2 risk compared to a formulation of trifloxystrobin and tebuconazole 3 4 Gabriela Carvalho Andrade^{1a}, Guilherme Thomaz Pereira Brancini^{1a}, Flávia Renata Abe¹, 5 Danielle Palma de Oliveira^{1,2}, Heloiza Diniz Nicolella³, Denise Crispim Tavares³, André 6 Fernando Ditondo Micas⁴, Eduardo Angelino Savazzi⁴, Geraldo José Silva-Junior⁵, Mark 7 Wainwright⁶, Gilberto Úbida Leite Braga^{1*} 8 9 10 11 ¹University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 12 13 14040-903 Ribeirão Preto, SP, Brazil ²National Institute for Alternative Technologies of Detection, Toxicological Evaluation 14 and Removal of Micropollutants and Radioactivies (INCT-DATREM), São Paulo State 15 16 University (UNESP), Institute of Chemistry, 14800-060, Araraquara, SP, Brazil ³University of Franca, Laboratory of Mutagenesis, 14404-600, Franca, SP, Brazil 17 ⁴Companhia Ambiental do Estado de São Paulo (CETESB), Divisão de Laboratório de 18 Ribeirão Preto, 14096-350, Ribeirão Preto, SP, Brazil 19 20 ⁵Fund for Citrus Protection, Fundecitrus, 14807-040, Araraguara, SP, Brazil 21 ⁶School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, L3 3AF, Liverpool, UK 22 23 24 25 26 27 ^aThese authors contributed equally to this work *Corresponding author: University of São Paulo, School of Pharmaceutical Sciences of 28 Ribeirão Preto, 14040-903, Ribeirão Preto, SP, Brazil. Tel: +55 16 33154723 29 30 e-mail address: gbraga@fcfrp.usp.br

Phenothiazinium dyes for photodynamic treatment present lower environmental

1

ABSTRACT

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

The widespread use of conventional chemical antifungal agents has led to worldwide concern regarding the selection of resistant isolates. In this scenario, antimicrobial photodynamic treatment (APDT) has emerged as a promising alternative to overcome this issue. The technique is based on the use of a photosensitizer (PS) and light in the presence of molecular oxygen. Under these conditions, the PS generates reactive oxygen species which damage the biomolecules of the target organism leading to cell death. The great potential of APDT against plant-pathogenic fungi has already been reported both in vitro and in planta, indicating this control measure has the potential to be widely used in crop plants. However, there is a lack of studies on environmental risk with ecotoxicological assessment of PSs used in APDT. Therefore, this study aimed to evaluate the environmental toxicity of four phenothiazinium PSs: i) methylene blue (MB), ii) new methylene blue N (NMBN), iii) toluidine blue O (TBO), and iv) dimethylmethylene blue (DMMB) and also of the commercial antifungal NATIVO®, a mixture of trifloxystrobin and tebuconazole. The experiments were performed with Daphnia similis neonates and zebrafish embryos. Our results showed that the PSs tested had different levels of toxicity, with MB being the less toxic and DMMB being the most. Nonetheless, the environmental toxicity of these PSs were lower when compared to that of NATIVO[®]. Furthermore, estimates of bioconcentration and of biotransformation half-life indicated that the PSs are environmentally safer than NATIVO[®]. Taken together, our results show that the toxicity associated with phenothiazinium PSs would not constitute an impediment to their use in APDT. Therefore, APDT is a promising approach to control plant-pathogenic fungi with reduced risk for selecting resistant isolates and lower environmental impacts when compared to commonly used antifungal agents.

Keywords: ecotoxicity; fungicides; photodynamic treatment; photosensitizers; pollutants

1. INTRODUCTION

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Pathogen resistance to antimicrobials is a major threat to global health (Perlin et al., 2017). As a consequence, there is an ongoing and persistent search for new antimicrobials that could overcome such resistance. In this scenario, antimicrobial photodynamic treatment (APDT) has been presented as a promising alternative to control pathogens (Sabino et al., 2020; Wainwright et al., 2017). APDT is a therapy based on the use of three main components, namely a photosensitizer (PS), light, and molecular oxygen. The technique consists of applying a PS that preferentially binds to target cells followed by illumination with light of the appropriate wavelength. This will result in an excited PS molecule which will then react with molecular oxygen via either electron or energy transfer, generating reactive oxygen species (ROS) that will inactivate the target pathogen with little to no damage to the host (Castano et al., 2004; Marasini et al., 2021). The efficiency of APDT has been shown for a variety of fungi and bacteria (Wainwright et al., 2017). Reproductive fungal structures, such as conidia, are easily inactivated by APDT (de Menezes et al., 2014a, 2014b, 2016; Gonzales et al., 2017; Tonani et al., 2018), which also overcomes multidrug-resistance in bacteria (Hamblin, 2016; Sabino et al., 2020). Even Deinococcus radiodurans, a bacterium known for its remarkable tolerance to abiotic stressors and its potent antioxidant system, cannot withstand the damages caused by APDT (Nitzan and Ashkenazi, 1999). The emergence of resistance to APDT itself has been a topic of some studies (Kashef and Hamblin, 2017). The production of ROS that will nonspecifically react with and damage proteins, lipids, and nucleic acids leaves little room for known resistance mechanisms (Sabino et al., 2020; Marasini et al., 2021). However, it is important to mention that some recent studies have reported the emergence of tolerance to APDT in bacteria under specific conditions of sublethal treatment (Pieranski et al., 2020; Rapacka-Zdonczyk et al., 2019).

Several uses and applications of APDT have been proposed due to its efficiency against pathogens and its safety to the host, from treatment of mycoses to food decontamination (do Prado-Silva et al., 2022; Wainwright et al., 2017). One promising application of APDT is to control phytopathogenic fungi in crop fields (de Menezes et al., 2014a, 2014b, 2016; Gonzales et al., 2017). An important plant disease affecting Citrus species and resulting in extensive agricultural and economical losses is post-bloom fruit drop (PFD), which is caused by the fungus Colletotrichum abscissum (Dowling et al., 2020; Gonçalves et al., 2021; Peres et al., 2005). PFD may decrease sweet orange production by as much as 80% (Silva-Junior et al., 2014). Control of PFD is achieved via preventive spraying of antifungal agents during the blossoming period (Gama et al., 2020; Silva-Junior et al., 2014). However, only a small number of antifungals are approved for this use. For instance, in Brazil, only strobilurin and triazole antifungals are allowed on sweet orange commercial orchards (Silva-Junior et al., 2014). This reduced variety of antifungal agents associated with their constant use presents the risk of selecting resistant strains, making PFD control less efficient (Dowling et al., 2020). Therefore, control of PFD in crop plants in an important example of a field that would benefit from APDT.

