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ABSTRACT

In this study, we present a new experimental design using clustering-based redshift inference to measure the evolving galaxy
luminosity function (GLF) spanning 5.5 decades from L ~ 10" to 10° L. We use data from the Galaxy And Mass Assembly
(GAMA) survey and the Kilo-Degree Survey (KiDS). We derive redshift distributions in bins of apparent magnitude to the
limits of the GAMA-KiDS photometric catalogue: m, < 23; more than a decade in luminosity beyond the limits of the GAMA
spectroscopic redshift sample via clustering-based redshift inference. This technique uses spatial cross-correlation statistics for
a reference set with known redshifts (in our case, the main GAMA sample) to derive the redshift distribution for the target
ensemble. For the calibration of the redshift distribution, we use a simple parametrization with an adaptive normalization factor
over the interval 0.005 < z < 0.48 to derive the clustering redshift results. We find that the GLF has a relatively constant
power-law slope o & —1.2 for —17 < M, < —13, and then appears to steepen sharply for —13 < M, < —10. This upturn appears
to be where globular clusters (GCs) take over to dominate the source counts as a function of luminosity. Thus, we have mapped

the GLF across the full range of the z ~ 0 field galaxy population from the most luminous galaxies down to the GC scale.

Key words: methods: data analysis — methods: statistical — galaxies: distances and redshifts.

1 INTRODUCTION

The galaxy luminosity function (GLF) is a basic descriptor of
the galaxy population and its evolution though the history of the
Universe. GLF measurements (e.g. Sandage, Binggeli & Tammann
1985; Driver & Phillipps 1996; Trentham & Tully 2002) play a
key role in calibrating and validating theoretical models of galaxy
formation and evolution. For example, energetic feedback by active
galactic nuclei (AGNs; Croton et al. 2006; Bower, Benson & Crain
2012) has been invoked to explain the exponential drop-off at the
bright end of the GLF. At the faint end, the slope of the GLF is usually
understood to be determined by the efficiency of gas accretion on to
low-mass haloes (e.g. White & Rees 1978; Kauffmann, White &
Guiderdoni 1993; Cole et al. 1994) and by self-regulated star
formation (e.g. through supernova feedback; Dekel & Silk 1986).
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One approach to measuring the GLF down to very faint lumi-
nosities has been to target particular structures or environments,
including the Local Group (e.g. Trentham, Sampson & Banerji 2005;
Koposov et al. 2008), for selected groups (e.g. Trentham & Tully
2002; Chiboucas, Karachentsev & Tully 2009; Mao et al. 2021), and
in clusters (e.g. Driver et al. 1994; Popesso et al. 2005). In contrast
to the Local Group the GLF of the Coma Cluster (Yamanoi et al.
2012) and multiple Hickson Compact Groups (Yamanoi et al. 2020)
show a significant upturn of the GLF at M, > —12. Yamanoi et al.
(2012) argue that, in clusters, the faint end of the GLF consists of
galaxy populations with different origins and that the contribution
of globular clusters (GC) has to be considered as unresolved low-
luminosity galaxies whose angular sizes are similar to the seeing size
cannot be distinguished from bright GCs.

Obtaining robust measurements of the field (i.e. cosmic average)
GLF at very low luminosities (e.g. Loveday 1997; Zucca et al. 1997;
Marzke et al. 1998; Blanton et al. 2005) remains an observational
challenge, as it requires very deep data (to probe the faintest
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luminosities) over very wide areas (to probe significant volumes at
low redshifts), as well as good redshift information (to map observed
to intrinsic properties, and to distinguish nearby and distant galaxy
populations). Early attempts based on spectroscopic redshift surveys
suffered from strong surface-brightness (SB) selection effects (e.g.
Phillipps & Disney 1986; McGaugh 1996; Cross & Driver 2002).
While the first measurement of the impact of low surface brightness
galaxies was performed by Sprayberry et al. (1997), Cross et al.
(2001) showed that the bias in surface brightness can lead to an
underestimation of the GLF, and therefore the luminosity density,
by ~ 35 per cent. Most recently, the Galaxy And Mass Assembly
(GAMA) survey has obtained spectroscopic redshifts with near
total completeness for m, < 19.8 over ~220 square degrees, and
has measured the GLF down to 107 My with minimal corrections
required to account for SB selection effects (Loveday et al. 2015;
Wright et al. 2017).

The primary aim of this study is to measure the field GLF down
to the faintest possible limits. We do this through a process we
call clustering redshift inference, or cluster-zs. This process exploits
the fact that galaxies are strongly clustered (rather than randomly
distributed) to derive redshift information for our target sample, using
only their observed positions on the sky.

That galaxies are strongly clustered, both in real space and
projected on the sky, is an essential fact of cosmology (e.g. Cole
et al. 2005; Eisenstein et al. 2005). The idea of using angular cross-
correlations to trace physical correlations has been used for a few
decades (e.g. Seldner & Peebles 1979; Phillipps 1985; Phillipps &
Shanks 1987; Loveday 1997). The approach to clustering redshift
inference was described in greater detail by Schneider et al. (2006),
Newman (2008), and Matthews & Newman (2010, 2012) with a more
generalized formalization presented by Schmidt et al. (2013) and
Ménard et al. (2013) including validation with numerical simulations.
These techniques have been applied to observations as well as
simulations by several studies (e.g. McQuinn & White 2013; Rahman
et al. 2015, 2016b; Choi et al. 2016; Rahman, Ménard & Scranton
2016a; Scottez et al. 2016; Johnson et al. 2017; van den Busch et al.
2020). By testing multiple clustering-based methods, Gatti et al.
(2018) showed that the systematic error induced by neglecting the
redshift evolution of the galaxy bias is the main systematic error
associated with this method.

The measurement of luminosity functions from clustering-based
redshifts for mock galaxy samples is presented by van Daalen &
White (2018) and Bates et al. (2019) has used clustering-based
redshifts to map the 0.2 < z < 0.8 evolution of the GLF in small bins
of colour and magnitude to m; < 21, and used the results to determine
redshift-dependent incompleteness corrections for the BOSS survey
(Dawson et al. 2013). In this study, we aim to probe for the faint end
of the z ~ 0 GLE.

Our objective is to use clustering-based redshift inference to mea-
sure the z ~ 0 GLF down to the faintest possible limits, beyond the
reach of spectroscopic and photometric redshift surveys. The rest of
this paper is structured as follows. In Section 2, we describe the imag-
ing, photometry, and spectroscopic redshift catalogues that we use for
our cluster-z analysis and GLF measurements. The methodology to
derive and normalize the clustering-based redshift estimates of a data
set with unknown redshift information is described in Section 3, in-
cluding verification/validation of our cluster-z results in Section 3.6.
Section 4 describes our descriptive model for the evolving GLF,
which is a critical step for normalizing the cluster-z results. In
Section 5, we present the results of our study as well as the measured
z < 0.1 luminosity functions to M, < —10. Finally in Sections 6 and
7, we discuss and summarize the results of our study. Throughout our
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paper, we use a flat ACDM cosmology with €, = 0.3, Q5 = 0.7
and a Hubble parameter Hy = 1004 km Mpc~! s~! where 1 = 0.7.
All photometry has been corrected for foreground Galactic extinction
using the Planck EBV map (Planck Collaboration IX 2013).

2 DATA AND SAMPLE SELECTION

The data requirements for our study are as follows. First, we rely
on high-quality photometry from deep optical imaging to map the
apparent fluxes of the evolving galaxy population. We use positions
and total r-band magnitudes from a GAMA reanalysis of VST
imaging from the KiDS survey, described in Section 2.1, to define
our target sample as described in Section 2.2. The relevant selection
effects limiting our analysis are discussed in Section 2.3.

2.1 Positions and total photometry for the target sample

The Kilo-Degree Survey (KiDS; Kuijken et al. 2019) is a deep, wide-
field optical imaging survey using ESO’s VLT Survey Telescope
(VST) with the primary motivation of weak lensing science (e.g.
Hildebrandt et al. 2017). KiDS has obtained ugri imaging with
sub-arcsecond seeing and nearly uniform depth over ~1350 square
degrees. For the r-band data, which is the focus of this study, the
median seeing is <0.6 arcsec full width at half-maximum and the
5o point source magnitude limit is 25.2 mag. The fourth KiDS Data
Release (Kuijken et al. 2019) made public over 1000 square degrees
of imaging, including 4 GAMA survey fields. In our study, we focus
on the three equatorial 60 square degree fields of GAMA centred at
9 h (G09), 12 h (G12), and 14.5 h (G15).

