-to-H2 abundance ratio have been reported in different

Galactic environments, in particular the Galactic centre (Sodroski et al., 1995) and outer

Galaxy (Brand & Wouterloot, 1995), and in molecular clouds at high Galactic latitudes

(Paradis et al., 2012).

In average ISM conditions, CO molecules are most likely to be excited by a both colli-

sions (commonly with H2) and the absorption of photons. Emission occurs through the

quantisation of rotational energy

EJ =
~2

2I
J(J + 1), (1.3)

where EJ is the rotational energy of J-th level, ~ the Planck constant, I the moment of

inertia of the molecule3.

There is a critical density the marks the point at which a molecule’s spontaneous emission

equals its collision rate with other molecules. This critical density is directly proportional

to the collisional cross-section and inversely proportional to the time-averaged velocity

of the molecule. Table 1.2 reports values of the critical densities for the most frequent

transitions for the most common CO isotopologues (along with emission values and

frequencies for the transitions considered).

When CO is denser than this threshold, its energy levels are thermalised, and the gas

temperature and column density determine its line intensity. When CO density is below

the critical value, its emission intensity is also dependent on the gas volume density.

Sub-thermal emission from CO can still occur below the critical density, but it is likely

to have very little strength (relative to the column density) (Draine, 2011).

Several CO isotopologues are frequently targeted in millimetre and submillimetre sur-

veys. Since the most abundant 12CO may easily become optically thick, the relatively

rarer 13CO and C18O are often observed in millimetre and submillimetre surveys to trace

H2 at higher optical depths. The abundances of these isotopologues with respect to 12CO

3For a diatomic molecule I = µmr. The reduced mass µ of a diatomic molecule with constituent
atoms of mass m1 and m2 , is µm = (m1m2)/(m1 + m2). The equilibrium separation of the C and O
atoms of CO is r = 0.112 nm.
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Molecule Transition nc E/kB (K) ν (GHz)
12CO J = 1→ 0 1.9× 103 5.5 115.271
13CO J = 1→ 0 1.7× 103 5.3 110.201

C18O J = 1→ 0 1.7× 103 5.3 109.782
12CO J = 2→ 1 6.3× 103 11.1 230.538
13CO J = 2→ 1 5.4× 103 10.6 220.399

C18O J = 2→ 1 5.5× 103 10.5 219.560
12CO J = 3→ 2 1.6× 104 16.6 345.796
13CO J = 3→ 2 1.4× 104 15.8 330.588

C18O J = 3→ 2 1.4× 104 15.7 329.331

Table 1.2: The critical (number) densities nc, excitation energies E/kB , and frequen-
cies (ν) of the lowest-lying (and most frequently observed) rotational transitions of the
most common CO isotopologues (Draine, 2011).

were estimated by comparing the intensities of molecular lines in rare species or highly

optically thin regions yielding to be X(12CO/13CO) ≈ 77 and X(12CO/C18O) ≈ 560 for

conditions matching the Solar neighbourhood (Wilson & Rood, 1994). These relative

abundances however do vary across the Galaxy, and there is evidence of a gradient in

(12CO/C18O and 12CO/C13O) increasing from the Galactic centre outward(Langer &

Penzias, 1990; Milam et al., 2005).

Smoothed particle hydrodynamics simulations of molecular clouds (Duarte-Cabral &

Dobbs, 2016) have shown that CO emission traces density peaks of H2 accurately, while

it misses diffuse gas. Non-emitting CO is expected where H2 densities are below the

critical density. In cold (T ≤ 20 K) and dense (105 particles per cm3 ) environments

CO can get trapped on the surfaces of dust grains. Depletion factors vary between 10

and 80 are typical in dense regions (Pon et al., 2016) in dense regions of IR dark clouds

(Fontani et al., 2012).

Despite accounting for only ∼ 1% of the ISM, dust whose grains consist of tens or

hundreds of atoms, is another important tracer of molecular gas (see section 1.1). Nearby

(< 500 pc) molecular clouds can be detected as optical absorption features against

a background of starlight. For clouds at greater distances massive IR dense clouds

(IRDC) have column density large enough to absorb in mid-IR (Peretto & Fuller, 2009).

The H2 column density can be determined from the level of absorption of dust by

converting the reddening of the emission to the column density of atomic and molecular

hydrogen (Bohlin et al., 1978; Fitzpatrick, 1999). The thermal emission of dust grains

can be directly observed at far-IR, submillimetre, and millimetre wavelength. Under the

assumption that a single temperature can be assigned to dust grains, it becomes possible
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to estimate the H2 column density averaged over a telescope beam (e.g. Schuller et al.,

2009).

1.4 Emission segmentation

The study of molecular emission has been approached through a wide range of ana-

lytic methods. Each technique focuses on the analysis of a different feature of the gas.

Structural patterns in molecular emission have been investigated through fractal analy-

sis (Stutzki et al., 1998), the study of power spectra (Lazarian & Pogosyan, 2000) and

the structure-function (Heyer & Brunt, 2004) have aimed to characterise turbulence in

clouds (Brunt et al., 2010; Brunt & Federrath, 2014), and clump identification algo-

rithms (Stutzki & Güsten, 1990; Berry, 2015; Colombo et al., 2015a) have been used to

probe geometry, structure and substructure, e.g. the density hierarchy.

In general, statistical approaches to the analysis of molecular line data either aim to

provide a statistical description of the emission over the entire dataset or a division of

the emission into physically relevant features. The latter approach is then followed by the

analysis of the characteristics of the resulting population of sources. Statistical analysis

include fractal analysis (Elmegreen & Falgarone, 1996; Stutzki et al., 1998; Elmegreen,

2002; Sánchez et al., 2005; Lee et al., 2016), ∆-variance (Stutzki et al., 1998; Klessen &

Glover, 2015), correlation functions (Houlahan, 1990; Rosolowsky et al., 1999; Lazarian

& Pogosyan, 2000; Padoan et al., 2003) and analysis of the two-dimensional power

spectrum (Schlegel & Finkbeiner, 1998; Pingel et al., 2018; Combes, 2012; Feddersen

et al., 2019) and principal components (Heyer & Brunt, 2004). These techniques provide

the overall statistical properties of the sample and are thus best suited for the comparison

of measurements between different datasets. On the other hand, clump identification

(image segmentation) is preferred for the study of physically important substructures

embedded in the emission.

In position-position velocity (PPV) data sets, giant molecular clouds (GMCs) and their

substructure are identified as discrete features (sets of connected voxels) with emission

(brightness temperature or column densities) above a specified threshold (Scoville et al.,

1987; Solomon et al., 1987). Molecular cloud recognition in PPV data sets is performed

with a variety of automatic algorithms.
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These methods are commonly designed to operate on large data sets and different lev-

els of blending between structures. Three different strategies for the identification of

molecular emission are frequently employed in the construction of GMC identification

software packages:

• the iterative fitting and subtraction of a given model to the molecular emission

(Stutzki & Güsten, 1990; Kramer et al., 1998),

• the friends-of-friends paradigm that connects pixels based on their and their neigh-

bours’ emission values (Williams et al., 1994; Rosolowsky & Leroy, 2006),

• and gravitational acceleration mapping methods4.

These approaches identify single objects by assigning individual pixels to partitions of

the data set, thus recasting GMC recognition as an image segmentation problem (Pal &

Pal, 1993). Contouring in three-dimensional images is however a complex task. Com-

plications arise from the difficult deblending of internal structures in crowded regions

as the often unclear boundaries that separate star-forming clouds from the surround-

ing multi-phase ISM (as the often unclear boundaries that separate star-forming clouds

from the surrounding multi-phase ISM, see Ballesteros-Paredes et al., 1999; Hartmann

et al., 2001; Blitz et al., 2007). The efficacy of the different classes of GMC recognition

algorithms are thus affected by survey specific biases arising from spatial and spectral

resolution and the sensitivity in molecular-line observations of GMCs (Rosolowsky &

Leroy, 2006; Pineda et al., 2009; Wong et al., 2011). Cloud recognition usually worsens

in regions characterized by complex molecular environments and crowded velocity fields

(as the Inner Milky Way), where resolution plays a crucial role in the identification

of structure (Hughes et al., 2013). At low resolution, segmentation algorithms suffer

from the blending of emission from unrelated clouds Colombo et al. (2014), while high

resolutions cause cloud substructures to be identified as individual clouds 5.

Dendrograms can be considered as graphical abstractions of the hierarchical structure of

nested isosurfaces in PPV data. A dendrogram represents a reduction of the structure

down to its defining features, thus it allows for the representation of a large, complex

4https://arxiv.org/abs/1603.05720
5In particular, friends-of-friends methods are especially sensitive to resolution. In clumpy environ-

ments, the objects naturally selected by this type of algorithm have the scale of a few resolution elements
(Rosolowsky & Leroy, 2006).

https://arxiv.org/abs/1603.05720
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molecular line dataset as a simple model through which we can probe the hierarchical

structure of the emission at different spatial scales. It is important to notice that this ap-

proach to dendrogram formalism to represent contour surfaces differs significantly from

its common uses in statistical analysis (Ghazzali et al., 1999). In a statistical analysis

context, dendrograms usually serve as an intuitive representation of the clustering of a

statistical set.

The definition of emission dendrograms is introduced by Rosolowsky et al. (2008) (also

see B.2). This particular definition is a specific application of the more general ’structure

trees’ proposed and analysed by Houlahan & Scalo (1992) in their study of the charac-

teristics of two-dimensional images. In particular, in this formalism, a dendrogram is a

model that encodes and emphasises the properties (such as volume or density) of the

isosurfaces present in three-dimensional emission datacubes.

1.5 A note on segmentation algorithms

In this work, two emission segmentation algorithms are considered and their perfor-

mance is compared over the CHIMPS survey. The Spectral Clustering for Interstellar

Molecular Emission Segmentation (SCIMES) is based on the graph-theoretical analysis

of the emission dendrograms mentioned above and translates emission segmentation into

a clustering problem (see Colombo et al., 2015a). While the FellWalker (FW) technique

is a form of the watershed algorithm (see section Appendix B) designed to partition

multi-dimensional arrays of data values into regions, each associated with significant

peaks (Berry, 2015). By design, both these methods segment the input data array into

disjointed subsets of data points. Although partitioning strategies are widely used, there

exist alternative approaches to the recognition (extraction) of emission structures. Dif-

ferent paradigms that allow for the overlap of emission clumps can prove beneficial in dif-

ferent circumstances (Stutzki & Güsten, 1990; Men’shchikov et al., 2012). For instance,

the deblending of crowded overlapping sources is the cause of major uncertainties in line-

of-sight projected, two-dimensional images. This situation is aggravated by the presence

of filaments whose orientation impacts the projection significantly (Men’shchikov et al.,

2010; Arzoumanian et al., 2011). In these cases, allowing for the overlapping of clumps

in emission extraction becomes beneficial for the interpretation of the observations.
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Figure 1.2: Molecular clouds in M51, the Whirpool galaxy. The distribution of
hydrogen molecules, blue markers, is superimposed to a colour image of M51. The
location of molecular hydrogen has been traced through 12CO (1 - 0) emission, as
measured in the PdBI Arcsecond Whirlpool Survey (PAWS) study using the millimetre
telescopes of the Institut de Radioastronomie Millimetrique (IRAM). Credit: PAWS
Team/IRAM/NASA HST/T. A. Rector, University of Alaska Anchorage

1.6 Star formation in the Milky Way

Despite the progress on the characterisation of molecular clouds and their structure,

devising a quantitative model, empirical or theoretical, that predicts the efficiency of

star-forming processes and their relation to the physical properties of the interstellar

gas is an elusive task.

Empirical relations such as Schmidt-Kennicutt (Kennicutt, 1998) suggest that the star

formation is solely regulated by the amount of gas that exceeds a certain density thresh-

old (Gao & Solomon, 2004; Lada et al., 2012; Evans et al., 2014; Zhang, 2014). However,

these simple scaling laws are constrained by the sample population size and break down

over scales smaller than a few hundred pc, where the enclosed sample of molecular

clouds decreases significantly (Kruijssen & Longmore, 2014). Power spectrum studies of

giant molecular clouds maps in the Galactic disk have shown that the SFE and clump
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formation efficiency (dense gas mass fraction, DGMF) vary significantly on the scales

of individual clouds peaking at 10-30 pc (Eden et al., 2021). This variation in SFE

declines at a (smoothing) scale of 100 pc. Furthermore, it was found that the distri-

butions of SFE and DGMF in individual clouds are consistent with being lognormal

(Eden et al., 2012, 2013) and thus possibly a combination of several random factors im-

plying that extreme star-forming regions (or regions in which star formation is absent)

are not necessarily due to special conditions. These results are also consistent with a

simple Schmidt-Kennicutt law since the distribution of SFEs possesses a well-defined

mean when averaged over kpc scales and a large number of clouds. Furthermore, the

SFE/DGMF appears to vary several orders of magnitude from cloud to cloud. Along

with the nearly constant mean value of the distribution of SFEs, this fact suggests that

differences between the individual clouds are more relevant to star formation than large-

scale mechanisms such as density features, shear, and radial variations in metallicity.

In particular, spiral arms appear to mainly only produce source crowding (Figure 1.2).

Ragan et al. (2016) and Ragan et al. (2018) also confirmed no arm-associated signal in

the fraction in the Hi-GAL catalogue of compact sources that are currently star-forming.

These results agree with observations of spiral galaxies indicating that the H2/HI frac-

tion and the SFE traced by infrared (IR) and ultraviolet (UV) emission in spiral arms

are not significantly higher than in the inter-arm gas (Kennicutt et al., 2003; Gil de

Paz et al., 2007; Walter et al., 2008; Leroy et al., 2009; Obreschkow & Rawlings, 2009;

Foyle et al., 2010). Also, the fraction of GMCs formed from HI appear to be determined

by the H2 formation/destruction rate balance and stellar feedback (Leroy et al., 2010).

These mechanisms act at small scales in the ISM. Except for starburst galaxies and ul-

traluminous IR galaxies (ULIRGs), internal radiative feedback is expected to determine

the properties of molecular clouds with the minor influence of the external environment

(Krumholz et al., 2009). These pieces of evidence challenge the idea that spiral arms

may be direct triggers of star formation. However, HI and CO data in W3, W4 and W5

showed that the molecular fraction of the gas content in the outer Perseus spiral arm

is 10 fold higher than in the inter-arm regions (Heyer & Terebey, 1998), implying that

spiral density waves both raise the efficiency with which molecular clouds are formed
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and, consequently, the SFE in those regions (Dobbs et al., 2006)6. This is an as-yet

unresolved contradictory piece of evidence involving molecular gas in the outer Galaxy

(see section 8.1).

A key element for any predictive quantitative model (theoretical or empirical) for star

formation is the mechanism regulating the Initial Mass Function (IMF) and its relation

to SFE. The IMF cannot be observed directly but is modelled and the outcomes can

be compared with observations. Following the pioneering work of Salpeter (Salpeter,

1955) there have been many studies of the IMF in various regions of the Milky Way and

other galaxies producing standard forms of the IMF such as the Miller-Scalo, Kroupa,

and Chabrier (see Kroupa et al., 2013, for a review). There is no reason to believe that

the IMF should be universal7 and although systematic variations in the IMF depending

on environmental conditions have been surprisingly small (Bastian et al., 2010), there

is mounting observational and theoretical evidence that challenges the IMF universal-

ity. These studies include observations of Hα and the far-UV emission of HI in external

galaxies Meurer et al. (2009), optical observation of ultra-faint satellites of the Milky

way (Gennaro et al., 2018), Hβ imaging of gas-rich, star-forming nearby dwarf galaxies,

the investigation of mass segregation in starburst clusters (Dib et al., 2007; Dib, 2014),

magneto-hydrodynamical simulations (Ferré-Mateu et al., 2013) and Montecarlo simu-

lations (Dib et al., 2017). Variations in the IMF affect the estimation of stellar masses

from photometry and the gas mass budget between different generations of stars, result-

ing in a modified characteristic formation timescale of galaxies. In this framework, the

IMF could also mimic SFE changes as measured by the L/M parameter (see Chapter 6).

Observation of the R136 star cluster in the Galactic Centre support this idea (Crowher

et al., 2010).

The problem of setting up a comprehensive model for SFE is further aggravated by

the impact of large-scale radial changes in Galactic environments on the star-forming

properties of the gas. The fraction of molecular gas has been observed to decrease

6Other studies Dobbs et al. (2011) interpret spiral arms as organising features that affect the ISM by
delaying and crowding the gas, which is deflected from circular orbits when it enters the arm. The star
formation rate in the arm is thus increased by enabling longer-lived and more massive molecular clouds.
In this framework, molecular clouds with spiral arms have longer lifetimes than those in the inter-arm
gas, resulting in longer star formation time scales and consequently an increased SFE (Roman-Duval
et al., 2010).

7A universal IMF may be produced by a universal physical process, but the converse is not true:
a universal physical process does not necessarily lead to a universal IMF (Narayanan & Davé, 2012;
Hopkins, 2013).
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rapidly with Galactocentric distance, from ≈ 100% within 1 kpc to only a few per

cent at radii greater than 10 kpc (Sofue & Nakanishi, 2016). Simultaneously, DGMFs

peak at around 3–4 kpc and then decline in the inner zone, where the disc becomes

stable against gravitational collapse on large scales. This is the zone swept by the

Galactic bar and star formation is suppressed for the life of the bar (James & Percival,

2016). The SFE, measured as either the integrated infrared luminosity from young

stellar objects (YSOs) or the numbers of HII regions per unit molecular gas mass, is

low but steady on kiloparsec scales at radii greater than 3 kpc. The SFE declines

abruptly in the Central Molecular Zone (CMZ) within 0.5 kpc (Longmore et al., 2013;

Urquhart et al., 2013). This significant difference may be related to higher turbulent gas

pressure in the CMZ, which raises the density threshold for star formation (Kruijssen

& Longmore, 2014), but the cause of such differences and transitions between these

regions remains unexplained. The low SFE in the CMZ cloud G0.253+0.016 appears to

be caused by a prevalence of shear-driven solenoidal (divergence-free) turbulence modes,

in contrast to spiral-arm clouds, which typically have a significant compressive (curl-

free) component (Federrath et al., 2016). A similar analysis of the Orion B molecular

cloud (Orkisz et al., 2017) finds that the turbulence is mostly solenoidal, consistent with

its low SFR, but is position-dependent within the cloud, motions around the main star-

forming regions being strongly compressive. Thus, this significant inter-cloud variability

of the compressive/solenoidal mode fractions may be a decisive agent of variations in

the SFE. The SFE may also be affected by cloud collisions, which should produce highly

compressive gas flows.

The 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey (CHIMPS,

Rigby et al. (2016)) has produced a large sample of molecular clouds and the first large-

scale map of molecular-gas temperatures. This survey has also led to the discovery

of significant new arm structures. Contrary to theoretical predictions (Kruijssen &

Longmore, 2014), the study of CHIMPS clouds (Rigby et al., 2019) revealed SFE is

neither linked to turbulent pressure nor Mach numbers in the disc.

Together, these findings emphasise the need for the detailed analysis of large samples of

molecular clouds from different regions in the galaxy, relating their internal and external

environmental conditions to their SFE and DGMF, as the next step in understanding

the physics of star formation.
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1.7 Goals and structure of the thesis

The aim of this work is two-fold. First a comparison between two catalogues of sources

over CHIMPS and some of their characteristic physical properties is presented. One

catalogue is constructed with the well-established watershed algorithm FellWalker (an

extraction particularly popular among the users of the Starlink JCMT software suite),

while for the other the more recent approach to cloud segmentation through spectral

clustering, SCIMES, is employed. The second part of the project is a full sample study of

turbulent modes in CHIMPS molecular clouds with a focus on their relation to star for-

mation efficiency. The sample employed is a sub-catalogue of the SCIMES segmentation

introduced above. The thesis is organised as follows. Chapter 2.1 is a brief introduction

to the four CO surveys (CHIMPS, COHRS, ATLASGAL, and Hi-GAL) whose data are

used both in the determination of the distances and physical properties in the SCIMES

catalogue and the definition of a measure for star formation efficiency. Source extrac-

tion methods are mentioned to emphasise the variety of methods used and the need for

systematic comparison of their effects of the emission extracted. For ATLASGAL we

also describe the distance assignment method as this catalogue is the main reference for

distance in CHIMPS. Chapter 3 describes the methods used for the preparation and post-

processing of the CHIMPS for the construction of the SCIMES catalogue. Vital to the

estimation of the physical quantities included in the catalogue is the algorithm used for

distance assignments to the sources identified through SCIMES. The Chapter includes

the FellWaker and SCIMES algorithms as well. Chapter 4 describes the construction

of a SCIMES catalogue of the emission in CHIMPS and compares the characteristic

to the FW extraction. Chapter 5 introduces the statistical method devised by Brunt

et al. (2010); Brunt & Federrath (2014) which allows for the analysis of turbulent modes

within molecular clouds from a line-of-sight projected data set. This Chapter is followed

by an analysis of the star formation efficiency over a full sample selection of clouds from

the SCIMES catalogue. Chapter 7 summarises the results found in the thesis and in

Chapter 8 plan for the continuation and extension of the analysis that was initiated with

the present thesis is proposed.

Finally, Appendix A consists of a short description of the FellWalker watershed algo-

rithm. Appendix B presents a detailed description of the SCIMES algorithm including

an introductory explanation of the graph-theoretical concepts upon which the algorithm
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is based. Appendix C revisits the derivation of Brunt’s method in full detail. Appendix D

concerns random distance assignment and the resulting mass distributions. Appendix E

describes the FINDBACK algorithm used to implement noise removal through a multi-

step smoothing filter. Appendix F collects the graphical representations of the FW

distance assignments within SCIMES clouds over the ten regions covered by CHIMPS.



Chapter 2

Surveys

This Chapter provides an overview of the surveys used for the analyses presented in

this thesis. At the core of these studies lie the CO emission data collected in the

CO Heterodyne Inner Milky Way Plane Survey (CHIMPS). Most of the Chapter is

thus dedicated to the description of CHIMPS and the derivation of column density

and excitation temperature maps for this dataset. Other surveys such as COHRS,

Hi-GAL, ATLASGAL were used in the distance assignments and the determination of

star formation efficiency, along with the comparison of the distribution of the physical

quantities associated with molecular clouds. A brief description of these surveys is also

included. The sections dedicated to each survey include subsections with a focus on

the aspects of the data that are required for the analysis presented in this thesis (e.g.

distance assignments in ATLASGAL, see also Chapter 4). Mentions of the emission

extraction algorithms are also made to emphasise the diversity of the method employed

in different projects.

The CHIMPS (FellWalker extraction) and COHRS catalogues used in the analysis in

Chapter 4 were produced, published, and made available publicly by their respective

authors (Colombo et al., 2019; Rigby et al., 2019). The luminosities and bolometric

temperatures used to derive the star formation efficiency in Chapter 6 were taken as

published by Molinari et al. (2016).

20
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2.1 CHIMPS

The 13CO/C18O (3−2) Heterodyne Inner Milky Way Plane Survey (CHIMPS) is a spec-

tral survey of the J = 3 − 2 rotational transitions of 13CO at 330.587 GHz and C18O

at 329.331 GHz. The survey covers ∼19 square degrees of the Galactic plane, spanning

longitudes l between 27.5◦ and 46.4◦ and latitudes | b | < 0.5◦, with angular resolution

of 15 arcsec. The observations were made over a period of 8 semesters (beginning in

spring 2010) at the 15-m James Clerk Maxwell Telescope (JCMT) on Manua Kea in

Hawaii. Both isotopologues were observed concurrently (Buckle et al., 2009)) using the

Heterodyne Array Receiver Programme (HARP) together with the Auto-Correlation

Spectral Imaging System (ACSIS). The HARP array is composed of 16 (4 × 4) focal

plane superconductor–insulator–superconductor heterodyne detectors. The spacing be-

tween consecutive receptors corresponds to 30 arcsec on the sky. HARP operates at

submillimetre frequencies between 325 and 375 GHz. ACSIS was set to a total band-

width of 250 MHz, 61 kHz for each of its 4096 frequency channels. With a velocity width

of 0.055 km s−1 per channel, CHIMPS spans a velocity bandwidth of ∼ 200 km s−1 .

The data are structured as position-position-velocity (PPV) cubes with velocities binned

in 0.5 km s−1 channels and a bandwidth of 200 km s−1 . The Galactic velocity gra-

dient associated with the differential rotation of the Galaxy is matched by shifting the

velocity range with increasing Galactic longitude from −50 < v < 150 km s−1 at 28◦ to

−75 < v < 125 km s−1 at 46◦.

2.1.1 Observations and data

The observation mode consists of a position-switched raster. This mode scans the sky

with a chosen width in a pattern that fills the image pixels from edge to edge and back,

from bottom to top. At the end of each row, the receptor array is shifted by half its

width perpendicularly to the scanning direction. Each point in the observation area

is thus scanned by several detectors. Then, a second scan is performed, repeating the

same pattern, but perpendicular to the first pass. Off-positions are taken below the

Galactic plane with a latitude offset of ∆ = −1.5◦ for each scan. This observation mode

produces a sample spacing of 7.3 arcsec and a sample time of 0.25 seconds, yielding

approximately a 21×21 arcminute datacube per hour. The pointing accuracy at JCMT
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is approximately 2 arcsec in azimuth and elevation (checked between observations). The

JCMT tracking is generally more accurate than 1 arcsec for each hour of observation.

Raw data are recorded continuously during the scans in a time-series format. Calibra-

tions of the spectra occur during the observations (Kutner & Ulich, 1981, three-load

chopper-wheel method). The intensity of the emission is recorded as the corrected an-

tenna temperature, T ∗A, a temperature scale that accounts for atmospheric attenuation,

ohmic losses inside the instrument, spillover, and rearward scattering (Rigby et al., 2016).

The T ∗A scale is calibrated absolutely against spectral standards observed and updated

nightly1. The tolerance for integrated intensities and calibrated peak emission is 20%

of the values of the standards. Receivers with readings of the standards with absolute

values that exceed this tolerance are re-tuned. The main beam brightness temperature

can directly be recovered from the corrected antenna temperature:

Tmb =
T ∗A
ηmb

, (2.1)

where ηmb = 0.72 is the mean detector efficiency (Buckle et al., 2009).

To convert the raw time-series spectra to spectral data cubes with an associated co-

ordinate grid, the standard JCMT ORAC-DR data reduction pipeline (Jenness et al.,

2014) that employs the KAPPA, SMURF, and CUPID packages included in the Starlink

(Currie, 2013) suite, was used. In particular, the narrow-line reduction was applied (Ca-

vanagh et al., 2008). This reduction routine is specifically optimised for the reduction of

narrow-line-width and low-velocity-gradient sources. The process has two main stages:

the quality assurance of the data and the iterative construction of the spectral cubes

and other outputs.

In the reduced cubes, the pixel size is set to 7.6 arcseconds in Galactic longitude and

latitude, while the velocity channels are 0.5 km s−1 to improve the signal-to-noise ratio

(SNR). The observations’ raster pattern results in reduced cubes that are under-sampled

at the edges (where the scanning array changes direction). These areas also present a

lower SNR. The data values at the edges are adjusted by cropping the cubes. Cropping

produces overlapping (approximately 1 arcmin in width) between adjacent cubes.

1http://www.eaobservatory.org/jcmt/instrumenation/heterodyne/calibration

http://www.eaobservatory.org/jcmt/instrumenation/heterodyne/calibration
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The reduced data cubes each include a variance array component. The 13CO survey has

mean rms sensitivities of σ(T ∗A) ≈ 0.6 K per velocity channel, while for C18O, σ(T ∗A) ≈

0.7 K. These values, however, fluctuate across the survey region depending on both

weather conditions and the varying numbers of working receptors on HARP (Rigby

et al., 2016). The rms of individual cubes range between 0.37 K and 1.51 K and between

0.43 K and 1.77 K per channel for the for the 13CO and the C18O emission respectively.

The reduced data are organised into 178 datacubes which are, in turn, mosaiced into

10 larger regions (see also Chapter 3, Figure 3.5) since the entire CHIMPS area is too

large to be analysed as a single datacube. Each of the regions contains a variance array

component determined for each spectrum from the system noise temperature. In order

to perform source extraction as consistently as possible, a small overlap is left between

adjacent regions. Both the regions and the cubes that constitute them are available

for download in FITS format from the Canadian Archive Network for Astronomical

Research (CANFAR)2. The data are presented in corrected antenna temperature in

units of K. Column density and excitation temperature maps for the 10 regions can also

be obtained from the CANFAR servers.

2.1.2 Column density and excitation temperature maps

The total column density throughout a CHIMPS datacube can be calculated from the

excitation temperature and the optical depth of the CO emission. This calculation is

outlined in Rigby et al. (2019). Their method is a variation of the standard approach for

the determination of the excitation temperature and optical depth and uses 13CO(3−2)

emission at each position (l, b, v) in the datacube (on a voxel-by-voxel basis) under the

assumption of local thermal equilibrium (Roman-Duval et al., 2010). This strategy

has a major advantage over the analysis of velocity-integrated properties: any property

derived from the excitation temperature and optical depth is independent of the source

extraction and image segmentation algorithms. However, an analysis based on individual

voxel information does not account for the attenuation of the emission due to self-

absorption. Although, Rigby et al. (2019) performed the first-order adjustment of their

method with respect to the 12CO(3−2) from which excitation temperature of 13CO(3−2)

2https://doi.org/10.11570/19.0028
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is derived, they did not find evidence for significant self-absorption in 13CO(3−2) across

the entire CHIMPS area.

The total column density at each position, NTot
13 , is determined from the column den-

sity, N13(J), within a specific energy level, J, by multiplying it by a partition function

representing the sum over all states, giving

NTot
13 = N13(J)

Z

2J + 1
exp

(
hBJ(J + 1)

kBTTex

)
, (2.2)

where h is the Planck constant, kB is the Boltzmann’s constant, Tex is the excitation

temperature, and B = h/(8π2I) with the moment of inertia I = µR2
CO calculated from

the reduced mass µ and the mean atomic separation RCO = 12 nm. Assuming that the

vibrationally excited states are not populated, Z can be approximated as

Z ≈ kB
hB

(
Tex +

hB

3kB

)
. (2.3)

Within the J = 2 state, the column density N13(J = 2) (number of CO molecules per

cm2) is calculated as

N13(J = 2) =
8π

c3

g2ν
3

g3A32

1

1− exp(−hν/kBTex)

∫
τvdv, (2.4)

with g2 and g3 being the statistical weights of the J = 2 and J = 3 rotational energy

levels respectively. The constant A32 = 2.181 × 10−6 s−1 is the Einstein coefficient for

the 13CO(3−2) transition (Schöier et al., 2005), τv is the optical length at the frequency

v the frequency v in GHz, and the velocity channel width dv is given units of km s−1 .

There is a small discrepancy between the values of Z as defined in equation 2.3, and those

reported in the Cologne Database for Molecular Spectroscopy 2 (Endres et al., 2016).

This difference is due to the hyperfine splitting of 13CO(3−2), which is not accounted for

in equation 2.3. The impact on the column densities consists of a variation of 0.5− 2%

over a temperature range of 5 − 20 K. These discrepancies are not significant for the

purpose of our investigation.
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2.2 COHRS

The JCMT 12CO (3− 2) High Resolution Survey (COHRS) is a large-scale CO survey

that mapped the 12CO (3−2) emission in the Inner Milky Way plane. The survey covers

latitudes 10.25◦ < l < 17.5◦ with longitudes |b| ≤ 0.25◦ and 17.5◦ < l < 50.25◦ with

|b| ≤ 0.25◦. This particular region was selected to match a set of important surveys,

among which CHIMPS, the Galactic Ring Survey (GRS, Jackson et al., 2006), the

FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45-m telescope

survey (FUGIN, Umemoto et al., 2017, see Figure 2.1), the Galactic Legacy Infrared

Mid-Plane Survey Extraordinaire (GLIMPSE, Churchwell et al., 2009a), the Bolocam

Galactic Plane Survey (BGPS, Aguerre et al., 2011), and the Herschel Infrared Galactic

Plane Survey (Hi-GAL, Molinari et al., 2016). The observations were performed with

the Heterodyne Array Receiver Programme B-band (HARP-B) at 345.786 GHz and

ACSIS set at a 1 GHz bandwidth yielding a frequency resolution of 0.488 MHz (0.42

km s−1). The survey covers a velocity range between−30 and 155 km s−1 with a spectral

resolution of 1 km s−1 and angular resolution of 16.6 (FWHM). The COHRS data (first

release) are publicly available3.

2.2.1 Catalogue

Molecular clouds in the reduced COHRS data were identified through the SCIMES

method by Colombo et al. (2019). Before the SCIMES algorithm is applied, the tiles

are mosaicked together into a single survey-wide cube. To highlight emission features by

increasing the SNR the data were masked multiple times before being divided again into

smaller regions. Pre-segmentation masking and the construction of the final datacubes

are explained in Colombo et al. (2019) and Rosolowsky & Leroy (2006). The final

cubes span 1200 pixels in longitude corresponding to ∼ 2◦ in longitude. The following

parametrisation of SCIMES is run on each region, all of the emission in the mask is

considered (min val = 0). Each dendrogram branch should have an intensity change

greater than 3σrms, min delta = 3σrms and contain at least as many pixels as three

resolution elements (min val = 3Ωbm , where Ωbm is the solid angle subtended by the

beam expressed in pixels.