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

However, this use of APDT will invariably lead to contamination of soil and water with PSs. Therefore, the assessment of PS toxicity becomes a necessary step in order to safely use APDT in both crops and for food decontamination. Regulatory agencies require that compounds be tested with organisms from different trophic levels, such as producers and consumers, that also occupy distinct ecological niches (Bori *et al.*, 2016; Rila and Eisentraeger, 2003). In general, initial toxicology studies are performed in cultured cells. Although cell assays are useful in providing important background information regarding the molecules tested, they may not replace more in-depth experiments with

environmentally relevant organisms, such as microcrustaceans and fish (Bori *et al.*, 2016; Heger *et al.*, 2018; Rocha *et al.*, 2017).

Therefore, this work presents a toxicological assessment of four phenothiazinium PSs: i) methylene blue, ii) new methylene blue N, iii) toluidine blue O, and iv) dimethylmethylene blue and of the commercial product NATIVO®, a commonly used antifungal agent composed by a mixture of 10% trifloxystrobin and 20% tebuconazole. Our assessment comprised toxicity to the microcrustacean *Daphnia similis* and to embryos of zebrafish (*Danio rerio*) to better understand how the use of APDT may impact the environment when compared to conventional antifungal agents.

2. MATERIALS AND METHODS

2.1 Phenothiazinium photosensitizers

The four phenothiazinium PSs used in the present work were: methylene blue (MB, Cat# M9140), new methylene blue N (NMBN, Cat# 202096), toluidine blue O (TBO, Cat# T3260), and dimethylmethylene blue (DMMB, Cat# 341088) (Supplementary Figure 1A), all purchased from Sigma. Concentrations used varied for each experiment type and are specified below.

2.2 NATIVO®

The fungicides belonging the groups of quinone outside inhibitors (QoI) and demethylation inhibitors (DMI) have been the most used for disease control in different crops (Oliver & Hewitt, 2014). The commercial antifungal agent NATIVO® (Bayer CropScience) is a 2:1 mixture of a DMI, trifloxystrobin (100 g L⁻¹), and of a QoI, tebuconazole (200 g L⁻¹) (Supplementary Figure 1B). The original product was diluted to obtain final concentrations of trifloxystrobin and tebuconazole of 40 and 80 mg L⁻¹,

respectively. This dilution corresponds to the concentration applied in the field for the control of phytopathogenic fungi. Then, a series of 1:10 dilutions (10⁻¹ to 10⁻⁸) were performed, always in distilled water. Dilutions used in each experiment varied and are specified below.

2.3 Ecotoxicity assessments with *Daphnia similis*

The assays with *D. similis* were performed according to the ABNT NBR 12713 guidelines for aquatic ecotoxicology assessment ("Ecotoxicologia aquática – Toxicidade aguda – Método de ensaio com *Daphnia* spp", 2016). *D. similis* was kept in 1-L containers at 20 ± 2 °C with a maximum of 25 organisms per container. Diffuse illumination was provided in 12:12h photoperiod with an irradiance of 1000 lux. The organisms were fed with the alga *Pseudokirchneriella subcaptata* (3×10^6 cells/organism). Culture medium was replaced every two weeks and the organisms were maintained for up to 28 days.

Ecotoxicological assessment was performed with *D. similis* neonates aged between 6 and 24 h and obtained via parthenogenesis. Each treatment consisted of four replicate groups with five organisms each. Exposure to the PS was performed at 20 ± 2 °C for 48 h. No feeding was allowed during the experiment. Concentrations of PS used in these experiments were 0.3125, 0.625, 1.25, 2.5, and 5 μ M, which were chosen based on a preliminary experiment to assess the concentration interval and specific points. The effect of light on toxicity was assessed by performing the 48-h incubation under a 12:12 h light:dark photoperiod. Then, the numbers of mobile and immobile individuals were counted. The half-maximum effective concentration (EC₅₀) was calculated by the trimmed Spearman-Karber method based on data from three independent experiments.

2.4 Ecotoxicity assessment with *Danio rerio* embryos

The experiments with zebrafish were approved by the institution's Animal Ethics Committee (Protocol No. 18.1.496.60.1). Adult organisms were maintained and used following the guidelines of the test No. 236 of the Organisation for Economic Cooperation and Development (OECD) Guidelines for the Testing of Chemicals (OECD, 2013) in a ZEBTEC system (Tecniplast, Italy) at 26 ± 1 °C with a 14:10h (light:dark) photoperiod. Fish were fed twice a day with Tetramin® (Tetra GmbH, Germany). Eggs were obtained by placing adult fish at a 2:1 male:female ratio to allow for breeding. Thirty minutes after laying, eggs were collected, transferred to a petri dish and washed with distilled water. Only eggs that had achieved the stage of blastula were used for the experiments.

Fertilized eggs were exposed to PS in increasing concentrations (1, 10, 25, 50, and $100~\mu\text{M}$) and to five successive 10-fold dilutions of the commercial antifungal NATIVO® starting at 40 mg L⁻¹ trifloxystrobin and 80 mg L⁻¹ tebuconazole. Exposure was performed in 24-well plates at 26 ± 1 °C for 144 h. A total of 20 embryos was used for each condition. Development was assessed 24, 48, 72, 96, 120, and 144 h after exposure had commenced. A stereo microscope (SMZ-800, Nikon) coupled to a digital camera was used to evaluate parameters pertaining to lethality (egg coagulation, malformation, non-detachment of the embryo tail, and absence of heart beat), to sub-lethality (eye development, spontaneous coiling, pigmentation, and edema formation), and to teratogenicity (heart and tail malformations, non-inflation of the swim bladder, pericardial edema, yolk sac edema, and skeletal deformities). To assess the effects of light on toxicity, 24-well plates were placed under a 14:10 h light:dark photoperiod for the duration of the experiments. For dark toxicity, plates were covered in aluminum foil and placed inside the same chamber. Positive controls were run in parallel to each experiment by treatment samples with 4 mg L⁻¹ 3,4-dichloroaniline (Sigma). Half maximum lethal concentrations (LC₅₀) were

calculated with a four-parameter logistic regression using Prism 8 software (GraphPad Software).