The photometry for the KiDS imaging data has been processed
independently by GAMA (Bellstedt et al. 2020). Source detection,
segmentation, and photometry is done using ProFound (Robotham
et al. 2018). Compared to for example Source Extractor (Bertin &
Arnouts 1996), the key features of ProFound include: improved
background characterization, a watershed deblending algorithm,
‘segment’-based rather than circular/elliptical apertures, and iterative
aperture dilation (Robotham et al. 2018; Bellstedt et al. 2020). Each
of these features is designed to yield robust measures of the total flux
in each band, including blended and crowded sources.

For our purposes, another key feature of the GAMA catalogue
is the effort that has gone into visually inspecting and manually
correcting the ProFound segmentation maps, and especially larger
galaxies that are overly fragmented or shredded. Of 75863 r < 20.5
sources that were visually inspected, 6855 required some level of
correction (Bellstedt et al. 2020; Driver et al., in preparation). We
note that overly deblended or shredded galaxies would appear in
our analysis as an excess concentration of faint sources in close
proximity to low-redshift galaxies, with the potential to artificially
inflate the inferred luminosity function at the lowest redshifts and
faintest magnitudes. By reducing, if not eliminating, this problem, the
close-checked GAMA deblend/segmentation solutions minimizes
the potential for such a bias.

2.2 Sample definition

We follow the basic quality control measures necessary for the
GAMA photometric catalogues (see Bellstedt et al. 2020; Driver
et al., in preparation for details), including the removal of duplicates
and use of the catalogue’s class diagnostic to exclude artefacts,
including ghosting and reflections. We adopt the GAMA survey
footprint, as defined by the combination of the mask and starmask
flags. The first of these flags defines the GAMA survey region; the
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Figure 1. Bivariate brightness distribution (BBD) for the r-band parent sample from GAMA photometry of KiDS imaging. In the left-hand panel points are
colour coded by photometric classification: stars (dark blue), galaxies (red), and ambiguous (green) after excluding artefacts. We also highlight the GAMA
spectroscopic redshift reference sample in orange. The completeness limit of the spectroscopic sample at m, ~ 19.65 is shown as a vertical dotted line. In the
right main panel the BBD for the target data set is shown (light blue). The three black lines indicate the 5th, 50th, and 95th percentile points of the SB distribution
depending on magnitude. We chose a m, < 22.55 limit to ensure that incompleteness in our faintest magnitude bins was limited to a few per cent for the
photometric sample which is shown as a vertical black line. In addition, we show the surface brightness limit of the SDSS imaging at pefr = 24.5 corresponding
to the spectroscopic sample and the SB limit of our data set at jeir ~ 26. In the second panel the positions of 47 low surface brightness objects by van Dokkum
et al. (2015) (vD + 15) are displayed as black points, which are clearly included within the limits of our study, showing that our analysis is sensitive to UDGs.

second excludes areas where source detection and/or photometry
may be badly affected by bright stars. With these selections the
effective survey area is 54.93, 57.44, and 56.93 square degrees for
G09, G12, and G15, respectively, and 169.31 square degrees in total
(Bellstedt et al. 2020).

GAMA uses a combination of r magnitude versus (J — Ks)
colour and r magnitude versus effective size diagnostics to clas-
sify detections into categories of artefact, star, galaxy,
or ambiguous (where the two star/galaxy diagnostics suggest
conflicting classifications). Driver et al. (in preparation) suggests
this ambiguous population is mostly but not entirely made of up
stars, and will include unresolved sources with non-stellar colours
as well as, e.g. binary stars, and with increasing photometric scatter
for the faintest magnitudes. As shown in Appendix B, our analysis is
robust to the presence of stars, quasars, or any other real or artificial
source population that do not follow the large-scale structure as traced
by the reference sample: our results and conclusions do not change
significantly if we include artefacts and stars. We therefore use the
GAMA class to exclude artefacts and stars, to limit their potential
to slightly increase the statistical errors in our main analysis. We
choose to retain ambiguous sources, however, to minimize any
selection effects against small/unresolved galaxies.

2.3 Magnitude and surface brightness selection limits

Fig. 1 shows the joint r-band magnitude-surface brightness dis-
tribution, with points colour-coded according to their photometric
class. We also highlight the GAMA spectroscopic reference
sample. These points are not sharply bounded to the original m, <

19.8 selection limits because their magnitudes have been updated by
the improved data and photometry (see Bellstedt et al. 2020). In this
diagnostic plot, point sources fall along the linear track as traced by
the stars, with the turnover at very bright magnitudes showing the
saturation limit in the KiDS imaging. The ambiguous population
can be seen to be largely, but not exclusively, extending the stellar
population to fainter magnitudes. It is also clear, however, that there
is an increasing number of ambiguous sources that coincide with the
galaxy population.

Given our focus on the faintest galaxies at low redshift, our analysis
will be limited by the depth of the photometric parent catalogues. The
faint magnitude limit of the catalogue can be gauged by considering
the point where the number counts start to plateau and fall away at
m, =~ 23. That this is considerably brighter than the 5o limit for
point sources reflects the dominance of extended sources at these
faint magnitudes.

It is challenging to meaningfully quantify the limiting surface
brightness, which depends on the peak surface brightness averaged
over the PSF-scale, modulo details of the ProFound detection
algorithm and parameters. What we can see from this diagnostic
is that bulk of the our target population is seen with effective surface
brightness p.s < 26. To gauge where surface brightness selection
effects start to significantly bias our otherwise magnitude-limited
sample, we have considered how various percentile points of the SB
distribution for galaxies vary as a function of magnitude. What we
see is that the median and 95th percentiles track roughly linearly
down to m, &~ 23, after which point the distribution can be seen
to taper towards fainter magnitudes. This also coincides with a mild
flattening of the median point of the SB distribution. Both the tapering
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of the observed distribution and the levelling off of the median are
indicators that the low surface brightness tail of the distribution is
being missed. We do see some narrowing between the 95th and 99th
percentiles over the range 21 < m, < 23 (not shown), which might
be taken to indicate incompleteness at the level of a few per cent at
these magnitudes.

With these considerations, we limit our analysis to m, < 22.55, as
the point where SB selection effects are minimal: not more than a
few per cent. Beyond this, we make no attempt to correct or account
for SB selection effects, noting that any incompleteness will mean
that our results are an underestimate of the true population. Our limits
show that we are even sensitive to very low surface brightness objects
as ultra-diffuse galaxies (UDGs; see van Dokkum et al. 2015). In total
~3 x 10° target sources are within our study.

2.4 Spectroscopic redshifts for the reference sample

The method of clustering redshift inference requires having a
reference set with known redshifts/distances to trace the large-scale
structure across the target area. We use the GAMA spectroscopic
redshift survey for this purpose. GAMA was a multi-year campaign
with the 3.9m Anglo Australian Telescope (AAT). At survey end,
GAMA had achieved >99 percent redshift completeness to the
original m, < 19.8 selection limit over each of G09, G12, and G15,
with no discernible bias as a function of pair separation (Liske et al.
2015). As discussed above, Bellstedt et al. (2020) and Driver et al.
(in preparation) have described updates to the GAMA photometric
catalogues, including re-linking spectra and redshifts to photometric
objects. With the updated photometry, which recovers additional flux
beyond Source Extractor’s AUTO aperture, the 95 per cent redshift
completeness limit dropped to m, ~ 19.65.

As a reference sample for clustering redshift inference, the most
pertinent aspects of the GAMA sample are the source density and
the redshift interval (0 < z < 0.5 with median redshift ~0.22).
After basic quality control to ensure robust redshift measurements
(nQ > 2), we have ~170, 000 spec-z measurements. We note that,
just as our clustering redshift analysis is robust to ‘interlopers’ in
the target sample, the analysis is virtually insensitive to redshift
blunders. We also note that, for the purposes of redshift inference
itself, it is not necessary or even desirable for the reference sample
to be complete or representative. As will be discussed in Section 4.3,
we also use the GAMA spectroscopic redshift sample to constrain
the overall normalization of our clustering redshift measurements,
via the value of the characteristic density, ¢;. Here, the completeness
of the magnitude-limited GAMA sample is very valuable.