3http://dx.doi.org/10.11570/13.0002

http://dx.doi.org/10.11570/13.0002
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Figure 2.1: Coverage of the Galactic plane by four main CO surveys: CHIMPS,
COHRS, the Galactic Ring Survey (GRS, Jackson et al., 2006) and the FOREST
Unbiased Galactic plane Imaging survey with the Nobeyama 45-m telescope survey
(FUGIN, Umemoto et al., 2017).

It is important to notice that this parametrization was specifically chosen for the seg-

mentation of 12CO emission. Its results cannot directly be compared to the emission

features found through the extraction of a different isotopologue with its own SCIMES

parametrization. However, as it will be shown in the next Chapter, the information

from different segmentations can be used to complement each other. The most compact

structures/star formation sites identified in the 13CO emission can be matched to the

J = 3 − 2 transition of the 12CO isotopologue that traces warm molecular gas (10-50

K) around the active star formation regions. The volume and luminosity affinity matri-

ces (see Appendix B) are constructed using the PPV volumes and integrated intensity

values since spatial volumes and intrinsic luminosities cannot be used without knowing

the distances to the dendrogram branches. The scaling parameter is set above 3σrms

(Colombo et al., 2015b) .
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2.2.2 Distances

Distance assignments follow Zetterlund et al. (2018). Their estimation of distances is

based on an analysis of the BGPS (Aguerre et al., 2011) along with Reid’s kinematic

distance calculator (Reid et al., 2016). Column densities are calculated by scaling the

integrated intensities of the CO emission with a H2-to-CO conversion factor. Masses are

estimated directly through the distances of the molecular clouds. The COHRS catalogue

also includes an additional dynamical measurement of mass, the virial mass. However,

this calculation requires the assumption of virialised spherical clouds with a density

profile that decays as r−1. External pressure and magnetic fields are also assumed to be

negligible. Detailed calculations of both the pixel-based and physical properties of the

COHRS molecular clouds (in particular the effective radius, velocity dispersion, and CO

luminosity from which all other properties are derived) are presented in Colombo et al.

(2019). The COHRS cloud catalogue is available on the publisher’s site 4.

2.3 ATLASGAL

The Atacama Pathfinder Experiment (APEX) is a 12 m single-dish submillimetre tele-

scope located on the Chanjnantor Plateau in Chile. It is equipped with heterodyne

receivers with frequencies ranging from 230 GHz to 1.4 THz and several arrays of

bolometers. The APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) is

an unbiased survey that observed the Galactic plane with the Large APEX BOlometer

CAmera (LABOCA) at 870 µm. LABOCA consists of 295 bolometer detectors arranged

in a hexagonal pattern yielding a field of view of 11.4′ in diameter. ATLASGAL covers

Galactic longitudes 60◦ < l < 300◦ and latitudes |b| < 1◦.5 and is one of the largest and

most sensitive ground-based submillimetre Galactic surveys. ATLASGAL is believed

to detect all dense clumps with mass > 1000M�) with heliocentric distance < 20 kpc

in the Milky Way and to encompass samples representing all stages of high-mass star

formation. The ATLASGAL survey has been the basis for many studies of the distribu-

tion of Galactic dense molecular gas (Beuther et al., 2012; Csengeri et al., 2014) and the

ATLASGAL Compact Source Catalogue (CSC, Contreras et al. (2013); Urquhart et al.

4https://doi.org/10.1093/mnras/sty3283

https://doi.org/10.1093/mnras/sty3283
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(2014a)) is a comprehensive catalogue of over 10000 dense clumps extracted from the

reduced ATLASGAL data.

2.3.1 Data

The raw data are recorded in MB-FITS (Multi-Beam FITS) format by the APEX Con-

trol System (APECS, Muders et al., 2006). The BOlometer array data Analysis package

(BOA, Schuller, 2012), an algorithm specifically optimized for reduction of LABOCA

data was employed in the pipeline.

The Source Extractor software (SExtractor, Bertin & Arnouts, 1996) was used to seg-

ment the data images. SExtractor performs a complete analysis and extraction of an

image in the following steps. To be able to detect the faintest emission, SEXtractor

first runs a background estimator to construct a map of the background sky. This is

accomplished by applying the estimator to each pixel of the image to determine the noise

level. With a background estimate, source detection occurs via thresholding (masking

out emission below a given threshold). Source deblending is the next stage of the pro-

cess. Deblending separates adjacent objects that have been identified as a single source.

Deblending in SExtractor is implemented as a multiple-isophotal technique. Each ex-

tracted source is re-thresholded at 30 levels, exponentially spaced between its primary

extraction value and its peak values. This produces a dendrogram of the emission dis-

tribution (see section B.2), which is scanned from top to bottom (highest branch to the

trunk) to check for source separation at the junctions of the branches. If the integrated

pixel intensity of a branch is above a given fraction of the total intensity of the compos-

ite object, the branch is considered a separate source. Notice that this condition has to

hold for at least two branches at the same emission level. Spurious sources, resulting,

for instance, from low thresholds5 are filtered out. This cleaning process considers the

contribution to the mean surface brightness of each extracted source from its neighbours.

This value is then subtracted from the source and its new emission is checked against the

detection threshold. To reduce the occurrence of spurious sources and avoid missing real

emission features, the reduced emission maps were converted to SNR maps (Contreras

et al., 2013).

5A local higher background causes a lower relative threshold, which in turn leads to the detection of
more noise peaks.
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In the ATLASGAL CSC, SExtractor was used to calculate the positions of peaks, fluxes,

and the size of the sources. As the catalogue was meant to solely contain compact

sources, a threshold (4) was put on the ratio of semimajor to semiminor axis of the

ellipse approximating the source. A detailed description of the catalogue is given in

Contreras et al. (2013).

2.3.2 Radial velocities

To determine the distance and the physical properties associated with a source, its ra-

dial velocity with respect to the local standard of rest (LSR) is required. Together with

a model of the Galactic rotation curve, radial velocities make it possible to determine

kinematic distances. Urquhart et al. (2018) elaborated the original ATLASGAL CSC to

include radial velocities and distance estimates. The radial velocities of the clumps were

measured from molecular line observations (in particular CO, NH3 and CS). Molecular

line measurements that match most of the ATLASGAL CSC entries are found in a va-

riety of surveys. In particular, the following Galactic plane surveys were used: Galactic

Ring Survey (GRS, Jackson et al., 2006), Mopra CO Galactic plane Survey (MGPS,

Burton et al., 2013), the Three- mm Ultimate Mopra Milky Way Survey (ThrUMMS,

Barnes et al., 2015), (SEDIGISM, Schuller et al., 2017), COHRS (Dempsey et al., 2013),

CHIMPS (Rigby et al., 2016) in combination with selected samples from large observa-

tional programs: The Millimetre Astronomy Legacy Team 90 GHz Survey (MALT90,

Jackson et al., 2013)), the Red MSX Source survey (RMS, Urquhart et al., 2007, 2008,

2011, 2014b), BGPS (Aguerre et al., 2011), dedicated ATLASGAL follow-up observa-

tions (Wienen et al., 2012; T. et al., 2016; Kim et al., 2017). To assign radial velocities

counterparts of ATLASGAL clumps were searched for in molecular line catalogues. A

velocity value is assigned to an ATLASGAL CSC source when the pointing centre of the

molecular line observation is found to lie within the area of the source. When a spec-

trum at the source position contains more than one emission line the transition with the

highest critical density is chosen. This means that, NH3 and HNC are preferred to CO.

Higher critical density means that the emission is less affected by multiple components

that originate from the diffuse gas along with the sight between the source and the

observer. The spectra of sources that lacked a known counterpart in the surveys were

extracted from survey datacubes (after reduction and calibration). A Gaussian profile

was used to fit these spectra. Unreliable fits (due to the data contamination by external
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emission or strong baseline ripples) were discarded. Velocities were assigned as follows,

for single component detections, the peak velocity of the molecular line was applied to

the source. In the case of detections of multiple components with the strongest compo-

nents within 10 km s−1, the velocity of the strongest component was assigned. For other

multiple component detections, the velocity of the component with the largest integrated

line intensity was chosen (if the second strongest component had integrated line emission

half as large). In all other cases, no velocity was chosen, additional observations were

obtained and the allocation process was repeated.

2.3.3 Distances

From the radial velocity values in the ATLASGAL CSC, it is possible to estimate the

heliocentric distances to the sources through the calculation of kinematic distances. Ob-

taining an accurate distance measurement is crucial for the calculation of many physical

properties associated with a source. As mentioned above, the estimation of kinematic

distances requires a model of the rotation of the Milky Way. A number of models de-

scribing the Galactic rotation curve have been developed during the years (Clemens,

1985; Brand & Blitz, 1993; Reid et al., 2014). All of them however yield kinematic dis-

tances that agree within their associated uncertainties (typically ±0.3− 1 kpc) making

them basically interchangeable. For the ATLASGAL CSC, the rotation curve devised by

Reid et al. (2014) was adopted. This particular model is constrained by maser parallax

measurements (∼ 150 distances) and is known to produce kinematic distances that are

comparable to maser distances 6.

Ambiguities arise intrinsically in the determination of kinematic distances. For the set

of sources within the Solar circle, there are, in fact, two separate distance solutions that

correspond to the same radial velocity. These distances are equispaced on both the

’near’ and ’far’ side of the tangent point 7. To resolve this kinematic distance ambiguity

6Parallax measurements of masers observed in star-forming regions provide the most accurate distance
assignments for molecular clouds. These compact bright sources in the ISM are powered by the emission
(population inversion, rotational transitions, and collision (Gray et al., 2016)) from molecules such as
water, hydroxyl radicals, methanol, formaldehyde, and silicon monoxide. Since masers are not associated
with all sources (especially in the earliest stages of stellar evolution), however accurate, this method
cannot be applied globally. Also, the difficulties related to maser parallax measurements and the low
coverage of such sources in the Southern hemisphere (Reid et al., 2014) result in a limited number
of distances known in the literature, the vast majority of which are located in the first two Galactic
quadrants.

7With reference to Figure 2.2 (see Figure 2.2), the distance to the source in terms of the Galactic
longitude l and the distance of the sun to the Galactic centre, R0, is shown to be
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(KDA) and make unique distance assignment Reid et al. (2016) developed a Bayesian

maximum likelihood method. Under the assumption that each source is likely to be

found within spiral arms, their method returns a unique distance that accounts for the

relative positions of the spiral arms, the latitude of the source, and a probability to

find the source at the near/far distance. Urquhart et al. (2018) applied both Reid’s

rotation curve and Bayesian maximum likelihood models to the ATLASGAL sources

finding that the letter gave more reliable distances for sources located near the Solar

circle. The overall difference in distance between the two methods is relatively small,

amounting to less than 1 kpc in ∼ 95% of the sources. In particular, this difference

becomes negligible in the fourth quadrant where the lack of maser parallax distances

does not allow for an accurate model of the spiral arms’ positions.

To provide distance assignments that overcome the KDA and to avoid the binding of

sources to spiral arms8, Urquhart et al. (2018) addresses the KDA with a series of

alternated checks based on the known information on the source and its environment.

Their scheme is reproduced in the flowchart in Figure 2.3. When possible, the sources

within the Solar circle (r < 8.35 kpc) are matched to clumps with reliable distances

from the literature: maser parallax, (Reid et al., 2014) and spectroscopic measurements

(Moisés et al., 2011). If a known distance is found, it is assigned to the source. All

sources with velocities close to the tangent velocity |vsource − vtan| < 10 km s−1 are

simply assigned the tangent distances since the difference between their far and near

distances are smaller than their uncertainties.

Studies of high-mass stars within the Solar circle (Reed, 2000; Green & McClure-

Griffiths, 2011; Urquhart et al., 2014b) have shown that their latitude distribution is

correlated with the Galactic mid-plane. Assuming a similar distribution of high-mass

star-forming clamps, the distances of clumps located within the Solar circle can be

constrained in terms of the scale-height (Urquhart et al., 2018). If all sources from the

Galactic mid-plane are initially assumed to be at the far distance, any with height above

the mid-Plane of greater than 120 pc (four times the scale height) will be considered

d = R0 cos(l) ±
√
R2 −R2

0 sin2(l), (2.5)

this solution gives rise to the KDA.
8To study how different Galactic environments and in particular the presence of spiral arms impact

the star formation processes, inter-arm sources need to be separated from arm sources as much as
possible. Reid’s Bayesian maximum likelihood method promotes the allocation of sources to arms.
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Figure 2.2: A geometric representation of the kinematic distance ambiguity for sources
located within the Solar circle (Reid et al., 2014). GC denotes the Galactic centre

not reliable. In this case, the source’s near distance is assigned (Urquhart et al., 2014b,

2018).

Distances to molecular clouds can also be determined through the analysis of the ab-

sorption features of the HI gas surrounding HII regions. The presence of HI along the

line of sight manifests against the strong HII radio continuum by producing an adsorp-

tion feature at the velocity of the HI envelope (Wienen et al., 2015; Urquhart et al.,

2012; Anderson, 2009; Kolpak et al., 2003). If the HII clumps are positioned at the near

distance, absorption will be observed at the same velocity as the HII region, but not at

higher velocities. Whereas, with HII at the far distance, absorption is expected at higher

velocities than the HII emission source (extending all the way to the source’s tangent

velocity). The ATLASGAL sources were matched against clumps with HII region stud-

ies and assigned the distances found in the literature. If no such distance is known, HI

absorption was checked (Urquhart et al., 2018). Clumps at the near distance are likely

to absorb the emission from warm HI gas behind them. This results in an absorption

feature in the HI spectra at the same velocity as the clump. This feature is absent when

the clump is at the far distance with the warm HI gas being distributed throughout the
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Galactic plane (Roman-Duval et al., 2010; Anderson, 2009; Jackson et al., 2006).

Finally, if the HI analysis is inconclusive, extinction towards the clumps is checked

(Peretto & Fuller, 2009). If a clump is associated with an infrared dark cloud (IRDC)

(Rathborne et al., 2006), the source is likely to be in the foreground with respect to the

bright IR emission that present in the Inner Galaxy and its near distance is chosen.

Following the method shown in the flow diagram in Figure 2.3, Urquhart et al. (2018)

assigned distance to ∼ 90% of the sources in the ATLASGAL CSC. The remaining

clumps are either those lacking a radial velocity or those for which the distance ambiguity

could not be resolved. To provide distances for these sources a clustering analysis with a

friends-of-friends algorithm was run. Assuming that the sources in the ATLASGAL CSC

represent the individual parts of GMCs with the highest column density, clustering them

in PPV space allows for the identification of the large-scale features that contain them.

Clustering thus provides a statistical way to check the individual distance assignments

of all sources associated with the same structure. Within a cluster, a distance can also

be assigned to sources for which the distance ambiguity could not be resolved through

the HI emission analysis. The major molecular gas complexes in the Milky Way, such

as W31, W43, and G305, have been studied extensively and their distances have been

determined accurately. These distances are adopted for sources identified within clusters

corresponding to these structures. In addition, since a large number of GMCs present

strong velocity gradients, the velocities of the constituent clumps may vary greatly.

These differences in velocity may result in incompatibility with the kinematic distance

assignments9 that affect their estimated physical properties and increase the scatter in

their Galactic spatial distribution. Clustering is an effective way to mitigate these issues.

Clustering analysis over the ATLASGAL CSC identified 776 clusters with many corre-

sponding to well-known star-forming regions in the Galaxy (Urquhart et al., 2018).

The full ATLASGAL catalogue with distances in physical properties as described in

Urquhart et al. (2018) is available for download10.

9Two clumps with similar velocities (∆v < 0.5 km s−1 ) may be applied kinematic distances that
differ by 0.5 kpc.

10http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/MNRAS/

http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/MNRAS/
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Figure 2.3: Flow chart of the algorithm used in Urquhart et al. (2018) to assign
distances to ATLASGAL CSC clumps. Figure reproduced after Urquhart et al. (2018)
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2.4 Hi-GAL

The Herschel infrared Galactic Plane Survey (Hi-GAL) is an Open Time Key Project

of the Herschel Space Observatory (Molinari et al., 2010b,a). It comprises a suite of

five inner Galaxy plane surveys observing from the near-infrared to radio at 70, 160,

250, 350, and 500 µm. With diffraction-limited spatial resolution and including the

peak of spectral energy distribution (SED) of the cold ISM at 8K < T < 50K, Hi-GAL

represents an optimal tool to study luminosity, temperatures, and masses of cold gas

structures from the CMZ to the Outer Galaxy. As the Herschel telescope can image

multi-wavelength extended emission on scales ranging from the diffuse ISM and dense

filamentary structures to compact and point-like sources (Molinari et al., 2010b; André

et al., 2010), Hi-GAL data are ideal to trace the stages of the star formation process,

from clouds and filaments to the collapse of dense cores into protoclusters (Zavagno

et al., 2010; Elia et al., 2014; Fuller et al., 2015; Elia et al., 2017).

The Hi-GAL catalogue considered in this study refers to the first Hi-GAL data release

which spans longitudes −71◦ ≤ l ≤ 68◦ and latitudes |b| ≤ 1◦. The region of sky covered

by Hi-GAL is estimated to include most of the potential star formation sites in the

Inner Galaxy (with ∼ 80% of YSOs being located at latitudes |b| ≤ 0◦.5). Hi-GAL is

the largest Herschel observing programme to date (900 hours).

Observations in the five Hi-GAL photometric bands were acquired simultaneously over

∼ 2.2◦ × 2.2◦ tiles. Each tile was observed with the Photodetector Array and Camera

Spectrometer (PACS, Poglitsch et al., 2010) and the Spectral and Photometric Imaging

Receiver (SPIRE, Griffin et al., 2010) in parallel mode (pMode). To mitigate the

thermal drifts affecting the differential bolometers in the PACS and SPIRE arrays, the

tiles were scanned twice in perpendicular directions over the two passes.

2.4.1 Data

The raw Hi-GAL data collected during the PACS and SPIRE timelines were reduced

through a two-stage pipeline: the construction of the reduced maps through the RO-

MAGAL map-making algorithm (Traficante et al., 2011) and post-processing with the

WGLS package (Piazzo et al., 2012) to rid the maps of artefacts.
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A catalogue of compact cold objects extracted from the Hi-GAL data (Elia et al., 2017)

is constructed by merging the Hi-GAL single-band photometry of the sources into a

five-band catalogue, which is then filtered by applying constraints on sources’ SEDs.

The CUrvature Thresholding EXctraction algorithm (CUTEX, Molinari et al., 2011)

was used for the emission extraction in the reduced Herschel cubes. CUTEX constructs

a “curvature” image of the emission by taking the second (Lagrangian) derivative in four

different directions (x, y, and two diagonals). In this new image, the (slowly varying)

curvature corresponding to fore- or background emission on large and intermediate scales

is damped, while the curvature of point-like and compact resolved sources is amplified.

The areas exceeding a curvature threshold are then considered as candidate sources.

The CUTEX algorithm implements a two-dimensional Gaussian profile fit to estimate

the sources’ integrated flux. The extraction is performed in all five Herschel bands. A

multi-band catalogue is then constructed by associating to each source its image in all

bands. The matches are produced by iteratively checking the positions of the sources in

two adjacent Herschel bands (Elia et al., 2010, 2013). An assignment is made when the

centroid of the source at the shorter wavelength is contained in the ellipse approximating

the source at the longer wavelength. When a source has more counterparts at the

short wavelength, a unique association is established by selecting the short-wavelength

counterpart with the shortest distance to the long-wavelength ellipse centroid. The

unassigned short-wavelength sources are labelled as ’independent catalogue entries’ and

are checked for counterpart matching at shorter wavelengths. This merging algorithm

yields a catalogue in which each entry corresponds to a source with up to five detections

associated with it.

The full catalogue construction, its caveats, and the determination of the other physical

properties appearing in it are found in Elia et al. (2017). The Hi-GAL physical catalogue

for the Inner Galaxy is available for download from the VIALACTEA Knowledge Base11.

11http://vialactea.iaps.inaf.it/vialactea/public/HiGAL_clump_catalogue_v1.tar.gz

http://vialactea.iaps.inaf.it/vialactea/public/HiGAL_clump_catalogue_v1.tar.gz


Chapter 3

Cloud extraction:

Data and methods

This chapter describes the methods that were employed to construct a cloud catalogue

of the CHIMPS survey based on a SCIMES emission segmentation. A brief description

of the SCIMES and FellWalker paradigms is given at the beginning. The former is a

watershed algorithm widely used for segmenting multidimensional emission data arrays,

while the latter is a more recent method that provides image segmentation based on

dendrograms and clustering theory (these methods are described in detail in Appen-

dices A and B). SCIMES relies on the natural transitions in the emission to produce

a physics-oriented catalogue of emission structures (Colombo et al., 2015a). This ap-

proach represents an evolution over pixel-based cloud segmentation methods for which

any property of the ISM can be chosen for data segmentation. Thus a comparison be-

tween FW and SCIMES represents a step forward in understanding method-dependent

biases in survey results. A brief introduction to these algorithms is followed by the de-

scription of the preparation of signal-to-noise datacubes on which the emission extraction

is performed. Finally, a post-processing routine is introduced to uniquely identify clouds

in the overlapping areas between adjacent CHIMPS regions (see section 2.1 and Table

4.1). To implement a comparison with a different tracer, a subsample of COHRS at

the intersection with CHIMPS is selected. The COHRS catalogue is constructed with

a SCIMES segmentation with different values of the dendrogram defining parameters.

Crucial to the construction of any catalogue of the physical properties of GMCs in the

37



Cloud extraction: Data and methods 38

determination of their distances. For this purpose, a combination of different methods

and surveys is used.

3.1 The FellWalker algorithm

The FellWalker (FW) algorithm implements a variation of the watershed paradigm.

While watershed algorithms perform segmentation by recognizing regions of low emission

around local minima (catchment basins) and tracing out the boundaries (watershed lines)

that separate them (Roerdink & Meijster, 2001), FW first searches for local maxima.

Each partition of the dataset is identified through gradient tracing and associated with

its corresponding maximum. This procedure resembles the HOP algorithm, a method

devised to find groups of particles in N-body simulations (Eisenstein & Hut, 1998). HOP

and FW share a similar design, which makes them more sensitive to the variation of the

baseline threshold than to their other parameters. The FW design aims to overcome

the issues arising in algorithms based on the analysis of contour levels (CLUMPFIND

being a clear example, see Williams et al., 1994, and Appendix A). The FellWalker

strategy determines the paths of the steepest ascent originating at each data point with

an emission value that exceeds a given baseline threshold. The set of voxels belonging

to all paths associated with the same peak is then identified with an individual cloud in

the emission data array. The emission extraction is regulated by a set of configuration

parameters that define the data value below which pixels are considered to be in the

noise, the minimum dip between two adjacent peaks for them to be considered separate

emission features, and the minimum number of voxels in a peak to be considered an

independent source (see Appendix A for the full list).

3.2 SCIMES

The Spectral Clustering for Interstellar Molecular Emission Segmentation (SCIMES) is

a segmentation algorithm that implements a clustering process based on graph theory.

Clustering is an unsupervised technique used to classify patterns by dividing a set of

data into groups (clusters). Data points that belong to the same cluster are more similar

to one another (with respect to some of their properties) than to the points grouped
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Figure 3.1: Example of molecular cloud emission (a) and associated dendrogram (b).
Darker colour indicated higher intensity of emission.

into different clusters (Jain et al., 1999). In the framework of a clustering problem,

finding molecular clouds in a PPV datacube or an image is translated to the process of

clustering pixels that are considered as part of individual entities.

The global hierarchical structure within a molecular line datacube is encoded into a

dendrogram. Each point of the dendrogram can be intuitively identified as defining an

isosurface at a fixed emission level. In this framework, leaves represent three-dimensional

contours (or isosurfaces at given emission levels) that contain a single local maximum (see

Figure 3.1). Leaves are the top level of the dendrogram. The branches of the dendrogram

are vertical and horizontal lines that join two or more leaves with length (of the vertical

segments) proportional to the range of contour levels across which the properties of the

emission do not change significantly with respect to some chosen similarity criterion

(Rosolowsky et al., 2008).
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Figure 3.2: Schematic construction of a dendrogram for a one-dimensional emission
profile. The dendrogram diagram reproduces the emission structure as a function of
the contour level.

The emission dendrogram is constructed by identifying the voxels with the largest emis-

sion value within a box of a given size. Then, the elimination of local maxima proceeds

as shown in Figure 3.2. Peaks are removed if their emission is below the set min val or

when they belong local to an isosurface with a volume smaller than a specified number

of voxels (min pix). If the difference between the peak and the value of the emission at

the contour level where it merges with a neighbouring peak is smaller than a threshold

value (min delta) both contour profiles are counted as a single local maximum. The

contour level at which two isosurfaces merge is called a merger level. At lower emission

levels, all the branches and leaves eventually merge into the trunk of the tree structure.

Dendrograms can also be seen as mathematical graphs by considering the leaves as the

vertices of the graph. The edges of the graph can be weighted using the properties of the

highest-level isosurface containing each pair of leaves. Those weights are collected into

similarity matrices and passed to the spectral clustering algorithm. Spectral clustering

employs the eigenvectors of the Laplacian matrix to perform a dimension reduction

and construct a metric space in which data points with similar emission properties are

collected in separate regions. These sets of points are the independent objects identified

as the (“molecular gas”) clusters in the PPV data set.
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Spectral clustering produces optimal cuts of the structure tree, which identifies the

molecular clouds while respecting the hierarchy of the dendrogram structures.

The SCIMES method has proven to be robust under changes in the dendrogram-defining

parameters and different noise realisations Colombo et al. (2015a). The SCIMES seg-

mentation results are stable when the spatial resolution is degraded up to a factor of 10.

Coarse resolutions (> 10 pc) affect the algorithm performance (Colombo et al., 2015a).

Thus, SCIMES performs best in complex environments, making it an optimal choice for

cloud identification in high-resolution Galactic plane surveys.

SCIMES expands the friends-of-friends paradigm by introducing neighbourhoods defined

by the physical properties of the emission structure. The volume criterion (see Appendix

B) was found to produce a better clustering performance. In theory, similarity relations

(matrices) can be defined using any property of the ISM, including star formation rate

and metallicity. This new definition of neighbourhood also broadens the very concept

of molecular cloud to the more general ’molecular gas cluster. Colombo et al. (2015a)

define molecular gas clusters as a category of discrete objects within the molecular ISM

that have common physical properties and can be segmented by a well-defined set of

similarity criteria. This category includes molecular clouds.

3.2.1 An example - The Orion-Monoceros region

Figures 3.3 and 3.4 depict an example of the SCIMES segmentation of the 12CO (1-0)

emission in the Orion-Monoceros region. The data set1 used for the segmentation was

obtained with the 1.2-m millimeter wave telescope at the Harvard–Smithsonian Center

for Astrophysics (Wilson et al., 2005). The set has a spatial resolution of 8.4 arcmin

which, at the average distance of the complex (∼ 450 pc), corresponds to ∼ 1 pc.

The images below (Figure 3.3) span 200 × 160pc2, while the data cube has a velocity

resolution of 0.65 km s−1 with velocities ranging from -3 to and 19.5 km s−1. The data

have a sensitivity σrms of 0.26 K.

Both Figures were constructed following the SCIMES tutorial2.

1The dataset was obtained from https://www.cfa.harvard.edu/rtdc/CO/NumberedRegions/DHT27/

index.html.
2https://scimes.readthedocs.io/en/latest/tutorial.html

https://www.cfa.harvard.edu/rtdc/CO/NumberedRegions/DHT27/index.html
https://www.cfa.harvard.edu/rtdc/CO/NumberedRegions/DHT27/index.html
https://scimes.readthedocs.io/en/latest/tutorial.html
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3.3 Data preparation

In this analysis of the difference between the FW and SCIMES extraction algorithm, we

consider the (J = 3→ 2) emission from the reduced data in the 10 regions constituting

the CHIMPS survey (see section 2.1.1 and Figure 3.5). Before running the SCIMES

extraction, CHIMPS data are prepared following the recipe used by Rigby et al. (2019)

for the FW extraction. The reduced data are spatially smoothed to a resolution of 27.4

arcsec (resulting from the application of a 3-pixel FWHM Gaussian filter) to increase

the signal-to-noise ratio (SNR). The smoothed data have rms values of 0.09+0.03
−0.03 K

per 0.5 km s−1 channel. This value is the median of the distribution with uncertainties

corresponding to the first and third quartiles (Rigby et al., 2019). Because of the variable

weather conditions and the varying number of active receptors during the four years

of observations, the original CHIMPS datacubes do not present a completely uniform

sensitivity across the entire survey (Rigby et al., 2016). To avoid loss of good signal-

to-noise sources in regions of low background and to prevent high-noise regions from

being incorrectly identified as clouds, the source extraction is performed on the SNR

cubes instead of brightness-temperature cubes. An SNR map is created from an existing

brightness temperature cube by dividing it by the square root of its variance component.

The resulting data array measures the SNR at each voxel of the original cube 3. This

operation is performed by the MAKESNR package of KAPPA in the Starlink suite. This

approach was applied to continuum data in the JCMT Plane Survey (JPS) by Moore

et al. (2015) and Eden et al. (2017), who noted that this method produced the best

extraction results. Finally, the background noise is identified and subtracted from the

SNR cubes by applying the Findback filter with a set neighbourhood with a side of 50

voxels (see Appendix E).

3http://starlink.eao.hawaii.edu/docs/sun95.htx/sun95ss108.html#Q1-135-550

http://starlink.eao.hawaii.edu/docs/sun95.htx/sun95ss108.html#Q1-135-550
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3.4 Emission extraction

The SCIMES parameters are defined as multiple of the background σrms. For signal-to-

noise cubes, σrms = 1 by definition. For each region, the SCIMES parameters are set

to generate an emission dendrogram in which emission below 5σrms (min val = 5σrms)

is not considered. This minimum SNR value for a feature to be detected as a source

was chosen to mitigate the occurrence of false positives (artefacts arising at low noise

levels). Each branch of the dendrogram is defined by an intensity change of 5σrms

(min delta = 5σrms). This value is chosen to match min val so that two adjacent

peaks are considered distinct only if the difference in their values is also greater than

5. In addition, the minimum number of voxels an emission peak must contain to be

included in the dendrogram (min npix) is set to 16, which is at least three resolution

elements worth of voxels (= 16). This value corresponds to the volume of a cubic

source with a width of 2.5 voxels in each of the three axes. Lowering this threshold

increases the likelihood of identifying spurious noise artefacts as features of the emission.

These specific values were chosen to match the corresponding FellWalker configuration

parameters (MinHeight, Noise, MinPix, see section A.2) used by Rigby et al. (2016) for

their CHIMPS extraction.

Since the distances to the dendrogram structures are not known, the volume and lumi-

nosity affinity matrices required for spectral clustering cannot be generated from spatial

volumes and intrinsic luminosities. Instead, PPV volumes and integrated intensity val-

ues are used (see Appendix C).

3.5 Post-segmentation processing

To clean the catalogues of spurious sources and noise artefacts that are left after extrac-

tion, an additional filter is applied. This mask leaves those clouds that either extend

for more than 9 voxels in one direction (spatial or spectral) or that contain at least

one 3 × 3 × 3 voxel cube. While the former requirement ensures that also filamentary

structures are considered, the latter ensures that each cloud is fully resolved in each

direction (the width of the beam being 3 voxels). In addition, smaller clouds in contact

with edges of the regions and those with no known column densities are removed from

the catalogue.
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The remaining clouds that touch the edges are flagged with an ’EDGE’ label in the

catalogue. Eventually, to construct the final catalogue and its corresponding assignment

mask, a selection method is used to handle the clouds in overlapping areas between

adjacent regions. This procedure is described below.

3.6 Overlapping areas

To avoid double-counting clouds and to account for the discrepancies in the extraction

maps near longitudinal edges due to the separate dendrograms representing the gas

structure in each region, the following prescription is utilised to treat objects extracted

in the overlapping areas. This novel algorithm is based on the post-segmentation pro-

cessing in the SEDIGISM (Duarte-Cabral et al., 2021) and COHRS (Colombo et al.,

2019) catalogues. In each region, clouds within the overlapping area that crosse the

longitudinal edges (clouds 3 and 4 in Fig. 3.6) are removed. Such clouds do not have

closed isocontours in the region in question (Colombo et al., 2015a). These objects are

recovered from the SCIMES extraction in the adjacent regions that contain the clouds to

their full extent. Some regions present clouds that span the entire overlapping field. In

order not to discard a significant amount of gas mass, these clouds are split at the edge

of one region, assigning the portion in the overlapping area to the region that contains

most of the cloud (cloud 1 in Fig. 3.6). The remaining portion of the cloud is then

added to the final catalogue.