2.5 Bioconcentration factor and biotransformation half-life

Bioconcentration factor (BCF) and biotransformation half-life in fish were calculated with EPIWEB 4.1 software (EPA – Environmental Protection Agency). BCF was estimated using the equation:

$$log BCF = 0.6598 log P - 0.333 \tag{1}$$

where *P* is the octanol/water partition coefficient as calculated by MarvinJS logD

Predictor software (ChemAxon).

2.6 Statistical analyses

All statistical analyses were performed with Prism 8 software (GraphPad Software). Student's *t*-test were used for pairwise comparisons at a significance level of 0.05. Analysis of variance (ANOVA) was used for multiple comparisons with Tukey's post-test also set to a significance level of 0.05.

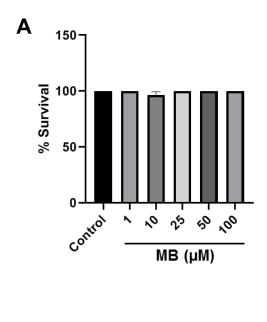
3. RESULTS AND DISCUSSION

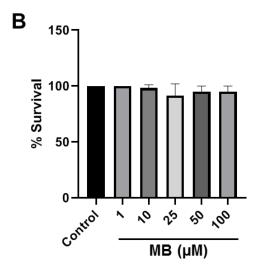
Many studies have previously reported the high efficiency of APDT as a technique to control plant pathogenic fungi both *in vitro* and *in planta* (de Menezes *et al.*, 2014a, 2014b; Fracarolli *et al.*, 2016; Gonzales *et al.*, 2017). For instance, APDT with phenothiazines (in the range of 10-50 μM) against *C. abscissum* can achieve nearly complete inactivation in under one hour of red light exposure (de Menezes *et al.*, 2014b). Furthermore, efficient *in planta* inactivation of *C. abscissum* is possible with MB at 50 μM after only 30 min of solar exposure (Gonzales *et al.*, 2017). Importantly, this *in planta*

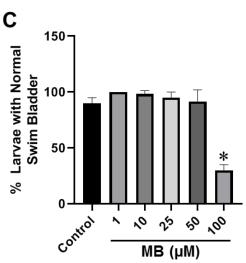
inactivation does not result in damage to the host plant (Gonzales *et al.*, 2017). Additionally, and unlike traditional antifungals, APDT can inactivate dormant structures such as conidia. However, an ecotoxicological assessment of PSs and a comparison with commonly used antifungal agents is still lacking.

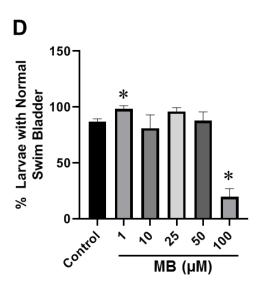
Initially, we performed ecotoxicological experiments with the microcrustacean *D. similis*, representing a low trophic level organism. Toxicity to *D. similis* was calculated based on the number of mobile and immobile individuals after exposure to all PSs (in the dark and under light) and to the antifungal agent NATIVO[®]. The PS DMMB was the most toxic among the PSs tested with an EC₅₀ of 1.0 μM in the dark (Table 1). The other three PSs (MB, NMBN, and TBO) were less toxic than DMMB but presented similar toxicity between them (2.2, 2.01, and 2.6 μM, respectively) (Table 1). For all PSs tested, we observed no difference between experiments performed in the dark and under light (Table 1). This result may be a consequence of the high toxicity levels already observed in the dark. In this situation, light exposure and subsequent ROS production may not significantly increase mortality. More importantly, the antifungal agent NATIVO[®] caused mortality of all *D. similis* neonates at every dilution tested, thus preventing the calculation of an EC₅₀ value and indicating that any of the PSs tested present a lower environmental risk when compared to the commercial antifungal.

Table 1 – Average half-maximum effective concentration (EC $_{50}$) for the indicated photosensitizers obtained in *Daphnia similis* neonates. Values were obtained in the dark or under light exposure. The antifungal NATIVO® caused total mortality of all neonates, thus preventing the calculation of an EC $_{50}$

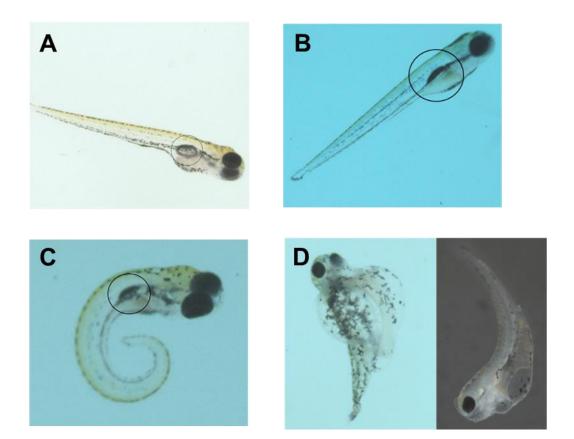

*different upper-case letters indicate significant difference between dark or light treatments for the same photosensitizer; whereas different lower-case letters indicate significant difference between different photosensitizers under the same exposure conditions (Tukey's test, P < 0.05)

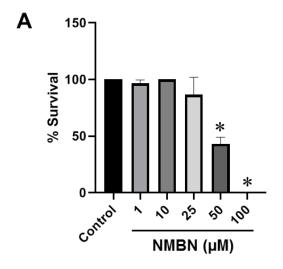

EC50	(μΜ)		(mg L ⁻¹)		GHS Category	
Photosensitizer	Dark	Light	Dark	Light	(Acute Aquatic Toxicity)	
Methylene Blue	$2.2 \pm 0.2^{A,a}$	$2.1\pm0.6^{\text{A},\text{a}}$	$0.82 \pm 0.07^{A,a}$	$0.8\pm0.2^{A,a}$	1	
New Methylene Blue	$2.01\pm0.04^{A,a}$	$2.0\pm0.4^{\text{A},\text{a}}$	$0.84\pm0.02^{A,a}$	$0.8\pm0.2^{A,a}$	1	
Toluidine Blue O	$2.6\pm0.5^{\text{A},\text{a}}$	$2.9\pm0.1^{\text{A},\text{a}}$	$0.8\pm0.2^{\text{A},\text{a}}$	$0.89 \pm 0.03^{A,a}$	1	
Dimethylmethylene Blue	$1.0\pm0.4^{\text{A,b}}$	$0.8\pm0.3^{A,b}$	$0.4\pm0.2^{A,b}$	$0.3\pm0.1^{A,b}$	1	

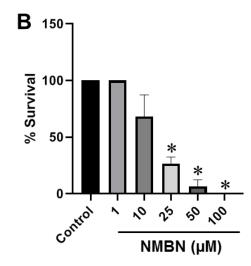

Furthermore, based on the calculated EC_{50} values, all the PSs are classified as category 1 (very toxic to aquatic life, i.e. $EC_{50} \le 1$ mg/l) following GHS criteria (Table 1). Even though no EC_{50} value could be obtained for NATIVO®, the observed mortality of all neonates is a good indication of higher toxicity.