3 REDSHIFT INFORMATION FROM
CLUSTERING

Clustering-based redshift inferences (cluster-zs) provide an avenue
to statistical redshift information for an ensemble of target objects,
based only on positional information. Cluster-zs work by cross-
correlating, the positions of the target sample with the positions of a
reference sample for which redshifts are known. By computing the
relative strength of the 2D angular cross-correlation for sub-samples
of the reference set binned by redshift with the target ensemble, it is
possible to infer the target redshift distribution. Unlike spectroscopic
redshift measurements (spec-zs) or photometric redshift estimates
(photo-zs), cluster-zs do not give redshift information for individual
objects, but instead a redshift distribution and source galaxy bias for
an ensemble.

MNRAS 509, 54675484 (2022)

Since the only requirement for this method is positional in-
formation, it is applicable in regimes where spec-z and photo-z
approaches are impractical or even impossible (especially for faint
and/or nearby sources, where photo-z errors become comparable
to the redshift values themselves). At fainter magnitudes, where
conventional object-by-object approaches are more expensive and
less reliable, the cluster-zs becoming increasingly useful as the
number of sources (and so the statistical significance of the clustering
signal) grows rapidly.

For this method we need three data sets (see Section 2). First the
target data set: it consists of objects for which the cluster-zs are
calculated solely using their angular positions on the sky (RA, Dec.).

Secondly a reference data set, mapping the cosmic skeleton, is
needed. This set has to consist of objects with accurate measurements
of their full 3D position (RA, Dec., and z). The objects in the
reference set are not required to be of the same type, magnitude,
colour, etc., as the target galaxies. The only additional requirement for
the reference sample is that it overlaps the region of the target sample.
The redshift range of the resulting cluster-zs is solely limited by the
reference sample and its density. The statistical power is limited by
the number of reference objects and the number of targets, which
leads to generally better constraints for fainter magnitudes due to
larger number counts.

In addition to the two samples mentioned above, an unclustered
random sample, which covers the same area and the same angular
distribution of the reference sample, has to be generated during the
calculation. It is used to measure the autocorrelation function of the
reference sample in order to estimate its galaxy bias (see the next
section for more details). In order to reduce noise, we use more than
100 times as many random data points as reference points.

The overall process of deriving cluster-zs is illustrated for three
redshift slices for each of the three GAMA regions in Fig. 2. In the
left three panels, the target data points overlay the reference data
points of three different redshift slices. Secondly, the corresponding
cross- (w,) and autocorrelation (w,,) functions are calculated based
on the data sets in the first panel. The resulting functions are shown
in the middle panels within the separation ranges. By summing w,,
and w,, within a certain clustering range the final cluster-z amplitude
at each redshift slice is calculated. If this value is calculated for all
redshift slices, the final cluster-z distribution can be constructed. The
details of this process are explained in the following subsections.

3.1 Cluster-zs formalism

As described in detail by e.g. Ménard et al. (2013), clustering-based
redshift inference works by considering the parameter w;,, called the
clustering amplitude. w, is obtained as an integral of the angular
cross-correlation function of the target and reference samples over a
certain angular range 6 limiting the measurement to certain physical
scales:

Omax
w,(z) =/ dOW(©) w8, z) (1)
Omin
The usual choice of weight W(8) oc #~' maximizes the signal-to-
noise ratio, assuming measurements are Poisson-noise limited. For
a fair comparison between sources as a function of redshift, the
integration should be done over a fixed projected separation range .,
rather than a fixed angular range. The lower limit of the integration
should be large enough to exclude self-correlations of individual
sources, avoid fibre collision, ensure that a deterministic galaxy bias
model applies (Swanson et al. 2008) and not too large that genuine
associations are missed. The upper limit should be large enough to
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Figure 2. Illustration of the clustering redshifts process. In the left-hand panel, the contours of three different redshift slices at z = {0.09 (red), 0.19 (blue), 0.29
(green)} with Az = 0.02 is shown, on top of a subsample of the target data. Here, the differences of the cosmic web at these redshifts can be clearly seen. These
differences are used to calculate the cross-correlation of the target data set and the reference data at these redshifts. The resulting cross-correlation function wy,
and the autocorrelation function w,, are shown in the diagrams in the middle. By using the summed results of these functions over the corresponding clustering
ranges 7., the P, . at these redshifts are calculated. The resulting P,, ; is shown in the last panel and the points derived at the three redshift slices are marked

accordingly.

capture the LSS, but not so large that statistical noise is added due
to uncorrelated background galaxies. The optimal integration limits
of r. depend on the particular target and reference samples. As we
are probing the correlation of galaxies on small scales, we choose
Ikpch™ < r. < 250kpch™'. While this choice is important our
results are not particularly sensitive to the exact values, and we have
tested that none of our results or conclusions change significantly
with the integration limits.

As derived in Ménard et al. (2013), the clustering amplitude as
defined in equation (1) can be related to the underlying clustering
bias and redshift distribution as

drP - _
W, (2) E(Z)bl(z)br(z)wm(z)~ 2)

In words, the spatial cross-correlation of the target data with the
reference data is the product of the galaxy bias factors of the reference
and the target sample, b,(z) and b,(z), respectively; the dark matter
clustering amplitude W,,(z); and the shape of the redshift probability
distribution ¢ (z) The bars above each variable represent that they
have been 1ntegrated within the range r. as shown in equation (1).
Likewise, w,,(r., z) can be determined from the auto-correlation
function of the reference sample. Assuming that the variation of
galaxy bias within the clustering range is negligible, w,,(r., z) can
be expressed as

wrr(rm Z) = bE(Z)wm(Z)/AZ (3)

If within the redshift range Az the relative variation of ‘é—’;(z)
dominates over b,(z), we approach the regime where %(z) —
P(2)8p(z — zo) (Ménard et al. 2013). Hereby, the redshift probability
distribution of the target sample can be obtained up to an unknown
normalization that depends in detail on the unknown, and in general
evolving, bias of the target sample:

P, . x i

“

W, Az

1
BV @

3.2 Observables

The quantities that appear in equation (4) cannot be measured
directly; instead, pair counts are used to estimate the correlation
functions. The estimator for the cross-correlation clustering ampli-
tude is given by Peebles & Hauser (1974),

NRr DtDr
X
NDr Dth

wtr(rcv Z) = -1 (5)

and the estimator for the autocorrelation of the reference sample by
Landy & Szalay (1993),

N2, D,D, Nkr DR,
Rr —2x E

1. 6
N3, R.R, Npr  R.R. + ©®

Wy (re, 2) =
The notation XY represents the angular cross-pair count across the
two data sets X and Y, and XX represents the angular auto-pair count
within the data set X. The normalization Nx and Ny corresponds to
the number of points in the data sets X and Y. In our case, the target
data set is represented as D, the reference set as D, and the random
data as R,. The normalization factors are labelled accordingly. For the
measurement of the angular pair-counts needed in both estimators,
we use the PYTHON package corrfunc (Sinha & Garrison 2017).

In order to get an estimate of the uncertainty in the measurement,
errors are calculated via bootstrapping of 30 samples of the reference
data set. For each sample the clustering redshift estimate is calculated
in the same way as the measurement itself. After considering and
testing multiple approaches, we applied the normalized median
absolute deviation (NMAD) as our final technique to calculate the
standard deviation in each redshift bin. We inspected the bootstrapped
distributions to check that the assumption of Gaussianity is reason-
able.
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3.3 Redshift inference

The quantities described in the previous sections can be evaluated
for the whole sample or any subset. By performing this calculation
in redshift bins for different subsets of the reference sample, we are
able to build the full redshift distribution P,. If the target sample
in addition is split into subsets by magnitude, we can obtain the
information needed to measure the GLF.

The magnitude and redshift bins should be as small as possible
for the best resolution, but large enough to ensure a statistically
significant measurement for each redshift/magnitude cell. For our
sample, Az = 0.02 and Am = 0.25 is a good compromise between
these two considerations.