Finally, all objects that do not overlap between the regions (cloud 5 in Fig. 3.6) are

included, and whenever two (or more) clouds overlap, the smaller object between the

two regions is discarded. Through this procedure, a catalogue of 2944 molecular clouds

is constructed. Distances to the catalogue sources are still to be determined at this

stage.
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Figure 3.6: Prescription for cloud removal in the overlapping areas (shaded area in
the panels) of adjacent regions (panel A and B). In each region, the clouds within
the overlapping areas that cross longitudinal edges are removed. The clouds that are
removed in each region (clouds 1, 2, and 4, drawn in red) are recovered from the
other region. Clouds that span the entire overlapping area (cloud 1) are split at the
longitudinal edge that marks the end of the region (panel A). The portion of the cloud
contained in the shaded area is then assigned to the region that contains most of the
cloud (panel B) and removed from the other (panel A). The portion of the cloud left
in panel A (blue tip) is then added to the final catalogue (panel C). Whenever two (or
more) clouds overlap (cloud 3), the smaller object between the two regions is discarded.
All objects that do not overlap between the regions (cloud 5) are retained.
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3.7 COHRS data

To implement a comparison with a different tracer, the distributions of the distances,

masses, virial parameters, and densities associated to and the 12CO (J = 3 - 2) emission

from the COHRS catalogue are also considered. The J = 3 level of 12CO has a tem-

perature of 33 K, this features along with a critical density of ∼ 5 × 104 cm−3, make

this transition an ideal indicator of star formation of the warm material (10–50 K) of

medium density (104cm−3 at 20 K) around cores heated by active star formation.

Mapping the emission of the 12CO isotopologue, the extraction of molecular clouds in

COHRS requires a different SCIMES parametrization (min delta = 5σrms, min val =

0K, min npix = Ωb, where Ωb is the solid angle of the beam expressed in pixels, see 2.2

and Colombo et al. (2019)). In addition, caution should be exercised when comparing

physical quantities with definitions dependent on the catalogue. The same physical

quantity may be defined up to different scaling factors in different catalogues (see the

virial parameter in Colombo et al. (2019) and reference for instance).

For this work, the COHRS catalogue has been reduced to those sources that fall within

the area covered by CHIMPS. This reduction consists of a sub-catalogue of the COHRS

fiducial catalogue, the set of COHRS sources with broadcast inaccuracy smaller than

5 voxels. Distance assignments in COHRS make use of the position of BGPS sources

(Colombo et al., 2019). This sub catalogue comprises 250 sources. When the position

of a BGPS object with a unique distance belongs to a SCIMES dendrogram structure,

that structure/cluster inherits the BGPS distance. This assignment is defined as ’exact’4.

Objects for which an exact assignment is not found are given a broadcast assignment. As

these objects may be the substructures of larger connected emission features with exact

distances, they inherit the closest distance within the larger structure. The broadcast

inaccuracy measures the closest distance in voxels from the distance-assignment-position

to the outer surface of the cloud. By definition, exact distance clouds have zero broadcast

inaccuracy.

4A small fraction (∼ 0.2% of the entire catalogue) of objects in COHRS possess substructures with
different distance assignments. The distances of these objects are chosen to be the near distance of the
brightest spot within the object. This assignment is justified by the assumption that the largest amount
of cloud mass resides in its substructure.
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3.8 Distances

The complex spatial distribution of molecular emission in the plane of the Galaxy makes

it difficult to establish accurate distances to molecular clouds and clumps based on light-

of-sight information alone. The most accurate (and model-free) distances of star-forming

complexes to date were determined by parallax. An important example of this technique

is provided by the distance measurements to masers obtained via Very Long Baseline

Interferometry Reid et al. (2014). However, the existing distance catalogues produced by

these measurements are still not exhaustive and include too few of the objects belonging

to the regions surveyed by CHIMPS. When a model that mimics the Galactic rotation

curve has been established, line-of-sight-velocity information provides a robust method

for the calculation of kinematic distances (Brand & Blitz, 1993; Reid et al., 2014) under

the assumption that the observed objects follow circular orbits around the Galactic

centre. A distance assignment to the extracted SCIMES sources was constructed by

combining two different catalogues and using the Bayesian distance calculator of Reid

et al. (2016). First, the CHIMPS catalogue of 13CO (3-2) emission extracted through

the FW algorithm (Rigby et al., 2019) is considered. The main catalogue consists of

4999 sources, of which 3664 are considered robust (Rigby et al., 2019). The Bayesian

distance calculator was used to estimate the possible near and far kinematic distance -

and associated uncertainties - for each of the clumps (Rigby et al., 2019). No assumption

about the sources being associated with spiral arms was made, and the standard Galactic

rotation model (Reid et al., 2014), with a distance to the Galactic centre of R0 =

8.34 ± 0.16 kpc was adopted for the calculations. Rigby et al. (2019) then use several

methods (based on geometric arguments and volumetric considerations) to discriminate

between the near and far kinematic distances and make the proper assignment. This

catalogue is referred to as the FellWalker (FW) catalogue. A sub-catalogue of the FW

catalogue is defined by only considering the robust sources. This label indicates sources

that are not false positives or single coherent sources at low S/N which are hard to

discern by eye. The reduced catalogue is also free of sources consisting of diffuse gas at

low S/N that may contain multiple intensity peaks, or irregular profiles (resulting from

the segmentation of clouds across tile boundaries). This sub-catalogue amounts to 3664

sources.

Distances are assigned as follows. Each SCIMES cloud is matched to a set of one or more
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ATLASGAL sources (Urquhart et al., 2018). The matching process is performed by first

discarding all ATLASGAL objects with velocities |v| > 2.5vc where vc is the velocity

of the centroid of the SCIMES source. An area (l,b) search then follows, allowing the

closest sources (Euclidean metric) that lie within a neighbourhood of radius r arcsecs

centred at the centroid of the SCIMES object to be selected. The radius r is taken

by adding 38 arcsec (≈ 5 pixel) to the radius of the SCIMES object (Rigby et al.,

2019). Next, if this search returns multiple clouds, the distance that most sources have

in common is chosen. If the distances in the set vary significantly we check if any

of them belongs to an ATLASGAL cluster, and assign the cluster’s distance to the

SCIMES cloud. SCIMES clouds that contain one single ATLASGAL source for which

the distance is not available, or in the case of clusters, ATLASGAL does not provide

a cluster distance, are left unassigned. The unassigned sources are compared to the

reduced FW catalogue. If a SCIMES cloud contains a single FW object (emission peak)

or more FW objects with the same distance, then that distance is assigned to the cloud.

If a SCIMES cloud contains multiple FW sources with different distances, the distance

that corresponds to the mode of the distribution of FW distances is assigned. If this

distribution has no modes, the first FW source in the list is chosen.

For the remaining unassigned clouds, associations between the unassigned SCIMES

sources are made using a final volumetric search. This time an ellipsoidal volume of

0.3 deg×0.3 deg×10 km s−1 centred at the centroid of each remaining cloud is employed

to identify the closest SCIMES centroid with an existing distance assignment. The size of

this volume is in agreement with the appropriate tolerance for friend-of-friends group-

ing (Wienen et al., 2015) and corresponds to the median angular size and maximum

linewidth of molecular clouds (Roman-Duval et al., 2009).

Finally, Reid’s Bayesian calculator is employed to estimate the distances of the remaining

SCIMES sources with undetermined distances with a near-far probability of 0.5).

To avoid the contamination of the results due to local sources and exclude a large

number of low-luminosity clumps/clouds below the completeness limit5, only sources

5As the surface brightness of the objects in a survey decreases, the ability to image and identify them in
data sets also diminishes. It is thus crucial to know what fraction of sources with similar characteristics
and brightnesses can be distinguished in a data set. This fraction is known as completeness. The
completeness of the high emission sources equals 1: we can identify all of these sources in a data set. On
the other hand, some of the less bright sources, may not be detected (being too distant or embedded in
the noise, for instance). For a given class of objects, the completeness limit corresponds to the magnitude
at which the completeness drops below a given threshold (commonly 90%).
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with heliocentric distance > 2 kpc are included (Urquhart et al., 2018).

Galactocentric distances are calculated independently. Brand & Blitz (1993)’s rotation

curve is used. The angular velocity is derived from the line-of-sight velocity, vLSR and

the Galactic coordinates l and b via the relation

ω = ω0 +
vLSR

R0 sin(l) cos(b)
, (3.1)

where ω0 = 220 km s−1 kpc−1 is the Sun’s angular velocity at its Galactocentric distance

R0 = 8.5 kpc. The Galactocentric distance of a source is then obtained by solving

ω

ω0
= a1

(
R

R0

)a2−1

+ a3
R0

R
, (3.2)

numerically, with the constants a1 = 1.0077, a2 = 0.0394 and a3 = 0.0071 (Brand &

Blitz, 1993).

3.9 Summary

This chapter covers the methodology and data treatment used for the comparison of the

FW and SCIMES segmentation algorithms on CHIMPS 13CO emission. It includes

• a short overview of the Fellwalker watershed algorithm (see also Appendix A),

• an introduction to the spectral-clustering-based SCIMES algorithm (fully explained

in Appendix B),

• a new post-processing algorithm to “clean” overlapping regions in segmentation

maps and

• a new method to assign distances to SCIMES-extracted clouds in CHIMPS that

makes use of existing catalogues (ATLASGAL and the FW catalogue) and the

Bayesian distance calculator (Reid et al., 2014).



Chapter 4

A new CHIMPS segmentation

The development of a wide range of automated cloud identifying algorithms based on

different paradigms (see Chapter 1) has prompted the need for a direct comparison of

these methods under different conditions and for the emission of different molecules.

These methods are complex and testing for biases is often problematic: only a few of

them have been applied to the same data set or calibrated against a common standard. In

addition, cross-correlating the physical properties of individual sources between several

catalogues is often a complicated task. From this viewpoint, it is thus of interest to

apply different methodologies to identify and extract GMCs from the same CO survey.

In this chapter, the Spectral Clustering for Interstellar Molecular Emission Segmen-

tation (SCIMES) algorithm is applied to identify GMCs in the 13CO data-set of the

13CO/C18O(J = 3→ 2) Heterodyne Inner Milky Way Plane Survey (CHIMPS, see sec-

tion 2.1). To directly compare this segmentation to the results obtained by Rigby et al.

(2019) with the FW algorithm, the dendrogram defining parameters are chosen to match

the FW input configuration as described in section 3.4. To extend the comparison to

the properties of a different tracer, a SCIMES segmentation of the 12CO(3 − 2) emis-

sion from the CO High Resolution Survey (COHRS) is considered (where the data are

available). Finally, we present a full statistical comparison between our novel SCIMES

catalogue and the one published by Rigby et al. (2019).

53
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4.1 Emission features

Figure 4.1 shows the FW and SCIMES extractions of 13CO (3–2) emission in region 3

(see text and Figure 3.5)) in the 59.72 km s−1 velocity plane at 27.4-arcsec resolution.

In the two panels, regions of space belonging to different clouds are distinguished by

different colours. The most prominent difference between the two extractions lies in the

relative over-segmentation of the emission in the FW panel. This is a known feature

in FW extractions in which the watershed algorithm tends to break the emission into

compact clumps that are accounted for as isolated features. In addition, as Rigby et al.

(2019) points out, diffuse emission around the detection threshold can be identified as

sets of disconnected voxels, clustered together as individual clumps. These clouds are

recognizable by their very irregular shapes and they were flagged as ’bad sources’ after a

visual inspection in the FW catalogue (Rigby et al., 2019). Coherent sources at low SNR

and areas of emission crossing the boundaries between tiles also belong to this category.

The latter sources often present very irregular segmentation due to the difference in

noise levels among tiles. Such discontinuities may also create small clumps that do

not originate from features in the emission map, but reflect changes in the emission in

adjacent channels1. These inconsistencies are a consequence of performing the extraction

on SNR maps. Such occurrences are however small in number and the total sample is

only marginally impacted.

The final catalogue published by Rigby et al. (2019) includes 4999 sources, 1335 of

them were classified as ’bad sources’ thought to arise from such artefacts. On the other

hand, the emission extracted by SCIMES on the same velocity plane (bottom panel in

Figure 4.1) is confined to fewer individual sources, generally covering larger areas than

their FW counterparts. This characteristic of the SCIMES segmentation is supported

by the analysis of the geometric and physical properties of its sources (see below), thus

a cloud/clump is, in general, not characterised by a single maximumn emission peak

(see section 3). SCIMES clusters consist of signal from different hierarchical levels

of the emission dendrogram, see the Orion-Monoceros example in section 3.2.1. The

fragmentation induced by FW identifies pieces of the substructure as individual entities.

In the framework of SCIMES, these clumps correspond to dendrogram branches and

1With the FW parametrization used for the segmentation of CHIMPS data, voxels with SNR = 2
can be included in a clump, when they are directly connected to a clump with a peak SNR > 5 (Rigby
et al., 2019)
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subranches. Figure 4.2 compares the FW segmentation of 57.2 km s−1 plane of region 3

(Table 4.1) to the structure

Figure 4.1: The top panel shows 13CO (3–2) emission in region 3 (see text) in the
59.72 km s−1 velocity plane at 27.4-arcsec resolution. The second panel from top depicts
the same velocity plane in the SNR cube. The third and fourth panels display the
corresponding FW and SCIMES clusters in that plane. In both panels, different colours
represent different clouds.
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identified by the dendrogram leaves in the same plane. Whereas lower emission from

diffuse gas causes fragmentation in the FW paradigm. The introduction of “artificial

boundaries” cutting through areas of less intense emission between peaks is a conse-

quence of the watershed algorithm. This algorithm in fact characterises disjoint clouds

by single individual peaks. The volume and luminosity criteria defining SCIMES den-

drograms allow for the inclusion of emission from the both hot cores and their tenuous

surrounding envelopes (third panel from the top in Figure 4.1) into a single object. Fur-

thermore, these similarity criteria (see Appendix C) allow bypassing the impact of SNR

discontinuities at the edges of adjacent tiles.

Figure 4.2: The top panel the FW segmentation of the 13CO (3–2) emission in region
3 in the 59.72 km s−1 velocity plane at 27.4-arcsec resolution (see Figure 4.1). The
bottom displays the dendrogram leaves in the SCIMES segmentation over the same
velocity plane.
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Figure 4.3: Distribution of heliocentric distances for the CHIMPS 13CO (3 - 2) sources
extracted through the FW and SCIMES segmentations. The black histogram is the
distribution of sources in a subset of the COHRS catalogue (see 3.7).

4.2 Distances

Figure 4.3 shows the distribution of distances to CHIMPS 13CO sources extracted with

both FW and SCIMES. For comparison, the distance distribution of the subsample

of COHRS sources described in section 3.7 is included. The absence of a one-to-one

correspondence between FW and SCIMES clouds it impossible to establish a unique

matching criterion between the FW and SCIMES distances assignment of each cloud2.

Biuniqueness between FW and SCIMES catalogues of source cannot be established be-

cause of the different sets of structures that the two algorithms identify in the same

emission feature. In assignment method described in section 3.8, a distance is assigned

to a SCIMES cloud based on the FW sources it contains. The ranges of FW distance in

each SCIMES clouds are plotted in Appendix F.

2Each FW source belongs to either one single SCIMES source or not. Each SCIMES source may
contain one or more FW source or none.
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To check for near-far blends in among SCIMES clouds, the catalogue was binned into

two-velocity channels wide bin (1 km s−1). Clouds within the same bin are potentially

subjected to the kinematic distance ambiguity when their distance is not well established

and the assignment occurs by the Bayesian method (Reid et al., 2014). Near-far blends

may thus arise for overlapping (along the line of sight) clouds within the same bin

population. Only 8 of such clouds were found in the SCIMES catalogue, the projected

overlapping area amount to 1010 pixels.

The different in the numbers of clouds at large distances (∼ 12 kpc) and at ∼ 5 kpc in

the FW and SCIMES catalogues are a consequence of the differences in the segmenta-

tions and of the assignment scheme of section 3.8. The distance-assignment algorithm

first assigns ATLASGAL distance and then check for FW sources included in SCIMES

clouds. The larger number of clouds see in the SCIMES catalogue at 12 kpc arises from

those assigmnets that do not involve FW distances. The FW distance assignments are

described in Rigby et al. (2019).

The top-down view of the locations of the CHIMPS sources extracted by SCIMES and

FWon the Galactic plane is shown in Figures 4.4 and 4.5.

No sources closer than 3.5 kpc from the Galactic centre are found as the CHIMPS

data do not probe sufficiently central longitudes (see section 2.1). The Galactocentric

distribution in Figure 4.6 displays large peaks at ∼ 4.5 kpc and ∼ 6.5 kpc. These

are the location of the Scutum and Sagittarius arms. The smaller peak at ∼ 7.5 kpc

instead corresponds to the Perseus arm. Part of the Scutum arm traverses the tangential

distance (see section 2.3) and the sources in this area become clustered at a distance of

∼ 7 kpc (Figure 4.4). The gap on the far side of the tangent points is almost absent in

the distribution of Heliocentric distances (Figure 4.3) since it coincides with the region

where the far Sagittarius arm begins, the far side of the Scutum arm, and with the

position of the inter-arm material that accounts for the peak between 8 and 10 kpc.

Similarly, the peak at 12 kpc originates from the far Sagittarius arm and the Perseus

arm. The Outer arm is identified by the small peak at ∼ 16 kpc.

Figure 4.7 shows the heliocentric distances of the sources in the FW and SCIMES seg-

mentation of the emission in CHIMPS and the selected sources in COHRS.
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Figure 4.4: Top-down view of the locations of the 13CO (3 - 2) extracted through the
SCIMES algorithm from CHIMPS. The background image is published by (Churchwell
et al., 2009b). The Solar circle and locus of the tangent points have been marked as
the white dashed, and dotted lines, respectively.

To check if the FW and SCIMES distance distributions differ significantly, a Kolmogorov-

Smirnov test is performed. Following the convention set in kstest in the package Scypy3

with the null hypothesis that the two samples (distributions) are drawn from the same

distribution, while the alternative is that they are independent. The test returns k =

0.17 with p-value << 0.001, the null hypothesis can thus be rejected. The distance

assignment algorithm assigns enough distances that do not depend on the FW catalogue

to yield an independent distribution of distances. The same result is obtained for the

distributions of independently-estimated Galactocentric distances (k = 0.17 with p-value

<< 0.001).

Different features in the distance distributions also highlight the fact that there is no

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html
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Figure 4.5: Top-down view of the locations of the 13CO (3 - 2) extracted through the
FW algorithm from CHIMPS.

one-to-one correspondence between SCIMES and FW sources. Different distance assign-

ments (and the inexactness of the assignment) alter derived parameters and properties

for individual clouds. However, these different are mitigated when the ensemble statis-

tical properties of the sample are considered. An example is the distribution of mass

derived from random distance assignments (Appendix D) resembling the distribution

obtained through the distance assignment algorithm of section 4.4.1).
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Figure 4.6: Distribution of Galactocentric distances for the sources extracted through
the FW and SCIMES and for the sources in the COHRS subsample (see text).

Figure 4.7: The heliocentric distances of the CHIMPS and COHRS sources as func-
tions of their Galactocentric distance. The colours refer to the method of extraction
and survey.
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4.3 Geometry

To establish a comparison between the FW and SCIMES catalogue, the physical and

geometric quantities investigated by Rigby et al. (2019) are considered. The following

sections reproduce the results presented in Rigby et al. (2019) with the addition of the

corresponding SCIMES quantities. Data from the COHRS fiducial sample have also

been added when available.

4.3.1 Note on probability densities

In the Figures that follow, some histograms are labelled as ’probability densities’. In

these histograms, each bin displays the bin’s raw count divided by the total number of

counts and the bin width

density =
counts

counts× binwidth
. (4.1)

The area under the histogram then integrates to 14:

area = sum(density × binwidth) = 1. (4.2)

The height of the histogram bars thus also depends on the width of the bins. Notice

that, by definition, bin widths smaller than unity produce bar height greater than 1.

4.3.1.1 Radii

The size of the CHIMPS clouds is defined through their ’approximate’ radii. Two

different radii are associated with each cloud to emphasize different characteristics of

the emission. The equivalent radius Req defined as the radius of the circle whose area is

equivalent to the projected area of the source,

Req = d
√
A/π, (4.3)

4https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html
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where d is the distances assigned to the source.

The second radius is associated with the extent of the projected cloud in the l and b

directions:

Rσ = d
√
σlσb. (4.4)

The radius Rσ is the geometric mean of the intensity-weighted rms deviations in the l

and b axes (σl and σb), deconvolved by the telescope beam, and d the assigned distance.

Thus Rσ depends on the emission profile of the source. In addition, Rσ is less affected

by the variations in the noise level in different areas of the survey. Following Rigby

et al. (2019), both radii are used in the calculation of the radius-dependent quantities

associated with the SCIMES and FW extractions.

Since the dendrogram statistics implemented in SCIMES by Astrodendro do not allow

for the direct computation of σl and σb, but only produces estimates of the major and

minor axes of the ellipse approximating the projection of the clouds onto the coordinate

plane, the calculation of Rσ is complicated by the lack of knowledge of the orientation

of the ellipse with respect to the frame of reference. In this case, the conversion factor

η is adopted,

Req = ηRσ (4.5)

to compute Rσ. The constant η is set to 2, this value corresponds to the median value

found by (Rigby et al., 2019) for the FW extraction and it is a compromise between

commonly-used conversion η = 1.9 (Solomon et al., 1987; Rosolowsky & Leroy, 2006;

Colombo et al., 2019) and η = 2.1, the median value we found using the alternative

version of Rσ

Rσ = d
√
σmajσmin, (4.6)

easily obtainable from the Astrodendro statistical tools for the major and minor axis of

the projected SCIMES sources. For the physical properties defined below, the definitions

provided in Rigby et al. (2019) were adopted. The equivalent radius is Req is used in all

instances in which the radius enters the definition of a physical quantity. Rigby et al.
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Figure 4.8: Distributions of Req of the CHIMPS 13CO (3 - 2) sources in the FW
(blue) and SCIMES (red) catalogues. The black histogram is the distribution of the
equivalent radii of the 12CO (3–2) sources in a subset of the COHRS catalogue (see
text).

(2019) also used the conversion factor η (see scaling relations in Figures 4.32, 4.16, and

4.22) in definitions where comparison to different datasets required the use of Rσ. The

same notation as in the original article is maintained throughout this chapter. Although

the equivalent radius depends on the distances assigned to the individual clouds, the

inexactness of the individual distances is mitigated when properties pertaining the entire

population are considered. Appendix D provides an example of the impact of random

distance assignment on the distribution of masses in the SCIMES segmentation. The

right tail of the SCIMES distribution of Req in Figure 4.8 is an indication of the higher

number of larger projected clouds extracted by SCIMES.

To check if the FW and SCIMES distribution of equivalent radii differ significantly,

a Kolmogorov-Smirnov test is performed. The test yields k = 0.067 with p-value =

1.04 × 10−6 establishing that the null hypothesis of the two samples being drawn from

the same distribution can be rejected.
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4.3.2 Volumes

The distribution of cloud volumes (expressed as the number of voxels the cloud spans,

see Figure 4.9), also reflects the fact that the SCIMES segmentation comprises both

bigger and smaller clouds than its FW counterpart. Table 4.1 reports the average size

of the clouds in the FW and SCIMES distributions over 10 longitudinal cuts within the

CHIMPS survey (see Figure 3.5).

Figure 4.9: Distribution of volumes of the clouds in the FW, SCIMES, and COHRS
segmentations.

The segmentation of the reduced COHRS fiducial sample produces clouds of larger sizes

according the higher abundance of 12CO and thus its ability to trace more rarefied warm

gas envelopes surrounding the denser cold molecular clouds.

In general, the SCIMES segmentation comprises clouds of both bigger and smaller vol-

umes than its FW counterpart as shown in Table 4.1. From the inspection of the

regions in which SCIMES finds clouds with average volumes that are smaller than those

extracted by FW (region 7 in Figure 4.10 is an example), it emerges that SCIMES finds
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a small number of large sources (comprising multiple FW clumps), leaving small frag-

ments that are not included in the large agglomerations. By number, small fragments

or smaller isolated sources constitute the majority of the SCIMES clouds. These diverse

emission feature are expected to arise from the application of different paradigms to re-

gions with different spatial distribution of the emission. In the SCIMES paradigm, the

shape of the emission dendrogram is determined by the spatial distribution of emission

over the entire region. This is especially noticeable in the overlapping areas that adja-

cent regions share. The difference in shape and number of clouds in these areas requires

the selection process described in section 3.5. In the smaller regions (e.g. 0 and 9) in

Table 4.1, the choice of treatment of overlaps may greatly influence the average values

that characterise the distribution of molecular clouds in the region. On the other hand,

the FW approach is expected to be less sensitive to the overall distribution of emission

as FW ’constructs’ the extracted cloud locally, around emission peaks.

The comparison between the distributions of both cloud volumes and equivalent radii

highlights the different results of the source extraction methods both on the complexity

of the structure of molecular clouds and the environment that characterises a source’s

location.
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Figure 4.10: Projected cloud assignments in over Region 7 (see Table 4.1 in FW
(top panel) and SCIMES (bottom panel). The clouds are colour-coded according their
assignment numbers in FW and SCIMES. In the case of overlapping clouds, the line-
of-sight projection places the cloud with the highest assignment number on top.
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Figure 4.11: Distributions of masses of the CHIMPS 13CO (3− 2) sources in the FW
(blue) and SCIMES (red) catalogues. The black histogram is the distribution of 12CO
3→ 2 sources in a subset of the COHRS catalogue (see text).

A Kolmogorov-Smirnov test reveals that SCIMES and FW volume distribution differ

significantly (k = 0.30 with p-value << 0.001 .

4.4 Physical properties

4.4.1 Mass

Once distances are assigned, the true size of each voxel in the SCIMES segmentation can

be calculated. Its mass and consequently the CO mass of the cloud is then estimated

through the column density cubes (see section 2.1.2). The H2 mass of the cloud is

estimated by considering the mean mass per H2 molecule, taken to be 2.72 times the

mass of the proton, accounting for a helium fraction of 0.25 (Allen, 1973), and an

abundance of 106 H2 molecules per 13CO molecule.
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Figure 4.11 shows the comparison of the distributions of mass in the two CHIMPS

emission extractions with the addition of the mass in COHRS. The calculation for mass

estimation from CO luminosities in COHRS is explained in Colombo et al. (2019).

Figure 4.12: The masses associated to the CHIMPS and COHRS sources as functions
of the heliocentric distance. The colours refer to the method of extraction and survey.

The mass distribution as a function of heliocentric and Galactocentric distances are

presented in Figures 4.12 and 4.13 respectively. The trend at small distances in Figure

4.13 is likely to be an artefact originating from the small number of sources in the initial

bin (3.5-4.0 kpc) and the position of the centre of the bin in the plot.

As expected, the larger structures detected through 12CO emission result in the larger

masses of Figures 4.11, 4.33, and 4.13. CHIMPS and COHRS trendlines also follow

similar pattern, suggesting that the segmentation of COHRS identifies the more massive

counterparts of CHIMPS obejects.
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Furthermore, a Kolmogorov-Smirnov test on the FW and SCIMES mass distributions

returns k = 0.045 with p-value = 0.004).

Figure 4.13: The masss of the CHIMPS and COHRS sources as functions of the
Galactocentric distance. The trend lines show the mean values of clouds in 0.5 kpc-
wide bins. The colours refer to the method of extraction and survey.

Vital to an accurate mass estimation is a precise distance assignment. The uncertainty

on the distances estimated from Bayesian distance algorithm is ∼ 0.3 kpc (Reid et al.,

2016). This affects shorter distances the most (30% at 1 kpc) but falls to a few per cent

already at 5 kpc. The other assignment methods used in the surveys are mentioned

in the Chapter are described in section 2.1 and references therein. The uncertainty

in the cloud mass is estimated. Taking into account the error on the conversion CO-

to-H2 conversion factor and column density estimation (Urquhart et al., 2018; Rigby

et al., 2019), assuming a typical error in cloud mass of order 30-40 per cent. The

uncertainties are measurement errors. In addition, the distance assignment (as well
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as all other calculated parameters) is very likely to be contaminated by uncertainties

in the assumptions and approximations in the variety of methods considered in the

various surveys. Appendix D presents a comparison between mass distribution derived

from random distance assignments, suggesting distance assignments make no significant

difference to the full-sample statistics.

Figure 4.14: Comparison between the data and the fitted functions for mass spectra.
The dots indicate the the centres of the mass bins. The colours refer to the method of
extraction and survey.

The mass spectra for CHIMPS clouds and their fitted relations are displayed in Figure

4.14. The mass spectral indices found with a power law fit are −1.450 ± 0.029 for

SCIMES clouds, −1.284± 0.016 for FW and −0.920± 0.039 for the COHRS survey. To

binning of the mass follows Máız Apellániz & Úbeda (2005) with 2N2/5 with variable

width and fixed population of 2N2/5, N being the number of individuals in the entire

population. This convention is adopted to remove biases due to binning. The SCIMES

and FW indices are consistent with the −1.5 value found in previous studies (Sanders

et al., 1985; Solomon et al., 1987; Williams et al., 1994; Roman-Duval et al., 2010).
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4.4.2 Hydrogen number density

The mean (volumetric) particle density (or number density) over the approximate vol-

ume of a cloud (assuming 2D to 3D symmetry) is calculated as

n(H2) =
3

4π

M

µmpR3
eq

, (4.7)

where M is the mass of the cloud, µmp (= 2.72mp) is the modified proton mass.

Figure 4.15: Distributions of the H2 number density in the CHIMPS 13CO (3 - 2)
sources in the FW (blue) and SCIMES (red) catalogues. The black histogram is the
distribution of the equivalent radii of the 12CO (3 - 2) sources in a subset of the COHRS
catalogue (see text).

The distribution of molecular hydrogen number density extracted through the FW

method in CHIMPS and by SCIMES in CHIMPS and COHRS is reported in Figure

4.15, The larger masses and greater radii found in COHRS clouds result in a distribu-

tion of mean molecular hydrogen density that is comparable to the ones obtained for

the SCIMES and FW segmentations.
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Again, running a Kolmogorov-Smirnov test shows that the distribution of the molecular

hydrogran number density in the SCIMES and FW extractions differ significantly (k =

0.14 with p-value = 1.48× 10−28).

Figures 4.17 and 4.18 display plots of n(H2) as a function of the heliocentric and Galac-

tocentric distance respectively.

Figure 4.16: Size–density relationship for the CHIMPS clouds. The contour plots
refer to the FW and SCIMES extractions, and a selected sample of COHRS sources
(see text). The size parameter is the scaled intensity-weighted rms size (see text), ηRσ
with η = 2.0. The solid lines indicate the fitted relationships.

.

At any level of the molecular gas hierarchy, from the most compact cores of a few solar

masses and densities of ∼ 105cm−3 to entire GMCs with mean densities of n ∼ 102cm−3

and masses of 105 − 106, each identified structure usually contains many Jeans masses

(Krause, 2020). The Jeans equations 1.2 and 1.1 can thus be applied to produce an

estimate for the timescale for cloud collapse, and consequently for star formation within

the collapsing regions. This timescale is known as the free-fall time (see below). If not
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delayed by other physical mechanisms (see Chapter 1), the free-fall time depends on

density ranging from ∼ 3 Myr for the more rarefied regions (n ∼ 102cm−3) to 0.1 Myr

for cores with ∼ 105cm−3. Furthermore, it follows from the equations 1.2 and 1.1 that,

as density increases with the advancing of collapse, both Jeans length and the Jeans

mass decrease. Such reduction of Jeans lengths and masses induces fragmentation in

the collapsing cloud (Hoyle, 1953). Cloud fragmentation is thought to cease once the

gas becomes adiabatic, which occurs at large volume densities with the gas becoming

optically thick.

Figure 4.17: The H2 number density in the CHIMPS and (a selection of) COHRS
sources as functions of the heliocentric distance. The colours refer to the method of
extraction and survey.
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Figure 4.18: The H2 number density in the CHIMPS and (a selection of) COHRS
sources as functions of the heliocentric distance. The trend lines show the mean values
of clouds in 0.5 kpc-wide bins. The colours refer to the method of extraction and survey.

The distribution of H2 number densities in Figure 4.15 portrays values much less than the

critical density of 13CO (see Table 1.1). The H2 number density assigned to each cloud

represents the average density over the entire (approximated) volume of the cloud. This

average value accounts for both clumps with a density over the critical threshold and

areas of far more rarefied gas. The estimated low density from the emission segmentation

is an indicator of clump formation with high-density forming clumps that may lay at

scales below the telescope resolution. The volume filling factor of the gas is low at the

regimes where clumps are forming. In addition, gas with densities lower than the critical

density will be warmer than the calculated excitation temperature (Rigby et al., 2019).

However, it may still emit in a sub-thermal mode in which the energy level populations
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are not distributed according to the Boltzmann distribution. This underestimate in

the gas temperature is mirrored in overestimates in the gas column density (Rigby

et al., 2019). The distribution of mean excitation temperatures of the FW extraction of

CHIMPS clouds is found to have a mean value of 11.5 K, which matches the expectation

for molecular structures covering the size regime from cores, through clumps, to clouds

(Bergin & Tafalla, 2007). Sub-thermal emission can therefore be assumed not to be a

dominant effect here.

Applying a power-law fit to the size-density relation shown in Figure 4.16, produces

average number densities proportional to Ra with a = −0.982 ± 0.004 for SCIMES

clouds, and a = −0.834 ± 0.007 in the FW case. The FW value departs significantly

from the original scaling relation a = −1.1 ± 0.005 found by Larson (1981) indicating

that the smallest CHIMPS cloud are less dense than would be predicted by the Larson

relationship. For COHRS clouds a = −0.846± 0.067.