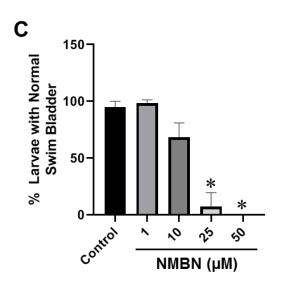

We then performed an ecotoxicological assessment in embryos of *D. rerio*, an organism representing a high trophic level. Acute toxicity to zebrafish embryos was assessed according to Test No. 236 from the OECD for all PSs (both in the dark and under light) and for the antifungal agent NATIVO[®].

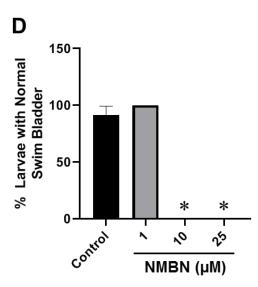
The PS MB presented no mortality to embryos, indicating low acute toxicity (Fig. 1A). Furthermore, emerging larvae only presented significant issues with swim bladder inflation at 100 μ M (Fig. 1C and Fig. 2A and 2B). There were no significant statistical differences between dark (Fig. 1A and 1C) and light (Fig. 1B and 1D) treatments for both mortality and swim bladder inflation issues. However, exposure to MB resulted in larval scoliosis as well as pericardial and yolk sac edema, but these were only observed at the highest concentration of 100 μ M and occurred exclusively under illumination (Fig. 2C and 2D).






Figure 1 – Toxicity of the photosensitizer methylene blue (MB) on embryos of *Danio rerio*. Acute toxicity was evaluated by measuring (**A** and **B**) mortality and (**C** and **D**) the ability of surviving larvae to inflate the swim bladder. Assessment was performed both in the dark (**A** and **C**) and under light (**B** and **D**). Values are mean and error bars are standard deviation from three independent experiments. Asterisks indicate that means are statistically different from the control group




Figure 2 – The effects of the photosensitizer methylene blue (MB) on *Danio rerio* larvae. (**A**) Larva from the negative control showing normal development and an inflated swim bladder. (**B**) A non-inflated swim bladder caused by MB at 100 μ M. (**C**) Scoliosis caused by MB at 100 μ M in the presence of light. (**D**) Pericardial and yolk sac edema caused by MB at 100 μ M under illumination

For NMBN, unlike reported for MB, it was possible to observe an effect of light exposure. Significant mortality was observed at 50 μ M in the dark, but a similar result was already observed at 25 μ M under illumination (Fig. 3A and 3B). Similarly, non-inflated swim bladders were observed at 25 μ M in the dark, but at only 10 μ M in the presence of light (Fig. 3C and 3D). Calculated LC₅₀ values for NMBN were 49.8 μ M in the dark and 15.4 μ M under illumination (Table 2).

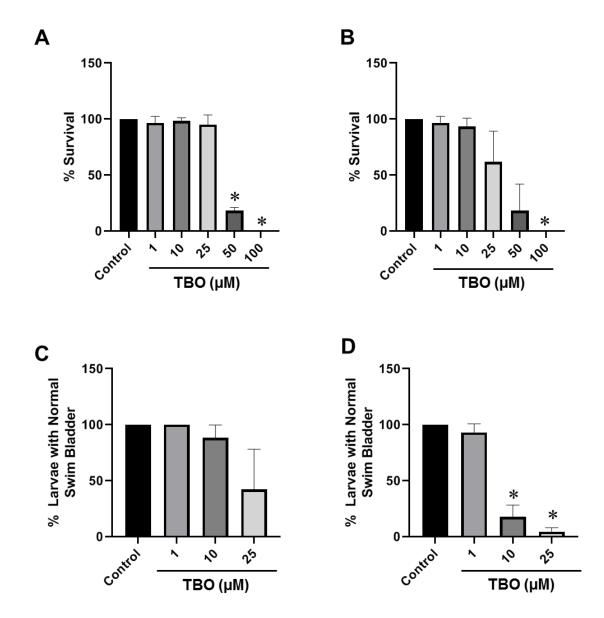
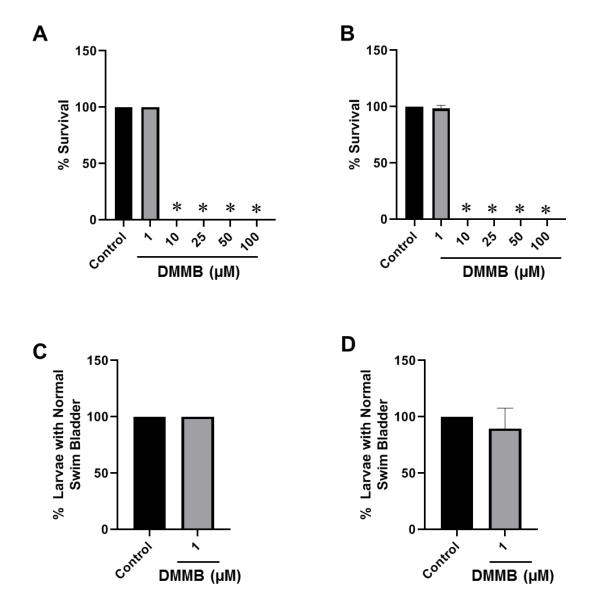
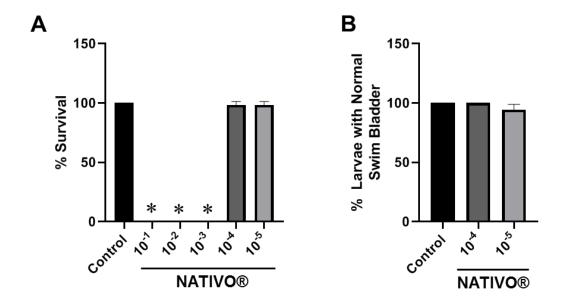


