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Maximum Torque Per Ampere Algorithm for
Five-Phase Synchronous Reluctance Machines

Andrea Cervone, Student Member, IEEE, and Obrad Dordevic, Member, IEEE

Abstract—This paper presents a Maximum Torque Per
Ampere strategy for a five-phase synchronous reluctance
drive. The approach is developed considering general ma-
chine parameters and is formalized as a constrained opti-
mization problem. The optimal solution is found analytically
by using Lagrange’s multipliers method and is based on
the computation of the eigenvalues and eigenvectors of the
inductance derivatives matrix. The proposed approach is
evaluated both numerically and experimentally. It is also
compared with other current references control strategies,
effectively showing a reduction of the machine RMS cur-
rents for the same developed torque. The same approach
can also be extended to machines with a different number
of phases.

Index Terms—Multiphase machines, Synchronous Re-
luctance Machines, Maximum Torque Per Ampere, Losses
Minimization.

I. INTRODUCTION

SYNCHRONOUS reluctance machines (SynRMs) are a
well-known technology that for long has attracted the

interest of the electrical scientific community. This is because
of its simple construction and because it can achieve the
synchronous operation without requiring an excitation coil or
permanent magnets placed on the rotor [1], [2]. The torque
development in a SynRM is based on variable reluctance
effects, which can be obtained by properly designing the rotor
of the machine, that can be realized either with salient poles
or with flux barriers [3]. The stator of a SynRM is instead
of a standard cylindrical surface, and its phase windings can
be designed either with a concentrated or with a distributed
layout.

It is currently recognized that the employment of more
than three phases (i.e., of a multiphase electrical machine)
offers several benefits over standard three-phase solutions,
that can be of interest especially in high-power and high-
reliability applications [4]–[6]. Indeed, the input power can be
conveniently split into multiple phases, which allows reduction
of the rated voltage or current of the supplying converter,
and the intrinsic redundancy of these configurations allows
the continuous machine operation even after fault occurrence,
as long as it is possible to generate a rotating magnetic field
at the air-gap (although with some performance derating).
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As known, another relevant benefit offered by multiphase
configurations is the possibility to enhance the torque devel-
opment by using non-sinusoidal currents [5]. This capability
has been successfully exploited for induction machines and
permanent magnet synchronous machines, but it has instead
been seldom addressed for SynRMs. Indeed, while there are
many proposed strategies on how to improve the torque
characteristics for three-phase SynRMs [7]–[14], not many
studies have been conducted for multiphase ones.

In this case, the most notable results have been obtained
in [15]–[17], where it has been shown that, for a five-phase
SynRM with concentrated windings, a torque enhancement can
be obtained by applying a proper third harmonic injection into
the machine phase currents. Indeed, in this case, the injected
third harmonic currents can generate a third harmonic in the
spatial magnetomotive field in the air gap. This additional field
can be exploited to develop an additional contribution to the
electromagnetic torque other than the one produced by the
fundamental currents. By using a standard analysis approach
based on a Vector Space Decomposition (VSD), the injection
ratio for the machine phase currents has been selected based
on the mutual cross-coupling existing between the α− β and
the x − y planes of the transformed VSD components. This
capability has then also been exploited in [18], [19] to compare
different rotor designs for five-phase SynRMs, and has been
shown that, while rotor designs based on flux-barriers are more
suited for purely sinusoidal current excitations, for a salient
poles structure it is possible to achieve a consistent torque
development enhancement via the third harmonic injection,
because of the higher mutual coupling effects among different
VSD planes.

In the same years, the use of non-sinusoidal currents was
also applied to SynRMs with a different number of phases
(e.g., six-phase [20] and nine-phase [21]), using a simple
strategy based on forcing a piece-wise constant current to
each phase according to the physical position of its conductors
with respect to the salient poles of the rotor. However, no
analytical investigations were made to optimize the currents
distribution, and no further analyses were made after that.
More recently, multiphase SynRMs have started gaining back
some interest in the technical community. However, up to this
day, the most recent publications have been mainly focused on
some analysis and design aspects [22]–[26], while advanced
control techniques have not been investigated yet.

This paper further analyses the harmonic injection capabil-
ities by presenting a Maximum Torque Per Ampere (MTPA)
strategy for a five-phase SynRM drive (Fig. 1). The proposed
algorithm is formalized as a constrained optimization problem,
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  Fig. 1. Schematic representation of a five-phase synchronous reluc-
tance machine drive.

and a general solution is provided analytically. It is shown that,
depending on the machine parameters, multiple harmonics
(including additional higher-order contributions) can be simul-
taneously exploited to develop the desired torque while opti-
mizing the system performances. Indeed, the optimal solution
generally results in a set of non-sinusoidal phase currents, and
intrinsically considers all the possible harmonic interactions
which can be exploited for torque development. The proposed
algorithm is validated both numerically and experimentally
with respect to a salient pole SynRM, and is compared both
to the sole exploitation of the sinusoidal current components
and to the third harmonic injection strategy developed in [15],
[16]. The approach, which is developed for a generic five-
phase SynRM, can be also easily extended for a machine with
a different number of phases.