4.4.3 Free-fall and crossing times

The free-fall timescale, tff , represents the characteristic time that would take a body to

collapse under its own gravitational attraction. As mentioned above, tff depends solely

on the density and the chemical species of the gas. In terms of the molecular hydrogen

mean number density discussed in the previous sub-section,

tff =

√
3π

32Gµmpn(H2)
. (4.8)

The crossing timescale, tcross, corresponds to the time it takes a disturbance to cross the

system at the sound/signal speed in the medium. The length of tcross is directly pro-

portional to the size of the system and inversely proportional to the velocity dispersion

(defined by equation 4.10) of the gas:

tcross =
2Req

σv
. (4.9)

The distributions of these timescales for the two segmentations of CHIMPS and COHRS

are compared in Figures 4.19 and 4.20. Kolmogorov-Smirnov tests on both the crossing
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Figure 4.19: Distributions of the free fall time associated with the CHIMPS 13CO (3
- 2) sources in the FW (blue), SCIMES (red), and COHRS (black) catalogues.

time and the free-fall time distributions of the SCIMES and FW clouds shows that

the (null) hypothesis that both distributions are two samples of the same distribuition

cannot be accepted (free-fall time k = 0.14 with p-value = 5.42 · 10−28, crossing time

k = 0.40 with p-value << 0.001.
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Figure 4.20: Distributions of the crossing time associated with the CHIMPS 13CO (3
- 2) sources in the FW (blue) and SCIMES (red), and COHRS (black) catalogues.

4.4.4 Velocity dispersion

The velocity dispersion of gas in molecular clouds is measured as the intensity-weighted

rms deviation of voxels from the centroid in the spectral direction (Berry, 2015):

σv =

√∑
div2

i∑
di
−
(∑

divi∑
di

)2

(4.10)

where di is the data value at the voxels i The summations are intended over all voxels

in a cloud. This definition is equivalent to using the intensity-weighted second moment

of velocity 5.

5See dendrogram statistic https://dendrograms.readthedocs.io/en/stable/catalog.html and
cube moments defined in https://spectral-cube.readthedocs.io/en/latest/api/spectral_cube.

SpectralCube.html#spectral_cube.SpectralCube.moment.

https://dendrograms.readthedocs.io/en/stable/catalog.html
https://spectral-cube.readthedocs.io/en/latest/api/spectral_cube.SpectralCube.html#spectral_cube.SpectralCube.moment
https://spectral-cube.readthedocs.io/en/latest/api/spectral_cube.SpectralCube.html#spectral_cube.SpectralCube.moment
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Figure 4.21: Distributions of the velocity dispersion in the CHIMPS 13CO (3 − 2)
sources in the FW (blue) and SCIMES (red) catalogues.

For a cloud with a Gaussian distribution of velocities, the velocity dispersion equals the

standard deviation of the Gaussian. In general, the larger the size of a cloud, the wider

the distribution of velocities of its particles, thus its velocity dispersion. The velocity

dispersion causes the broadening of linewidth in CO observation. This fact is mirrored

in the distribution of velocity dispersions in the clouds of the COHRS catalogue (Figure

4.21) and their size-linewidth relation in Figure 4.22. Line widths are expected to be

larger in 12CO because of the high optical depths suppressing the peak intensities as

well as tracing larger structures with larger turbulent velocities. Applying a power-law

fit to the size-velocity dispersion relation shown in Figure 4.22, produces σv ∝ Ra with

a = 0.310±0.004 for SCIMES clouds, and a = 0.341±0.003 in the FW case. Both values

are similar to the original scaling relation a = 0.38 found by Larson (1981) over a factor

of 30 in size, which was originally interpreted as evidence that the internal motions of

molecular clouds follow a continuum of turbulent flow inherited from the ISM at larger

scales. For the COHRS clouds a = 0.277± 0.011.
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Figure 4.22: Size–linewidth relationship for the CHIMPS clouds. The contour plots
refer to the FW and SCIMES extractions. The size parameter is the scaled intensity-
weighted rms size (see text), ηRσ with η = 2.0. The solid lines indicate the fitted
relationships.

.

A Kolmogorov-Smirnov test show SCIMES and FW distribution in Figure 4.21 are

significantly different and cannot be identified as two samples of the same distribution

(k = 0.25 with p-value = 0.001.

4.4.5 Excitation temperature

Excitation temperatures are assigned to clouds through masking of the temperature

maps constructed in section 2.1.2. These data cubes were constructed by Rigby et al.
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(2019) and the temperature assignment used in this section follows the method described

in their article. A unique excitation temperature is then assigned to each cloud by taking

emission weighted average of the temperatures of its voxels.

Figure 4.23: Distribution of excitation temperatures in CHIMPS. The colours refer
to the method of extraction.

The distributions of excitation temperature in the FW and SCIMES segmentations of the

13CO (3-2) emission in CHIMPS are shown in Figure 4.23. Excitation temperatures do

not vary significantly with distances (Figures 4.24 and 4.25), with the temperatures from

the SCIMES catalogue being everywhere lower than FW temperatures. The average

SCIMES excitation temperature is 10.19 K while FW clouds have a mean of 11.54

K. Applying a Kolmogorov-Smirnov test to the SCIMES and FW distributions of the

excitation temperature shows that they cannot be characterised as two samples of the

same distribution (k = 0.28 with p-value << 0.001).
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Figure 4.24: The excitation temperature associated weight the CHIMPS and COHRS
sources as functions of the Galactocentric distance. The colours refer to the method of
extraction and survey.

As a function of the Galalctocentric distance (Figure 4.25, the the two segmentations

show no obvious (difference in) biases and no gradient of the excitation temperature.

This contrasts the probable gradient in stellar radiation field, dominated by cosmic-ray

heating or (less likely) by internal heating. Arm radii only see an increase in source

counts, which in turn increases the detected scatter to higher Tex, but does not results

in a significant change in the mean.

The high-temperature outliers in the SCIMES segmentation have coordinates and dis-

tances compatible with those of the star-forming region W49 (l ≈ 43.2◦, b ≈ 0.0◦ at 11.1

kpc).
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Figure 4.25: The excitation temperature associated the CHIMPS and COHRS sources
as functions of the Galactocentric distance. The trend lines show the mean values of
clouds in 0.5 kpc-wide bins. The colours refer to the method of extraction.

4.4.6 Turbulent pressure

The three-dimensional velocity dispersion (3σ2
v) can be decomposed into its thermal

σ2
T = kBT ex/µmp (4.11)

and non-thermal (turbulent)

σ2
NT = 3σ2

v − σ2
T (4.12)
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Figure 4.26: Distributions of the turbulent pressure associated with the CHIMPS
13CO (3 - 2) sources in the FW (blue) and SCIMES (red) catalogues.

components, where the one-dimensional velocity dispersion is defined in sub-section

4.4.4. As usual, m13CO is the mass of the 13CO isotopologue and kB the Boltzmann

constant.

The turbulent pressure is then defined as

Pturb/kB = µmpn(H2)σ2
NT/kB, (4.13)

Pturb/kB has units of K/cm3.

The turbulent pressure distributions in Figure 4.26 show that SCIMES sources tend

to have lower pressure then their FW counterparts. The median values of the two

distributions are comparable with SCIMES having a median of 2.5 × 105 K/cm3 and

FW of 4 × 105 cm3. Both these values agree with the total mid-plane pressure in the

Solar neighbourhood (∼ 105 K/cm3).
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Figure 4.27: The turbulent pressure associated the CHIMPS sources as a function of
the heliocentric distance. The colours refer to the method of extraction.

To check if the FW and SCIMES distribution of turbulent pressures differ significantly, a

Kolmogorov-Smirnov test is performed. The test yields k = 0.231 with p-value << 0.001

establishing that the null hypothesis of the two samples being drawn from the same

distribution can be rejected.

The distribution of Pturb/kB with helio- and Galactocentric distance are given in Figures

4.27 and 4.28 respectively. The range of Pturb/kB covered by both distributions is

consistent with the mid-plane values (Rathborne et al., 2014).
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Figure 4.28: The turbulent pressure associated the CHIMPS sources as a function
of the Galactocentric distance. The trend lines show the mean values of clouds in 0.5
kpc-wide bins. The colours refer to the method of extraction.

The thermal pressure can be defined as

Pthermal = n(H2)kBTex. (4.14)

Thermal pressure distributions are presented in Figure 4.29. The turbulent pressures are

found to be ∼ 60 times greater than the corresponding thermal pressures. Lower average

densities result in lower pressures associated with the COHRS sample. A Kolmogorov-

Smirnov test performed on the FW and SCIMES thermal pressure distributions returns

k = 0.15 with p-value << 0.001.
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Figure 4.29: Distribution of the thermal pressure associated to the CHIMPS 13CO
(3 - 2) sources in the FW (blue) and SCIMES (red) catalogues.

4.4.7 Mach numbers

The Mach number is a dimensionless quantity that describes the dynamic state of a

flow of a fluid representing the ratio of flow velocity and the local speed of sound in the

medium considered. The definition of Mach number can be recast as in terms of the

thermal and non-thermal components of the velocity dispersion defined above:

M = σNT/σT . (4.15)



A new CHIMPS segmentation 89

Figure 4.30: Distributions of the Mach numbers associated with the CHIMPS 13CO
(3 - 2) sources in the FW (blue) and SCIMES (red) catalogues.

Figures 4.30 represents the distributions of Mach numbers of the sources in the FW and

SCIMES segmentations. The distributions look similar, both peaking in the supersonic

regime (M ∼ 5) and extending out to higher Mach numbers. The flow of molecular gas

in clouds (a characteristic of turbulence) is linked to velocity dispersion, which in turn

is linked to the size of the cloud. To check if the FW and SCIMES distribution of Mach

number differ significantly, a Kolmogorov-Smirnov test is performed. The test yields

k = 0.21 with p-value << 0.001 establishing that the null hypothesis of the two samples

being drawn from the same distribution can be rejected.

The higher number of (larger) clouds in FW results in its shift towards a higher Mach

number. The difference in the distributions vanishes as the tails of the distributions

flatten out past M = 20 where fewer large enough clouds to sustain these regimes are

found.
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4.4.8 The virial parameter

The virial parameter encodes the dynamic state of a molecular cloud, assuming that the

cloud is capable of sustaining virial equilibrium, i.e. the virial theorem holds for the

cloud, its gravitational energy Ω equals twice the kinetic energy K

Ω = −2K. (4.16)

The virial parameter is defined as the ratio of a cloud’s spherically symmetric virial mass

to its total mass (M)

αvir =
3σ2

vηRσ
GM

(4.17)

where G is the gravitational constant.

Figure 4.31: Distributions of the virial parameter associated with the CHIMPS 13CO
(3→ 2) sources in the FW (blue) and SCIMES (red) catalogues. The black histogram
is the distribution of 12CO (3→ 2) sources in a subset of the COHRS (see text).
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Figure 4.32: The relationship between the source size and the virial parameter for
the CHIMPS and COHRS clouds. The contour plots refer to the FW and SCIMES
extractions and the reduced fiducial sample of COHRS. The size parameter is the
scaled intensity-weighted rms size (see text), ηRσ with η = 2.0. The solid lines indicate
the fitted relationships.

The definition above was given in Rigby et al. (2019) and assumes the cloud is spherical

and has a radial density distribution e.g. ρ(r) ∝ r−2 (MacLaren et al., 1988). Notice

that the definition includes Rσ to account for the median emission profile. The intensity-

weighted radius constitutes a weighting system for gravitational energy. This weighting

reinforces the gravitational energy in those regions where the density is higher. In

addition, Rσ is less affected by variations in S/N levels.

Approximating a source as a spherically symmetric distribution of density introduces a

factor-two uncertainty on the estimation of the virial parameter. This arises from both

characterising the source by a single radius and choosing this particular radial profile.
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Caution should thus be exercised in the interpretation of results involving measurements

of the virial parameter.

Figure 4.33: The virial parameter associated with the CHIMPS and (a selection
of) COHRS sources as functions of the heliocentric distance. The colours refer to the
method of extraction and survey. The colours refer to the method of extraction and
survey.
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Figure 4.34: The virial parameter associated the CHIMPS and COHRS sources as
functions of the Galactocentric distance. The trend lines show the mean values of clouds
in 0.5 kpc-wide bins. The colours refer to the method of extraction and survey.

In the absence of a strong magnetic field, αvir equals 1 when the clouds are in virial

equilibrium. A value αvir = 2 indicates that the gravitational energy equals the kinetic

energy in the cloud. Values of αvir smaller than 1 characterise an unstable, collapsing

system (when other sources of supporting pressure are absent). A dissipating system,

dominated by kinetic energy, is characterised by αvir > 2. While 1 < αvir < 2 indi-

cates approximate equilibrium. It has also been suggested that the heightened velocity

dispersions due to rapidly infalling gas in collapsing cloud fragments may still raise the

cloud’s value of the virial parameter to ∼ 2 (Kauffmann et al., 2013a). Fragments with

αvir << 2 are more likely to host and be supported by strong magnetic fields or to house

ongoing high-mass star formation (Kauffmann et al., 2013a).
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The distribution of the virial parameter in CHIMPS and COHRS is presented in Figure

4.31, while Figure 4.32 illustrates the relation between the virial parameter and cloud’s

size. The SCIMES distribution indicated that a large number of clouds in this segmen-

tation are collapsing or in approximated equilibrium. SCIMES clouds are distinguished

by smaller values of the virial parameter (> 0.6) fall in a size range between 2 and 20

pc, thus including the smallest, most compact sources, likely sites of star formation.

Applying a power-law fit to the size-virial parameter dispersion relation shown in Figure

4.32, produces αv ∝ Ra with −̄0.396±0.009 for SCIMES clouds, and a = −0.454±0.006

in the FW case. Both values are significantly lower than the original scaling relation

a = −0.14 found by Larson (1981). The observed discrepancy may be due to the

varying mass completeness as a function of distance. A factor −̄0.538± 0.026 was found

for COHRS clouds.

Performing a Kolmogorov-Smirnov test on the FW and SCIMES distributions of the

virial parameter reveals these two distributions differ significanly. The null hypothesis of

the two samples being drawn from the same distribution must thus be rejected (k = 0.26

with p-value << 0.001).

Figures 4.33 and 4.34 show the virial parameter as a function of the Heliocentric and

Galactocentric distances respectively. A closer look to the trendlines in Figure 4.34

reveals hint of a slightly increased αvir inside 7 kpc, or perhaps in the spiral arms. This

trend may be due to the errors on the means of the bins increasing significantly at large

radii.

4.5 Summary

This chapter presents an attempt to cross-correlate the physical properties of the molec-

ular clouds extracted from CHIMPS 13CO (3-2) emission maps through the FW and

SCIMES algorithms. These methods produce different numbers of molecular clouds

(SCIMES 2944, FW 3665), with similar ranges in masses, volumes (number of voxels),

equivalent radii mean number densities, and velocity dispersions. SCIMES produces

slightly wider ranges of sizes (volumes and equivalent radii) which suggests that the

size and number of clouds extracted may both depend of algorithmic paradigm and

the Galactic environment (see Chapter 7). The distributions of mean number densities,
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masses, the virial parameters, and dynamic timescales mirror the differences in volumes

and geometries found in the two segmentations. The distributions of velocity dispersions

only depend on the size of the clouds as identified by each algorithm.



Chapter 5

Analysis of turbulence:

Methods

The study of the structure of giant molecular clouds relies upon obtaining information

on the three-dimensional distribution of significant physical fields, such as density, tem-

perature, and velocity. In practice, however, the description of these fields in position-

position-velocity datasets is limited to their projection along the line of sight onto a two-

dimensional spatial coordinate plane and a spectral component. To retrieve the intrinsic

properties of a three-dimensional field from its projected two-dimensional counterpart

is a complicated task. An obvious example is the derivation of the three-dimensional

volume density distribution from the observed (projected) column density.

In recent years, Brunt et al. (2010) and Brunt & Federrath (2014) developed a method

to overcome these complications and reconstruct specific properties of the original field

from limited observational information. Their method relies on the properties of Fourier

transforms and symmetry arguments to recover the averaged properties of the full three-

dimensional field from the projected observables. This method is particularly well-suited

for the study of turbulent motions within velocity and momentum fields (see below) for

which only the line-of-sight component can be measured (Brunt et al., 2010). In this

case, the line-of-sight component splits naturally into a solenoidal (divergence-free) and a

compressive (curl-free) component through a Helmholtz decomposition. Solenoidal and

compressive modes of turbulence are believed to be associated with the star-formation

efficiency in molecular clouds. In this framework, the high star formation efficiency

96
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(SFE) observed in spiral-arm clouds is linked to the prevalence of compressive turbulent

modes. In contrast, the low SFE that characterises clouds in the Central Molecular

Zone (CMZ) is related to the shear-driven solenoidal component. The key quantity for

studying the SFE in terms of turbulent mode is the solenoidal fraction which encodes

the relative amount of power in the solenoidal modes of the momentum density field

characterising a molecular cloud.

5.1 The solenoidal fraction

The method developed by Brunt et al. (2010); Brunt & Federrath (2014) allows us to

quantify the relative fraction of the solenoidal and compressive turbulence modes. This

section presents the main concepts behind Brunt’s method, its assumptions, and an

implementation of it. A detailed derivation of the method and the quantities mentioned

here can be found in Appendix C.

The main idea behind the method is to reconstruct the properties of a three-dimensional

source from the information contained in its observed two-dimensional line-of-sight pro-

jection. Assuming that the observed source is described by the three-dimensional field F,

its two-dimensional projection (average along one axis, the z-axis in this case) is denoted

by Fp. In Appendix C it is shown that the Fourier transform F̃p of Fp is proportional

to the kz = 0 cut of the transform F̃ of F,

F̃p(kx, ky) = F̃(kx, ky, kz = 0). (5.1)

If F̃ and F̃p only depend on the wavenumber k = |k| (isotropic fields), the average

properties of F can be derived from their two-dimensional counterparts of Fp through

symmetry arguments. When a field such as the velocity or the momentum is mea-

sured in observations, only its line-of-sight component is available A two-dimensional

projected field is recovered by considering the Helmholtz decomposition of the line-of-

sight component. According to the Helmholtz theorem, a vector field can be split into

a divergence-free (solenoidal or transverse) component, F⊥ and curl-free (compressive

or parallel) component, F‖. In Fourier space, the solenoidal and compressive compo-

nents are linked through (local) orthogonality. As the name suggests the divergence-free
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(solenoidal) component encodes the turbulent, vorticose modes of a flow. Compres-

sive modes, accounting for compression and expansion of the gas are embodied by the

curl-free component. These modes are likely to be connected to star-formation. To ob-

tain a unique decomposition, the vector field must satisfy suitable boundary conditions

(the Helmholtz decomposition is defined up to a vector constant, see Appendix C). In

particular, it is required that the field decay to zero smoothly on the boundary. This

condition also ensures that the Fourier transforms of the observed field are well-behaved

as these fields are not naturally periodic. Isolated, gravitationally bounded molecular

clouds possess a natural boundary, however, when the signal is truncated artificially by

the edges of the observed field, apodisation of the emission at the edge is required to

restore a suitable boundary. As mentioned above, statistical isotropy is also required

for the method to be applied. Sources of strong anisotropy such as strong magnetic

fields or filamentary shapes thus heavily affect the reliability of the results. Fields with

steep power spectra should also be avoided. In practice, such power spectra show high

sensitivity to low spatial frequencies which are poorly sampled statistically.

Assuming the emission line under consideration is optically thin and that the emissivity

depends solely on the volume density, the PPV datacube can be translated into a density

weighted field spanning the region of observation. This field is the ’momentum density’

(see Appendix C)

p = ρv, (5.2)

composed of the volume density ρ and the velocity field v.

The ratio of the variance of transverse momentum density to the variance of the total

momentum density gives the solenoidal fraction, R. This fraction represents the amount

of power in the solenoidal modes of the momentum density in a given region of space,

R =
σ2
p⊥

σ2
p

. (5.3)

Brunt & Federrath (2014) demonstrated that the solenoidal fraction can be expressed

in terms of observable quantities: the zeroth, first, second velocity moments, and their

power spectra. The first three velocity moments are defined as
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W0 =

∫
I(v) dv, W1 =

∫
vI(v) dv, W2 =

∫
v2I(v) dv. (5.4)

With the assumption that the thermal linewidth is negligible compared to the overall

velocity dispersion, the velocity moments can be recast in terms of density (Brunt &

Federrath, 2014)

W0 ∝
∫
ρ(z) dz, W1 ∝

∫
v(z)ρ(z) dz, W2 ∝

∫
v(z)2ρ(z) dz. (5.5)

These moments allow for the solenoidal fraction to be written as

R =

[
〈W 2

1

〈W 2
0 〉

][
〈W 2

0 /〈W0〉2〉
1 +A(〈W 2

0 〉/〈W0〉2 − 1)

][
g21
〈W2〉
〈W0〉

]−1

B, (5.6)

where

A =
(
∑

kx

∑
ky

∑
kz
f(k))− f(0)∑

kx

∑
ky
f(k))− f(0)

, (5.7)

and

B =
(
∑

kx

∑
ky

∑
kz
f⊥(k)

k2x+k2y
k2

)∑
kx

∑
ky
f⊥(k)

, (5.8)

with f(k) and f⊥(k) being the angular (azimuthal) averages of the power spectra of the

zeroth and first moments (notation after Orkisz et al., 2017). The constant g21 is a

statistical correction factor that accounts for the correlations between the variations of

ρ and v (if ρ and v are not correlated, g21 = 1). In terms of density, velocity and the

spatial average of the density ρ0, g21 is expressed by the variance of the three-dimensional

volume density 〈(ρ/ρ0)2〉 as

g21 =
〈ρ2v2〉/〈ρ2〉
〈ρv2〉/〈ρ〉

=

〈
ρ2

ρ2
0

〉ε
. (5.9)
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The exponent ε is a is a small positive constant which is the exponent of the power law

expressing the relation between the variance of the velocity σ2
v and the density ρ (see

section 5.2.6).

In the hypersonic regime (M > 5) the solenoidal fraction becomes independent of the

type of forcing and converges to R ∼ 2/3 (Brunt & Federrath, 2014). This specific value

reflects the equipartition of momentum between the compressive and solenoidal mode

Federrath et al. (2008a). Values of the solenoidal fraction that are higher than 2/3 imply

that the relative fraction of momentum density in solenoidal modes in the flow exceeds

that in compressive modes. Thus, star formation tends to be suppressed.

5.2 Application

5.2.1 Observations

The method described above is applied to a selection of SCIMES clouds extracted from

the CHIMPS 13CO (3-2) emission data. The reduced catalogue is constructed through

a size criterion that selects sources with a spatial extension of at least 9 voxels in each

direction and a spectral width of at least 1 km s−1 . This choice allows for a minimum

resolution of 4 times the size of the telescope beam. This constraint ensures the inclusion

of sources that extend well above the telescope resolution and exclude possible artefacts

and very narrow filamentary structures. In addition, the smallest clouds in this selection

are large enough to include an envelope of rarefied gas around the densest, brightest

peaks. This supports our assumption of considering 13CO (J = 3 → 2) to be optically

thin in diffuse regions (with optical depth increasing around the peaks of emission, where

the cloud is densest, Rigby et al., 2016). In a typical cloud, the volume occupied by the

diffuse component far exceeds the denser parts.

The selected sub-catalogue includes a few very large clouds, two of which contains tens

of millions of voxels. In these cases, the calculation of the power spectra of the velocity

moments becomes cumbersome and resource-demanding. To avoid impractically long

computation times, deterioration the resolution is applied to such clouds by a factor of

2 on each axis.
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5.2.2 Isolating the clouds

The emission of each cloud in the selection is isolated via a mask constructed from the

SCIMES clusters assignment catalogue. The resulting map is used for the computation

of moments (see Figure 5.1).

5.2.3 Moments

The velocity moments whose power spectra enter the formula for the solenoidal fraction

must be calculated in the frame of reference of the centre of mass of the cloud. Thus,

to express the velocity moments in the centre-of-mass frame, first, the centroid velocity

of the cloud in the LSR frame is calculated. This quantity is simply given by the ratio

Vc =
〈W obs

1 〉
〈W0〉

, (5.10)

of the spatial means of the first moment in the observer’s frame and 〈W obs
1 〉 and of the

zeroth moment 〈W0〉. Notice that, not being velocity weighted W0 is invariant of the

frame of reference. The resulting change of coordinates gives

v = vobs − Vc (5.11)

(adopting the same notation as before). Finally, substituting in the first and second

moments yields

W1 =

∫
(vobs − Vc)I(vobs) dvobs (5.12)

and

W2 =

∫
(vobs − Vc)2I(vobs) dvobs. (5.13)
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Figure 5.2: The Tukey window over 101 × 101 square. The Tukey window is a
rectangular window which equals a cosine function over the first and last r/2 percent
of its domain1. The cosine fraction r regulates the shape of the Tukey window. For
instance, a Tukey window with r = 0.5 has segments of a phase-shifted cosine with
period 2r = 1 that cover half of the length of the window. The figure was generated
with the code provided in TurbuStat documentation2.

5.2.4 Padding and apodisation

Once the moment maps of a cloud have been constructed, the cloud is extracted by

enclosing it into a square region of the map. The size (side) of this region is determined

by considering the maximum extension of the cloud along the coordinate axes with an

added 5-pixel padding in every direction. This ensures that the moment field is zero at

the edges of the region. For clouds that touch the edges of the field of observation, an

artificial boundary is created. In this case, apodisation is required to ensure that field

decays to zero at the edges. A Tukey window with a cosine fraction equal to 0.3 is used

as apodising kernel (see Figure 5.2). This kernel was found to be the most efficient at

smoothing out high-frequency artefacts in the clouds considered. However, applying an

apodising kernel affects the power spectrum of an image (see the section below). The

range of frequencies affected by the kernel depends both on the properties of the kernel

used and the features of the map. Narrower shapes usually have a bigger impact on the

power spectrum.

Apodisation with a Tukey window may bias the shape of the power spectrum at large

frequencies, usually over scales above 1/2 of the map size (Koch et al., 2019).
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5.2.5 Power spectra

The power spectra of the moments maps are calculated by the PowerSpectrum method

of Turbustat (Koch et al., 2019). Turbustat is a Python package that implements a suite

of tools devoted to the statistical analysis of turbulence3. PowerSpectrum implements

a model for the computation of the full two-dimensional spatial power spectrum of

an image (elliptical power-law model). A radial profile of the two-dimensional power

spectrum produces the azimuthally averaged one-dimensional power spectrum that is

required for the calculation of the solenoidal fraction. PowerSpectrum also provides

a power-law fit for a one-dimensional power spectrum. Different physical processes

characterising distinct scales may induce breaks in the power-law behaviour of the power

spectrum. PowerSpectrum accounts for this situation through fitting with a segmented

linear model (Figure 5.3). An initial guess of the scale of the breaking point can be passed

to the power spectrum. The segmented linear model then attempts to optimise the

frequency of the breaking point by minimising the gap between the two individual linear

components. If no good location for the breaking point is found, PowerSpectrum adopts

a linear fit for the entire spectrum. An optimised breaking point parameter is useful to

understand the scales of different regimes in the turbulence which are characterised by

specific slopes 4.

To avoid large deviations on small scales (high spatial frequencies) where the information

has been lost by the spatial smoothing applied to the image (convolution of the beam),

only spatial frequencies that correspond to twice the FWHM value of the telescope beam

are considered.

This correction also mitigates the impact of the noise which is more severe at higher

spatial frequencies. Modelling the power spectra of the observable moments as the sum

of the beam-convoluted signal spectrum and a noise spectrum (Brunt et al., 2010; Orkisz

et al., 2017), the amplitude of the noise component is expected to be several orders of

magnitude smaller than the signal spectrum, becoming comparable in magnitude at

3https://turbustat.readthedocs.io/en/latest/index.html
4Kolmogorov turbulence, for instance, obeys a power law with exponent k = −5/3, while k = −2

characterises Burgers’ turbulence. As observations depend both on velocity and density, the exponent
of the power spectrum of an integrated intensity map will also depend on the optical depth of the gas
(and the fluctuations in both fields) (Lazarian & Pogosyan, 2000)). Optically thin and optically thick
gas saturates at k = −3 and k = −11/3 respectively (Lazarian & Pogosyan, 2004; Burkhart et al., 2013).
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centring

Figure 5.3: The power spectra of the zeroth (W0) and first (W1) moment maps. Each
panel shows both the angular averaged 1D and full 2D power spectra. The dashed lines
in the one-dimensional spectra and the corresponding red circles in the two-dimensional
power spectra delimit the region over which the spectrum is fitted with a segmented
linear model. The fitted power-law model of the 1D spectrum is denoted by the solid
black line.
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Figure 5.4: Polynomial fit (7th grade) of the full azimuthally averaged power spectrum
of the zeroth moment.

frequencies around the telescope resolution 5. Deconvolution by the beam is performed

automatically by PowerSpectrum, but no corrections for padding (Brunt et al., 2010)

were used in the analysis in Chapter 6. In addition, over-sampling of the beam generates

an increase in power at high frequencies. This region should also be omitted from the fit

of the power spectrum. Thus power laws alone are not sufficient to obtain an accurate fit

over the entire spectrum. To approach this problem a tentative interval (and a breaking

point) over which to apply the segmented linear model is identified. This is accomplished

by fitting the entire power spectrum with a seventh-degree polynomial and studying its

local extremals to isolate a region of descending slope. The breaking point is chosen as

the mid-point of this interval. PowerSpectrum is then re-run on the cut data that cover

this interval. The power spectrum on frequencies outside the interval is fitted by linear

interpolation or polynomial fit (Figures 5.4 and 5.5).

To recover all values of the wave vector components that appear in the summations in

equation 5.6 from the wave vector bins of the azimuthally averaged power spectrum,

a fitting algorithm for the one-dimensional power spectrum was devised. Linear inter-

polation of the data points obtained through PowerSpectrum is employed as the best

approximation of the power spectrum. Applying different fitting functions affects the

resulting value of the solenoidal fraction. The goodness of fit determines the size of the

5This behaviour appears in several SCIMES clouds with noise spectra estimated in survey areas where
emission is absent. However, for the time being, the hypothesis has not been validated for the entirety
of the CHIMPS sample.
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Figure 5.5: Polynomial fit (7th grade) of the full azimuthally averaged power spectrum
of the first moment.

variation in the solenoidal fraction. Comparing full interpolation to a 7th-degree polyno-

mial fit, an average difference of ∼ 4% in the solenoidal fraction is found. This value rises

to 13% using a combination of linear fitting (power-law estimated by PowerSpectrum)

and interpolation outside the linear regime (power law) region. This choice addresses

the method’s sensitivity issues at large spatial scales (low frequencies of the power spec-

trum) due the characteristics of the sums in the parameters A and B (equations C.98,

C.99) reported in Brunt & Federrath (2014).

The 2D dimensional power spectra of the zeroth and first moments do not show any

marked anisotropy. Assuming that power spectra are isotropic in the spatial dimen-

sions, then statistically the third dimension is expected to follow this isotropy as well.

Therefore, fulfilling the isotropic requirement.

5.2.6 Density-velocity correlations

The exponent ε in equation 5.9 is set to 0.15 This value was derived by Orkisz et al.

(2017) for their analysis of the solenoidal fraction in Orion B. Their estimation of the

relation linking local density and velocity dispersion is based on several emission lines

with different spatial distributions in the mean spectrum (mean line profiles). They

considered five isotopologues to trace gas at different densities:



Analysis of turbulence: Results 108

• 12CO(J = 1→ 0) and HCO+(J = 1→ 0) for low density gas (Pety et al., 2017),

• 13CO(J = 1→ 0) for the bulk of the cloud (Orkisz et al., 2017),

• C18O(J = 1→ 0) for denser and shielded regions (Hily-Blant et al., 2005),

• N2H+(J = 1→ 0) for the densest cores (Kirk et al., 2016).

These lines may all appear in the emission from gas at different densities. However,

there is a density lower bound past which a given transition vanishes. Below this density

threshold, the molecule may either not be present or not be excited. A density threshold

that corresponds to the velocity dispersion of the emission line is taken. The velocity

dispersion (FWHM) of lines of these species was determined by fitting of a Gaussian

line profile or using the information on the hyperfine structure of the molecule (N2H+)

6.

Orkisz et al. (2017) devised an empirical relation between the fitted velocity dispersion

velocities (δv) and lowest emission density (ρ(H2)) from the data of the five species:

δv ∝ ρ(H2)−0.15. (5.14)

The slope α = −ε = −0.15 is derived from a least-squares fit of the variation of the

FWHM with the density. Orkisz et al. (2017) estimated that possible systematic errors

in the 12CO (1-0), HCO+ (1-0), and N2H+ (1-0) densities and the 12CO (1-0) and

HCO+ (1-0) linewidths tend to steepen the slope of the power law. Thus, ε = 0.15

should be considered as an upper bound. This value corresponds to an upper bound of

the correction factor g21 (equation 5.9). A lower bound of g21 is provided by ε = 0.05

as estimated by Brunt & Federrath (2014).

5.3 Summary

This chapter provides a recipe for the calculation of the solenoidal fraction in molecular

emission datasets. It includes a brief overview of the method (Brunt et al., 2010; Brunt

& Federrath, 2014) and an introduction of the equations and their terms (that are fully

6http://www.iram.fr/IRAMFR/GILDAS.

http://www.iram.fr/IRAMFR/GILDAS
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derived in Appendix C). Finally, the recipe that constitutes the core algorithm for the

calculation of the solenoidal fraction is provided.