3.4 The need for the normalization factor A,,

The output of the cluster-zs measurement is only proportional to the
redshift distribution, N(z). A normalization is therefore needed to
compare the output to the data, or to derive the GLF. The difficulty at
this point is that a simple normalization by the number of target data
points is not reliable because, first, it is unknown if all target objects
are truly galaxies, and any additional contribution from, e.g. stars
or quasars, would result in an overestimation of the final N(z). The
second aspect is that a certain fraction of objects in the target data
set might reside beyond the limits of the reference set. This would
again result in an overestimation of the N(z). Therefore, an important
challenge is how to tackle the derivation of the normalization factors,
despite these uncertainties.

Mathematically speaking, the output of the cluster-zs process P, .
is proportional to the true number counts N, .. A normalization
parameter A,, = P,, ./N,, . is therefore necessary to transform the
cluster-zs into proper number counts N, ,, and vice versa. Given
an expectation of the true N, , we are able to find the best-fitting
value of A,, that is consistent with both N,, . and our clustering
measurements P, .. In this situation, the least squares or maximum
likelihood estimate for A,, is analytic:

R CEL Ok P.)?

- ™)

8)(2 i

it (8)
2

S A= Zz ®(z) x Pz/apZ ©)

3. P(2) x D(2)/0f

A,, is therefore the maximum-likelihood solution for the normaliza-
tion given the model and the data, where @ is the expected N, . from
a model calculated for a certain set of parameters or binned spec-zs
data, P, is the unnormalized data, e.g. the cluster-zs, and o is the
corresponding standard deviation of the data.

3.5 Bias evolution

The main limitation of the cluster-z approach is the unknown bias
evolution of the target sample, which is degenerate with the inferred
redshift distribution. A constant factor, assuming an evolution of the
target sample galaxy bias over redshift in a way which cancels out
the growth of the dark matter structure, is of no concern as it can be
absorbed into the normalization scalar. A larger concern would be
variations in the mean target bias over redshift.

Equation (4) shows how the effect of a varying bi(2) changes the
shape of the inferred redshift distribution: i.e. P(z) o b,(z)~'. One
way to mitigate this issue is to preselect target samples over narrow
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Figure 3. Comparison of the derived cluster-zs for each GAMA region in
blue to the spec-z distribution of the corresponding GAMA galaxies in orange,
normalized by the A,,s for different magnitude bins. It can be seen that the
cluster-zs recover the spec-z distribution at low-z to intermediate-z, and the
discrepancy increases with redshift due to the evolving galaxy bias.

redshift intervals (e.g. using photo-zs) to minimize any differential
bias across each sample. We have chosen to assume a model where
the growth factor in combination with the unknown bias is constant
b (2)x/W(z) = const. This choice is based on to the assumption that
the unknown bias b,(z) is increasing with redshift, whereas /,,(z)
decreases with redshift. The unknown bias evolution remains our
main systematic error and limitation. To mitigate its impact on our
results, we focus on the low-z GLF.

3.6 Validation of the cluster-zs

In order to validate the cluster-zs process, we tested our ability to
recover the known redshift distribution in bins of apparent magnitude
of the GAMA sample for each region. While this test uses the same
data set for both the target and reference samples, we stress that this
test is not circular. First, for the calculation of the P,, ., all points
within a magnitude bin (target objects) are correlated to all points
within a redshift bin (reference data).

In Fig. 3, it can be seen that the resulting redshift probability
distribution is in general in good agreement with the GAMA spec-zs
for redshifts z < 0.3. The cluster-zs follow the spec-z distribution
and even reproduce some of the large-scale structure features unique
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to each GAMA region. Given the fluctuations between each region,
we use all three regions for our study in order to reduce the errors
due to field-to-field variance.

At redshifts z > 0.3 the cluster-zs tend to overestimate the spec-z
distribution. It is conceivable that this reflects some incompleteness
in the spectroscopic redshift catalogues that preferentially acts
against higher redshift galaxies; e.g. surface brightness effects,
blending/confusion in the input catalogues, etc. The other alterna-
tive is that this reflects the evolving differential bias between the
redshift-binned reference sample and the magnitude-binned target
sample. One way to test this is by correcting the resulting cluster-
zs using the autocorrelation function for the target data similar
to the correction of the reference bias, which does improve the
correspondence between spec-z and cluster-z results. We can also
fit for a bias correction of the form b,(z) = (1 + z)? by requiring
that the spec-z and cluster-z distributions agree: we find g ~ 1.
This shows the impact of differential bias as the dominant source
of systematic error, especially for z 2 0.3, but unfortunately all
these corrections are only possible for the brighter magnitude bins,
where spec-zs are available, but as our main focus is the low-z GLF
we remain with our constant assumption. We return to this issue in
Section 6.4.

The errors in the cluster-z measurement, derived from bootstrap-
ping, can be seen to increase with redshift. This behaviour follows
the redshift distribution of the reference data set and the larger
uncertainties are a result of the decreasing number counts at higher
redshift. In addition, it can be seen that at brighter magnitudes
the cluster-zs can produce negative values at high redshifts. These
negative correlation amplitudes, originating from statistical noise and
systematic effects, highlight the point that the output of the clustering
methodology is only similar to a normalized probability function, but
not the same.

4 MODELLING AND MEASURING THE GLF
WITH CLUSTER-zS

The goal of this paper is to use the clustering redshift measurements
described in Section 3 to determine the luminosity function for
z ~ 0 galaxies to the faintest possible limits. In principle, the
evolving luminosity function ®(m|z) can be directly inferred from
the observed bivariate distribution N, , plus cosmology. The main
obstacle is that clustering redshift inference yields only the shape
of the redshift distribution: our clustering redshift results are only
proportional to the true redshift distribution up to an unknown
normalizing scalar; i.e. P, . = A, X N, .. In this section, we
describe our process for determining these normalization factors,
A, that relate our cluster-z measurements to the underlying redshift
distribution, and hence to the true GLF.

Our solution is to use a parametric model for the evolving
luminosity function, as described in Section 4.1, to describe the shape
of the redshift distributions, N, .. The parameters of this model are
constrained by our cluster-z results, as described in Section 4.3. For
any choice or trial set of model parameters, the maximum likelihood
estimate of the factors A,, is analytic. The one complication is that
we need an external constraint on the global normalization of the
model, which is otherwise degenerate with the A,s. Section 4.3
describes how we use the GAMA spectroscopic sample to break
this degeneracy. Since the values for A,, can be computed for any
specified choice of parameter values, the same likelihood analysis
can be used to give the posterior probability distribution functions
(PDF) for the model parameters and also for the set of scalar A,,s.
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4.1 A simple model for the evolving GLF

The characteristics of the observed GLF are a power-law slope for
fainter magnitudes with an exponential drop-off at bright magnitudes,
which are usually described using a Schechter (1976) function:

" a+1
S(MIM*, a, ¢*) = 0.41n 10¢" [100-4(M —M)]

X exp [—10"-4(’”*—’”)] am, (10)

where ¢* is the characteristic number density, M* the characteristic
magnitude cut-off, and « defines the faint-end slope of the function.
Recent studies have shown that a single Schechter function does
not provide a good description of the GLF across a broad range of
magnitudes on its own, and instead the use the sum of two Schecter
functions (e.g. Baldry, Glazebrook & Driver 2008; Moffett et al.
2016) is necessary. There are theoretical arguments to understand
this double Schechter form for the GLF in terms of the relative
efficiency of mass- and environment-dependent feedback processes
(e.g. White & Rees 1978; Kauffmann et al. 1993; Cole et al. 1994;
Peng et al. 2010).

For the redshift evolution, we use the parametrization by Lin et al.
(1999) (see also Loveday et al. 2012, 2015) for describing a linear
evolution of the logarithmic galaxy density log(¢;) and characteristic
magnitude M* using the parameters Q and P. The slope « is kept
constant in this parametrization.