Figure 3 – Toxicity of the photosensitizer new methylene blue N (NMBN) on embryos of *Danio rerio*. Acute toxicity was evaluated by measuring ($\bf A$ and $\bf B$) mortality and ($\bf C$ and $\bf D$) the ability of surviving larvae to inflate the swim bladder. Assessment was performed both in the dark ($\bf A$ and $\bf C$) and under light ($\bf B$ and $\bf D$). Values are mean and error bars are standard deviation from three independent experiments. Asterisks indicate that means are statistically different from the control group

Table 2 – Average half-maximum lethal concentration (LC₅₀) for the indicated photosensitizers obtained in *Danio rerio* embryos. Values were obtained in the dark or under light exposure. For reference, NATIVO[®] is registered as GHS category 1


LC ₅₀	(μΜ)		(mg L ⁻¹)		GHS Category (Acute Aquatic Toxicity)	
Photosensitizer	Dark	Light	Dark	Light	Dark	Light
Methylene Blue	> 100	> 100	> 37.4	> 37.4	-	-
New Methylene Blue	49.8	15.4	20.7	6.4	3	2
Toluidine Blue O	40.5	31.2	12.4	9.5	3	2
Dimethylmethylene Blue [†]	1-10	1-10	0.416-4.16	0.416-4.16	1-2	1-2

For the PS TBO, light exposure did not significantly affect mortality to embryos (Fig. 4A and 4B), although there was a tendency toward some light effect with LC₅₀ values being 40.5 μ M in the dark and 31.2 μ M after light exposure (Table 2). Indeed, light was observed to influence swim bladder inflation because non-inflated swim bladders occurred exclusively under illumination (Fig. 4C and 4D).


Figure 4 – Toxicity of the photosensitizer toluidine blue O (TBO) on embryos of *Danio rerio*. Acute toxicity was evaluated by measuring (**A** and **B**) mortality and (**C** and **D**) the ability of surviving larvae to inflate the swim bladder. Assessment was performed both in the dark (**A** and **C**) and under light (**B** and **D**). Values are mean and error bars are standard deviation from three independent experiments. Asterisks indicate that means are statistically different from the control group

The PS DMMB once again presented the highest toxicity among the PSs tested. Concentrations as low as 10 μ M were sufficient to cause 100% mortality of embryos (Fig. 5A and 5B). The only relatively safe concentration of DMMB was 1 μ M, for which no mortality (Fig. 5A and 5B) and no negative effects on the swim bladder (Fig. 5C and 5D) were observed.

Figure 5 – Toxicity of the photosensitizer dimethylmethylene blue (DMMB) on embryos of *Danio rerio*. Acute toxicity was evaluated by measuring (**A** and **B**) mortality and (**C** and **D**) the ability of surviving larvae to inflate the swim bladder. Assessment was performed both in the dark (**A** and **C**) and under light (**B** and **D**). Values are mean and error bars are standard deviation from three independent experiments. Asterisks indicate that means are statistically different from the control group

The commercial antifungal agent NATIVO® caused 100% mortality even when used at a 10⁻³ dilution (Fig. 6A), which corresponds to trifloxystrobin and tebuconazole concentrations of 0.04 and 0.08 mg L⁻¹, respectively. Dilutions of 10⁻⁴ and 10⁻⁵ allowed embryos to survive and caused no negative effects on swim bladders (Fig. 6A and 6B).

Figure 6 – Toxicity of the commercial antifungal agent NATIVO® on embryos of *Danio rerio*. Acute toxicity was evaluated by measuring (**A**) mortality and (**B**) the ability of surviving larvae to inflate the swim bladder. Values are mean and error bars are standard deviation from three independent experiments. Asterisks indicate that means are statistically different from the control group

Based on calculated LC₅₀ values for all PSs (Table 2), both NMBN and TBO are classified as GHS category 3 in the dark and category 2 under light, showing that illumination is an important determinant of environmental toxicity for these PSs. For MB, no classification was possible because mortality levels never reached 50%. The highest concentration tested for MB was 100 μ M, which represents 37.4 mg L⁻¹. Therefore, there is still room for MB to be classified as GHS category 3 if mortality rates of 50% are achieved before the 100 mg L⁻¹ threshold. Finally, for DMMB, no precise calculation of LC₅₀ was possible because mortality increased from 0 to 100% for two adjacent concentrations (1 and 10 μ M). However, this places the LC₅₀ value between 0.416 and 4.16 mg L⁻¹, resulting in classification as either category 1 or 2 (Table 2). The antifungal NATIVO[®], as a commercial product, is already classified as GHS category 1 by the manufacturer.

Considering the results from the two assays, namely those with D. similis neonates and with D. rerio embryos, we can tentatively classify all tested compounds in the following order of environmental risk, from lowest to highest: $MB < TBO < NMBN < DMMB < NATIVO^{\$}$.

Finally, to compare the potential of both PSs and NATIVO® to bioconcentrate in fish, we mathematically estimated BCF and biotransformation half-life. Less lipophilic PSs such as MB, NMBN, and TBO had BCF values ranging from 12.9 to 50.0 L kg⁻¹ (Table 3). The more lipophilic PS DMMB and the fungicide tebuconazole displayed BCF values of 117 and 126 L kg⁻¹, respectively. Accordingly, trifloxystrobin, as the most lipophilic molecule, had a BCF value of 682 L kg⁻¹ (Table 3), indicating a higher potential to bioconcentrate when compared to all the PSs and to tebuconazole.