Chapter 6

Analysis of turbulence:

Results

The nature of turbulence, and distinctly its solenoidal or compressive modes, is hypoth-

esised to be a factor in the collapse of dense gas regions in molecular clouds (Federrath &

Klessen, 2012), thus playing a part in the star-formation efficiency of individual clouds

which is observed to vary by 2-3 orders of magnitude (Eden et al., 2012, 2013; Rigby

et al., 2016). In particular, compressive flows are linked to typical aspects of star forma-

tion such as gas infall on filaments, the collapse of dense cores, and the expansion around

young stars. Thus, a cloud dominated by compressive turbulence can be expected to

be more likely to host collapsing regions and consequently have a higher star formation

efficiency (Federrath & Klessen, 2012). A study of the Orion B molecular cloud (Orkisz

et al., 2017) finds that the overall turbulent modes are mostly solenoidal, consistent

with the observed low star formation rate. However, the turbulent modes estimated

are position-dependent and vary with scale within the cloud, with motions around the

main star-forming regions being strongly compressive. Although this analysis confirms

that a high solenoidal fraction (see 5.1) means a dominant non-compressive forcing and

suggests that star formation is less efficient in the case of the Orion B complex, a full

sample study of the relation between turbulent modes and star formation efficiency is

still missing.

The method introduced in Chapter 5 (and described in full in Appendix C) is here

110
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applied to a selection of CHIMPS clouds identified with the SCIMES method (Chap-

ters B.5 and 4). The sample under investigation is selected through size constraints

(section 5.2.1) and includes 1311 isolated clouds, 963 of which are associated with an

independently measured star formation efficiency.

6.1 The solenoidal fraction

The sample selection described in section 5.2.1 produces a collection of 1311 SCIMES

clouds, of which 1283 are isolated clouds, while 28 cross the edges of the field of obser-

vation. This latter set of clouds require apodising (see 5.2.4). Although most of these

clouds are small and located across the latitude boundaries, some of them have signifi-

cant sizes, covering fairly large areas between CHIMPS regions (especially regions 1 and

2 at longitudes between 30◦.5 and 32◦).

The solenoidal fraction (introduced in Chapter 5 and Appendix C), is calculated through

an algorithm that automates the steps described in sections 5.2.2, 5.2.3, 5.2.4, 5.2.5, 5.2.6

allowing for the method to applied to a large sample. This algorithm produces the value

of the solenoidal fraction associated with each cloud in a SCIMES cluster assignment

map, given its corresponding cloud catalogue, the survey emission, and column density

data as input. Apodisation is performed for those clouds crossing the edges of the field of

observation (EDGE labels). A polynomial fit of the power spectrum is run to determine

the domain of the power law fit, which is then carried out with Turbustat while the ends

are fitted by interpolation.

Figure 6.1 shows the distributions of solenoidal fraction for the sub-samples with and

without associated Hi-GAL bolometric luminosities (see section 6.2). These distributions

appear to show that the sample without associated luminosities is shifted to slightly

higher solenoidal fractions. This behaviour is consistent with the hypothesis that a

higher solenoidal fraction reduces the likelihood of star formation. To check if the sub-

samples are significantly different a Kolmogorov-Smirnov test is performed over the

two distributions of the solenoidal fraction. Following the convention set in kstest in

the package Scypy, with the null hypothesis that the two samples (distributions) are

drawn from the same distribution, while the alternative is that they are independent.

The test returns k = 0.44 with p-value = 2.11 × 10−15, the null hypothesis can thus
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Figure 6.1: Distribution of solenoidal fraction within the size constrained sample of
1311 SCIMES clouds (blue histogram). The purple histogram traces the distribution
of the subset of sources that do not have Hi-GAL luminosity counterparts (see section
6.2).

be rejected. The lack of Hi-GAL luminosity for 350 sources depends on the missing

detection in the Hi-GAL IR bands (in the full merged catalogue, see section 2.4). In

particular, the lack of 70 µm emission is commonly considered a sign of no embedded

star formation (or at least, star formation that is not detected). Inaccuracies in the

assignment of Hi-GAL luminosities to SCIMES sources (see Section 6.2) may also affect

the distribution shown in Figure 6.1. Hi-GAL sources lack velocity measurements so that

the luminosity assignment must be performed through line-of-sight projections which

may cause blending of near-far luminosities. In addition, the coordinates of Hi-GAL

are given with respect to the emission features identified by the CUTEX algorithm (see

section 2.4. The discrepancies between the CUTEX and SCIMES extractions will also

result in the loss of precision in the luminosity assignments.)

An error estimation in the solenoidal fraction was performed by comparison between the
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Figure 6.2: Distribution of solenoidal fraction for clouds in hyper-sonic regimes (Mach
number> 5). This sub-sample comprises the 92% (1218 sources) of the original selection
for which the solenoidal fraction is calculated. With solenoidal fractions < 2/3 the
majority of hypersonic clouds have the potential to form stars.

original catalogue and the calculation on emission maps perturbed by the addition of

the square root of the corresponding variance maps. The method returned an average

error of 7% which is consistent with the 8-13% ranges found in the Orion B emission

(Orkisz et al., 2017).

Brunt & Federrath (2014) showed that, theoretically, at hypersonic regimes (Mach num-

bers ∼ 5) the solenoidal fraction of the momentum density becomes independent of the

type of forcing and converges to 2/3. This value follows from the equipartition of mo-

mentum between the solenoidal and compressive modes (Federrath et al., 2008a). A

solenoidal fraction smaller than 2/3 implies a loss of equilibrium in favour of the com-

pressive modes of the flow. When this situation occurs, a cloud is more likely to form

stars.

Isolating the subset of sources in hypersonic regimes reveals (see Figure 6.2) that this
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selection comprises 92% of CHIMPS sources for which the solenoidal fraction has been

calculated. In turn, only 4% of hypersonic sources have R > 2/3, thus most of the

original selection has the potential to form stars. Values of the solenoidal fraction that

exceed 2/3, in this case, may be caused by systematics and measurement errors. These

fractions imply that the result is free of potential concerns over the nature of the forcing

mechanism being a factor in the value of the solenoidal fraction. At these sonic regimes,

complete mixing of turbulent modes is expected. Values lower than the 2/3 ratio can

either indicate a specific forcing for the turbulent flow at low Mach numbers (transonic

regime, 0.8 < M < 1.2), or suggest that an ordered flow is superimposed on the mixed

turbulence at high Mach number (Brunt & Federrath, 2014). Only a small fraction

of clouds have transonic velocities, so the forcing mechanism does not appear to be a

factor in determining the solenoidal fraction for this sample. It follows that the solenoidal

fraction is more likely to be set by the superimposed ordered flow (collapse or outflow

resulting from star formation).

Figure 6.3 shows the distribution of solenoidal fraction with Galactocentric distance.

The width of the bins is 0.5 kpc until 8 kpc and 1 kpc from 8 to 10 kpc and 2 kpc

past this distance. The reason for using irregular bin widths is to reduce biases by

considering bin populations of similar sizes. Bin widths are represented by the length of

the horizontal blue lines that indicate the mean value of the solenoidal fraction in each

bin.

The solenoidal fraction peaks at the 3 − 4 kpc bin. If confirmed by the analysis of

a sample at lower longitudes, this result would be consistent with the disc becoming

stable against gravitational collapse. This distance marks the boundary of the inner

Galaxy, the region of influence of the Galactic bar, which in extragalactic systems has

been observed to quench star formation (see section 7.2 in the next Chapter).

The number of clouds with distances smaller than 4 kpc amounts to 8. These clouds

have projected sizes ranging from 81 to 1640 pixels (with an average of 508) and field

sizes from 33 to 108 pixels and averaging at 63 (and including two clouds with field sizes

above 85 pixels, see section 6.4). This set of clouds does not present any special, unique

size-related features and is consistent with the entire population. Visual inspection

of their size agrees with the Kolmogorov-Smirnov test (k = 0.18 and p-value = 0.92)

proving that these clouds were sampled from the full distribution. The small size of
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Figure 6.3: Distribution of the solenoidal fraction with the Galactocentric distance.
The size of the bins is adjusted to the number of sources. The bins are 0.5 kpc wide
until 8 kpc and 1 kpc wide from 8 to 10 kpc. At distances larger than 10 kpc, clouds
are collected in a single 2 kpc bin. The horizontal blue lines indicate the mean value
within each the bins. The vertical bars represent the standard error of the mean.

the set makes this point of low significance but nonetheless invites further work at low

longitudes.

The solenoidal fraction then declines with a shallow gradient with increasing Galac-

tocentric distance. For Galactocentric distances greater than 4 kpc, a Spearman test

returns r = −0.133 with p-value = 1.498× 10−6 indicating that the solenoidal fraction

declines with distance from the Galactic centre. This decrease corresponds to a shallow

gradient with a slope of -0.02 with no signal present at the spiral-arm radii. This result

is in agreement with previous studies that found no significant arm associated signal

(Ragan et al., 2016, 2018). Figure 6.4 shows the distribution of the solenoidal fraction

with heliocentric distance.
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Figure 6.4: Distribution of the solenoidal fraction with the heliocentric distance. The
size of the bins is adjusted to the number of sources. The bins are 1 kpc wide until
16 kpc and 1 kpc wide thereafter. The horizontal blue lines indicate the mean value
within each the bins. The vertical bars represent the standard error of the mean.

No significant correlation (Spearman statistics) was found between the solenoidal frac-

tion, mass, and Mach numbers. In particular, the solenoidal fraction is not correlated

to the volume of the clouds (number of voxels) ensuring that the results are not affected

by resolution biases.

These results suggest that the state of the physical properties of a cloud and thus its

likelihood to form collapsing cores may be linked to the Galactic environment or individ-

ual cloud formation histories in which the cloud is located, slowly changing in the disc

and possibly steepening into the bar-swept region and continuing into the CMZ which

has very low SFE (Longmore et al., 2013; Urquhart et al., 2013).
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6.2 Star formation efficiency

Star formation efficiency (SFE) can be understood as the fraction of dense, 13CO (3-

2)-traced clouds/clumps that have collapsed and turned into stars over some time-scale

(Eden et al., 2015). The YSO luminosity as a function of time may represent the star-

formation history of a cloud. With this notion of efficiency, SFE can then be defined

as the ratio of the IR luminosity of the YSOs embedded in a cloud to the mass of the

cloud:

SFE =
Lstar

Mcloud
=

1

Mcloud

∫ t

0

dL

dt
dt, (6.1)

where dL/dt is the instantaneous star formation rate (SFR) in terms of the integrated

luminosity L of YSOs. Large values for L/M are either due to a high SFR or a long

time scale. Therefore to directly identify L/M with the SFE requires the assumption

that dL/dt be proportional to dM/dt (linear dependence), which in turn necessitates

that the stellar IMF is invariant and fully sampled in all star-forming regions, up to the

maximum stellar masses (Weidner & Kroupa, 2006). If, more realistically, the IMF is

filled stochastically (Elmegreen, 2006), then the L/M may depend on SFE non-linearly.

In this case, an increase in the SFE still corresponds to an increase in L/M . An observed

rise in L/M may however also be produced by the formation of a larger star cluster with

a more fully sampled IMF in larger clouds. For clusters, L is proportional to M2 with

the same SFE. This potential variation in L/M cannot be resolved by observations unless

it is possible to distinguish every single star in the cluster (which is beyond the limits of

current technology). When the SFE is high, non-linearity may be caused by variations in

the mass of the cloud. As SFE is generally lower than 30% (Lada & Lada, 2003), M can

be assumed to remain constant over the time-scale of star-forming events detected in the

mid-and far-IR. In theory, L/M evolves with time too (increasing L and decreasing M)

and it becomes necessary to define the SFE in terms of a specific time-scale (e.g. free-fall

time, see Cheavance, 2020). On the other hand, the stage of massive star formation

that can be detected in the mid-IR and far IR lasts for only hundreds of thousands of

years (Davies et al., 2011; Mottram et al., 2011), a short enough time to allow us to

consider L/M can be as a “snapshot” of the current SFE.
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Figure 6.5: Star formation efficiency defined as L/M (in units of Solar mass and
Solar luminosity) as a function of the solenoidal fraction. The IR continuum luminosity
from the YSOs and the masses of the sources (CO mass) are derived from independent
measurements and can be considered largely independent variables. The cyan solid line
is a weighted linear fit of the scatter plot. The weights are the standard deviations of
the L/M distribution within solenoidal fraction bins with width 0.1.

Luminosity assignments are made using the integrated bolometric fluxes of the Hi-GAL

sources contained within each SCIMES cloud. Since the Hi-GAL catalogue does not

include velocity information, a Hi-GAL source is matched to a SCIMES cloud when

its Galactic coordinates lie within the projection of the SCIMES cloud on the Galactic

plane. This assignment however is not (always) unique as projecting along the spectral

direction may result in the full or partial overlapping of multiple SCIMES clouds. The

position of a Hi-GAL source on the Galactic plane may thus belong to several distinct

projected clouds. When this happens, the assignment is made unique by associating

a Hi-GAL source with the SCIMES cloud that has the brightest 13CO (3-2) intensity

along the spectral direction at the source’s coordinates. This method allows us to define

a luminosity for 963 clouds in the original sample.
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A negative correlation (Spearman r = −0.30, p-value 4.231̇0−21) is found between star

formation efficiency and the solenoidal fraction. The correlation in Figure 6.5 is again

consistent with the hypothesis that star formation is more likely to occur in clouds

with more power in the/more dominant solenoidal turbulent modes. The IR continuum

luminosity from the YSO and the CO mass of the cloud were derived from independent

measurements. They can therefore be treated as largely independent variables, making

the correlation valid as potentially revealing physical effects. This is however not the case

when M itself is also based on the continuum emission (Molinari et al., 2016; Urquhart

et al., 2018). With this derivation of the mass, L becomes a function of the cloud’s mass

and temperature (L = f(M,T )). In the following analysis LIR/MCO will be considered

and denoted as L/M , unless the use continuum-derived mass is specified explicitly.

To check for potential biases in the SFE-solenoidal-fraction relation, the signal-to-noise

ratio and field size are considered. A negative correlation (Spearman r = −0.27, p-value

= 5.08 · 10−18) was found between the solenoidal fraction and the SNR (defined for

each cloud as the square root of the quadrature sum of the SNR values at the voxels

within the extracted cloud, Figure 6.6). The field size and the solenoidal fraction show a

small positive correlation (r = 0.19 p-value = 2.02 · 10−9, Figure 6.7). An evaluation of

the effects of these correlations on the solenoidal-fraction-SFE relation through partial

correlation analysis shows that none of these factors significantly impacts the negative

correlation between the solenoidal fraction and the SFE (accounting for the SNR returns

r = −0.25 with p-value = 8.86·10−15, while accounting for the SNR yields r = −0.27 with

p-value = 3.12 · 10−17), nor does their combined effect (r = −0.17, p-value = 1.3 · 10−7).

A prominent feature of the plot in Figure 6.5 is the scatter that characterises the relation

between SFE and the solenoidal fraction. The scatter appears small at low solenoidal

fractions, increasing at the high solenoidal end. The 16 clouds with solenoidal fraction

< 0.12 that populate the upper left corner of Figure 6.5) include both compact cores

(150-600 voxels) and small clouds (1000-3000 voxels). Their average velocity dispersion

is 1.5 km s−1 . These clouds do not present special size-related qualities but can be

considered as a sample of the full distribution as can be proven both by visual inspection

and a Kolmogorov-Smirnov test (projected size: k = 0.14 with p-value = 0.93; linewidth:

k = 0.37 with p-value = 0.04).

This change in the observed scatter may be a real feature of the L/M distribution or
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Figure 6.6: Solenoidal fraction as a function of the signal-to-noise ratio.

Figure 6.7: Solenoidal fraction as a function of the field size.
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just be due to larger sample sizes revealing the wings of the distribution. The scatter

at the high end is similar to the range seen in results by Eden et al. (2015) and Rigby

et al. (2016) using the same L/M parameter. To understand if the scatter is related

physical effects on L/M , such as the evolution of the IR emission, it should be compared

to measurement uncertainties. Considering masses measured from the continuum, L/M

becomes correlated with temperature and can be interpreted as an evolution indicator

(Urquhart et al., 2018). The continuum clump masses may be related to cloud CO masses

evidencing that there may be an evolution factor in the scatter in the SFE-solenoidal

fraction relation. Evolutionary effects can then be factored out by considering the dust

temperatures of the YSOs.

6.3 Scatter and temperature

Figure 6.8 shows the solenoidal fraction-SFE scatter plot centred around its weighted

linear fit (red solid line in Figure 6.5). The weights of the fit correspond to the standard

deviations of the distributions of values of SFE obtained after binning the solenoidal

fraction. To investigate the scatter around this simple linear model, the Hi-GAL bolo-

metric temperatures (colour-coded in Figure 6.8) are used. The bolometric temperature

is defined from the flux density Fν (Myers & Ladd, 1993) as

Tbol = 1.25× 10−11K ×
∫∞

0 νFνdν∫∞
0 Fνdν

. (6.2)

The temperature associated with each SCIMES cloud corresponds to the average of

the temperatures of the Hi-GAL sources it contains. In general, typical bolometric

temperatures found in Hi-GAL clumps range from ∼ 10 K (pre-stellar sources) to ∼ 80

K. There is a positive correlation between the luminosity of the embedded massive

protostars and the continuum temperatures of the gas clumps in which they were formed

(Urquhart et al., 2011). Urquhart et al. (2018) extended this analysis to lower luminosity

and less-evolved sources (pre-stellar), showing that, in the ATLASGAL sample, L/M is

strongly correlated with the bolometric temperature of the source, which allows for the

reliable prediction of one quantity, if the other is known. The authors also showed that

the L/M -temperature relation holds over almost 6 orders of magnitude in L/M clump

and the whole range of ATLASGAL temperatures.
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Figure 6.8: Adjusted scatter plot of the SFE and solenoidal fraction. The plot is cen-
tred around the weighted linear model shown in Figure 6.5. Colour coding corresponds
to the Hi-GAL bolometric temperature associated with each source. Luminosities and
masses are given in units of L� and M� respectively.

Furthermore, Urquhart et al. (2018) found that both luminosity and L/M are correlated

with the dust temperature, but the large scatter in the data and the strong power-law

relationship of the luminosity–temperature distribution make it difficult to use dust tem-

perature as a measure of stellar evolution. On the other hand, the correlation between

L/M with its lower power-law relation to temperature makes it a less sensitive param-

eter to small changes in temperature, Similar results were found independently by Elia

et al. (2017) using the Hi-GAL sample.

There is no obvious correlation between the excitation temperature in the present data

with independent CO masses, suggesting that the column density does not evolve sig-

nificantly during the star formation process 1.

1Urquhart et al. (2018) tested this correlation for the ATALSGAL sample, finding that the column
density decreases as the cloud evolves, however, they noticed that the weak correlation found may arise
from an observational bias: the reduced sensitivity to lower column densities.
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The adjusted scatter plot in Figure 6.8 displays a sharp increase of scatter in the

SFE for solenoidal fractions > 10−0.9. To check that the distribution of log(L/M) at

log(solenoidal) < −0.9 is statistically consistent with the distribution at log(solenoidal)

< −0.9, a Kolmogorov-Smirnov test is performed over the two distributions. As above,

the null hypothesis that the two samples (distributions) are drawn from the same distri-

bution, while the alternative is that they are independent. With k = 0.13 and p-value

= 0.24, the null hypothesis cannot be rejected and the log(SFE) distribution must be

considered statistically consistent over log(solenoidal), i.e. the scatter is not a function

of solenoidal fraction.

To quantify and filter out the scatter in L/M that may be due to temperature and,

hence, evolution variations, the following steps are taken. First, we select a temperature

bin (5-K wide) whose distribution of L/M approximates a normal distribution. This

distribution is used as a filter to deconvolve the Gaussian that approximates the full

L/M distribution. This method is illustrated in Figure 6.9.

The L/M ratio is independent of distance, so the uncertainty associated with it equals

the quadrature sum of the uncertainty in the flux and the mass. Assuming the uncer-

tainty depends only on the uncertainty of the column densities, it is about ∼ 20% (Rigby

et al., 2019).

The bolometric flux of a Hi-GAL source is evaluated as the sum of the areas of trapezia

defined by flux values of consecutive bands (see Eden et al., 2012). The bolometric flux

of a SCIMES cloud is then the sum of the fluxes of the HigGal sources it contains. For

the errors of the HiGal bolometric fluxes, the fractional errors are obtained by summing

the errors (quadrature sum of errors in the five wavebands) and dividing by the sum of

the fluxes of the bands. This fractional error multiplied by the value of the bolometric

flux of the source gives the error in the source’s bolometric flux. The errors in the

bolometric fluxes within a SCIMES cloud are again summed in quadrature to obtain

the error associated with the cloud. This calculation yields an average error in the

bolometric flux ∼ 7% 2. Estimating the percent variation coefficient of the deconvolved

Gaussian distribution (variation coefficient, cv = 100 × σ/µ) and converting it back to

2Notice that error in the bolometric flux is derived through the quadrature sum of the error at the
five Hi-GAL wavelengths. Using a small number of wavelengths to estimate the error over the entire
spectrum produces a lower value of the error. Thus one could say that the value from the Hi-GAL
wavebands is a lower bound of the error in the bolometric flux.
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Figure 6.9: Deconvolution of the full L/M distribution by the Gaussian approximat-
ing the distribution in the 30− 35 K bin.



Analysis of turbulence: Results 125

Figure 6.10: Distribution of field sizes including padding for the sample of CHIMPS
clouds used in calculation of the solenoidal fraction.

the linear scale gives cv ≈ 56%, this value suggests that the observed scatter does not

originate from measurement errors alone, but other physical factors must be involved.

Different star formation efficiencies at similar values of the solenoidal fraction may thus

be linked to different evolutionary stages of the clouds in the sample considered. The

relation between bolometric luminosity and envelope mass indicator of the evolutionary

status of a core/clump. Lbol versus M diagrams are widely used to trace evolutionary

tracks of clouds (Saraceno et al., 1996; Molinari et al., 2008; Elia et al., 2013; Ragan

et al., 2013). Evolutionary tracks are fundamentally divided into an accretion phase

followed by a clean-up phase (Molinari et al., 2008; Smith, 2014). In the earliest stages

of star formation, these tracks are nearly vertical as the YSO accretes mass from the

surrounding envelope increasing its luminosity. When the central star reaches the zero-

age main sequence (ZAMS), and the dispersal of the residual clump material begins, the

track flattens into a nearly horizontal line. In a sample of clouds with different charac-

teristics and located in different Galactic environments, clouds with similar fractions of

solenoidal modes, may be at different stages of their evolution, manifested through the

parameter after deconvolution with the temperature distribution L/M . This framework

would explain the scatter observed in Figures 6.5 and 6.8.
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6.4 The field size

The field sizes associated with the sample of clouds consider in the analysis presented

above range from 30 to 649 pixels in side (see Figure 6.10). As considering the Fourier

transforms on fields of small sizes (see Appendix C) is not likely to yield useful informa-

tion on the state of the turbulence in the corresponding clouds, the validity of the results

presented above was tested on a series of sub-samples with fields of decreasing size. This

test showed that the results (distribution of solenoidal fraction with Galactocentric dis-

tance, the negative correlation between SFE and the solenoidal fraction, the scatter in

solenoidal fraction-SFE plots) still hold when a sample of clouds with a field larger or

equal to 85 pixels is considered. The sample size in this threshold case is reduced to

less than 200 clouds. Above this threshold, the size of the sample is reduced drastically

which invalidates the outcome of the analysis presented in Sections 6.1 and 6.2.

6.5 Summary

The computation of the solenoidal fraction was performed on a selected sample of molec-

ular clouds (1311) in the SCIMES segmentation of CHIMPS. This analysis produced four

main results:

• the solenoidal modes of turbulence appear to be higher in the inner Galaxy (al-

though the sample in question only contains a small number of clouds associated

with these distances),

• the solenoidal fraction declines with a shallow gradient with increasing Galacto-

centric distance,

• star formation efficiency and the solenoidal fraction are negatively correlated (which

is consistent with the hypothesis that solenoidal modes prevent or slow down the

collapse of dense cores),

• the significant scatter in SFE-solenoidal-fraction plots appears to be caused by

physical factors such as different stages of cloud evolution.



Chapter 7

Discussion and conclusion

7.1 Fellwalker and SCIMES

The study of molecular emission in position-position velocity (PPV data) has been

approached through a wide range of analytic methods. These techniques make use

of different features of molecular emission to identify gas structures as discrete sets

of connected voxels (segmentation) with emission (brightness temperature or column

densities) above a specified threshold. Further selection criteria may then be employed to

characterise these ’clusters’ as individual molecular clouds allowing for the construction

of a consistently-selected set of “objects” which can be used for statistical studies of

cloud properties, star-formation, and chemistry. The entire segmentation process is

performed with a variety of automatic algorithms (see Section 1.4). However, as the

ISM is a continuous medium, the discrete segmentation of the emission is bound to

introduce artificial structures independently of how physically realistic and sophisticated

the chosen paradigm is. Such segmentation may thus be more suitable for the power-

spectrum-like analyses of the continuous data (Eden et al., 2021). These extraction

methods are often complex and it is difficult to compare their relative efficacy or quantify

their biases since their core algorithms are based on widely different paradigms and few

have been applied to the same data. Furthermore, there is no commonly used standard

against which these techniques are calibrated. From this standpoint, it is interesting to

set up a direct comparison between different segmentation methods by applying them

to the same data and with a suitable choice of input parameters. Finding matching

values of the input parameters for different segmentation algorithms may not always be
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possible, especially if the methods are based upon utterly different principles. Such a

choice also require knowledge of an optimal parameterisation for each method on the

given data set.

Chapter 4 presented an attempt to cross-correlate the properties of individual clouds

in two different segmentations of the 13CO (3-2) emission in the CHIMPS survey: one

obtained with the watershed algorithm FellWalker and the other with the dendrogram

based SCIMES (Chapter 3). SCIMES is a recent dendrogram-based image segmenta-

tion method that uses clustering theory to identify emission sources. In this frame-

work, clustering is not established by the proximity of neighbouring pixels, but through

similarity criteria based on the physical properties of the molecular gas (see B). This

defining characteristic of SCIMES mitigates the influence of survey-sensitivity biases.

The FW algorithm, on the other hand, is a variation of the watershed paradigm. It

extracts emission structures locally, through the path of steepest ascent around lo-

cal emission peaks. These methodologies yield different numbers of molecular clouds

(SCIMES 2944, FW 3665) but produce largely consistent results with similar ranges

in masses (M/M� ' 100.4−5.0 and M/M� ' 100.6−4.8), sizes (no.voxels ' 101.5−5 and

no.voxels ' 101.8−4.2), equivalent radii Reqpc−1 ' 10−0.7−1.3 and Reqpc−1 ' 10−0.6−1.0

), mean number densities ( nH2/cm3 ' 100.9−3.7 and nH2/cm3 ' 101.6−4.0), and velocity

dispersions ( σv/kms−1 ' 10−0.55−1.0 and σv/kms−1 ' 10−0.53−0.7). The distributions of

the quantities investigated: mean number densities (Figure 4.15), masses (Figure 4.11),

the virial parameters (Figure 4.31), and dynamic timescales (Figures 4.20 and 4.19) all

reflect the differences in volumes and geometries found in the two segmentations (Figures

4.9 and 4.8).

Additionally, the SCIMES extraction for the 12CO (3 - 2) in COHRS is considered as

a term of comparison with a different tracer over the same area spanned by CHIMPS.

This particular transition of 12CO isotopologue is, in general, a more optically thick

tracer than 13CO (3 - 2). In practice, this implies that COHRS segmentation traces

lower density regions of the molecular clouds, that are not detected in CHIMPS. The

linewidths for the COHRS clouds will thus be naturally wider than those found through

both SCIMES and FW (section 4.4.4). Probing lower-density emission, COHRS detects

larger structures than CHIMPS. The inconsistent results in the SCIMES segmentations

of 12CO and 13CO emission can be traced back to the 12CO abundance and optical of
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the depth of the isotopologues as well as to the different SCIMES parameterisations

chosen for the segmentations.

A closer look at the distribution of the assigned SCIMES heliocentric distances (Fig-

ure 4.3) and the independently generated Galactocentric distances (Figures 4.6 and

4.7) reveals that both distributions display the same features as the FW assignments.

The difference in distance assignment has supposedly little influence on the distance-

dependent physical properties. Size–linewidth (Figure 4.22), size–density (Figure 4.16),

and size–virial parameter (Figure 4.32) plots for the CHIMPS clouds, also reveal similar

relations. An identical situation is reported by (Lada & Dame, 2020) in their studies

of mass-size relations (Larson, 1981) and the GMC surface densities in Galactic clouds.

Lada & Dame (2020) compared data from the SCIMES (Rice et al., 2020) and FW

(Miville-Deschênes et al., 2017) extractions of 12CO in the low-resolution CfA-Chile

survey (Dame et al., 2001). The mass-size relation they found did not appear to be

particularly sensitive to differences in the two methodologies used for the emission seg-

mentation.

The distributions of velocity dispersions (Figure 4.21 and excitation temperature (Figure

4.23) only depend on the size of the clouds as identified by each algorithm (number of

voxels that constitute a cloud). The SCIMES extraction includes both smaller and

larger sources than FW (see Figure 4.9). The size comparison presented in table 4.1

suggests size and number of clouds extracted by the two algorithms depend on the

environment. In crowded areas (large star formation complexes like W43 (l = 30.8◦,

b = 0.0◦)) a FW tends to split clouds into smaller clumps. Visual inspection reveals

that the FW clumps have touching sharp borders (see Figure 4.1) whereas SCIMES

identifies a single structure. The introduction of artificial boundaries between emission

peaks is a consequence of the watershed algorithm which characterises disjoint clouds

by single individual peaks. This method “cuts the valleys” between peaks into separate

assignments, thus splitting the envelopes of more rarefied structures enclosing denser

clumps. This defining characteristic makes FW and similar methods better suited to

extract sources in less crowded fields or to identify compact cores in crowded fields

through a careful selection of the configuration parameters.

With the chosen parameterisation, SCIMES, on the other hand, register such structures

as part of a single entity, thus proving to be more sensitive to tenuous emission in complex
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Figure 7.1: Example of disconnected clouds in the FW segmentation. The panel show
the projection along the spectral axis of a portion of the FW extraction. The colors
indicate individual clouds.

gas distributions and crowded fields. A number of cases of disconnected emission that

is labelled as the same cloud emerged from inspecting the projection along the spectral

axis of FW clouds (see Figure 7.1). The projection of some FW clouds also misses parts

in their interiors (holes). These features are not present in the SCIMES extraction.

Establishing a relationship between the results of the two methods requires the accurate

analysis of substructures in individual clouds in different environments. This would

allow for the identification of FW clouds within the SCIMES dendrograms, matching

them with branches and subbranches1 in the dendrogram hierarchy.

The differences in morphology and density observed in the SCIMES catalogue originate

from SCIMES being, by definition, more sensitive to the global distribution of gas en-

coded as a single dendrogram. Consequently, the parametrisation that defines SCIMES

dendrograms, which was chosen to match the FW configuration used by Rigby et al.

(2019), has a significant impact on this study (see Colombo et al., 2019; Duarte-Cabral

et al., 2021).

Furthermore, if an algorithm produces over-segmentation of molecular gas the total data

sum in each clump (for instance the sum of the emission values associated with the voxels

in the cloud) will, on average, be too low. The performance of an algorithm with respect

to over-or under segmentation can be evaluated through the distribution of the measured

1In general, SCIMES leaves were found to be smaller than FW smallest clumps!
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total data sum in each cloud compared to the expected distribution constructed from

a set of artificially generated clouds. If a set of identical clouds (same peak amplitude

and size) is considered, the distribution of measured total data sums will peak at the

expected value, but will always have a tail of higher-valued clumps due to the random

spatial positioning of clumps causing some clumps to overlay each other. An optimal

clump-finding algorithm should not produce any significant tail of lower-valued clumps.

7.2 Analysis of turbulence

A potential driving agent of star formation has been identified as the relative frac-

tion of turbulence modes in the interstellar molecular gas. Any connection between

the properties of molecular clouds and their environment would show a dependence on

galactic dynamics and/or the history of individual cloud formation (see section 8.1).

Specifically, this involves both volumes and maximum mass scales (Hughes et al., 2013;

Reina-Campos & Kruijssen, 2017) and physical properties such as cloud surface and

volume densities (Sun et al., 2018), turbulent pressure and velocity dispersion (Heyer

et al., 2009; Field et al., 2011; Shetty et al., 2012; Kruijssen & Longmore, 2013), and

virial parameter (Sun et al., 2018; Schruba et al., 2019). Theoretical models and obser-

vations have demonstrated that these properties are correlated to star formation rate,

and cluster formation efficiency, which typically increases with the gas pressure in the

galactic plane (Vàzquez-Semadeni, 1994; Krumholz & McKee, 2005; Elmegreen, 2008;

Padoan & Nordlund, 2011; Kruijssen, 2012; Adamo et al., 2015).