M*(z) =M*— Q xz (1)
(171*(2) — ¢(>)k X ]00A4><P><z (]2)
a(z) = a. (13)

This simple parametrization relies on the assumption that the shape
of the luminosity function is not evolving and the function is only
shifted horizontally in absolute magnitude by Q and vertically in
density by P. As we are not explicitly considering k-corrections, we
rely on Q to absorb their effects and our results should always be
understood in terms of the observer-frame r band. Given our focus on
the low-z GLF, k-corrections are of minor importance in our study.
The final double Schechter function S, is therefore given by

OM; M}, i, ¢F, Qi, Pr)
= Si(M; M{, o1, 07, Q1, P1)
+ S(M; M}, ar, ¢35, Qs P). (14)

We distinguish between the two Schechter functions by requiring
o < a,. The model describes ®(M, z), while our observation is
N(m, 7). The two are related via N(m, z) = ®(M, z)dV, with M =
m + DM, and where cosmology enters via the comoving volume
element, dV, and the distance modulus, DM. In Appendix A, we
show that the double Schechter form provides a good description
of our data, and also that our main results and conclusions are not
particularly sensitive to this choice of parametrization.

4.2 Cluster-zs likelihood function

The model provides a prediction for N(m, z) integrated within the
grid cell based on a particular choice or trial set of parameter values.
This predicted N(m, z) should match our cluster-z measurements up
to an unknown normalization. For a particular model, the MLE for
A,, is computed using equation (9), and the log-likelihood In(L;)
associated with this parameter combination follows. Assuming
Poisson statistics, so that the statistical uncertainties are normally
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distributed, and using the A,,s as described, the logarithmic likelihood
function for the data P,, , given the model & for each individual
GAMA region i yields

_ 1 1 2
ln([,i) — _% Z (Pm,z Am X (I)(M (Z)v ¢ (Z), a)m.z) . (15)

e T
The errors are derived from bootstrap resampling of 30 realizations
of the data as described in Section 3.2. In principle, it is possible to
use the MCMC sampler to sample the probability distribution of the
A8 as nuisance parameters, but this is unnecessary as the calculation
of the A,,s from any specific model is analytic and it is therefore faster
and easier to parcel this out of the MCMC process.

By modelling the regions simultaneously with their field-specific
A,,, we account for field-to-field variations. The overall likelihood is
then obtained from the product of the individual likelihoods:

In(£) = In(Lgoo) + In(Lg12) + In(Las). (16)

From equations (9) and (15), it can be seen that there is a degen-
eracy between the values of the normalization factor A,, and the
characteristic densities ¢;. While this does not impact our ability to
constrain the GLF shape using cluster-zs, some outside information
is therefore required to constrain the overall z ~ 0 normalization of
the GLF.

4.3 The need for a spectroscopic sample to constrain ¢;

We use the GAMA spec-z sample to constrain the overall normal-
ization of the GLF, and so break the degeneracies mentioned above.
The simple idea is that the model should explain both the spec-z and
the cluster-z results.

While the cluster-z results can only be derived in bins, the spec-z
data counts discrete objects. We could bin the spec-z data, but that
is not necessary and throws away information. The appropriately
normalized model describes the likelihood of observing a data-point
at any given point in (m, z) space, thus we are able to evaluate the
point-wise likelihood function.

For the fitting of the spec-zs, we use a point-based likelihood
function as described by Marshall et al. (1983). In this approach, the
magnitude and redshift plane is split into tiny cells of dM, dz which
can only contain one or zero objects. The mean number of objects
expected in one cell is

dV(z)
dz
where @ is the double Schechter luminosity function and S(M, z)
is the selection probability, which yields one if an object could be
found given the selection boundaries and zero if not. The overall
probability, given all galaxies are independent, is the product of the
possibilities of having one or zero objects in a bin. Using Poisson
statistics this leads to

dV(Z;) _ A WVGED ¢
= ([Tomr 0= dsz] [[Tee0ma"asean] qs)

A=dM,z) dzdM S(M, z2), 17)

and therefore the log-likelihood of the spec-zs becomes
dV(z)
dz

In(Ly) = Zln[d)(Mi, z)] - / /dszd)(M, 2) , (19)
where the second term enforces the integral constraint on the likeli-
hood function, such that a data point must be observed somewhere
within the observational window. In this approach, we neglect the
sample variance contribution to the likelihood function and therefore
our errors do not represent field-to-field variations.
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4.4 Using MCMC to condition the model and infer A,,

In the previous three sections, we have defined our model for the
evolving GLF and the In(£) function. We now use the MCMC utility
eMceE (Foreman-Mackey et al. 2019), with uniform priors (In(£) =
In(L;) 4+ In(L;) + prior) on our model parameters, to sample the
parameter space subject to the observational constraints. The chains
themselves represent the joint PDF for the parameters that define
our model for the GLF. To check the convergence of the sampler,
the integrated autocorrelation time t is calculated as described by
Goodman & Weare (2010) and the fit is resumed until the estimated
autocorrelation time is less than T = Numpies/50.

‘We recall that each evaluation of the model involves a ML solution
for the values of A,,, which we record at every step of the chain. These
chains represent the joint PDF, incorporating and marginalizing over
all possible models which are consistent with the data.

4.5 Obtaining the GLF measurements

To obtain the GLF measurements, two final steps have to be
undertaken after the fit: first, the cluster-zs have to be normalized
using the A,s and the best-fitting model. Secondly, we weight
the resulting number counts by the cosmological volumes of the
corresponding redshift bin and apply the distance modulus to derive
the GLF measurements.

Our analysis can thus be understood from two complementary
angles. One interpretation would be to emphasize the parametric fits
as ‘the’ description of the evolving luminosity function. From this
perspective, the set of A,s can be viewed as nuisance parameters,
which are a necessary part of the model-to-data comparison, to
be marginalized away. Alternatively, a more data-minded approach
would view the model as a means of deriving a self-consistent set of
values for the critical normalization factors, A,,, from which both
N, . and ®(m|z) follow. In this way of thinking, the particular
parameter values for the model are less important: what matters
most is simply whether the model provides a good description of the
underlying data. We defer further discussion of this issue to Section 6.

5 RESULTS

The full process proceeding from the cluster-zs in bins of magnitude
to measurements of the GLF is illustrated in Fig. 4. In the first
panel, the combined raw cluster-zs measurements P(z|m) of all three
regions are shown. At fixed magnitude, the cluster-z measurements
are approximately integral normalized to unity. At bright magnitudes,
the relatively narrow distribution of redshifts shows as a relatively
strong peak; at fainter magnitudes, the broader redshift distribution
is seen as more diffuse in this visualization. The progression of peak
of the distribution shows how the mode of the redshift distribution
shifts from bright to faint magnitudes. Besides this tail in the (m,
z) plane, there are two regions of interest. First, the amplitudes
at higher redshift and bright magnitudes appear noisy. At these
magnitudes the number of target sample data-points is small, which
lead this area to be noise dominated. In contrast to that, the region at
fainter magnitudes and low z appears almost flat, as at these redshifts
the clustering amplitude is small due to accurate clustering-based
redshift estimates, and only small numbers of galaxies with the
corresponding magnitude are residing at low redshifts.

The cluster-zs are transformed into an N(z) using the A,s. In the
second panel of Fig. 4, the derivation of the A,,s from the best-fitting
model and its application to the cluster-zs can be seen. The contour
lines of the different galaxy populations extend with increasing
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Figure 4. Illustration of the impact of the A factors. The three panels represent different steps of the analysis. From left to right: (a) the unnormalized cluster-zs
of all three regions, (b) cluster-zs normalized by the A-factors of the best fit with model contours, (c) adding the distance modulus to the A-factor normalized
cluster-zs with model contours. The colours and contours indicate different levels of (a) clustering amplitudes, (b) number counts, and (c) densities with a
logarithmic scaling. Moving from (a) to (b) it can be seen how the normalization of the cluster-zs by the A-factors changes the P, . of the unknown data set
into a proper N, ,,. By adding the distance modulus, the absolute magnitude range covered by this study is displayed in (c).

redshift, as more and more volume is covered. In the third panel,
and as the last step towards obtaining the GLF, the distance modulus
is added to the galaxy distribution. Here, the full extent of our study
can be seen clearly. We observe how the number of galaxies at
higher redshift increases, which is already an indication that there is
no flattening of the GLF at the faint end. In the third panel, the jagged
model lines result from the pixelization of the rectangular grid.

The final step of weighting the resulting distribution by the
cosmological volumes, and obtaining the GLF, is described in the
next section.