Table 3 – Estimates of bioconcentration factor (BCF) and biotransformation half-life as obtained from the Environmental Protection Agency EPIWEB 4.1 software

^aP is the octanol/water partition coefficient as calculated by MarvinJS logD Predictor

^bBCF was calculated using Eq. (1) (see Materials and Methods)

^cnormalized to 10 g of fish at 15 °C

Molecule	log P (pH 7.0) ^a	BCF (L kg ⁻¹) ^b	Biotransformation half-life (days) ^c	
Methylene Blue	2.61	24.5	0.11	
New Methylene Blue	3.08	50.0	1.1	
Toluidine Blue O	2.19	12.9	3.6×10^{-3}	
Dimethylmethylene Blue	3.64	117.0	1.3	
Trifloxystrobin	4.80	682.0	2.8	
Tebuconazole	3.69	126.0	5.1	

We also estimated biotransformation half-life in fish with EPIWEB 4.1 software. Tebuconazole and trifloxystrobin presented half-lives of 5.1 and 2.8 days, respectively (Table 3). Both of these values exceed the estimated half-life of DMMB, which had the longest half-life (1.3 days) among all PSs (Table 3). The PSs MB and TBO, being the less

lipophilic and simplest molecules, had half-life values of 0.11 and 0.0036 days, respectively (Table 3). Although these data are the result of estimates, there is enough information in the literature to support the idea that both trifloxystrobin and tebuconazole accumulate in organisms and in the environment. Trifloxystrobin was found to bioaccumumlate in *Gobiocypris rarus* embryos (Zhu *et al.*, 2015). Furthermore, trifloxystrobin can be metabolized in soil to yield trifloxystrobin acid, a molecule with increased half-life and that was shown to greatly accumulate in the earthworm *Eisenia fetida* (Liu *et al.*, 2020). Regarding tebuconazole, it was reported to bioaccumulate in *Cyprinus carpio* muscle (Clasen *et al.*, 2018). Also, removal of tebuconazole from water may be problematic as a conventional drinking-water treatment plant was reported to be unable to completely remove tebuconazole from river water samples (Elfikrie *et al.*, 2020). In accordance, tebuconazole is the most prevalent fungicide in surface water (de Souza *et al.*, 2020).

One aspect that needs to be considered is the stability of PSs in the environment. In this regard, a previous study from our research group has reported that phenothiazinium PSs exposed to sunlight steeply lose their effectiveness (de Menezes *et al.*, 2014b). For instance, new methylene blue N loses 99.9% of its inactivation efficiency against *C. abscissum* after 12 h of sunlight exposure. This reduction is accompanied by a flattening of the absorption spectrum in the visible range (i.e., photobleaching) (de Menezes *et al.*, 2014b). In our study, we used 'naïve' (i.e. not previously exposed to light) photosensitizers because using photobleached ones would likely lead to reduced toxicity under illumination. Additionally, we can speculate that photosensitizers reaching the environment from crop plants would have already been exposed to considerable amounts of solar radiation. If this assumption is correct, ecotoxicity in real world applications would not be as high as the values obtained under light exposure conditions in this study.

When compared to trifloxystrobin and tebuconazole, the PS MB has lower toxicity, lower BCF and a much shorter biotransformation half-life (Table 3). Also, our research group has previously reported that MB can be used at 50 µM to efficiently inactivate C. abscissum in plants (Gonzales et al., 2017). This concentration is below the LC₅₀ values obtained for zebrafish embryos both in the dark and under illumination (Table 2). However, a concentration of 50 µM is well above the EC₅₀ values for D. similis immobilization (Table 1). Nonetheless, it is important to note that using 50 µM (18.7 mg L⁻¹ in the case of MB) to treat crop plants would likely not result in such a high final concentration in water bodies. For instance, the highest concentration of antibiotics in effluent water samples obtained from pharmaceutical manufacturers was found to be 252 μg L⁻¹, and this concentration is higher compared to those obtained for hospital and aquaculture effluents (Thai et al., 2018). Such reduced toxicity, combined with the fact that an MB injection is approved by both the Food and Drug Administration (NDA204630) and the European Medicines Agency (EMA/H/C/002108) for the treatment of methemoglobinemia, makes MB the most likely candidate to obtain approval for other applications. Of course, the use of MB is not without its own accumulation issues (Krishna Moorthy et al., 2021; Park, Baek and Moon, 2019; Rifici et al., 1996), but diverse and effective methods of removing MB from water are abundant and up-todate (Gouamid et al., 2013; Hoslett et al., 2020; Mantasha et al., 2020; Reema et al., 2011; Somsesta et al., 2020). Even though MB was the least toxic PS as long as environmental risk is concerned,

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

Even though MB was the least toxic PS as long as environmental risk is concerned, the other PSs should not be immediately deemed unsuitable for use. This is because circumstances may dictate which PS ought to be used. For instance, NMBN is a more potent PS when compared to MB (Rodrigues *et al.*, 2013; Wainwright *et al.*, 1998), which

399	would likely translate into smaller dose requirements, leading to lower levels of
400	environmental contamination.
401	
402	CONCLUSION
403	Our results provide a comprehensive view of the environmental risk associated with the
404	use of diverse PS. The environmental consequences associated with PS use are
405	diminished when compared to currently approved and widely used antifungal agents, such
406	as NATIVO®. Therefore, environmental risk should not be a barrier in the path of using
407	APDT to control plant-pathogenic fungi in the future.
408	
409	CONFLICT OF INTEREST
410	This article does not necessarily reflect the views of CETESB and no official endorsement
411	should be inferred.
412	
413	ACKNOWLEDGEMENTS
414	We thank Leandro F. Pippa (Faculdade de Ciências Farmacêuticas de Ribeirão Preto,
415	USP) for carefully reading the manuscript.
416	
417	FUNDING
418	This work was supported by the State of São Paulo Research Foundation (FAPESP,
419	Brazil; grants 2016/24269-7 to DCT; 2016/11386-5 to GULB; 2018/24298-2 and
420	2014/50945-4 to DPO; 2018/06945-0 to FRA), the National Council for Scientific and
421	Technological Development (CNPq, Brazil; grants 165191/2020-1 to GTPB;
422	425998/2018-5 and 307738/2018-3 to GULB; 465571/2014-0 to DPO), and the

- 423 Coordination for the Improvement of Higher Education Personnel (CAPES; Finance
- 424 Code 001).