The paper is structured as follows. First, Section II summa-
rizes the mathematical model of the drive. Then, Section III
describes the proposed MTPA algorithm, which is particular-
ized in Section IV with an experimental prototype. Finally,
Section V summarizes the conclusions of this work.

II. MATHEMATICAL MODEL

A. Phase Variable Model
Under the linearity hypothesis, the flux induced in each

stator winding is given by the superimposed contribution of
the magnetic field produced by all the phase currents. By
using matrix notation and by denoting with the subscript “ph”
the phase variable reference frame, this relationship can be
expressed as:

λph = Lph(θel) · iph (1)

where λph = [λ1, . . . , λ5]T is the 5 × 1 vector of fluxes
induced in the machine windings, iph = [i1, . . . , i5]T is the
5× 1 vector of phase currents, and

Lph(θel) =


L1,1(θel) L1,2(θel) · · · L1,5(θel)
L2,1(θel) L2,2(θel) · · · L2,5(θel)

...
...

. . .
...

L5,1(θel) L5,2(θel) · · · L5,5(θel)

 (2)

is the 5× 5 inductances matrix.

Due to the variable reluctance effects, all the terms in (2)
are periodic functions of the electrical position θel = Pp θ,
where Pp is number of pole pairs of the machine and θ is
the mechanical angle of the rotor. Since the rotor is usually
designed with an even number of salient poles, each term
Lk,h(θel) (with h, k = 1, . . . , 5 ) can be analysed in the
Fourier domain as a superposition of a constant term and
of multiple even order harmonics varying with θel. From
the energy conservation principle, it is known that Lph(θel)
is symmetric and positive definite. Moreover, for symmetry
reasons, it also results that Lh+1,k+1(θel) = Lh,k(θel−2π/5)
for all h and k.

As known, in the linearity hypothesis, the electromagnetic
energy Wem stored in the machine and the electromagnetic
coenergy W c

em = λT
ph · iph −Wem are equal and given by:

Wem = W c
em =

1

2
λT
ph · iph =

1

2
iTph ·Lph(θel) · iph (3)

Then, the electromagnetic torque Tem developed by the
machine can be computed as the partial derivative of the
coenergy W c

em with respect to the rotor position θ, computed
at constant currents. From (3) it results:

Tem =
∂W c

em

∂θ
=

1

2
iTph ·L′ph(θel) · iph (4)

The matrix L′ph(θel) = ∂Lph/∂θ = Pp ·∂Lph/∂θel is respon-
sible for the torque development due to variable reluctance
effects. Again, it is symmetric and its coefficients are periodic
in θel but, in general, it is not positive definite.

The winding terminal voltages are given by the contribu-
tions of the resistive drop and the induced back-EMFs:

vph = R · iph +
d

dt
(Lph · iph) (5)

where vph = [v1, . . . , v5]T is the 5 × 1 vector of winding
terminal voltages, and R is the winding resistance. Considering
the single-star configuration of Fig. 1, by applying Kirchhoff’s
laws it also results that:

vph = uph − 15 · vNO (6)

1T
5 · iph =

∑5

k=1
ik = 0 (7)

where uph = [u1, . . . , u5]T is the 5 × 1 vector of VSI leg
voltages, 15 = [1, 1, 1, 1, 1]T, and vNO is the voltage between
the machine neutral point N and the VSI reference node O.

To sum up, by combining (4)-(7), the machine equations in
the phase variable domain are:

d

dt
(Lph · iph) +R · iph = vph = uph − 15 · vNO (8a)

1T
5 · iph =

∑5

k=1
ik = 0 (8b)

Tem =
1

2
iTph ·L′ph(θel) · iph (8c)

B. VSD Model
The machine model can be reformulated by applying to each

5 × 1 vector zph = [z1, . . . , z5]T the variable transformation
known as Vector Space Decomposition (VSD) [27], [28]:

zVSD = C · zph ⇔ zph = C−1 · zVSD (9)
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where zVSD = [zα, zβ , zx, zy, z0]T is the 5 × 1 transformed
set, and C is the generalized Clarke’s transformation matrix:

C=

√
2

5


cos (0 · γ) cos (1 · γ) · · · cos (4 · γ)
sin (0 · γ) sin (1 · γ) · · · sin (4 · γ)
cos(0·3·γ) cos(1·3·γ) · · · cos(4·3·γ)
sin(0·3·γ) sin(1·3·γ) · · · sin(4·3·γ)

1/
√

2 1/
√

2 . . . 1/
√

2

 (10)

with γ = 2π/5 denoting the angular shift between two
consecutive axes of the machine. It can be verified that the
matrix defined as per (10) is unitary, meaning thatCT = C−1.