5.1 Parametric description of the evolving GLF

The resulting posterior probability distributions of the fitted model
parameters using the KiDS data within m, < 22.55 is shown in Fig. 5.
It shows the marginalized and joint constraints on the parameters
from our MCMC chains. As defined by the model parametrization,
there are partial degeneracies between the parameters M* and Q, as
well as between log ¢* and P. This is evident for both Schechter
functions. The resulting probability distributions display the same
shape and covariance for both Schechter functions. In addition, it can
be seen in the central 5 x 5 cells of the plot that the two Schechter
functions are not significantly correlated. The resulting best-fitting
parameters are displayed in Table 1, along with the uncertainties
derived from the sampler.

We note that it is common in the literature to fit models including
a coupled M* (e.g. Baldry et al. 2012; Wright et al. 2017) rather
than a decoupled M* (e.g. Kelvin et al. 2014). We decided to adopt
a decoupled M* as it is more general. With our results we find that
the M*s are similar, but not equal. In addition, we find that |o; —
a,| = 0.84 £ 0.03 which is close to Ao ~ 1, which previous studies
have measured between early and late type galaxies (e.g. Loveday
et al. 2012). In addition, the empirical mass-quenching approach by
Peng et al. (2010) produces a Schechter function with common M*
for early and late type galaxies as well as an Ao ~ 1. Here, it is
perhaps significant that the first component evolves more strongly
in magnitude (P; = —4.6 = 0.4) than density (Q; = 0.5 = 0.3),
suggesting continued star formation/assembly. In contrast, the second

component is growing in density (Q> = —1.74 £ 0.05) but not
magnitude (P, = 0.07 £+ 0.08), suggesting an increasing number
of only passively evolving galaxies. Based on these considerations,
it is perhaps tempting to identify our first and second Schechter
components as pertaining to the blue/star forming and red/quiescent
populations, respectively, even though we have not used any colour
or stellar population information in this analysis.

Each point in Fig. 6 represents a different realization of the model
and shows its corresponding A,,. It therefore displays the allowed
variation in A,, that is consistent with good but imperfect knowledge
of the evolving LE. The A,,s incorporate the normalization due to
the increasing number of galaxies (LSS) as well as the magnitude-
dependent bias evolution. In order to visualize the effect of the
A,;s without the different number of objects in each magnitude bin,
we display the A,,s multiplied by the number of galaxies for each
magnitude bin in Fig. 6, which scales as the mean bias multiplied
by the variations in LSS for each region in each magnitude bin. The
scatter between the points represents the field-to-field variations. At
the bright end, where completeness is high and the number of galaxies
is low, field-to-field variations are strong. With fainter magnitudes,
field-to-field variations become less important. Here, it can be seen
that the A,,s of all three regions follow a linear relationship. The errors
of each measurement are underestimated as the sample variance error
contribution is neglected.

5.2 Recovery of the number distribution

Having explored the effect of the A, s, we can now examine the
resulting redshift distributions N, , and compare the normalized
cluster-zs with the GAMA spec-z distribution. In Fig. 7, the resulting
N ,, is shown in separate magnitude bins. As the number of GAMA
spec-zs are significantly dwindling at magnitudes larger than their
completeness limit m, = 19.65, they are not shown in the diagram
for these faint magnitudes. By comparing the GAMA spec-zs, shown
as bars, with the continuous model lines as well the cluster-zs (error
bars), a few results can be noted.

First, the model with its best-fitting parameters from Table 1
is in good agreement with the spec-zs. This model is the basis
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Figure 5. Posterior probability distribution (with uniform priors) for the ten parameters of the double Schechter function fit to the combined cluster-zs and
spec-z likelihood in the three GAMA fields. Apart from the obvious covariances between the connected parameters, the independence of the two Schechter

functions can be seen.

Table 1. Best-fitting parameters of the double Schechter function fit.

M a logi0(¢*) 0 p
S 2174000 —1.484000  —2.97450F 0494038 —4.63+04)
Sy 214730 —0.64£007 2354500 —1.74£003 0.07+00%

for the normalization of the cluster-zs. The normalized cluster-
zs are in general a good approximation for the GAMA spec-zs
where available. The cluster-zs themselves overestimate the true
distribution at higher redshifts, as has already been seen in Fig. 3,
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which is due to the unknown target galaxy bias evolution discussed
in Section 3. In contrast to the error in the model, which is rather
small especially at brighter magnitudes, the scatter of the cluster-zs
is always larger, which is emphasizing that we are limited by the
errors in the cluster-zs and not by the scatter in the model or the A,,s.

Spectroscopic redshifts dominate at bright magnitudes, at fainter
magnitudes objects with redshifts have cluster-zs, but the number
counts are dominated increasingly by objects beyond our redshift
range. For these magnitudes only a part of their redshift distribution
can be traced, due to the unavailability of reference points at higher
redshifts.
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Figure 6. The normalization factor A,, of each region for each magnitude
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main study. It can be seen how the A,,s account for the normalization in the
different regimes.

Having investigated the individual bins, we are now in the position
to combine the data in order to determine the shape of the complete
magnitude functions. In Fig. 8, it can be seen the extent to which the
A-factor normalized cluster-zs are in agreement with the GAMA
measurements at m, < 19.65. At m, = 19.65, the total number
counts of the model and our results summed over all redshift bins is
flattening in contrast to the KiDS number counts. This gap between
the models/results and the total number counts is explained by the
increasing proportion of z > 0.48 population. Here no cluster-zs can
be derived, due to the limitations of the reference sample. In Fig. 8,
a series of redshift shells is also displayed, and the model as well as
the cluster-zs in the corresponding redshift shell is shown. The shape
of the GLFs consistently displays the characteristic upturn of the
Schechter function at bright magnitudes, followed by a flattening in
the slope. In the low-z shells, the slope is stable and almost linear over
the whole range of magnitudes. For the highest redshift shells only
the bright end of the GLF can be shown, and any information about
the faint end is beyond the redshift range of this study. In summary,
in all redshift shells the behaviour of the GLF is similar, and the
number of galaxies continues to increase with fainter magnitudes,
with slightly increasing slope.

5.3 Measurement of the faint end GLF

We now focus on the low-z (z < 0.1) GLF itself, which is shown in
Fig. 9. We note that measurements of the GLF without the cluster-zs
would only be possible up to M, = —13.5; L ~ 10’L, (assuming
Mg = 4.65). The cluster-zs provide almost three additional magni-

tudes of information reaching down to M, = —10.7 or L ~ 10°L,.
The GLF can hence be constructed over a total range of almost 14
mag.

In Fig. 9, it can be seen how the combination of the different
redshift slices at z < 0.1 are contributing and collectively building
the GLF. The overlap of the cluster-zs, shown as lines with error bars,
and the dots representing the spec-zs, are always in good agreement.
Also the model is in agreement with the spec-zs and the cluster-
zs. The shape of the GLF at the brightest magnitudes of M, <
—20 represents the characteristic cut-off of the GLE. Due to small
volumes, this cut-off is only visible at redshifts z > 0.06. With fainter
magnitudes the GLF is extended successively by measurements of
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lower redshift bins, until it is unfolded over its full range. After
the steep increase, the GLF flattens around M, ~ —20 for a limited
range. At fainter magnitudes the contribution of the second Schechter
function becomes dominant, resulting in a slight increase in slope
from M, 2 —17. This behaviour is not only true for the GAMA spec-
zs, but also for the cluster-zs. As this trend remains unbroken until
the limits of our study at M, = —10.7, we conclude that the integral
of the GLF (i.e. the number of galaxies in the Universe) remains
divergent.

6 DISCUSSION

6.1 Modelling versus measurement

In this study, we have derived results in two forms: first the best-fitting
parametric model, which has been conditioned on both the spectro-
scopic and cluster-z measurements, and secondly the observed GLF
as derived from the model-normalized cluster-z redshift distributions.
As it can be seen in Fig. 9, the modelled and the derived GLF
measurements diverge for the faintest magnitudes, as the slope of the
measurements is steeper than the best-fitting model. The question
arises as to how to understand the nature of this discrepancy, and
which determination ought to be preferred.