426 **REFERENCES**

- Bori, J., Vallès, B., Ortega, L. and Riva, M. C. (2016) Bioassays with terrestrial and
- 428 aquatic species as monitoring tools of hydrocarbon degradation. *Environmental Science*
- *and Pollution Research*, 23, pp. 18694-18703.
- 430 Castano, A. P., Demidova, T. N. and Hamblin, M. R. (2004) Mechanisms in
- 431 photodynamic therapy: part one—photosensitizers, photochemistry and cellular
- localization. *Photodiagnosis and Photodynamic Therapy*, 1, pp. 279-293.
- Clasen, B., Loro, V. L., Murussi, C. R., Tiecher, T. L., Moraes, B. and Zanella, R. (2018)
- Bioaccumulation and oxidative stress caused by pesticides in *Cyprinus carpio* reared in a
- rice-fish system. *Science of The Total Environment*, 626, pp. 737-743.
- de Menezes, H. D., Pereira, A. C., Brancini, G. T. P., de Leao, H. C., Massola Junior, N.
- 437 S., Bachmann, L., Wainwright, M., Bastos, J. K. and Braga, G. U. L. (2014a)
- 438 Furocoumarins and coumarins photoinactivate Colletotrichum acutatum and Aspergillus
- 439 *nidulans* fungi under solar radiation. *Journal of Photochemistry and Photobiology B:*
- 440 *Biology*, 131, pp. 74-83.
- de Menezes, H. D., Rodrigues, G. B., Teixeira, S. P., Massola Jr., N. S., Bachmann, L.,
- Wainwright, M. and Braga, G. U. L. (2014b) *In vitro* photodynamic inactivation of plant-
- 443 pathogenic fungi Colletotrichum acutatum and Colletotrichum gloeosporioides with
- novel phenothiazinium photosensitizers. Applied and Environmental Microbiology, 80,
- 445 pp. 1623-1632.
- de Menezes, H. D., Tonani, L., Bachmann, L., Wainwright, M., Braga, G. Ú. L. and von
- 447 Zeska Kress, M. R. (2016) Photodynamic treatment with phenothiazinium
- 448 photosensitizers kills both ungerminated and germinated microconidia of the pathogenic
- 449 fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani. Journal of
- 450 *Photochemistry and Photobiology B: Biology*, 164, pp. 1-12.
- de Souza, R. M., Seibert, D., Quesada, H. B., de Jesus Bassetti, F., Fagundes-Klen, M. R.
- and Bergamasco, R. (2020) Occurrence, impacts and general aspects of pesticides in
- surface water: A review. *Process Safety and Environmental Protection*, 135, pp. 22-37.

- do Prado-Silva, L., Brancini, G. T. P., Braga, G. Ú. L., Liao, X., Ding, T. and Sant'Ana,
- 455 A. S. (2022) Antimicrobial photodynamic treatment (aPDT) as an innovative technology
- 456 to control spoilage and pathogenic microorganisms in agri-food products: An updated
- 457 review. Food Control, 132, 108527.
- Dowling, M., Peres, N., Villani, S. and Schnabel, G. (2020) Managing Colletotrichum on
- fruit crops: a "complex" challenge. *Plant Disease*, 104, pp. 2301-2316.
- 460 Elfikrie, N., Ho, Y. B., Zaidon, S. Z., Juahir, H. and Tan, E. S. S. (2020) Occurrence of
- 461 pesticides in surface water, pesticides removal efficiency in drinking water treatment
- plant and potential health risk to consumers in Tengi River Basin, Malaysia. Science of
- 463 *The Total Environment*, 712, 136540.
- 464 Fracarolli, L., Rodrigues, G. B., Pereira, A. C., Massola Junior, N. S., Silva-Junior, G. J.,
- Bachmann, L., Wainwright, M., Bastos, J. K. and Braga, G. U. L. (2016) Inactivation of
- 466 plant-pathogenic fungus Colletotrichum acutatum with natural plant-produced
- photosensitizers under solar radiation. *Journal of Photochemistry and Photobiology B:*
- 468 *Biology*, 162, pp. 402-411.
- Gama, A. B., Baggio, J. S., Rebello, C. S., Lourenço, S. d. A., Gasparoto, M. C. d. G., da
- 470 Silva Junior, G. J., Peres, N. A. and Amorim, L. (2020) Sensitivity of *Colletotrichum*
- 471 acutatum isolates from citrus to carbendazim, difenoconazole, tebuconazole, and
- trifloxystrobin. *Plant Disease*, 104, pp. 1621-1628.
- 473 Gonçalves, F. P., Nogueira Júnior, A. F., Silva-Junior, G. J., Ciampi-Guillardi, M. and
- 474 Amorim, L. (2021) Environmental requirements for infection of *Colletotrichum acutatum*
- and C. gloeosporioides sensu lato in citrus flowers and prevalence of these pathogens in
- 476 Brazil. *European Journal of Plant Pathology*, 160, pp. 27-37.
- 477 Gonzales, J. C., Brancini, G. T. P., Rodrigues, G. B., Silva-Junior, G. J., Bachmann, L.,
- Wainwright, M. and Braga, G. U. L. (2017) Photodynamic inactivation of conidia of the
- 479 fungus Colletotrichum abscissum on Citrus sinensis plants with methylene blue under
- solar radiation. *Journal of Photochemistry and Photobiology B: Biology*, 176, pp. 54-61.
- 481 Gouamid, M., Ouahrani, M. R. and Bensaci, M. B. (2013) Adsorption equilibrium,
- 482 kinetics and thermodynamics of methylene blue from aqueous solutions using date palm
- 483 leaves. *Energy Procedia*, 36, pp. 898-907.

- Hamblin, M. R. (2016) Antimicrobial photodynamic inactivation: a bright new technique
- to kill resistant microbes. *Current Opinion in Microbiology*, 33, pp. 67-73.
- Heger, S., Du, M., Bauer, K., Schäffer, A. and Hollert, H. (2018) Comparative ecotoxicity
- of potential biofuels to water flea (*Daphnia magna*), zebrafish (*Danio rerio*) and Chinese
- hamster (*Cricetulus griseus*) V79 cells. *Science of The Total Environment*, 631-632, pp.
- 489 216-222.
- Hoslett, J., Ghazal, H., Mohamad, N. and Jouhara, H. (2020) Removal of methylene blue
- 491 from aqueous solutions by biochar prepared from the pyrolysis of mixed municipal
- discarded material. Science of The Total Environment, 714, 136832.
- 493 Kashef, N. and Hamblin, M. R. (2017) Can microbial cells develop resistance to oxidative
- stress in antimicrobial photodynamic inactivation? *Drug Resistance Updates*, 31, pp. 31-
- 495 42.
- 496 Krishna Moorthy, A., Govindarajan Rathi, B., Shukla, S. P., Kumar, K. and Shree Bharti,
- 497 V. (2021) Acute toxicity of textile dye methylene blue on growth and metabolism of
- 498 selected freshwater microalgae. Environmental Toxicology and Pharmacology, 82,
- 499 103552.
- 500 Liu, T., Liu, Y., Fang, K., Zhang, X. and Wang, X. (2020) Transcriptome,
- 501 bioaccumulation and toxicity analyses of earthworms (Eisenia fetida) affected by
- trifloxystrobin and trifloxystrobin acid. Environmental Pollution, 265, 115100.
- Mantasha, I., Saleh, H. A. M., Qasem, K. M. A., Shahid, M., Mehtab, M. and Ahmad, M.
- 504 (2020) Efficient and selective adsorption and separation of methylene blue (MB) from
- 505 mixture of dyes in aqueous environment employing a Cu(II) based metal organic
- framework. *Inorganica Chimica Acta*, 511, 119787.
- Marasini, S., Leanse, L. G. and Dai, T. (2021) Can microorganisms develop resistance
- against light based anti-infective agents?, *Advanced Drug Delivery Reviews*, 175, 113822.
- Nitzan, Y. and Ashkenazi, H. (1999) Photoinactivation of *Deinococcus radiodurans*: an
- unusual Gram-positive microorganism. *Photochemistry and Photobiology*, 69, pp. 505-
- 511 510.
- Oliver, R.P. & Hewitt, H.G. Fungicides in crop protection. 2 ed. CABI, 2014.