Molecular clouds form through the condensation of the lower-density ISM gas, thus in-

heriting its turbulent and shear-driven motions (Meidt et al., 2018, 2019; Kruijssen et al.,

2019b). Galactic dynamics can thus stabilise clouds (Meidt et al., 2013) or compress

them promoting star formation (Jeffreson & Kruijssen, 2018). This mechanism leads to

the formation of shock-bounded layers between convergent flows, a process that induces

fragmentation through non-linear instabilities (Vishniac, 1994). Numerical simulations

of this scenario (Hunter et al., 1986; Klein & Woods, 1998) show that fully developed

turbulence arises in the shock-driven layers (Hunter et al., 1986; Klein & Woods, 1998).

This turbulent state is maintained throughout the duration of stream collision and its

fragmentation into molecular clouds. The internal turbulence of molecular clouds origi-

nates from a dissipative energy cascade in compressible turbulent flows. At every scale,
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the fraction of the energy that is not dissipated through shocks is transmitted to smaller-

scale structures (Kornreich & Scalo, 2000).

In this framework, the high star formation efficiency (SFE) observed in disc clouds is

linked to the prevalence of compressive (curl-free) turbulent modes. In contrast, the

low SFE that characterises clouds in the Central Molecular Zone (CMZ) is related to

the shear-driven solenoidal (divergence-free) component. A similar analysis of the Orion

B molecular cloud (Orkisz et al., 2017) finds that the turbulence is mostly solenoidal,

consistent with the low star formation rate associated with the cloud. The forcing is

however position-dependent and varies with scale within the cloud with motions around

the main star-forming regions being strongly compressive. Thus, this significant inter-

cloud variability of the compressive/solenoidal mode fractions may be a decisive agent

of variations in the SFE. Chapter 6 collects the results of the first full-sample study

of turbulent modes in CHIMPS molecular clouds with a focus on their relation to star

formation efficiency.

A software package capable of automating the calculation of the solenoidal fraction for a

large sample of molecular clouds was designed and developed from the recipe described

in section 5.2. This package produces the value of the solenoidal fraction, given a cloud

map, emission data, and column density data as input and choosing a fitting model

for the one-dimensional power spectrum. Further development of this tool is underway,

and it is going to be used for several projects related to the investigation of turbulent

modes in interstellar gas. The computation of the solenoidal fraction was performed on

a selected sample of molecular clouds (1311) in the SCIMES segmentation of CHIMPS.

This analysis produced two main results:

• the relative power in the solenoidal modes of turbulence appears to be higher in

the inner Galaxy (distances < 4 kpc from the centre). The solenoidal fraction

then declines with a shallow gradient with increasing Galactocentric distance. If

confirmed by the analysis of a sample at lower longitudes, this result would be

consistent with the disc becoming stable against gravitational collapse and the star

formation rate being suppressed by the influence of the rotation of the Galactic

bar;
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• there is a negative correlation between star formation efficiency and solenoidal

fraction consistent with the hypothesis that solenoidal modes prevent or slow down

the collapse of dense cores (Figure 6.5).

These findings agree with the variation of SFE with the Galactic environment measured

using both the numbers of HII regions per unit molecular gas mass and the dense gas

mass fraction (DGMF). The DGMF peaks at around 3–4 kpc and then decline in the

inner zone (Eden et al., 2012, 2013), where the disc becomes stable for the life of the

bar (James & Percival, 2016). Two mechanisms are currently believed to cause the

quenching of star formation in the regions around the bar. One theory focuses on the

shock and shear arising from the rotation of the bar. The turbulence they induce in

the molecular gas in the region stabilises clouds against collapse and thus inhibits star-

formation. This scenario holds under the assumption that during its formation the bar

collects most of the gas in the central regions within the co-rotation radius (Tubbs,

1982; Reynaud & Downes, 1998; Haywood et al., 2009; Khoperskov et al., 2018). While

the second mechanism is identified with the torque generated by the rotation of the bar.

This force induces gas to migrate from the Galactic outskirts to the central regions. This

inflow fuels nuclear star formation but deprives the regions close to the bar of gas, thus

suppressing star formation (Spinoso et al., 2017). Kiloparsec scale formation “deserts”

were observed at the centre of barred galaxies (James et al., 2009) 2.

Outside the Inner Galaxy, the solenoidal fraction shows a negative correlation to distance

(for Galactocentric distances greater than 4 kpc, a Spearman test returns r = −0.133

with p-value = 1.498−6) and declines with a shallow gradient with a slope of -0.02 with

no signal present at the spiral-arm radii. This result is in agreement with previous

studies that found no significant arm associated signal in the fraction of star-forming

compact sources (Ragan et al., 2016, 2018, and section 1.6). These findings suggest

that the solenoidal fraction is unaffected by large scale features such as radial variations

in density, shear, and metallicity and that differences between the individual clouds

are more relevant to star formation. This picture challenges the idea that spiral arms

may be direct triggers of star formation and considers them as mere sources of source

crowding (Moore, 2012; Ragan et al., 2016). The increased star formation observed in

2The stellar populations observed ranged between 250 · 106 to 250 · 109 years (James & Percival,
2015a,b). Star formation deserts have not been found for older populations. These results strengthen
the link between the star formation properties of central regions and the life cycles of the Galactic bar.
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the spiral arms may be a consequence of their function as organising features that affect

the ISM by delaying and crowding the gas that traverses them Dobbs et al. (2011).

Spiral arms thus enable longer-lived and more massive molecular clouds. The longer

lifetimes of molecular clouds in turn result in longer star formation time scales and

consequently an increased SFE compared to inter-arm gas (Roman-Duval et al., 2010).

In larger and denser clouds, the column density of clouds affects the mass function

of massive clusters (Krumholz et al., 2009). Radiative heating in high-column density

clouds suppresses fragmentation but does not appear to influence the clouds’ overall

SFE (Krumholz et al., 2010). Spiral arms are also likely to differ from one another

(Benjamin et al., 2005). The inner and outer segments of the same arm may also impact

star formation in different ways. The entry shock that the ISM gas undergoes upon

entering a spiral arm is supposed to only exist within the corotation radius. This is

the distance at which there is a differential velocity between the spiral pattern speed

and the orbital rotation speed of the galactic ISM 3. Outside the corotation radius, the

SFE (and in general the state of the ISM) is expected to be governed by supernovae

(Kobayashi et al., 2009; Dib et al., 2009). Krumholz et al. (2009) also predicts that

internal radiative feedback dominates molecular gas (in non-starburst conditions).

Star formation declines abruptly in the Central Molecular Zone (CMZ) within 0.5 kpc

of the centre (Longmore et al., 2013; Urquhart et al., 2013). The CMZ presents the

highest abundance (∼ 100%) of molecular gas in the Galaxy. The amount of molecular

gas declines with increasing Galactocentric distance to only a few per cent at radii greater

than 10 kpc (Sofue & Nakanishi, 2016). The inner Galaxy, particularly the CMZ, is a

key environment to investigate SFE, but are not covered by CHIMPS and information

from different surveys is therefore required to probe these environments (see Chapter 8).

In this thesis, a negative correlation between the solenoidal fraction and SFE defined as

Lbol/M (see section 6.2) was confirmed. A prominent feature of the SFE-solenoidal frac-

tion relation shown in Figure 6.5 is the large scatter that characterises the plot. Section

6.2 shows that this feature remains after deconvolution with a Gaussian approximat-

ing the variation in bolometric temperature representing the evolution of the individual

embedded sources. The spread of the deconvolved distribution is still larger than the

estimated errors in the SFE (derived from the errors in the fluxes in the Hi-GAL cata-

logue). This remaining scatter seems to arise from physical factors linked to the state

3(to be just beyond the solar circle in the Milky Way Lépine et al., 2011)
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of the cloud and its evolution. This conclusion is emphasised by the relation of the

L/M , the parameter used to define SFE, to the evolution of clumps (see discussion in

section 8.3). The analysis presented in Urquhart et al. (2018) reveals trends for increas-

ing temperatures and luminosities with the evolutionary stage of the embedded stars as

they advance towards the ZAMS stage. Changes in both L and M can be attributed to

feedback from the forming protoclusters on their natal clump. These variations due to

stellar feedback are reflected in the linewidths of molecular transitions (Urquhart et al.,

2018).

The value of the solenoidal fraction assigned to each cloud accounts for the overall modes

of the gas it contains, with substructure contributing over all spatial frequencies. Thus,

the same value of the solenoidal fraction can be attained through different configurations

of molecular gas, i. e. different cloud sizes, velocity distributions, densities, amount of

molecular gas, number, and size of star-forming cores, and stellar feedback mechanisms.

Although compressive turbulence remains one of the driving agents of star formation in

this framework, star-forming regions can be affected by several factors that slow down

their collapse. In addition to the delay induced by the thermal pressure gradient at early

stages of collapse, magnetic fields (even if the clouds are magnetically supercritical,

i.e. the magnetic energy is less than the binding energy, Inoue & Inutsuka, 2012;

Vàzquez-Semadeni et al., 2011; Girichidis et al., 2018), Galactic differential rotation

through shear and Coriolis forces (Dobbs & Baba, 2014; Meidt et al., 2020), and the

non-spherical (planar or filamentary) shape of the clouds (Toalà et al., 2012; Pon et al.,

2012) contribute to delaying collapse. If the magnetic support is weak, star formation

is expected to proceed more efficiently and star clusters can be formed. For clustered

star formation, numerical simulations show that stellar feedback such as protostellar

jets, outflows, and stellar winds can inject supersonic turbulence in molecular clumps

(Nakamura & Li, 2007; Offner & Arce, 2015), and the clumps can be kept near virial

equilibrium for several dynamical timescales.
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Future work

This thesis initiated a full-sample study of turbulent modes in Galactic molecular clouds.

The investigation explored the relationship between the solenoidal fraction and star

formation efficiency in the CHIMPS survey and hinted at a gradient in solenoidal modes

extending out from the inner Galaxy. Along with a fully developed software package

for the automated calculation of the solenoidal fraction over large samples of clouds,

this thesis naturally sets the foundations for the extension of the statistical analysis of

turbulent modes and SFE to different Galactic environments and a selection of individual

clouds. This analysis on high-resolution surveys could also shed light on the factors

behind the scatter appearing in the solenoidal-fraction-SFE relation.

8.1 Turbulence in different Galactic environments

A primary objective is to extend and improve the statistical analysis of turbulence

initiated in this thesis with the aim to link solenoidal modes at different Galactocentric

distances and over a wide range of scales to both SFE and other physical (temperature,

density) and geometric properties (shape factor, internal structure of the dendrogram)

of clouds, clumps, and cores. Particularly interesting is the estimation of the solenoidal

fraction in filamentary structures since these features appear to host the majority of

star-forming cores (Polychroni et al., 2013; Könyver et al., 2015). This study would

however require to ascertain at what scales the loss of symmetry/isotropy within such

structures affect the applicability of the method.
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The investigation is going to focus on molecular gas in three key Galactic environments:

• the inner Galaxy within 3 kpc, where the disk is becoming stable against gravita-

tional collapse, and the star formation is quenched by the rotation of the Galactic

bar (see discussion in the previous chapter, section 7.2 );

• the Central Molecular Zone (within 0.5 kpc) where star formation plummets while

the molecular-gas fraction increases towards 100 %. The high turbulent energy in

this region manifests as line-widths of ∼ 10–20 km s−1 on parsec scales (Henshaw

et al., 2016). Such high turbulence raises the critical volume density threshold

for star formation (Krumholz & McKee, 2005; Federrath & Klessen, 2012) may

explain the difference between the SFR predicted by density thresholds and the

current SFR in the region (Lada, 2010; Lada et al., 2012). Recent high-resolution

surveys of the CMZ have evidenced the lack of internal structure in CMZ dense

clouds (Battersby et al., 2020; Hatchfield et al., 2020) indicating that the formation

of such structures is impeded by the highly turbulent environment.

• the outer Galaxy beyond a radius of 10 kpc, where the molecular fraction drops to

a few per cent, molecular clouds are sparsely distributed (Wouterloot et al., 1990)

and the metallicity (Rudolph et al., 1997), the diffuse Galactic interstellar radiation

(Bloemen, 1985), and cosmic-ray flux density (Bloemen et al., 1984) is reduced

compared to the Solar neighbourhood. Outer Galaxy clouds were also observed

to be less massive than clouds found in the Inner Galaxy (Brand & Wouterloot,

1995). In general, they possess larger radii than their equally massive Inner Galaxy

counterparts (Brand et al., 2001). The reduced pressure of the surrounding ISM at

large Galactocentric distances is thought to account for these observations. This

environment allows for the study of the influence of the reduced pressure on cloud

formation/turbulence, and SFE.

To cover these regions a combination of data from different surveys and tracers is re-

quired. The extensive Structure, Excitation and Dynamics of the Inner Galactic In-

terstellar Medium survey (SEDIGISM, Duarte-Cabral et al., 2021), covers 78 deg2 of

the inner Galaxy (60◦ ≤ l ≤ 18◦, |b| ≤ 0.5◦) in the J = 2 → 1 rotational transition

of 13CO. This survey provides a detailed, global view of the inner Galactic interstellar

medium at a resolution of ∼ 30”. In addition, the following surveys are considered:
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COHRS (Colombo et al., 2019, see section 2.2), and CHIMPS 2 (Eden et al., 2020), the

ongoing extension of CHIMPS. This 12CO / 13CO / C18O (J = 3→ 2) survey extends

CHIMPS and COHRS spanning Galactic longitudes between 28◦ and −5◦, thus probing

the innermost 3 kpc of the Galaxy including the CMZ in its entirety. Integration with

high-resolution ALMA observations of the CMZ clouds (especially in the light of the re-

cent confirmation of star formation in G0.253+0.016) will also be analysed with methods

developed here (Walker, 2021). The high resolution of the ALMA dataset should enable

an analysis of the internal turbulent structure (assuming the necessary apodisation of

the maps).

The outer Galaxy portion of CHIMPS 2 spans longitudes between 215◦ and 225◦. In

this region which is also included in the FUGIN (J = 1 − 0, Umemoto et al., 2017)

and Hi-GAL surveys (section 2.4) and contains over 1000 star-forming and pre-stellar

clumps (Elia et al., 2013). The Forgotten Quadrant Survey (Benedettini et al., 2020)

also covers this sector in 12CO and 12CO (J = 1→ 0).

The construction of this extensive catalogue linking solenoidal modes to different Galac-

tic environments and structural properties of the clouds will help shed light on both

the impact of Galactic molecular environments on SFE and the not-so-well understood

transitions between environments characterised by different abundances and densities

of molecular gas (see section 6.2). In particular, the investigation will focus on the

transition at the boundary of the CMZ which marks the onset of higher turbulent pres-

sure and, consequently, a heightened density threshold for star formation (Kruijssen &

Longmore, 2014; Sormani et al., 2019).

8.2 Selected clouds

Investigating the turbulent modes within restricted regions or at different scales within

individual clouds in the various Galactic environments is also advantageous for quanti-

fying the impact of the environment on the clouds’ internal structure (and consequently

their SFE). Of particular importance is the identification of cloud collisions or colliding

neutral flows associated with enhanced compressive turbulence.

This approach has been applied to observations of the star-forming complexes in Orion

B by Orkisz et al. (2017), who showed how the values of the solenoidal fraction increase
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with scale, zooming out from the densest cores. Their method however involves the

introduction of artificial boundaries to trace out the edges of the fields considered, with

the potential addition of steep gradients in the emission (and/or velocity) distribution

in these areas. In this situation, the treatment of boundaries becomes crucial to ensure

that the assumptions that guarantee the applicability of the method developed by Brunt

& Federrath (2014) are satisfied.

The study of turbulent modes within an isolated cloud is also a crucial tool to understand

the role dense gas plays in regulating star formation efficiency (SFE). Dense gas (104 −

106 cm−3, Lada, 2010) is vital to the star formation process (see 1.1 and 1.2) and

higher critical density molecular-line tracers, such as HCN are excellent at probing the

behaviour of the dense gas most closely associated with star formation (Onus et al.,

2018). A recently accepted JCMT proposal for observation of clouds in HCN and HCO+

J = 4 → 3 within the Milky Way is aimed at investigating how the dense-gas SFE

(LIR/LHCN
1) varies across the Milky Way. In particular, one of our objectives is to

test competing ideas that star formation is controlled by the free-fall time (Krumholz

et al., 2012) or a dense-gas threshold (Lada et al., 2012). HCN data are also going to be

used to investigate two individual star-forming regions. The most massive star-forming

region in the Milky Way, W43, which is expected to have a high star formation rate

in the future (due to its massive and dense areas (Motte et al., 2003)), but its current

SFE is consistent with the rest of the Plane clouds (Eden et al., 2012). In contrast, the

W49 region is statistically influencing global star-forming properties (Moore, 2012) and

contains over 5% of the infrared YSO luminosity of the Galaxy (Urquhart et al., 2014a).

By comparing the turbulent modes of dense gas to the rationLIR/LHCN in these two

regions, it is possible to investigate the influence that dense gas has on star formation.

The region W43 (l = 30.8◦, b = 0.0◦) is a precursor of a true mini-starburst system,

while W49 (l = 43.2◦, b = 0.0◦) is one. The HCN kinematics will tell us more about the

role of dense gas as a function of time.

The study of isolated clouds naturally extends to the investigation of the evolution of tur-

bulent modes in artificial samples. In particular, snapshots of magneto-hydrodynamical

simulations of the collapse of turbulent molecular clouds (Teyssier, 2002; Smith et al.,

2020; Izquierdo et al., 2021) may shed light on the evolution of the solenoidal fraction in

1A denser gas tracer will give a different LIR−Lgas relationship from more diffuse gas as the free-fall
time is shorter at higher densities. The ratio of LIR/LHCN will test the dense-gas threshold theory as it
should remain constant as the amount of star formation should scale with the amount of dense gas.
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a controlled environment. Of particular interest is testing the limits of the applicability

of the method in the presence of magnetic fields of increasing strength.

8.3 Scatter and clouds evolution

Finally, equipped with an extensive catalogue of sources spanning the critical Galactic

environments and the information about the distribution of dense gas, a deeper analysis

of the scatter in the SFE that occurs in Figures 6.5 and 6.3 can be performed. As it was

shown in Chapter 6, this feature appears not to be caused by measurement errors but

to arise from physical factors. The scatter is still prominent after deconvolution with

the bolometric temperature, a proxy evolution parameter for the sources embedded in

the clouds. The SFE measure adopted (Lbol/M) is itself an indicator of the evolution

of clouds (measured by their luminosity), which reinforces the assumption that clouds

with similar solenoidal fractions may be at very different stages of their evolution. The

value of the solenoidal fraction assigned to each cloud accounts for the overall modes

of the gas it contains, with substructure contributing over all spatial frequencies. Pro-

foundly different configurations of molecular gas (i.e. different cloud volumes, velocity

distributions, densities, etc.) and may thus result in very similar values of the solenoidal

fraction. Further analysis will focus on quantifying the amplitude of scattering and dis-

entangle (with the aid of high-resolution data, i.e. ALMA, CfA) the factors that may

produce it. This step will consider the amount of dense gas and the properties of the

Galactic environment that hosts the clouds.
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The FellWalker algorithm

The FellWalker (FW) algorithm implements a variation of the watershed paradigm. The

segmantation perfomed by watershed algorithms consists in the identification of regions

of catchment basins (areas of low emission) around local minima in the emission. The

watershed lines that separate the basins constitute the boundaries of the low emission

regions (Roerdink & Meijster, 2001). On the other hand, FW first searches for local

maxima and partitions the dataset through gradient tracing by separating regions that

correspond to the maximum values of the emission. The FW design aims to overcome

the issues arising in algorithms based on the analysis contour levels. This class of

algorithms considers a set of equispaced contours defined by two main parameters: a set

baseline emission and the interval between adjacent levels. For three-dimensional data

and crowded fields, the resulting segmentation becomes very sensitive to the spacing

between contours. Choosing too large an interval might exclude real emission peaks,

while an interval that is too small may cause noise spikes to be selected as true emission

(Brunt et al., 2003; Elia et al., 2007; Smith et al., 2008; Kainulainen et al., 2009; Pineda

et al., 2009). Finding a good compromise on the contour interval thus becomes crucial

to the final decomposition. Moreover, in this framework, the segmentation is solely

determined by those voxels that belong to the contour lines, a small fraction of the

emission values contained in the datacube.

141



Appendix A 142

Figure A.1: Representation of the emission peaks found through paths of steepest
ascent in the FellWalker algorithms. The emission cloud uniquely associated to each
peak is highlighted in color. The ’landscape’ emerging from this picture is reminiscent
of the ’fells’ of Northern England, hence the name ’FellWalker’. Figure reproduced after
Berry (2015).

A.1 Algorithm

The FellWalker strategy determines the paths of the steepest ascent originating at each

data point with an emission value that exceeds a given baseline threshold. It then uses

the set of paths associated with the same peak to identify the cloud in the emission data

array. A path of steepest ascent is a sequence of data points in which each successor is

the nearest neighbour of the predecessor with a higher emission value than any point in

the sequence so far.

A path is constructed by stepping from a voxel to its highest-emission nearest neighbour.

The search is repeated at this new point. The sequence continues until a summit is

reached: no point with higher emission values are found. At this point, FW looks for a

voxel with higher emission in a larger neighbourhood. The size of this neighbourhood

is determined by an input parameter. If a point with a higher emission value is found,

then the path continues from this point. Otherwise, the path terminates. The union of

all paths terminating at the same summit constitutes a cloud in the emission (see Figure

A.1).

If a path meets a point that already belongs to a cloud, the path is terminated and

its points are added to the cloud (see Figure A.2). Thus, given an emission array, FW
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Figure A.2: Two paths of steepest ascent within an artificially generated emission
cloud. The contours show the data values. Pixels above the baseline threshold are
coloured grey, while pixels have values below the threshold. The green pixels form a
path that terminates at the left peak. The blue pixels trace a path that was initiated
after the green path and terminates at the pixel where the two paths cross. Thus
both paths belong to the same cloud. Notice that after the first three pixels, the green
sequence stops at a noise spike to continues at the highest emission value within a
9-by-9 neighbourhood. Figure taken from Berry (2015).

segments it into a number of disjoint subsets (clouds) characterised by single individual

emission peak.

This feature of the FW algorithm makes it particularly well-suited for the identification

of dense gas feature such as clumps associated to emission peaks, and thus the star-

forming structures. The most reliable segmentation results are thus obtained when the

method is used on the emission from isotopologues and transitions that trace denser

regions of the molecular ISM (Roueff et al., 2020).

In practice, the operations described above are recorded in a clump assignment array

(CAA), an array of integer values of the same shape and size as the emission data.

Through masking and matching, voxels with emission values below the baseline are
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labelled −1 in the CAA. Usable voxels are initially flagged with 0. Isolated 0’s are re-

labelled to −1. This step enables the identification and removal of isolated noise spikes

from the final assignment. The core algorithm is then run at each emission voxels with

the label 0 in the CAA. A unique identifier is issued for all voxels corresponding to an

individual cloud. The CAA thus stores the positions and the identifiers of all clouds.

The gradient of the ascent may vary greatly along different paths. Some paths start with

very steep gradients, while in others a substantial ascent only occurs after a long section

of low gradients. A path can be set to begin after a fixed minimum gradient is reached.

The point in the sequence before this mark are discarded and not recorded in CAA. The

new path is set to begin where the average of the gradient over four consecutive points

of the original path exceeds this value (Berry, 2015). Applying this simple algorithm as

it is to plateau regions may result in the extraction of well-distanced small clouds that

differ only by small dips in the emission. This over-segmentation is resolved through

the introduction of a parameter that specifies the minimum dip above which clouds

are considered as separate entities. Clouds separated by ’emission valleys’ below this

value are merged into one single cloud. After merging the raw clouds, smoothing can

be applied to mitigate the effects of the noise at the boundary between adjacent clouds

(see below). This is achieved using a specified number of steps of a cellular automaton

(one by default) to modify the integer values in the CAA. At each step, the cellular

automaton produces a new CAA from the old one. Each entry of the new CAA is set

to the most commonly occurring value in a 3-voxel sided neighbourhood of the point.

The final selection of clouds can be refined by excluding clouds that end at the edges

of the emission array or clouds adjacent to areas of missing voxels. In addition, input

parameters for the minimum peak height and number of voxels can be set. clouds

that do not fulfil these criteria are considered ’unusable’ and do not appear in the final

assignment array and catalogue.

A.2 Input parameters

The FW algorithm is implemented within the function findclumps in the JCMT Starlink

CUPID package. In this function, the emission extraction is regulated by a configuration
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file that defines the values of the input parameters. List of parameters that define the

extraction 1 is reproduced below,

• AllowEdge : If set to a zero value, then clouds are rejected if they touch any edge

of the data array. If non-zero, then such clouds are retained.

• CleanIter: This gives the number of times to apply the cellular automaton which

cleans up the filled clouds.

• FwhmBeam: The FWHM of the instrument beam, in pixels. If the deconvolution

option is chosen in the findclumps function, the cloud widths written to the

output catalogue are reduced (in quadrature) by this amount (see below).

• MaxBad: The maximum fraction of pixels in a cloud that is allowed to be adjacent

to a bad pixel. If the fraction of cloud pixels adjacent to a bad pixel exceeds this

value, the cloud is excluded.

• MinDip: If the dip between two adjacent peaks is less than this value, then the

peaks are considered to be part of the same cloud.

• MinHeight: If the peak value in a cloud is less than this value then the cloud is

not included in the returned list of clouds.

• MaxJump: Defines the extent of the neighbourhood about a local maximum which

is checked for higher pixel values. The neighbourhood checked is square or cube

with a side equal to twice the supplied value, in pixels.

• Noise: Defines the data value below which pixels are considered to be in the noise.

No walk will start from a pixel with a data value less than this value.

• RMS: The global rms noise level in the data. The default value is the value supplied

for parameter rms.

• VeloRes: The velocity resolution of the instrument, in channels. The velocity

width of each cloud written to the output, the catalogue is reduced (in quadrature)

by this amount.

1http://www.starlink.ac.uk/star/docs/sun255.htx/un255ss5.html#Q1-11-37

http://www.starlink.ac.uk/star/docs/sun255.htx/ un255ss5.html#Q1-11-37
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A.3 Output catalogue and cloud assignments

The results of the FW cloud extraction in the Starlink suite are presented both as the

CAA (a mask that matches the size of the input emission array in which unique cloud

identifiers mark the voxels belonging to the individual clouds) and a catalogue that

collects certain positional and geometric characteristic of the clouds. Assuming that

the extraction is performed on a three-dimensional datacube, where the indices 1 and

2 denote the spatial coordinates, and 3 the spectral axis, the basic FW catalogue will

include the following columns,

• Peak1, Peak2, Peak3 : The position of the cloud peak value on each axis.

• Peak: The peak value in the cloud.

• Cen1, Cen2, Cen3: The position of the cloud centroid on each axis.

• Size1, Size2, Size3 : The size of the cloud along each axis (in pixels).

• Sum: The total data sum in the cloud (i.e. the sum of the pixel values within the

cloud)

• Volume: The total number of pixels falling within the cloud.

The size Si of a cloud in the direction i is measured as the rms deviation of each voxel

centre from the cloud centroid C,

Si =

√∑
dix2

i∑
di
− C2, (A.1)

where

C =

∑
dixi∑
di

. (A.2)

The weights di are the data values at the voxels minus an estimate of the background

value in the cloud (Berry, 2015). If cloud data form a Gaussian distribution, this defi-

nition of size coincides with the standard deviation of the distribution.
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If the beam of the telescope is known, findclumps includes a correction option to

remove the instrumental blurring and recover the intrinsic source sizes. When the beam

correction is selected, the size defined in A.1 becomes

Scorr =
√
s2
i − b2, (A.3)

where b is the size of the telescope beam.

Correcting for the beam also affects the peak value in the cloud. This difference increases

as the cloud volume decreases. Assuming the cloud possesses a Gaussian profile and that

the sum of the data values within the corrected cloud equals the corresponding sum in

the uncorrected cloud, the new peak value becomes

peakcorr = dmax

√
size1 · size2 · size3

size1c · size2c · size3c
, (A.4)

where the subscript c refers to the beam corrected sizes, and dmax is the observed peak

values. The full FW catalogue published by Rigby et al. (2019) is derived from these

quantities after assigning distances, excitation temperatures and masses.
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Spectral Clustering

for Interstellar Molecular

Emission Segmentation

The next sections provide a brief introduction to the theory behind the construction

of the Spectral Clustering for Interstellar Molecular Emission Segmentation (SCIMES)

method with a focus on the application of abstract graph theoretical concepts to the

identification of GMCs in PPV datasets. Cloud recognition through SCIMES thus re-

lies on the transitions in the emission structure in the ISM to define objects and it

was shown to provide robust results against changes of the dendrogram-construction

parameters, noise realizations and degraded resolution (Colombo et al., 2015a, 2014,

2019). This approach to the segmentation of molecular emission mitigates the problem

of over-segmentation of the CO emission caused by high resolution, generates physically

oriented cloud catalogues, and has the major advantage of being suitable for application

to data sets with wide spatial dynamic ranges (many resolution elements within a single

cloud) (Jain et al., 1999; Colombo et al., 2015a).

This appendix is based on the description of the SCIMES algorithm published by

Colombo et al. (2015a).
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Figure B.1: Stick-and-balls representation of two graphs (a and b) with vertex sets
(x,y,u,v,w) and (x,y,z,u,v,w) and edge sets (xy, xv, xu ,xw, uv,vw,uw) and (xy, xz,
xu, xw, uv, uz, vz, vw, zw) respectively. The terms edge and vertex originate from
geometric solids: a cube, for instance, has edges and vertices that represent the graph
drawn in panel (c) (West, 2002)

.

B.1 Graphs

This section is a short overview of some general graph theoretical definitions and concepts

to establish the terminology used throughout the exposition of the SCIMES algorithm.

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a relation

that associates with each edge two vertices (not necessarily distinct) called endpoints.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) and

with the same assignment of endpoints as G.

A graph is drawn by placing each vertex at a point and representing each edge as a

curve joining the locations of its endpoints. A graph is called simple when it has no

loops or multiple edges (i.e. edges whose endpoints are equal and edges having the same

endpoints). A simple graph can be specified by its vertex and set edge sets, considering

the latter as a non-ordered set of pairs of vertices. The notation e = uv or e = vu is

used to denote the edge e with endpoints u and v (West, 2002). The vertices u and v

are adjacent and neighbours. The edge e, and vertices u and v are said to be incident.

In a simple graph, the number of edges incident to a vertex constitutes the degree of the

vertex.
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A path is a simple graph whose vertex set can be ordered so that two vertices are

adjacent if and only if they are consecutive in the list. A cycle is a path of edges and

vertices in which each vertex is reachable from itself. A simple graph is complete if its

vertices are pairwise adjacent. A complete graph is an example of connected graph,

a graph in which there is a path between every pair of vertices. Sometimes the name

strongly connected is used to refer to a connected graph, while weakly connected is used

to denote a graph that includes disconnected parts (not every vertex can be reached

through a path starting at any of the other vertices).

B.1.1 Similarity matrix

Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) =

{e1, e2, . . . , en}. The adjacency matrix A(G) of G is defined as the n× n within entries

ai,j that correspond to the number of edges in G with endpoints {vi, vj}.

The adjacency matrix thus fully encodes the graph providing a natural representation

that is well-suited for computational purposes. The adjacency matrix of a simple graph

contains only 0s and 1s. Simple graphs are often used to express relations within a set of

entities (see clustering below). The strength/degree of relation between two vertices can

be represented as a numerical label associated with each edge. Such a graph is known

as a weighted graph. The adjacency matrix of a weighted simple graph can be recast as

a similarity (or affinity) matrix. Each entry si,j of the similarity matrix S correspond to

the weight associated to the edge {vi, vj}. For a weighted graph, the generalised degree

of vertex vi is defined as

di =

n∑
j=1

si,j .

The degree matrix, D, of a simple graph is a diagonal matrix that contains the degrees

di of the vertices vi on the main diagonal.

B.1.2 Laplacian matrix

The Laplacian matrix Q of a graph G is the matrix
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Q = D− S,

where D is the degree matrix of G and S is its similarity matrix. For a weakly connected,

simple, weighted graph, the entry of the Laplacian Qij equals the degree of the vertex

vi when i = j and Qij is the negative weight of the edge ij when vi and vj are adjacent.

The graph Laplacian represents the discrete counterpart of the Laplacian operator ∇2

(i.e. the multivariable second derivative), applied to a graph. Vertices with a higher

degree in a graph (denser nodes on a network) are equivalent to “bumps” in the second

derivative of a continuous function, expressing larger changes in the flux density of the

gradient flow of the function (Arfken & Weber, 2005).

The list of eigenvalues of Q is called the Laplacian spectrum. The Laplacian spectrum

encodes the global properties of the graph it represents. For instance, the number of

connected components of a graph corresponds to the multiplicity of the 0 eigenvalue of

Q (West, 2002). The Laplacian matrix can be recast as a block diagonal matrix through

appropriate permutations so that each connected component of the graph is represented

by a block. Since each of these components (subgraphs) is strongly connected, its graph

Laplacian has only a single eigenvalue equal zero. Since a graph Laplacian is positive-

semidefinite, its second smallest eigenvalue is greater than zero. This eigenvalue is known

as the spectral gap. The spectral gap represents the algebraic connectivity of the graph

and quantifies how well-connected/dense the graph is (the highest the value, the more

connected the graph). The second non-zero eigenvalue eigenvalue is called the Fiedler

value. The Fiedler value approximates the minimum number of graph cuts (edge re-

movals) that are needed to partition the graph into two connected components. The

components of eigenvector corresponding to the Fiedler value (the Fiedler vector) pro-

vide side of the cut each vertex belongs to (spectral graph partitioning).