Since the model results necessarily depend on the choice of model
parametrization, this is an obvious first concern. Many different
parametrizations are used in the literature, and we have no strong
astrophysical justification for our particular choice. We explore the
impact of model choice in Appendix A, where we use a simpler single
Schecter model for the evolving GLF. Unsurprisingly, the resultant
fit is quite different at the faint end, which is generally less well
constrained by the data than around M*.

What is more surprising is that although the model is rather differ-
ent, the model-derived values for the normalization constants A,, are
very robust. As shown in Fig. Al, the derived GLF measurements
are hardly changed when we use this much simpler model. In light
of this fact, we prefer to view the parametric model mainly as a
tool to derive the critical normalization factors, by providing a self-
consistent description of the full cluster-z data set, and we choose to
focus instead on the model-normalized cluster-z results as providing
the more robust measurements of the evolving GLF.

6.2 The steepening slope of the GLF at z ~ 0

One primary motivation for this study was to measure the shape of
the GLF at the very faintest luminosities. In Fig. 10, we compare our
GLF measurements to selected literature results. To directly compare
the inferred shape of the GLF as observed by different studies, in
Fig. 11 we also show the effective GLF slope, averaging over bins of
width 2 mag.

For —20 < M, < —13, we see good agreement between our
measurements, Loveday et al. (2015), Trentham et al. (2005) and
the GLF model, with a nearly constant slope & ~ —1.2. At
fainter magnitudes we see a significant upturn in the cluster-zs
measurements for log (L/Ly) S 6.5, which is not captured by our
parametric model for the GLF. While Trentham et al. (2005) does
not see a similar upturn for field galaxies, a similarly steep upturn
has been measured over the same magnitude range by Yamanoi
et al. (2012) in the Coma Cluster. For Coma, Yamanoi et al. (2012)
concluded that at M, > —12 GCs make up as much as 15 per cent of
the total population.

One possible explanation is thus that we are seeing globular clus-
ters (GCs) and/or ultra compact dwarfs (UCDs) come to dominate
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the extragalactic source population in the field at these very low magnitude
luminosities. To test this idea, we use our parametric GLF model
to make a simple estimate for the expected GC luminosity function, N — S 1004 (My+15) (20)
as follows. We obtain the mean number of GCs as a function of o "
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(Harris & van den Bergh 1981), where S, is the specific frequency
of GCs normalized to a galaxy with an absolute magnitude of My =
—15. For the conversion between - and V-band magnitudes, we use
My = M, + 0.25 £ 0.07mag, which we derived from the spectral
engery distribution fits described by Taylor et al. (2011). The shape
of the GCLF is described by a Gaussian distribution function (Harris
1991):

Ngc(m) o e=m=mor/2% 1)

described by the turnover magnitude of the distribution, mg, and
the dispersion, o. The particular values we use for the derivation of
the GCLF are based on studies of the Coma Cluster, where my =
27.7, 0 = 1.48 (Harris et al. 2009) and S, = 5.1 (Marin-Franch &
Aparicio 2002). The net cosmic-averaged GCLF is then obtained by
integrating over our double Schecter model for the z ~ 0 GLE.

This simple model, shown as the dashed line in Fig. 10, can be seen
to do a remarkably good job at reproducing the steepening slope that
we see for log (L/Lg) < 6.5, which is where we expect the GC/UCD
population to begin to outnumber the galaxy population. While we
cannot distinguish between GCs and UCDs for our sample, we note
that Mieske, Hilker & Misgeld (2012) argues that, at least in terms of
luminosity distribution, UCDs can be viewed as continuing the bright
tail of the Gaussian GC population. Thus we would appear to have
mapped the GLF all the way down to the point where sub-galactic
objects (i.e. GCs and UCDs) come to dominate in the field.

6.3 What does not matter: errors/uncertainties that have little
to no impact on our results.

In Section 6.1, we have already addressed the insensitivity of our
results to the choice of parametrization for the GLF model. Below we
briefly describe several other tests, we have performed to demonstrate
the robustness of our analysis and results.

One potential concern is that the inclusion of stars, false detections
or other ‘bad’ data will propagate through to bias the clustering-based
redshift inferences. As described in Section 2, we have excluded
all entries in the photometric catalogue that are classified as either
stars or artefacts, and only considered those classified as galaxies or
ambiguous. However, the exclusion of stars and point-like objects

GAMA: The z ~ 0 GLF down to L ~ 10° L

5479

such as higher-z galaxies (including QSOs) and even false detections
is not necessary for deriving the cluster-zs. This is because stars do
not cluster in the same way as galaxies, and so do not contribute
to the cross-correlation function that is used to derive the cluster-zs.
The same is true for artefacts, QSOs, and any other source population
that does not follow the same large scale structure, as traced by the
reference sample. The only effect would be a general dilution of the
resulting clustering amplitude, which is accounted for by the A,, and
so do not influence the resulting GLF measurement.

Another possible concern stems from our use of the spec-z
sample to constrain the overall normalization of the GLF via the
characteristic density, ¢*. How do we know that our results are not
being driven by the spec-z constraints rather the cluster-zs? We have
addressed this concern by only using a bright (m, < 17.8) subset of
the spec-z sample for our GLF model fitting, and verifying that we
obtained similar results.

An additional potential source of error is field-to-field variations.
By calculating the cluster-zs for each field individually, and treating
each of them equally during the fit, we are able to minimize the error
as the A,,s account for variations between the three regions. These
variations can be seen in Fig. 6. Using this approach we are able to
obtain the best results by combining the resulting measurements of
each region into our final GLF.

The primary source of incompleteness is likely to be tied to low
surface brightness, which will translate directly into an underestimate
of the cluster-z derived P(z). What matters is what proportion of
the population we are missing. In light of the fact that apparent
SB diminishes as (1 + z)*, it is an open question as to whether SB
incompleteness will be a bigger issue for intrinsically fainter galaxies
at low redshift, or for much more numerous higher redshift galaxies.

If it is the former, then this will lead us to underestimate the GLF
for the faintest galaxies at z ~ 0, and our measurements should
be taken as a lower limit. In Section 2.3, we describe how we
have limited our analysis to m, < 22.55 to minimize the impact
of SB selection effects, and particularly incompleteness for low
SB galaxies. Based on Fig. 1, we can estimate an approximate SB
selection limit around 1 ~ 26 mag arcsec™2: that is, faint enough to
capture even the extreme population of ultra diffuse galaxies (UDGs)
found by van Dokkum et al. (2015) to redshifts less than ~0.1.

If surface brightness selection effects become increasingly impor-
tant for higher redshifts, then the impact on our results is less clear.
What will happen is that our measured P(z)s will be systematically
low for the highest redshifts and faintest magnitudes. In principle,
this might lead to an overestimate of the A,, normalization factors for
the faintest magnitudes, and so lead to a steepening of the observed
GLF slopes at all redshifts. What makes this difficult to predict is
not knowing how the modelling might respond to this systematic
change in the data. While we cannot exclude this possibility, we
do see good agreement in the cluster-z derived GLF measurements
across different z ranges (see Fig. 9), which suggests that the impact
of this kind of effect is small.

With these considerations, we can conclude that our approach is
insensitive to many difficulties in deriving the GLF.

6.4 What does matter: bias evolution is the limiting source of
error/uncertainty

The main source of systematic uncertainty in our study is tied to
the unknown differential galaxy bias evolution b, (m, z) of the target
data set. In general the form of the bias can be measured where
spec-zs are available, and the corresponding bias of the reference
data set is accounted for by calculating the autocorrelation function
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in each redshift bin (see van den Busch et al. 2020). However, this is
impossible for the target data set. We therefore have to address any
effects due to the magnitude and redshift dependence of the target
galaxy bias.

Any magnitude-dependent bias would result in a degeneracy with
the density evolution of ¢ and therefore the shape of the GLF. As
we are working in apparent magnitude bins, galaxies across a broad
redshift range, as well as with different luminosities, are included in
one bin. As the bias should be larger for brighter galaxies and smaller
at higher redshift, these effects might cancel out to some extent.

Bias dependence with magnitude is also partially accounted for by
the A-factors, as any change of normalization of the cluster-zs in each
magnitude would impact the A,,s, but not the final measurements.
Even under the assumption of a constant A x N, by which the cluster-
zs are normalized only based on to the number of objects in each
magnitude bin and hence ignoring the bias completely, we get a
sensible faint end slope of o ~ —1.6, which shows that the magnitude
evolution of the unknown bias is rather small.