- Park, I.-S., Baek, S.-W. and Moon, K. H. (2019) The sterilization effect of methylene
- blue, formalin, and iodine on egg and adult stage of marine medaka, *Oryzias dancena*.
- 515 Development & Reproduction, 23, pp. 199-211.
- Peres, N. A., Timmer, L. W., Adaskaveg, J. E. and Correll, J. C. (2005) Lifestyles of
- 517 *Colletotrichum acutatum. Plant Disease*, 89, pp. 784-796.
- Perlin, D. S., Rautemaa-Richardson, R. and Alastruey-Izquierdo, A. (2017) The global
- problem of antifungal resistance: prevalence, mechanisms, and management. *The Lancet*
- 520 Infectious Diseases, 17, pp. e383-e392.
- Pieranski, M., Sitkiewicz, I. and Grinholc, M. (2020) Increased photoinactivation stress
- tolerance of *Streptococcus agalactiae* upon consecutive sublethal phototreatments. *Free*
- *Radical Biology and Medicine*, 160, pp. 657-669.
- Rapacka-Zdonczyk, A., Wozniak, A., Pieranski, M., Woziwodzka, A., Bielawski, K. P.
- and Grinholc, M. (2019) Development of Staphylococcus aureus tolerance to
- antimicrobial photodynamic inactivation and antimicrobial blue light upon sub-lethal
- treatment. Scientific Reports, 9, 9423.
- Reema, R. M., Saravanan, P., Kumar, M. D. and Renganathan, S. (2011) Accumulation
- of methylene blue dye by growing Lemna minor. Separation Science and Technology,
- 530 46, pp. 1052-1058.
- Rifici, L. M., Cherry, D. S., Farris, J. L. and Cairns Jr, J. (1996) Acute and subchronic
- 532 toxicity of methylene blue to larval fathead minnows (*Pimephales promelas*):
- 533 implications for aquatic toxicity testing. Environmental Toxicology and Chemistry, 15,
- pp. 1304-1308.
- Rila, J.-P. and Eisentraeger, A. (2003) Application of bioassays for risk characterisation
- and remediation control of soils polluted with nitroaromatics and PAHs. Water, Air, and
- 537 *Soil Pollution*, 148, pp. 223-242.
- Rocha, O. P., Cesila, C. A., Christovam, E. M., Barros, S. B. d. M., Zanoni, M. V. B. and
- de Oliveira, D. P. (2017) Ecotoxicological risk assessment of the "Acid Black 210" dye.
- 540 *Toxicology*, 376, pp. 113-119.
- Rodrigues, G. B., Dias-Baruffi, M., Holman, N., Wainwright, M. and Braga, G. U. (2013)
- 542 In vitro photodynamic inactivation of Candida species and mouse fibroblasts with

- 543 phenothiazinium photosensitisers and red light. *Photodiagnosis and Photodynamic*
- 544 *Therapy*, 10, pp. 141-149.
- Sabino, C. P., Wainwright, M., Ribeiro, M. S., Sellera, F. P., dos Anjos, C., Baptista, M.
- d. S. and Lincopan, N. (2020) Global priority multidrug-resistant pathogens do not resist
- 547 photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 208,
- 548 111893.
- 549 Silva-Junior, G. J., Spósito, M. B., Marin, D. R. and Amorim, L. (2014) Efficacy and
- 550 timing of application of fungicides for control of citrus postbloom fruit drop, Crop
- 551 *Protection*, 59, pp. 51-56.
- 552 Somsesta, N., Sricharoenchaikul, V. and Aht-Ong, D. (2020) Adsorption removal of
- methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and
- kinetic studies. *Materials Chemistry and Physics*, 240, 122221.
- Thai, P. K., Ky, L. X., Bihn, V. N., Nhung, P. H., Nhan, P. T., Hieu, N. Q., Dang, N. T.
- 556 T., Bang Tam, N. K. and Ahn, N. T. K. (2018) Occurrence of antibiotic residues and
- antibiotic-resistant bacteria in effluents of pharmaceutical manufacturers and other
- sources around Hanoi, Vietnam. Science of The Total Environment, 645, pp. 393-400.
- Tonani, L., Morosini, N. S., de Menezes, H. D., Bonifácio da Silva, M. E. N., Wainwright,
- 560 M., Braga, G. U. L. and Von Zeska Kress, M. R. (2018) In vitro susceptibilities of
- Neoscytalidium spp. sequence types to antifungal agents and antimicrobial photodynamic
- treatment with phenothiazinium photosensitizers. Fungal Biology, 122, pp. 436-448.
- 563 United Nations. 2017. Globally harmonized system of classification and labelling of
- *chemicals (GHS).* New York: United Nations.
- Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G. P. and
- Hamblin, M. R. (2017) Photoantimicrobials—are we afraid of the light? The Lancet
- 567 *Infectious Diseases*, 17, pp. e49-e55.
- Wainwright, M., Phoenix, D. A., Laycock, S. L., Wareing, D. R. A. and Wright, P. A.
- 569 (1998) Photobactericidal activity of phenothiazinium dyes against methicillin-resistant
- strains of Staphylococcus aureus. FEMS Microbiology Letters, 160, pp. 177-181.
- 571 Zhu, B., Liu, G.-L., Liu, L., Ling, F. and Wang, G.-X. (2015) Assessment of
- 572 trifloxystrobin uptake kinetics, developmental toxicity and mRNA expression in rare
- 573 minnow embryos. *Chemosphere*, 120, pp. 447-455.