Often, a symmetric normalized form of the Laplacian is used (Ng et al., 2001):

Lsym = D−
1
2 (D− S)D−

1
2 , (B.1)
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since it produces more general eigenvalues, better related to other graph invariants and

directly connected to the graph’s spectral geometry (Chung, 1997).

B.2 Dendrograms

A dendrogram is a tree diagram that is used to illustrate the hierarchy of structures

within a set of data. A dendrogram is defined as a set of two types of structure: the

branches and the leaves. The branches are ’subtrees’ of the dendrogram. They are, in

turn, characterised by multiple substructures: their own branches and leaves. A leaf

has no substructure, it is simply a node in the dendrogram. The term trunk is used to

refer to a structure that has no parent structure. The ’nested’ nature of branches in a

dendrogram allows hierarchical structures to be adequately represented. In particular,

they can be adopted to provide an abstract representation of the topology of star-forming

complexes by encoding the nested spatial arrangement of three-dimensional contours

(isosurfaces) at given molecular emission levels in PPV datasets.

In a dendrogram, each point can be intuitively interpreted as defining an isosurface at a

fixed emission level. In this context, the leaves of the dendrogram correspond to those

isosurfaces with a single local maximum (see Figure 3.1). Such leaves thus form the top

of the dendrogram. The branches are represented as vertical segments connecting two

leaves, while the horizontal lines mirror the spatial distribution of the emission profile

(Figure 3.2). The length of each branch is proportional to the number of contour levels

over which the emission properties (such as temperature, intensity) 1 icantly (although

the volume of the isosurfaces does change, Rosolowsky et al., 2008).

To discard contamination arising from noise fluctuations, local maxima are determined

through a multi-step elimination process. First, each maximum is identified as the voxel

with the largest emission value within a box, whose size is determined by significant

spatial and spectral resolution elements. Then, the elimination of local maxima proceeds

as illustrated in Figure 3.2.

1The significant properties are chosen according to a connectivity or similarity criterion that is used
to define a GMC as a set of connected voxels.
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• A peak is eliminated if its emission is below a set level, min val. The minimum

emission level is generally chosen to be a multiple of the root mean square of noise

fluctuations(min val= nσrms).

• A local maximum is removed if it belongs to an isosurface with a volume smaller

than a specified number of voxels (min pix).

• A local maximum is removed if the difference between the peak and the value

of the emission at the contour level where it merges with a neighbouring peak

is smaller than a threshold value (min delta). The contour profile that contains

both peaks is counted as a single local maximum.

The contour level at which two isosurfaces merge is called a merger level. At lower

emission levels, all the branches and leaves eventually merge into the trunk of the tree

structure. The rules for peak elimination and isosurface mergers defined above force the

construction of a dendrogram in which only binary mergers are generated (Rosolowsky

et al., 2008).

In SCIMES, the construction of the dendrogram of the molecular emission and the cat-

alogue of the structures it represents rely on the Python dendrogram implementation

ASTRODENDRO2. This package produces a dendrogram following the criteria specified

in the list above once an initial parameterisation is provided. The three input parame-

ters, illustrated in Figure 3.1, specify the emission threshold (min val) below which no

structure is considered in the dendrogram (this is usually, a multiple of the data σrms);

the value (min delta) expressing when a peak is to be counted as an independent leaf

(also set to a multiple the observation sensitivity); and the minimum number of pixels

(min pix) that must be contained with a leaf (usually, a multiple of the observation

beam).

B.3 Dendrogram graph

Dendrograms encode all the information on the topology of molecular emission, however,

alone a dendrogram is not enough to precisely identify molecular clouds in a PPV data

2http://www.dendrograms.org

http://www.dendrograms.org
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set. Cloud identification requires a robust mathematical method that uses the properties

of the data exclusively to select ’cuts’ in the dendrogram’s tree structure.

In turn, these partitions in the dendrogram define independent sets in the data that are

identified as emission clouds. The first step towards this characterisation of the data set

is interpreting the dendrogram as a graph whose vertex set represents the objects on

which to apply spectral clustering and consequently induce cuts on the dendrogram.

A vertex set is constructed by considering the leaves (local maxima) in the dendrogram.

Any two vertices are then connected by an edge representing the highest level isosur-

face that contains both leaves. Since all structures (leaves and branches) are connected

at the bottom of the dendrogram through the trunk, which represents the union of all

the isosurfaces the dendrogram comprises, any vertex is connected to all the others.

Graphs associated with dendrograms (or dendrogram graphs for short) are thus com-

plete, simple (no loops since they are meant to represent the relations between pairs of

leaves exclusively) and undirected (by definition of edge, the relations between leaves

are symmetric).

The edge set associates a structure at a certain hierarchical level to every pair of leaves.

This structure defines ’similarity’ relations between the leaves. The strength of this

association is quantified by assigning weights to the edges. Choosing a good weighting

scheme among the many that are possible is crucial in the application of the spectral

clustering algorithm (see sections B.4 and B.5.3). This method uses the properties of

the similarity matrix (defined in section B.1) alone to find optimal cuts in the graph

without providing information a priori on the final cluster assignments. Also, in the

context of hierarchical structures, the notions of similarity and distance are usually

strictly connected: highly similar objects are likely to be found within a short distance

from one another.

B.4 Similarity matrix

An affinity or similarity relation applied to a dendrogram graph (see section B.3) defines

its similarity matrix (see section B.1). The SCIMES method implements two weighting

schemes that focus on the luminosity and volume of the structures identified by the
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Figure B.2: A dendrogram (a) and the graph associated to it (b). The color of the
edges encodes the strength of the connection between the leaves (the darker the color,
the higher the weight). The weight assigned to an edge between leaves reflect the
degree of hierarchical intensity level, e.g. leaves 1 and 2 exhibit a higher hierarchical
connection than leaves 2 and 3. Since all leaves are connected trough the trunk, the
dendrogram defines a fully connected (complete) graph.

dendrogram. This section explains the criteria and measurements that SCIMES uses to

construct the similarity matrices.

B.4.1 Luminosity

Consider the molecular emission in a PPV data set (coordinates x, y, v), and let Ti be

the brightness temperature at a voxel at position xi, yi and vi and the size of the voxels

be δx× δy× δv. The flux within an isosurface is then given by the sum of the emissions

of the voxels it comprises (Rosolowsky & Leroy, 2006). The flux is defined as

F =
∑
i

Tiδxδyδv.

Assuming a physical distance, d, the luminosity of the isosurface can be derived as

L = Fd2. (B.2)
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B.4.2 Volume

Consider the projection onto the x − y plane of a structure in PPV space. Principal

component analysis (Jolliffe & Cadima, 2016) allows us to find the major and minor axes

of the projection. Introducing a rotation that aligns the major axis of the projected

structure with the x-axis of the coordinate systems and the minor axis with the y-

axis, makes it possible to derive the root mean squared sizes of the structure using the

intensity weighted second moments along the x and y (Rosolowsky et al., 2008; Colombo

et al., 2015a) as

σmaj =

√∑
i(Tixi − x̄)∑

i Ti
, (B.3)

and

σmin =

√∑
i(Tiyi − ȳ)∑

i Ti
, (B.4)

where the notation introduced in sub-section B.4.1 was used and the symbol ’ ¯ ’ denotes

the mean value along an axis.

Similarly, the velocity dispersion in the spectral direction v is

σv =

√∑
i(Tivi − v̄)∑

i Ti
, (B.5)

From B.3 and B.4 the root mean squared size of the structure can be obtained

σr =
√
σmajσmin. (B.6)

The volume of a spherical cloud with the same root mean square size can be calculated

with the radius R = ησr with η = 1.91 (Solomon et al., 1987; Rosolowsky & Leroy, 2006).

Finally, using the second similarity criterion and the velocity dispersion (Rosolowsky &

Leroy, 2006), the volume of the isosurface is given by
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V = πR2σv. (B.7)

B.4.3 On distances

Similarity relations based on luminosity and volume are general criteria and they involve

information on the distance of the sources considered. In Galactic surveys of molecular

emission, however, precise estimations of distances are rarely available. In the absence

of known distances, both the volume and luminosity criterium need to be modified. For

luminosities, equation B.2 is simply set to L = F . A flux criterion is used instead, for

which F has units of K km s−1. While the volume criterion (equation B.7) retains its

form, but is interpreted as measured in arcsec2 km s−1 . A comparison of these similarity

criteria on image segmentation and cloud identification through SCIMES is presented in

(Colombo et al., 2015a) for the Orion Monoceros region. By default SCIMES considers

the “volume” and “luminosity” matrices. However, the user defined affinity matrices can

also be provided to produce a segmentation based on some specific property of the ISM

3. Such matrices must be ordered following the indexing of the the dendrogram leaves.

Multiple similarity matrices can be provided at the same time. In this case, SCIMES

will aggregate them and produce a segmentation based on all of the given criteria.

B.4.4 Weighting schemes

The weight of an edge reflects the properties of the highest emission level at which adja-

cent leaves merge. This merger level corresponds to a brightness temperature isosurface.

By definition of emission dendrogram (section B.2), the properties of an isosurface are

largely unchanged within a branch of the dendrogram and they usually depend on the

contour level continuously. Continuity is lost at the merging points of branches. The

merger surface, in fact, contains more emission than any of its individual branches. In

general, the size of the isosurfaces is inversely proportional to their hierarchical level.

Thus, the weight of an edge will also be inversely proportional to the chosen properties

of the emission of its corresponding merger surface. In the case of our similarity criteria,

smaller volumes and lower luminosities/fluxes have heavier weights. Formally, let i and j

3SCIMES works best with monotonic and block diagonal matrices. Non-monotonic and strictly con-
tinuous similarity criteria could produce errors in the clustering process and the resulting segmentation
(Colombo et al., 2015a)
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be two vertices of the dendrogram graph, and Lij and Vij the luminosity and the volume

of the isosurface corresponding to the edge ij. Then the weights assigned to ij are

WL
ij =

1

Lij
,

and

W V
ij =

1

Vij
.

By definition of edge in the dendrogram graph, the similarity matrix is symmetric.

B.4.5 Rescaling

The strength of a similarity relation on the dendrogram graph defines the local neigh-

bourhood relations of each leaf. The stronger the relation, the closer the neighbour. In

order for the similarity matrix to enhance this feature, it is often smoothed with a kernel

function. Gaussian kernels are often used in this practice:

sij = exp

(
−
w2
ij

2σ2
s

)
, (B.8)

where sij is the rescaled version of the weight wij on the edge ij. The smoothing param-

eter σs controls the scaling of the size of the local neighborhood of the leaves i and j. In

other words, σs determines how quickly the similarity between two leaves declines with

distance. The value of σs affects the resulting clustering partition of the dendrogram:

choosing too small a value for σs produces a similarity matrix where only the weights of

directly neighboring leaves are significant, on the other hand, a large σs blends neigh-

borhoods and results in under-clustering (Colombo et al., 2015a).

Fischer & Poland (2004) show that it is possible to estimate an appropriate value of σs

by constructing a “similarity histogram” and considering its modes. Such a histogram

is simply the result of binning the weights of the dendrogram graph. If the leaves of
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the dendrogram graph can be collected in clusters according to the chosen similarity

criteria, then the histogram has multiple modes. In particular, the first mode occurs

at the average similarity (weight) within clusters, while the other nodes represent the

similarities between clusters. A smoothing value that lies between the first two nodes,

is then expected to strengthen the weights between intercluster leaves while weaken-

ing those of intracluster leaves. For instance, choosing the median value between the

first two modes ensures both under-clustering and over-clustering the data set is avoided.

As a rule of thumb for spectral clustering, a good input similarity matrix has a block-

diagonal form (obtained after multiple permutation of its rows and columns) with each

block having similar entries on its boundary (Fischer & Poland, 2005; von Luxburg,

2007; Colombo et al., 2015a).

B.4.6 Matrix aggregation

Shi & Malik (2000) show that different similarity criteria can be combined into a single

similarity matrix. This operation is known as matrix aggregation and is applied by the

authors to a color image segmentation problem. Following Shi’s method, the SCIMES

algorithm considers the volume and luminosity matrices after rescaling with the appro-

priate kernel, and ’aggregate’ them through element-wise multiplication. The resulting

product and the volume and luminosity matrices serve as the main input for the spectral

clustering algorithm (Shi & Malik, 2000).

B.4.7 Observations

By default, luminosity and volume are adopted as clustering criteria in SCIMES. Both

luminosity and volume are good indicators of similarity in emission structures. They

describe physical properties (emissivity, velocity, and morphology) of molecular emission

structures. Thus, they allow for the identification structure and sub-structure in both

spatial and spectral directions through the differences in emission. In addition, volume

and luminosity increase monotonically (and discontinuously) as the level of dendrogram

hierarchy decreases (isosurfaces increase in volume and consequently their flux rises).

Discontinuities in luminosity and volume are especially apparent when two surfaces with
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similar characteristics merge. The hierarchy levels described by the dendrogram itself

are monotonic in terms of the number of isolate isosurfaces (the higher the level, the

greater their number). These features make the volume and luminosity criteria result

in well-behaved, block diagonal (after row and column permutation) similarity matri-

ces. The analysis of this form of the similarity matrix makes it possible to estimate the

approximate number of final clusters (see section B.5).

B.5 The SCIMES algorithm

Equipped with a re-scaled similarity matrix that embodies the strength of the relations

between the leaves of the dendrogram graph, a clustering method to partition the den-

drogram can now be introduced. The intuition of clustering is to partition a set of data

points into subsets whose elements have a comparable degree of similarity according to

their similarity relations. In the case of a dendrogram graph, a partition in which the

edges between the leaves in the same cluster have higher weights than the edges that

connect them to leaves in other clusters is searched for. The cuts in the dendrogram

defined by these clusters of leaves are then identified in the molecular emission data as

individual, independent objects, the giant molecular clouds.

Spectral clustering uses the eigenvectors of Laplacian derived from the similarity matrix

(see section B.1) to translate the clustering problem from the space of n × n matrices

to a lower- dimensional metric space (spectral embedding). In this new space, the

initial similarity relations are identified with Euclidean distances. A standard k-means

clustering algorithm can thus be applied to these new sets of data points. The resulting

clustering scheme provides an optimal partition of the dendrogram graph based on the

number of clusters provided as input. Spectral clustering is particularly efficient on

complete, weighted, undirected, and simple graphs (von Luxburg, 2007).

B.5.1 Algorithm (spectral clustering)

Consider a dendrogram graph G with vertex set V (G), and its similarity matrix S (the

aggregate matrix of the volume and luminosity criteria),
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• Input: a similarity matrix S (n× n) and an estimated number of clusters k.

1. Construct the degree matrix D and normalized symmetric Laplacian L.

2. Spectral embedding: compute the set of the k largest eigenvalues4 of L,

consider their corresponding eigenvectors (u1, u2, . . . , uk).

3. Construct the eigenvector matrix: a matrix U ∈ Rn×k, k < n, whose

columns are the eigenvectors of L.

4. Consider the set of n vectors (yi)i=1,2,...,n ∈ Rk that correspond to the rows

of U.

5. Apply k-means algorithm to collect the points (y1, y2, . . . , yn) into the clus-

ters C1, C2, . . . , Ck.

• Output: A1, A2, . . . Ak ⊂ V (G), such that
⋃k
i=1 = V (G) and Ai ∩Aj = ∅ for any i

and j. If yi ∈ Cl then vi ∈ Al.

The success of spectral clustering is greatly due to its absence of assumptions on the

shape of the clusters it generates (as opposed to k-means, for which the resulting clusters

are always convex hulls, see section B.5.4). Spectral clustering can thus be applied to

very general problems and complex distribution of data points. In addition, spectral

clustering is efficient on very large data sets as long as the input similarity matrix is

sparse (von Luxburg, 2007). For a given similarity matrix, the algorithm solves a linear

problem, without the risk of getting stuck in local minima or requiring several runs with

different initializations.

B.5.2 The silhouette coefficient

In order to apply spectral clustering to the Laplacian of the dendrogram graph, the

number of clusters into which the algorithm is to arrange the data must be provided.

Such an input parameter is common to many clustering algorithms. Different methods

have been devised to estimate its best possible value from theoretical and statistical

analysis of the data (Tibshirani et al., 2001; Still & Bialek, 2004). In the particular case

of spectral clustering, the number of clusters k can be either evaluated from the analysis

the spectrum of eigenvectors of the Laplacian (Zelnik-Manor & Perona, 2004) or by

4Eigenvalues with multiplicity greater than 1 are all included in the set.
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assessing the quality of clustering through special measures. The latter method is based

on measuring the ratio of the similarities (weights) of the intra- and intercluster data

points. Such a measure can be directly evaluated from the similarity matrix (Rosseeuw,

1987).

Consider an object/point i in a set objects with a similarity relation, the silhouette

coefficient of i is defined as

sil(i) =
b(i)− a(i)

max(a(i)− b(i))
, (B.9)

where a(i) is the average similarity between the point i and all other points in the same

cluster and b(i) is the average similarity between i and all the points in the next nearest

cluster. For a point i, sil(i) ∈ [−1, 1]. The value of sil(i) contains information on the

nature of the clustering, in particular,

• sil(i) = −1 for incorrect clustering,

• sil(i) = 0 for overlapping clusters,

• sil(i) = 1 for high intracluster similarity and low intercluster similarity.

Thus, increasingly positive values of sil(i) = 1 indicate denser and better-separated

clusters. The average of value sil(i) over all data points provides a measure of how well

the data have been partitioned. Since the average silhouette depends on k in a non-

monotonic way, optimization techniques such as genetic algorithms are usually employed

to determine the number of clusters that maximize the silhouette (Lleti et al., 2004).

In SCIMES, an initial value for k is thus guessed after rescaling the similarity matrix

via an appropriate kernel function (see subsection B.4.5). A suitable σs enhances the

similarity relations and the blocks with the heaviest weight can be isolated as related to

the final clustering configuration 5 An iterative optimisation is then run from this initial

k to maximise the average silhouette. In SCIMES, silhouette optimisation is handled by

the Python SCIKIT–LEARN package6.

5This operation is similar to using the Fiedler vector (the eigenvector of the Laplacian that corre-
sponds to the second smallest eigenvalue) to determine the algebraic connectivity of a graph (Fiedler,
1973).

6http://scikit-learn.org/stable/modules/clustering

http://scikit-learn.org/stable/modules/clustering
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B.5.3 Spectral embedding

The core of the spectral clustering algorithm is spectral embedding, a transformation

that performs a dimension reduction by mapping the data in the dendrogram graph

into a ’cluster’ vector space (Rk). This operation translates the description of similarity

between graph vertices into Euclidean distances in the new metric space (see Figure

B.3). In Rk, points corresponding to highly similar leaves are grouped together, making

clustering patterns based on similarity easily identifiable. Spectral embedding relies on

properties of the graph Laplacian. The elements of the eigenvectors corresponding to the

first k largest eigenvalues provide a k-dimensional description of the block structure of

the Laplacian and the k components of the graph with the highest algebraic connectivity.

B.5.4 k-means algorithm

In a vector space with Euclidean metric, the sets of data points are easily grouped

together with common clustering algorithms. SCIMES uses k-means (MacQueen, Mac-

Queen) in Rk to find the configurations of k clusters of the data points that maximise the

intracluster distance and minimise the intercluster distance. This algorithm is known

for its fast convergence (Arthur & Vassilvitskii, Arthur & Vassilvitskii).

Given an estimated number of clusters k, the algorithm

• selects k means or centroids randomly,

• associates each data point to the nearest centroid (Euclidean distance)

• calculates the position of the centroids of these clusters,

• iterates the last two steps until convergence is reached (the new centroids are

exactly in the positions of the ones found before).

This model considers spherical clusters that are separable so that the centroids converge

towards a clusters’ center upon iteration. For the assignment of a point to the center of

the nearest cluster, clusters are expected to be of similar size. The result of the k-means

algorithm can be interpreted as the Voronoid cells of the cluster centroids, with data
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Figure B.3: Representation of spectral embedding. The initial distribution of objects
is depicted in (a), where highly similar objects have the same color and shape. Panel
(b) shows the graph Laplacian for the distribution in (a). Choosing a good similarity
criterion for clustering, produces, after an index permutation, a block diagonal graph
Laplacian. In the Laplacian, pairs of objects of highly similar objects are colored
black, while grey is used for lower similarity objects. The degrees of the graph vertices
are located on the main diagonal. The eigenvectors corresponding to the largest k
eigenvalues are arranged in a matrix in (c). The estimated number of clusters (silhouette
maximization) defines the number eigenvectors considered and the dimension of the
’clustering’ space (Rk). Here k = 3 is considered and every vertex/leaf vi of the initial
dendrogram graph is represented as a point in R3 with coordinates (u1()i), u2(i), u3(i))
as shown in (d). In the embedded clustering space, the initial distribution is remapped
to well-separated collections of objects. This new distribution can be clustered using k-
means and Euclidean distances. Picture and explanation after (Colombo et al., 2015a).

points being separated halfway between clusters’ centroids (Aurenhammer, 1991). This

tessellation may lead to non-optimal clustering (see Figure B.4 for an example produced

with ELKI7) with points of a cluster that have no nearest neighbours belonging to

that cluster. In PPV space, such leaves are collected into sparse clusters without any

neighbours between constituent objects. These leaves are eliminated from the final

labelling of clusters.

7https://elki-project.github.io/tutorial/same-size_k_means

https://elki-project.github.io/tutorial/same-size_k_means
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Figure B.4: Clustering of an artificial dataset (’the mouse’) with the k-means algo-
rithm. As k-means tend to produce clusters of similar sizes, some data points have no
nearest neighbours belonging to that cluster. Data visualisation generated with ELKI.

B.6 Final cloud identification

The final clusters selected through spectral clustering correspond to branches of the

dendro- gram that contain only leaves in a single cluster. These branches make up a

partition of the dendrogram. Similar leaves that do not form isolated compact clusters

in PPV space are collected in sparse clusters. These sets of objects (with no neigh-

bouring emission peaks) are considered as noise artefacts therefore removed from the

final labelling of the clusters. The remaining clusters are emission structures that were

already considered by the original dendrogram algorithm. They represent the relevant

independent molecular clouds embedded in the emission. Since rescaling the similarity

matrix enhances the clustering of leaves above a threshold value of luminosity and vol-

ume, the final selection of clouds presents similar properties (in terms of luminosity and

volume), but with clouds located at different hierarchical levels of the emission structure

(Colombo et al., 2015a).
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B.7 Cluster and leaf assignments

The main output of the SCIMES algorithm, consists of a list of dendrogram indices

corresponding to the relevant structures within the emission dendrogram. Recall that

these structures are already encoded within the dendrogram and their hierarchy can

be accessed through the ASTRODENDRO class methods8. In addition, the package

Astrodendro collects the physical and geometric properties and in the dendrogram PPV

catalog. In addition, the get mask method of Astrodendro is called to construct an

assignment cube of the clouds. Pixels within each cloud are uniquely labelled with a

number corresponding to the index of the structure in the dendrogram. The method

automatically generates cubes for identified cluster, leaf , and trunk structures which

are saved as fits images.

B.8 Cloud catalogue

The properties of the structures resulting from the SCIMES segmentation are collected in

a catalogue constructed through the ASTRODENDRO PPV statitics. The entries in the

catalogue are listed below as they are defined in the ASTRODENDRO documentation

website9.

major sigma : Major axis of the projection onto the position-position plane, computed

from the intensity weighted second moment in direction of greatest elongation in

the PP plane.

minor sigma : Minor axis of the projection onto the position-position plane, computed

from the intensity weighted second moment in direction of greatest elongation in

the PP plane.

area ellipse : The area of the ellipse defined by the second moments, where the semi-

major and semi-minor axes used are the half-width at half-maximum derived from

the moments.

area exact : The exact area of the structure on the sky.

8http://www.dendrograms.org
9http://www.dendrograms.org

http://www.dendrograms.org
http://www.dendrograms.org


Appendix C 167

radius : Geometric mean of major sigma and minor sigma (in pixels).

radius arcsec : The radius converted to arcsec.

position angle :The position angle between the maximum and minimum sky coor-

dinate in degrees (counter-clockwise from the positive x axis. Notice that this

positive x axis in pixel coordinates corresponds the the negative x axis in conven-

tional astronomy images).

x cen : The mean position of the structure in the x direction.

y cen : The mean position of the structure in the y direction.

v cen : The mean velocity of the structure.

v rms : Intensity-weighted second moment of velocity.

flux The integrated flux of the structure, in Jy (note that this does not include any kind

of background subtraction, and is just a plain sum of the values in the structure,

converted to Jy).

sig kms : The velocity dispersion calculated as the product between v rms and the size

of the velocity channels.

volume : The approximate volume of the cloud estimated from area ellipse and

sig kms.
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Analysis of turbulence

C.1 Preliminaries

This appendix explains a general method to link the power of a field defined on a three-

dimensional space to the power of its two-dimensional projection, obtained by averaging

along one coordinate axis.

Consider a physical field F : R3 → R3 defined over a cubic region of side L. The spatial

average of 〈F〉 of F over Ω ∈ R3 is then defined as

〈F〉 =

∫
Ω F (x) Ω∫

Ω dΩ
. (C.1)

The variance σ2
F is

σ2
F = 〈F2〉 − 〈F〉2. (C.2)

Introduce the density field ρ : R3 → R and the velocity field v : R3 → R3, both defined

over a cubic region V ∈ R3 with side L. Define the ρq-weighted velocity dispersion, σ2
q ,

on the volume V as

σ2
q =

∫
V ρ

qv2 dV∫
V ρ

q dV
=
〈ρqv2〉
〈ρq〉

, (C.3)

168
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where the last equality is obtained by multiplying and dividing by 1/V and using the

definition of spatial average.

In general 〈ρv2〉/〈ρ2〉 6= 〈ρv2〉/〈ρ〉. Equality holds only for a uniform density field or

when the density and velocity fields are not statistically correlated. Since none of these

conditions is usually satisfied in the ISM, statistical correction factors are required. A

method that will help determine the correlation between the density and velocity field

will now be discussed. This method provides an estimate of the velocity dispersion

weighted by various powers of ρ. Introducing the notation ρ0 = 〈ρ〉 and ξ = ρ/ρ0,

equation C.3 becomes

σ2
q =

1
V

∫
V ξ

qv2 dV
1
V

∫
V ρ

q dV
=
〈ρqv2〉
〈ξq〉

. (C.4)

In terms of the probability distribution functions Pv(v) and Pξ(ξ) of v and ξ, the volume

integrals in C.4 can be recast as

σ2
q =

∫∞
0

∫∞
−∞ Pξ(ξ)Pv(v)ξqv2 dξdv∫∞

0

∫∞
−∞ Pξ(ξ)Pv(v)ξq dξdv

(C.5)

If velocity and density are correlated, Pv(v) can be cast as an implicit function of ξ, the

density-dependent velocity dispersion is defined as

σ2
v(ξ) =

∫ ∞
−∞

Pv(v)v2 dv, (C.6)

and equation C.5 can be recast as

σ2
q =

∫∞
0 Pξ(ξ)ξ

qσ2
v(ξ) dξ∫∞

0 Pξ(ξ)ξq dξ
. (C.7)

Assume that

σ2
v(ξ) = h(ξ)σ2

00, (C.8)

where σ2
00 is a constant and
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h(ξ) = ξ−ε, (C.9)

with ε being a small positive constant that makes densities are inversely proportional to

velocity dispersion.

Substituting into equation C.6 gives

ρ2
q =

∫∞
0 Pξ(ξ)ξ

q−εσ2
00 dξ∫∞

0 Pξ(ξ)ξq dξ
=
〈ξq−ε〉σ2

0

〈ξq〉〈ξ−ε〉
, (C.10)

with

σ2
0 = σ2

00〈ξ−ε〉 (C.11)

being the non-weighted (q = 0) velocity dispersion.

If velocity dispersion and density are not statistically correlated, ε = 0, equation C.10

yields

σ2
q = σ2

0, ∀ q. (C.12)

Combining equation C.3 and C.10 (without their normalizing factors), it can be seen

that for all q’s, the moments 〈ξqv2〉(q) are linked to 〈ξq〉(q) through a scaling factor and

a translation

〈ξqv2〉 =
〈ξq−ε〉σ2

0

〈ξ−ε〉
. (C.13)

Thus, equation C.13 can be used to convert between velocity dispersions weighted by

different powers of ρ. However, 〈ξq〉(q) cannot be obtained directly from observations.

To obviate the lack of observational quantities, an analytical form of Pξ(ξ) can be con-

sidered. Under the assumption of isothermal turbulence, a lognormal probability density

function can be chosen (Vàzquez-Semadeni, 1994; Padoan et al., 1997; Federrath et al.,

2008b)
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〈ξq〉 = exp
[
q〈ln(ξ)〉+

1

2
q2σ2

ln(ξ)

]
. (C.14)

Normalising the field ξ (〈ξ〉 = 1⇒ 〈ln(ξ)〉 = −11
2σ

2
ln(ξ)) and remembering that σ2

ln(ξ) =

ln(1 + σ2
ξ ) = ln(〈ξ2〉), gives

〈ξq〉 = exp
[1
2
σ2
ln(ξ)(q

2 − q)
]

= 〈ξ2〉
1
2

(q2−q). (C.15)

With this result, equation C.13 becomes

〈ξqv2〉 = 〈ξ2〉
1
2

(q2−q−2qε)σ2
0, (C.16)

by which equation C.7 can be re-written as

σ2
q =
〈ξqv2〉
ξq

= 〈ξ2〉−qεσ2
0. (C.17)

Finally, the ratio gmn of the velocity dispersions can be defined

gmn =
σ2
m

σ2
n

=
〈ρmv2〉/〈ρm〉
〈ρnv2〉/〈ρn〉

= 〈ξ2〉(n−m)ε. (C.18)

This expression provides a relation for the conversion between different velocity disper-

sions weighted by powers of ρ,

g21 =
σ2

2

σ2
1

=
〈ρ2v2〉/〈ρ2〉
〈ρv2〉/〈ρ〉

= 〈ξ2〉−ε. (C.19)

Finally, the decomposition of a field into its solenoidal and compressive components is

discussed. Let F : V → R be a C2 vector field defined on a bounded domain V ∈ R3

enclosed by the surface S. According to the Fundamental Theorem of Vector Calculus

(Helmholtz Decomposition Theorem, Helmholtz (1858)), F, can be decomposed into the

sum

F(x) = F⊥(x) + F‖(x), (C.20)
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where F⊥ is a purely solenoidal (divergence-free, incompressible, or transversal) compo-

nent

∇ · F⊥ = 0 (C.21)

given by

F⊥ = ∇×A,

with

A(r) =
1

4π

∫
V

∇′ × F(r′)

|r− r′|
dV ′ − 1

4π

∮
S

n̂′ × F(r′)

|r− r′|
dS′

and F‖ a purely compressible (curl-free, irrotational, conservative, or longitudinal)

∇× F‖ = 0 (C.22)

given by

F‖ = −∇Φ,

where

Φ(r) =
1

4π

∫
V

∇′ · F(r′)

| r− r′ |
dV ′ − 1

4π

∮
S

n̂′ · F(r′)

| r− r′ |
dS′

and ∇′ is the nabla operator with respect to r′.

The decomposition introduced in equation C.20 is unique, up to an addictive (vector)

constant. Intuitively, one can add linear terms to Φ and A that contribute to F in the

form of vector constants, e.g.
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Φ→ Φ + z,

gives

∇Φ→ ∇Φ + ez,

and

A→ A +
1

2
(yex − xey)

which yields

∇×A→ ∇×A− ez.

The vector constants in F⊥ and F‖ then cancel out in the decomposition C.20. The field

F could also possess a component of the form

FL = ∇φ, (C.23)

where φ is a scalar harmonic field

∇2φ = 0. (C.24)

The Laplacian equation C.24 implies that FL is divergence-free. In addition, FL is curl-

free since it is defined as the gradient of a scalar field. Since φ is a harmonic field, the

mean value theorem holds: for any x in the domain of φ(x), the average value of φ of the

surface of a ball of arbitrary radius centred at x equals φ(x). It follows that Φ attains

no local extrema within the boundary of its domain. Thus, the boundary conditions of

Φ decide its properties and FL (= ∇Φ) represents domain-wide smooth gradients, which

are not accounted for by F⊥ and F‖. For fields with periodic boundary conditions, the

choice of boundary and the absence of local extrema guarantee that ΦL is constant and
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thus FL = 0. Thus providing a unique Helmholtz decomposition Brunt & Federrath

(2014).

For the decomposition of real physical fields in the ISM (such as the momentum density,

see below), it is often desirable to consider isolated clouds in which the field decays

smoothly to zero at the surface of the cloud. For these clouds, the boundary conditions

do not become problematic. The best candidates for the decomposition of density fields

are isolated molecular clouds since it is more challenging to ensure the absence of large-

scale gradients in the more extensively distributed atomic gas. In particular, a density-

weighted velocity field (see below) is continuous as it transitions from molecular to

atomic gas 1.

C.2 General Method

This section presents a general method to link the power of a field defined on a three-

dimensional space to the power of its two-dimensional projection, obtained by averaging

along one coordinate axis.