The bias evolution in redshift is of larger concern. In contrast to
the magnitude bias, the effect of the redshift-dependent bias is not
to change the shape of the GLF, but its evolution. The impact of the
redshift bias can be seen in Figs 3 and 7. Corrections to the linear
bias of the form 8b;/8z = 1 are suggested by Rahman et al. (2015)
and Bates et al. (2019). In an approach by van Daalen & White
(2018), it is suggested that by using a simple luminosity bias relation
with a fixed and known normalization, the redshift evolution of the
remaining bias terms cancel out. We have performed tests which show
that corrections using the shape of a power law b,(z) = (1 + z)?,
with B & 1, as shown by Davis et al. (2018), can determine the
known distribution of the GAMA spec-zs in agreement with the
inferred cluster-zs. Unfortunately all of these bias corrections can
only be tested where spec-zs are available. Even though there are
good reasons for the use of a bias correction, for reasons of simplicity
we have chosen to use a constant b,. In addition, as we focus on the
low-z GLF (z < 0.1), the effect of an uncorrected bias is unimportant
for our main conclusion. Nevertheless, the unknown bias remains the
main systematic uncertainty in this study.

7 SUMMARY AND CONCLUSION

In this paper, we have demonstrated a novel experimental design
for using clustering redshifts to measure the evolving GLF, and
especially the GLF shape at z ~ 0, to the faintest luminosities,
beyond the limits of spec-zs and notably beyond the useful limits of
photometric redshifts.

Our GLF final measurements are based on a sample of ~3 x 10°
sources to m, < 22.5 (i.e. ~3 magnitudes beyond the GAMA
spectroscopic redshift limit), using the three GAMA equatorial fields.
Our experiment considers only position and total -band magnitude
for this sample. The information is taken from the GAMA produced
photometric catalogues (Bellstedt et al. 2020), which are derived
from KiDS r-band imaging (Kuijken et al. 2019).

As discussed in Section 2.3, we have limited our analysis to m, <
22.5 to minimize the impact of SB selection effects on our results
(see Fig. 1).

As illustrated in Fig. 2, our clustering redshift inferences are based
on the cross-correlation between the target sample and a reference
sample with known redshifts, where the size of the reference sample
limits the statistical precision of our experiment, and also the
maximum redshift interval that we can probe. We use the main
GAMA spectroscopic redshift sample (m, < 19.65; z < 0.5; N ~
170.000) for this purpose.
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In Section 5.2, we have demonstrated that we can use clustering
redshift inference to recover N(zgpec|m) — the spectroscopic redshift
distribution in bins of apparent magnitude — for the GAMA sample
(see Fig. 7).

The main technical challenge in our experiment arises from the
fact that output of the process of clustering redshift inference is pro-
portional to the redshift distribution for the target sample, up to some
unknown scalar (see Section 3.4). Our strategy is to use a simple para-
metric model for the evolving GLF to constrain the values for the nor-
malization factors, A,,, as described in Section 3.4 (see also Fig. 6).

Fig. 4 provides an overview for how we use the results cluster-
z results to measure the GLF. We use clustering redshift inference
to derive the redshift distribution for our target sample in bins of
apparent magnitude, P(z|m). The derived values of the normalization
factors, A,,, then are used to obtain the number counts, N(z|m) (see
Figs 7 and 8). Finally, for a given cosmology to determine the distance
modulus and dV/dz, the luminosity function ®(M|z) follows.

Our main results — mapping the field GLF at z ~ 0 across 14
magnitudes or 5.5 decades in luminosity — are shown in Figs 9 and
10. The measured slope of the GLF remains remarkably flat over
the range —20 < M, < 13, with a sharp upturn below M, ~ —12.5
or log L/Ly ~ 6.5. A similar upturn has been found for the Coma
Cluster by Yamanoi et al. (2012). Following Yamanoi et al. (2012),
we use a simple model to predict the luminosity function for the GC
population, based on our GLF fits. This simple prediction with no
free parameters provides a good explanation to the observations.

As discussed in Section 6.3, we have conducted a number of
sensitivity tests to demonstrate that our results are robust to a
variety of elements of the experimental design, including: model
parametrization; the presence of stars, QSOs, artefacts, etc., in the
photometric catalogue; and the depth of the spec-z sample used to
constrain the overall GLF normalization, ¢*. Also potential effects
due to SB selection were discussed supplementary to our measures
to minimize its impact.

The dominant source of systematic error/uncertainty in our results
is the unknown evolution of the mean bias of the target samples over
the 0 < z < 0.5 interval. Being mindful of these issues, we have
focused particularly on the z ~ 0 GLF, where the impact of these
uncertainties is minimized.

Thus we have mapped the z ~ 0 GLF from the most luminous
galaxies all the way down to where sub-galactic objects like GCs
and UCDs take over as the most numerous extragalactic population.

In doing so we demonstrated the potential for clustering based
redshift inference in deriving the GLF. This technique offers manifold
applications as it is not limited to the optical only. In addition, this
technique can be extended: e.g. by using deeper reference sets, or by
combining different reference sets, an even deeper study would be
possible.
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APPENDIX A: CHOICE OF MODEL

The choice of parametrized GLF model is one possible limitation
in our results, as the measurements depend somewhat on the
parametrization used. As we stated in the text, we do not consider
the best-fitting LF model as our results, but rather the inferred
GLF measurements using the cluster-zs. In order to demonstrate
that these measurements are insensitive to changes in the model
parametrization, we re-ran our analysis using a single Schechter
function, rather than a double Schechter function, knowing that this is
a poor choice of model. In Fig. A1, the resulting A-factor normalized
cluster-zs are displayed with their corresponding best-fitting models.
It can be seen that the difference in the resulting values of the A-
factor normalized cluster-zs is less than one standard deviation, while
their corresponding models differ significantly. Hence, we conclude
that the results are robust to changes in the model parametrization.
In addition, it can be seen how the single Schechter formalism is a
poor description of the data, as it is not able to describe the data well,
and the double Schechter function model performs better at this task.
This agrees with the literature results regarding the shape of the GLF.
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APPENDIX B: SENSITIVITY TO STARS AND
OTHER OBJECTS

MA: The 7 ~ 0 GLF downto L ~ 106 Lg

In Section 2, we explained how we excluded data flagged as stars
within our target data set. In order to demonstrate the effect of the
stellar population on the resulting P, ., we recalculated the cluster-
zs using all objects of the target data set instead. By comparing the
resulting P, . with the original P,, ., as can be seen in Fig. B1,
the inclusion of the additional 30 per cent of data points, mainly
consisting of stars, only has a limited impact on the shape of the
cluster-zs. Even such a large contamination of the data only produces
a small impact on the results because, as mentioned in the text, the
clustering amplitude only changes by a normalization factor. For
comparison, we have normalized the resulting cluster-zs in Fig. B1
such that their maximum equals 1. The different amplitude is of no
concern, as the A,, factor accounts for any global changes of the
amplitude. We can hence conclude that our technique is insensitive
to stellar contamination.

Luminosity, L [Lg)

10" 1010 10° 108 107 106
10’ - - - ' - -
GAMA galaxy counts
§  Double Schechter

. 100 | 1 Single Schechter H
: i
a I

= 107! i»—-f"ﬂ'ﬂ/
‘ | I
%D EH TE 4

£ e
= 1072 L
g #
s G

Z”‘ 10—3 L

'z il

S

5 1074 Il

e

£

j=]

Z 10—5 L

106 : : - : '
—24 —22 —20 —18 —16 —14 —12 —10

Absolute magnitude, M,

Figure Al. Density distribution of the luminosity function at z < 0.1. Here, the resulting model of the double Schechter fit (blue solid line) is compared to the
single Schechter model (red solid line) as well as their corresponding A-factor normalized cluster-zs (blue/red line with error bars) and the measured GAMA

values (orange solid points).
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Figure B1. Comparison of the resulting P,, ; using a target data set with mainly galaxies (blue) and one including all objects (red). The maximum value of all
the P,,, ;s are set to 1 for comparison.
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