Let’s start with F defined over the cubic volume V . The Fourier series of F(r) over the

interval [−L/2, L/2] is given by

F̃(k) =

∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2
F(r)e−

2πik·r
L dr, (C.25)

where is r the position vector (x, y, z) and k = (kx, ky, kz) ∈ Z3 is the vector of spatial

frequencies.

The inverse transform F̃ of F can thus be written as

F(r) =
1

L3

∞∑
kx=−∞

∞∑
ky=−∞

∞∑
kz=−∞

F̃(k)e
2πik·r
L . (C.26)

Now consider the projection of F onto the xy-plane, Fp : R2 → R constructed through

the average of F along the z-direction:

1The restriction to the molecular component is a limitation of modelling the ISM as a single fluid.
A full description of the ISM is also challenged by the accessibility of observable regions using trace
molecules
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Fp(x, y) =
1

L

∫ L/2

−L/2
F(x, y, z)dz. (C.27)

The transform and inverse transform of Fp are

F̃(k2) =

∫ L/2

−L/2

∫ L/2

−L/2
Fp(r2)e−

2πik2·r2
L dr2 (C.28)

and

Fp(r2) =
1

L2

∞∑
kx=−∞

∞∑
ky=−∞

F̃p(k2)e
2πik2·r2

L , (C.29)

where r2 = (x, y) and k2 = (kx, ky).

Substituting equation C.26 in equation C.27 yields

Fp(x, y) =
1

L4

∫ L/2

−L/2
dz

∞∑
kx=−∞

∞∑
ky=−∞

∞∑
kz=−∞

F̃p(k)e
2πik·r
L . (C.30)

Remembering that the integral

1

L

∫ L/2

−L/2
e

2πikz ·z
L dz =


1 when kz = 0,

0 when kz 6= 0,

(C.31)

equation C.30 becomes

Fp(x, y) =
1

L3

∞∑
kx=−∞

∞∑
ky=−∞

F̃(kx, ky, kz = 0)e
2πik·r
L . (C.32)

Comparing the inverse transform of Fp, equation C.29, with equation C.32 shows that

F̃p(kx, ky) =
1

L
F̃(kx, ky, kz = 0), (C.33)

the Fourier series of the projected field Fp is proportional to F̃ when the plane kz = 0

is considered.
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The definition of the power spectrum of F as the squared modulus of its Fourier trans-

form, P(k) = F̃(k)F̃∗(k), suggests a relation similar to equation C.33 between P(k)

and Pp(k), the power spectrum of the projected field. For this relation to hold, how-

ever, it must be assumed both that the power spectrum defined on the plane kz = 0 be

statistically representative of the full power spectrum and it can be fully described as a

function of the wave vector k = |k| with no angular dependence (isotropy).

Let

〈F〉 =
1

L3

∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2
F(x, y, z) dx dy dz (C.34)

and

〈F2〉 =
1

L3

∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2
F2(x, y, z) dx dy dz (C.35)

be the mean value and the mean square value (spatial averages) of F, respectively. In

terms of the Fourier transform C.25, the mean values become

〈F〉 =
1

L3
F̃(0, 0, 0). (C.36)

The variance σ2 of F is then given by

σ2 = 〈F2〉 − 〈F〉2. (C.37)

Invoking the Parseval’s theorem (Rayleigh’s identity) for discrete Fourier transforms 2

∫ L/2

−L/2
X(t)2 dt =

1

L

∞∑
k=−∞

| X̃(k) |2=
1

L

∞∑
k=−∞

X̃(k)X̃∗(k) (C.38)

equation C.35 becomes

2Loosely speaking, the Parseval’s theorem states that the power (inner product of a function with
itself) computed on its original domain equals the power of its transform in Fourier space (Plancherel,
1910).
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〈F2〉 =
1

L6

∞∑
kx=−∞

∞∑
ky=−∞

∞∑
kz=−∞

F̃F̃∗ =
1

L6

∞∑
kx=−∞

∞∑
ky=−∞

∞∑
kz=−∞

P. (C.39)

The definition of variance C.37 can thus be restated as

σ2 =
1

L6

 ∞∑
kx=−∞

∞∑
ky=−∞

∞∑
kz=−∞

P

− F̃2(0, 0, 0)

 , (C.40)

where the relation C.36 was used. Similarly, the variance of the projected field F2 is

simply

σ2
p =

1

L4

 ∞∑
kx=−∞

∞∑
ky=−∞

F∗pF̃p

− F̃2
p(0, 0)

 , (C.41)

and by the relation expressed by equation C.33

σ2
p =

1

L6

 ∞∑
kx=−∞

∞∑
ky=−∞

F̃kz=0F̃
∗
kz=0 − F̃2(0, 0, 0)


=

1

L6

 ∞∑
kx=−∞

∞∑
ky=−∞

Pkz=0 − F̃2(0, 0, 0)


,

(C.42)

where the abbreviation Xkz=0 = X(kx, ky, kz = 0) on F, its complex conjugate F∗ and

its spectral power P was used.

One can now construct the ratio between the variances of the observed field and the

original field

R =
σ2
p

σ2
=

((∑∞
kx=−∞

∑∞
ky=−∞Pkz=0

)
− F̃2(0, 0, 0)

)
((∑∞

kx=−∞
∑∞

ky=−∞
∑∞

kz=−∞P
)
− F̃2(0, 0, 0)

) . (C.43)
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One can easily adapt the results found so far to those cases in which a physical field

is represented as a discrete series of measurements at fixed grid points. Data collected

from observed or simulated quantities are usually in this form.

To discretise the expressions above, a scale ratio, λ is introduced. This parameter is

defined for each side of a data cube (parallelepiped) or rectangular image as the ratio of

the side’s size to the pixel size. Thus a cube (with equal sides) has a size of λ3 pixels,

while a square image is λ2 pixels. The spatial frequencies at which the Fourier transform

are evaluated become k = −λ/2+1,−λ/2+2, ...,−2,−1, 0, 1, 2..., λ/2−1, λ/2 along each

axis.

One can now derive the spectral power P of the three-dimensional field F through its

observed two-dimensional projection (up to a constant of proportionality). Consider the

projected field Fp, calculate its power spectrum Fp(kx, ky) and construct and from it

construct the azimuthally averaged power spectrum Pp(k)(k), where k = sqrtk2
x + k2

y is

the wave-vector. Under the assumption of isotropy, the following relation holds

Pkz=0(k) ∝ Pp(k) (C.44)

This relation allows to re-write C.43 as

R =

((∑λ/2
kx=−λ/2+1

∑λ/2
ky=−λ/2+1 Pp

)
−Pp(0)

)
((∑λ/2

kx=−λ/2+1

∑λ/2
ky=−λ/2+1

∑λ/2
kz=−λ/2+1 Pp

)
−Pp(0)

) , (C.45)

or in a more compact notation

R =

∑2D,λ
k 6=0 Pp(k)∑3D,λ
k 6=0 Pp(k)

, (C.46)

where

2D,λ∑
k 6=0

Pp(k) =

(
λ/2∑

kx=−λ/2+1

λ/2∑
ky=−λ/2+1

Pp(k)

)
−Pp(0) (C.47)

and
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3D,λ∑
k 6=0

Pp(k) =
( λ/2∑
kx=−λ/2+1

λ/2∑
ky=−λ/2+1

λ/2∑
ky=−λ/2+1

Pp(k)

)
−Pp(0) (C.48)

As only the power spectrum of the projected field appear in C.43, once R is calculated,

one can derive the variance of the full three-dimensional field F as σ2 = σ2
p/R. Also

notice that since the scale ratio λ is a finite quantity, the observed variance (the projected

field) and the estimated variance of the full field are lower limits to the actual variances

that would be obtained in the limit λ→∞. citeBrunt2010 discuss this point in detail.

The general method to derive the variance of the full field presented above is appli-

cable if and only if the projected field is the line-of-sight-averaged projection defined

in equation C.27. When the observed field is the line-of-sight integral of the original

field (column density derived from a density field, for instance), the method can still be

applied provided that Fp is expressed in normalised units. This form of Fp is obtained

by dividing Fp by its mean value. Normalised units for density fields are discussed in

section 2.6 of Brunt et al. (2010) and an example is given below.

C.3 Density fields, an example

Let ρ be a three-dimensional density field, and N be its column density. Since both ρ

and N are positive everywhere over their domain definition, one can express them in

normalised units, obtained by dividing them by their mean values (ρ0 and N0). These

units comply with F and its projection Fp. Without this normalisation, the column

density, defined as the line-of-sight averaged projection of ρ, is scaled by the size of

the domain side L, as it is the integral of ρ, rather its the average. In observations

where column densities are usually obtained through optically thin spectral lines or

extinction maps, L is required to convert the column density to the projected mean

density. However, this quantity is not always known, especially when accurate distances

are not available.

With the variance of the normalised column density σ2
N/N0

and the angular-averaged

power spectrum PN/N0
(k), equation C.43 returns the variance of the normalised density

field σ2
ρ/ρ0

,
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σ2
ρ/ρ0

= σ2
N/N0

(∑∞
kx=−∞

∑∞
ky=−∞

∑∞
kz=−∞ f(k)

)
− f(0)(∑∞

kx=−∞
∑∞

ky=−∞ f(k)
)
− f(0)

(C.49)

Observe that the distance does not enter C.49 for the calculation of σ2
ρ/ρ0

. However, for

observations at a fixed angular resolution, GMCs at different distances refer to different

physical scales introducing a dependence on distance in the calculation. In principle,

the reasoning that leads to equation C.49 holds for any positive-valued field such as

temperature (Brunt et al., 2010).

C.4 Solenoidal and Compressive modes

Assume that F is C2 and consider its Helmholtz decomposition. Taking the Fourier

transform of F, it can be shown that in frequency space equivalent relations hold Stewart

(2011)

F̃(k) = F̃⊥(k) + F̃‖(k), (C.50)

k · F̃⊥ = 0, (C.51)

k× F̃‖ = 0. (C.52)

The constructions above justify the the use of the “‖” and “⊥” subscripts to refer to the

curl-free component and the the divergence-free component of F. At each point k, by

equation C.51, F̃⊥ is perpendicular (transversal) to k. While equation C.52 indicates

that F̃‖ is parallel to k.

If one can choose a frame of reference in which 〈F〉 = 0, then the variance of F (equation

C.37) becomes equivalent to the spatial average of 〈F2〉,

σ2 = 〈F2〉. (C.53)
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Assuming that the domain of F is a cube of size L, by the linearity of the Fourier

transform and by Parseval’s theorem can write

σ2
F⊥

=
1

L6

∞∑
kx=−∞

∞∑
ky=−∞

∞∑
kz=−∞

F̃⊥F̃∗⊥, (C.54)

and

σ2
F‖

=
1

L6

∞∑
kx=−∞

∞∑
ky=−∞

∞∑
kz=−∞

F̃‖F̃
∗
‖. (C.55)

C.5 Projections

Suppose that only information about a component of the field F is known, and, as

is often the case in observational data (spectral lines, for instance), this component is

directed along the line of sight. If one takes the line of sight to match the z-axis, the

observed component breaks into its longitudinal and transversal parts as

Fz = Fz⊥ + Fz‖. (C.56)

Transforming into Fourier space, Fzẑ becomes F̃zk̂z, thus Fz translates into the compo-

nent of the transformed field F̃ as a along the kz-direction.

Now consider equations C.51 and C.52 and the conditions they impose on the compo-

nents of transformed field, F̃⊥ and F̃‖. For the dot product k · F̃⊥ = kxF̃x⊥ + kyF̃y⊥ +

kzF̃z⊥ to vanish, F̃z⊥ must equal 0 along the kz-axis (kx = ky = 0). On the (kz = 0)-

plane, the condition k× F̃‖ = 0 becomes

kyF̃z‖k̂x − kxF̃z‖k̂y = 0, (C.57)

implying that

F̃z‖ = 0, (C.58)
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thus Fz = Fz⊥ everywhere on this plane.

Assuming that F⊥ and F‖ are isotropic fields, i.e., their power spectrum can be entirely

described as a function of the wave vector (see section C.2), then

P⊥ = F̃⊥ · F̃∗⊥ = F 2
⊥0f⊥(k) (C.59)

and

P‖ = F̃‖ · F̃∗‖ = F 2
‖0f‖(k) (C.60)

with f⊥(k) and f‖(k) being function that describe the power distributions and F 2
⊥0 and

F 2
‖0 scaling factors.

Observe that the power distributions of the components of these fields are not isotropic

themselves, but their structure follows a predictable pattern:

F̃z‖F̃
∗
z‖ = F̃‖ · F̃∗‖

k2
z

k2
, (C.61)

F̃z⊥F̃
∗
z⊥ = F̃⊥ · F̃∗⊥

k2
x + k2

y

2k2
, (C.62)

F̃x‖F̃
∗
x‖ = F̃‖ · F̃∗‖

k2
x

k2
, (C.63)

F̃x⊥F̃
∗
x⊥ = F̃⊥ · F̃∗⊥

k2
y + k2

z

2k2
, (C.64)

F̃y‖F̃
∗
y‖ = F̃‖ · F̃∗‖

k2
y

k2
(C.65)

and

F̃y⊥F̃
∗
y⊥ = F̃⊥ · F̃∗⊥

k2
x + k2

z

2k2
. (C.66)
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Isotropy is restored if F̃⊥ · F̃∗⊥ = 2F̃‖ · F̃∗‖, ∀ k.

In general, the power spectra of observed fields are not fully isotropic. In certain cases,

one can assume statistical isotropy with values of the power oscillating around those of

a fully isotropic power spectrum. If statistical isotropy alone is considered, by construc-

tion, F̃z‖F̃
∗
z‖ = 0 must still hold everywhere on the (kz = 0)-plane, thus

F̃zF̃
∗
z = F̃z⊥F̃

∗
z⊥ =

1

2
F̃⊥ · F̃∗⊥, (C.67)

on this plan.

When Fz is spatially averaged along the line-of-sight (z-direction),

Fz,p(x, y) =
1

L

∫ L/2

−L/2
Fz(x, y, z) dz, (C.68)

as equation C.33 shows, the Fourier transform of the projection becomes

F̃z,p(kx, ky) =
1

L
F̃z(kx, ky, kz = 0). (C.69)

Thus, the Fourier transform of Fz,p is proportional to a the (kz = 0)-cut of the trans-

formed F̃ of the original field F. By equation C.58, it follows that only the transversal

part of the full field F determines the projected z-component Fz,p.

Writing out the power spectrum of Fz,p,

Pz,p(kx, ky) = F̃z,pF̃
∗
z,p(kx, ky) =

1

L2
F̃z⊥F̃

∗
z⊥(kx, ky, kz = 0) =

1

L2
F̃⊥ · F̃∗⊥(kx, ky, kz = 0),

(C.70)

(where equations C.67 and C.69 were used), one sees that Pz,p is obtained from the

power spectrum of the transverse component of the full field alone (provided it satisfies

equations C.61 - C.66). Again, using Parceval’ theorem, one can introduce the variance

of Fz,p in terms of its power spectrum,
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σ2
Fz,p =

1

L4

∞∑
kx=−∞

∞∑
ky=−∞

F̃z,pF̃
∗
z,p =

1

L6

∞∑
kx=−∞

∞∑
ky=−∞

F̃⊥ · F̃∗⊥
2

, (C.71)

where the second equality is obtained via equation C.70.

By Parseval’s theorem and equation C.62, the variance of Fz,⊥ in the three-dimensional

domain of F can be expressed as

σ2
Fz⊥

=
1

L6

∞∑
kx=−∞

∞∑
ky=−∞

∞∑
kz=−∞

F̃z,pF̃
∗
z,p =

1

L6

∞∑
kx=−∞

∞∑
ky=−∞

F̃⊥ · F̃∗⊥
(k2
x + k2

y)

2k2
. (C.72)

Assuming that equation C.59 holds, there is a way to compute the variance of Fz⊥ over

the three-dimensional domain of the field from the variance of the observed component

Fz,p:

σ2
Fz⊥

σ2
Fz,p

=

∑∞
kx=−∞

∑∞
ky=−∞

∑∞
kz=−∞ f⊥(k)k

2
x+k2x
k2∑∞

kx=−∞
∑∞

ky=−∞ f⊥(k)
. (C.73)

Notice that the scaling factor appearing in equation C.59 is not essential for the ratio

above; however, it should be noted that this factor must be considered in the calculation

of the absolute variance σ2
Fz⊥

.

For an isotropic field,

σ2
Fz⊥

=
1

3
σ2
F⊥

so that one can write

σ2
Fz⊥

=
2

3
σ2
Fz,p (C.74)

If either the total z-variance σ2
Fz

or the ratio of projected-to-total z-variance,σ2
Fz,p

/σ2
Fz

is known, one can compute the fractional power in transversal modes as



Appendix C 185

σ2
Fz⊥

σ2
Fz

=
σ2
Fz,p

σ2
Fz

∑∞
kx=−∞

∑∞
ky=−∞

∑∞
kz=−∞ f⊥(k)k

2
x+k2x
k2∑∞

kx=−∞
∑∞

ky=−∞ f⊥(k)

=
2

3

σ2
Fz,p

σ2
Fz

∑∞
kx=−∞

∑∞
ky=−∞

∑∞
kz=−∞ f⊥(k)∑∞

kx=−∞
∑∞

ky=−∞ f⊥(k)
.

(C.75)

In turn, this ratio equals the fractional power in transversal modes of the original field

F

σ2
F⊥

σ2
Fz

≈
σ2
Fz⊥

σ2
Fz

. (C.76)

Thus, calculating the fraction of power in transversal modes requires no information on

the longitudinal power spectrum.

C.6 Momentum density and the solendoidal fraction

Consider spectral line observations of the ISM. The change dI of the spectral line inten-

sity provided by an optically thin isothermal medium with uniform excitation of density

ρ along an infinitesimal path dz at position z is

dI(v) = eρΦ(v − vz(z))dz, (C.77)

where e is a constant. The normalised profile function Φ is generally expressed as a

Gaussian

Φ(v − vz) =
1√

2πσ2
t,i

exp

(
−(v − vz)2

2σ2
t,i

)
, (C.78)

where the dispersion caused by thermal and instrumental line broadening is encoded

by σt,i. For molecular emission, σt,i is usually negligible in comparison to the overall

velocity dispersion. In this scenario, Φ(v − vz) can be approximated by a Dirac delta

function δ(v − vz) and equation C.79 describes the distribution of intensity weighted

line-of-sight velocities (Falgarone et al., 1994; Ostriker et al., 2001).
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Define now the spectral line intensity observed along a line of sight across a distribution

of medium of length L as the integrated intensity,

I(x, y, z) = e

∫ L/2

−L/2
ρ(x, y, z)Φ(v − vz(x, y, z)) dz. (C.79)

With the approximation Φ(v−vz) = δ(v−vz), and calculate the first moment of velocity

as

W1 =

∫ ∞
−∞

I(x, y, z)v dz

=

∫ ∞
−∞

e dv

∫ L/2

−L/2
ρ(x, y, z)δ(v − vz)v dz

= e

∫ L/2

−L/2
ρ(x, y, z)vz(x, y, z) dz

= e

∫ L/2

−L/2
pz(x, y, z) dz

= eLpz,p,

(C.80)

where pz = ρvz was used to denote the component of the ”momemtum” p = ρv along

the z-axis, while

pz,p(x, y) =
1

L

∫ L/2

−L/2
pz(, x, z) dz (C.81)

is its line-of-sight projection.

Thus from the definition of the first observable moment of velocity, it follows that the

density momentum field satisfies (up to constants) the ’spatial projection’ condition of

C.27. Notice that a velocity field alone would not satisfy this condition unless it is

restricted to uniform densities (see Brunt et al. (2010) and Brunt & Federrath (2014)).

Considering this, one can now examine equation C.75 substituting Fz and Fz,p with pz

and pz,p respectively. To evaluate the ratio between the power in the transversal modes

of the line-of-sight (z-) momentum density (variance of pz⊥) and the power in the full

line-of-sight component (variance of pz) through equation C.75, one needs to work out

the ratio σ2
pz,p/σ

2
pz (relative fraction of z-momentum power projected on the observation
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field) and the angle averaged transversal power spectrum f⊥(k). The latter can be

derived directly by considering the power spectrum’s angular average of W1 (equation

C.80). The constants e and L could be obtained from the size of the observation field;

however, it is more convenient to normalise them out.

The zeroth velocity moment is

W0(x, y) =

∫ ∞
−∞

I(x, y, v) dv = eLρp(x, y) = eN (C.82)

with

ρp(x, y) =
1

L

∫ L/2

−L/2
ρ(x, y, z) dz (C.83)

being the column density along the line of sight.

Now considering the spatial averages of W0 and W1 estimated in the frame of reference

of W0 (〈W1〉 = 0 ⇐⇒ 〈pz,p〉 = 0), one sees that

〈W 2
1 〉

〈W 2
0 〉

=
σ2
pz,p

〈ρ2
p〉
. (C.84)

To determine the ratio σ2
pz,p/σ

2
pz needed for the solution of equation C.75, one notices

that as σ2
pz,p/〈ρ

2
p〉 is the projected counterpart of σ2

pz/〈ρ
2〉. Thus, if an estimate of

σ2
pz/〈ρ

2〉 was available, one could construct the ratio

σ2
pz,p/〈ρ

2
p〉

σ2
pz〈/ρ2〉

=
σ2
pz,p

σ2
pz

〈ρ2〉
〈ρ2
p〉

=
σ2
pz,p

σ2
pz

〈(ρ/ρ0)2〉
〈(N/N0)2〉

. (C.85)

where the column density N , the mean column density N0 = ρ0/L and the mean volume

density ρ0 were introduced with

ρp = N/L = ρ0(N/ρ0L) = ρ0(N/N0).

Consider the terms in the nominator and denominator of C.89. Using the spatial average

of the (squared) zeroth moment, 〈(N/N0)2〉 becomes
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〈(
N

N0

)2〉
=
〈N2〉
〈N0〉2

=
〈W 2

0 〉
〈W0〉2

. (C.86)

Observing that for the variances of ρ/ρ0 and N/N0 are related to their spatial averages

as

σ2
ρ/ρ0

= 〈(ρ/ρ0)2〉 − 1,

σ2
N/N0

= 〈(N/N0)2〉 − 1,

one recovers 〈(ρ/ρ0)2〉 through equation C.49. In this case, the angular averaged power

spectrum f(k) refers to the column density. This quantity can be derived from the power

spectrum of the integrated intensity W̃0W̃
∗
0 (up to a negligible normalisation constant).

With these results, equation C.85 can be recast as

σ2
pz,p

σ2
pz

=

[
σ2
pz,p

〈ρ2
p〉

][
〈(N/N0)2〉

(ρ/ρ0)2

][
σ2
p.z

〈ρ2〉

]−1

(C.87)

However, at this stage there is an alternative form of σ2
pz,p/σ

2
pz but an estimate of σ2

pz/〈ρ
2〉

is still missing. Writing this quantity out in full, using the definitions of variance and

spatial average, one has

σ2
p.z

〈ρ2〉
=

1
L3

∫ L/2
−L/2 dx

∫ L/2
−L/2 dy

∫ L/2
−L/2 p

2
z dz

1
L3

∫ L/2
−L/2 dx

∫ L/2
−L/2 dy

∫ L/2
−L/2 ρ

2 dz
(C.88)

Recalling the definition of momentum density, one can interpret equation C.88 as the

velocity dispersion in the z-direction weighted by ρ2:

σ2
p.z

〈ρ〉
=

1
L3

∫ L/2
−L/2 dx

∫ L/2
−L/2 dy

∫ L/2
−L/2 ρ

2v2
z dz

1
L3

∫ L/2
−L/2 dx

∫ L/2
−L/2 dy

∫ L/2
−L/2 ρ

2 dz
=
〈ρ2v2

z〉
〈ρ2〉

. (C.89)

From the datacube, one can access the z-velocity dispersion weighted with ρ. This is

attained through the second velocity moment
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W2(x, y) =

∫ ∞
−∞

I(x, y, z)v2 dv

=

∫ ∞
−∞

e dv

∫ L/2

−L/2
ρ(x, y, z)δ(v − vz)v2 dz

= e

∫ L/2

−L/2

ρ(x, y, z)v2
z(x, y, z) dz,

(C.90)

and the ratio of the spatial averages of W2 and W0

〈W2〉
〈W0〉

=

e
L3

∫ L/2
−L/2 dx

∫ L/2
−L/2 dy

∫ L/2
−L/2 ρ

2v2
z dz

e
L3

∫ L/2
−L/2 dx

∫ L/2
−L/2 dy

∫ L/2
−L/2 ρ dz

=
〈ρ2v2

z〉
〈ρ〉

. (C.91)

Equipped with equation C.19, the measurable quantity 〈ρv
2
z〉
〈ρ〉 can be linked to 〈ρ

2v2z〉
〈ρ2〉 as

σ2
pz

〈ρ2〉
=
〈ρ2v2

z〉
〈ρ2〉

= g21
〈ρv2

z〉
〈ρ〉

. (C.92)

where the correction factor g21 is of order unity and ε (equation C.19) is a small, positive

constant (Brunt & Federrath (2014) show through numerical simulations that ε depends

on the Mach number). Thus it has been shown that one can compute 〈ρv2
z〉/〈ρ〉 using

the ratio 〈W2〉/〈W0〉.

Using this result in equation C.87 gives

σ2
pz,p

σ2
pz

=

[
σ2
pz,p

〈ρ2
p]〉

][
〈(N/N0)2〉

(ρ/ρ0)2

][
g21
〈ρv2

z〉
〈ρ〉

]−1

, (C.93)

so that the solenoidal fraction, the relative fraction of z-momentum power in transver-

sal modes (to the power in the full projected component) is

R =
σ2
pz⊥

σ2
pz

=
σ2
pz,p

σ2
pz

∑kmax
kx=−kmax

∑kmax
ky=−kmax

∑kmax
kz=−kmax

f⊥(k)
k2x+k2y
k2∑kmax

kx=−kmax

∑kmax
ky=−kmax

f⊥(k)
. (C.94)
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Here kmax is the greatest wavenumber observed in the kx-, ky-, and kz-directions and

f⊥(k) the angular average of the projected momentum power spectrum. For isotropic

power spectra, equation C.94 yields

σ2
p⊥

σ2
p

≈
σ2
pz⊥

σ2
pz

. (C.95)

C.7 Summary

One can study the momentum density constructed as p = ρv (see section C.6) from

the volume density ρ and velocity v fields. From the line-of-sight projected transversal

component of the momentum density, one can derive the relative ratio of power possessed

by the solenoidal modes of the field (Helmholtz decomposition):

R =
σ2
p⊥

σ2
p

. (C.96)

R is referred to as the solenoidal fraction of the momentum density.

Assuming that the emission lines from 13CO are optically thin and that emissivity only

depends on the 13CO molecular density, position-position-velocity data can be inter-

preted as a density-weighted velocity field. In this framework, the spectrum observed at

a line of sight is the projection of the emission from the distribution of molecules along

the line of sight, moving at different velocities. In a position-position-velocity datacube,

velocity-weighted moments and their power spectra are available, directly measurable

quantities. Via equations C.93, C.94, and C.95 the solenoidal fraction can be expressed

with respect to these observables,

R =

[
〈W 2

1 〉
〈W 2

0 〉

][
〈W 2

0 〉/〈W0〉2

1 +A(〈W 2
0 〉2 − 2))

][
g21
〈W2〉
〈W0〉

]−1

, (C.97)

with

A =

(∑kmax
kx=−kmax

∑kmax
ky=−kmax

∑kmax
kz=−kmax

f(k)
)
− f(0)(∑kmax

kx=−kmax

∑kmax
ky=−kmax

f(k)
)
− f(0)

, (C.98)
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B =

∑kmax
kx=−kmax

∑kmax
ky=−kmax

∑kmax
kz=−kmax

f⊥(k)
k2x+k2y
k2∑kmax

kx=−kmax

∑kmax
ky=−kmax

f⊥(k)
, (C.99)

and

f(k) =
1

2πk

∫ 2π

0
W̃0(k,Φ)W̃0(k,Φ)∗ dΦ, (C.100)

f(k) =
1

2πk

∫ 2π

0
W̃1(k,Φ)W̃1(k,Φ)∗ dΦ, (C.101)

being the angular average of the power spectra of the zeroth and first velocity moments

of the line intensities, respectively.

The application of this method to segmented emission maps requires the clouds in the

dataset to satisfy the isotropy and boundary conditions discussed above. The condition

of statistical isotropy allows makes it possible to consider the projected two-dimensional

averages to estimate the properties of the three-dimensional field. Individual filaments

or clouds with strong anisotropy (due to strong magnetic field at low Mach numbers for

instance Brunt & Federrath (2014)) must therefore be rejected. To avoid problematic

boundary conditions, the momentum density is required to decay to zero smoothly at

the cloud boundary. This condition assures a unique Helmholtz decomposition of the

field into a solenoidal and compressible component and is necessary for the Fourier trans-

form of the moments to be well-behaved (actual observed fields do not present periodic

boundary conditions!). For segmentations in which the signal reaches the edges of the

observation field, apodisation is necessary. Brunt et al. (2010) proved that their method

is less accurate for fields that display steep power spectra. Such power distributions are

sensitive to low spatial frequencies, which are often affected by uncertain statistics in

the observation dataset (data affected by noise or the size of the telescope beam).
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Random distance assignments

We construct three random distance assignment that consist of applying a distance to

each SCIMES cloud by drawing the value

• from the set of unique distances that were assigned to SCIMES sources,

• from set of (equispaced) distances between the minimum and maximum value of

the SCIMES distance assignments, distance assigned to SCIMES sources,

• from probability distribution (weights) generated from original distribution. of

distances

The distances distributions derived from these assignment are compared to that of the

original assignment (4) in Figure F.10.

Figure D.2 depicts the distribution of masses associated with the three random distance

assignments.

The distributions of masses obtained through the random distance assignments are vi-

sually similar to the distribution generated with the original distances (see 4.2). These

similarities suggest that, when a large sample of sources is considered, the distributions

of quantities that depend on the cloud masses are not going to significantly impacted

different distance assignment methods (see Chapter 4). Potentially, this observation

may extend on all quantities that depend directly on distances.
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Figure D.1: Distribution of the three sets of random distances compared to the
assigned distances to SCIMES clouds in CHIMPS (SCIMES). From top to bottom: the
first set (Random 1) corresponds to distances drawn from the set of unique distances
that were assigned to SCIMES sources The second set (Random 2) is drawn from set
of (equispaced) distances between the minimum and maximum value of the SCIMES
distance. Finally the set Random 3 is drawn from the distribution of distances generated
from original SCIMES assignments.
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Figure D.2: Distribution of masses e estimated from the random distances sets (see
figure F.10 compared to the masses corresponding to the original SCIMES distance
assignments.
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The FINDBACK filter

Findback is an application within the Starlink Kernel APplication PAckage (KAPPA)

that estimates background noise in a datacube by removing small-scale structure1. We

use Findback to subtract the background noise from the CHIMPS emission cubes. This

step is crucial to both emission segmentation and the calculation of the solenoidal frac-

tion (see Chapter 5).

The Findback filter consists of three subsequent searches in a cubic neighbourhood of

each voxel. The size of the neighbourhood is specified as input and defines the scale of

the smallest features not to be considered in the background estimate.

• First pass: The neighbourhood is searched for the minimum emission value. The

filter then assigns it to the central voxel in the box.

• Second pass: The operation is repeated on the filtered data, this time replacing

the central value with the maximum emission in the neighbourhood.

• Third pass: On the filtered data, the central value is substituted with the mean

value in the neighbourhood.

The final mean-value surface provides an estimate of the ’lower envelope’ of the data.

This surface may present unnaturally sharp edges and it often follows the lower end

of negative noise spikes. The latter problem leads to the underestimation of the true

1http://starlink.eao.hawaii.edu/docs/sun255.htx/sun255ss4.htm
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background of the data. To remove sharp edges, the lower envelope is smoothed by re-

applying the last step of the filter (mean-filter: substitution by neighbourhood’s mean

value).

Underestimation of the background and the fit of the lower envelope are addressed in

several steps. First, the difference between the original data values and the background

data is estimated in regions far from any bright source. Voxels with residuals that are

larger than three times the RMS noise are given a ’bad’ label. The good residuals

are smoothed with a mean filter, and the bad ones are assigned values through the

interpolation of the nearest good values. The residuals are extrapolated and extended

to bright regions. They can thus be used as a background correction factor over the

entire map. This correction surface is finally added onto the initial background estimate

to obtain the final background that is then subtracted to the initial datacube.



Appendix F

FW distance assignments in

SCIMES clouds

The ranges of the distances of the FW clouds contained in each SCIMES cloud in

CHIMPS are plotted below.

Figure F.1: FW distances assignments within SCIMES clouds in region 0.
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Figure F.2: FW distances assignments within SCIMES clouds in region 1.

Figure F.3: FW distances assignments within SCIMES clouds in region 2.
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Figure F.4: FW distances assignments within SCIMES clouds in region 3.

Figure F.5: FW distances assignments within SCIMES clouds in region 4.
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Figure F.6: FW distances assignments within SCIMES clouds in region 5.

Figure F.7: FW distances assignments within SCIMES clouds in region 6.
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Figure F.8: FW distances assignments within SCIMES clouds in region 7.

Figure F.9: FW distances assignments within SCIMES clouds in region 8.
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Figure F.10: FW distances assignments within SCIMES clouds in region 9.
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