By applying (9) to the model (8), it results that:

d

dt

(
C ·Lph(θel) ·CT · iVSD

)
+R · iVSD =

= vVSD = uVSD −C · 15 · vNO (11a)

1T
5 ·CT · iVSD = 0 (11b)

Tem =
1

2
iTVSD ·C ·L′ph(θel) ·CT · iVSD =

=
1

2
iTVSD ·

∂
(
C ·Lph(θel) ·CT

)
∂θ

· iVSD (11c)

From the Clarke’s matrix in (10) it results that C · 15 =
[0, 0, 0, 0,

√
5]T. Therefore, the equation (11b) simply means

that i0 = 0, while equation (11a) means that the dynamics of
the α− β and x− y components are not influenced by vNO.
As a result, the zero-sequence components of the system can
be discarded from the drive mathematical model (11), which
can be therefore reformulated as:

d

dt
(Leq(θel) · ieq) +R · ieq = veq = ueq (12a)

Tem =
1

2
iTeq ·L′eq(θel) · ieq (12b)

where zeq = [zα, zβ , zx, zy]T is the 4×1 equivalent set related
to each variable z, while:

Leq(θel)=


Lα,α(θel) Lα,β(θel) Lα,x(θel) Lα,y(θel)
Lβ,α(θel) Lβ,β(θel) Lβ,x(θel) Lβ,y(θel)
Lx,α(θel) Lx,β(θel) Lx,x(θel) Lx,y(θel)
Ly,α(θel) Ly,β(θel) Ly,x(θel) Ly,y(θel)

 (13)

is the equivalent inductances matrix concerning the mutual in-
teraction between the transformed currents. Considering (13),
the matrix Leq(θel) is obtained by only considering the first
4 rows and 4 columns of the 5×5 matrix (C ·Lph(θel) ·CT)
(which instead also considered the effect of the zero-sequence
components). This matrix, similarly to Lph, is also a sym-
metric and positive-definite matrix, and its coefficients are
periodic functions of the rotor electrical position θel. The
matrix L′eq(θel), appearing in the second equation of (12),
is simply given as L′eq(θel) = ∂Leq/∂θ = Pp · ∂Leq/∂θel.

III. MTPA STRATEGY

The machine control is typically aimed at developing a
desired electromagnetic torque T ∗em coming, for example, from
a speed controller. This can be done by properly acting on the
machine phase currents and, therefore, by properly computing
a reference current set to be tracked. The computation of the
current references required to develop the desired torque can

be addressed either in the phase variable domain, by referring
to the model analysed in Section II.A, or in the transformed
(VSD) domain, by referring to the model analysed in Section
II.B. The results of the two approaches are equivalent and are
simply linked by the transformation (9). Here, this problem
will be analysed in the transformed domain, since the con-
straint on the sum of the phase currents (7) is intrinsically
included in the model (12).

A. MTPA Problem Formulation
Considering (12b), the torque development requirement can

be formalized as an algebraic constraint on the reference
current set i∗eq = [i∗α, i

∗
β , i
∗
x, i
∗
y]T to be computed. As a result,

there are 3 degrees of freedom, which can be exploited to max-
imize the system performances. A convenient and commonly
adopted choice is to minimize the equivalent current [13]:

Im = ||iph|| =
√
iTph · iph =

√∑5

k=1
i2k (14)

The minimization of Im for a given reference torque is equiva-
lent to the maximization of the torque for a given Im, meaning
that this approach can be interpreted as a Maximum Torque
Per Ampere (MTPA) strategy. As known, the minimization
of Im also leads to a reduction of the overall machine stator
losses pCu = R ·

∑5
k=1 i

2
k = R ·I2m, which often represent the

main contribution to the overall losses [13].
Considering the VSD transformation (9) with the chosen

unitary Clarke transformation matrix (10), and since i0 = 0
(because of the single-isolated neutral point configuration) the
current Im in (14) can be reformulated as:

Im =
√
iTph · iph =

√
iTVSD ·C ·CT · iVSD =

=
√
iTVSD · iVSD =

√
i2α + i2β + i2x + i2y + i20 =

=
√
i2α + i2β + i2x + i2y =

√
iTeq · ieq (15)

Therefore, the considered MTPA strategy can be formulated
as the constrained optimization problem:

min
ieq
{iTeq · ieq} subject to iTeq · (L′eq/2) · ieq = T ∗em (16)

where the periodic dependence of L′eq on θel has been omitted
for notation compactness.

B. MTPA Problem Solution
A useful tool to solve constrained optimization problems is

Lagrange’s multipliers method. This approach has also been
used for different kinds of machines in [13], [14] and it is
here particularized for the considered five-phase SynRM. The
Lagrangian function for (16) can be chosen as:

L(ieq, µ) = iTeq · ieq − µ ·
(
iTeq · (L′eq/2) · ieq − T ∗em

)
(17)

where µ is the Lagrange multiplier related to the torque de-
velopment requirement. The optimal solution of (16) nullifies
the gradient of (17), and can be found by solving the system

∂L/∂ieq = 2 ieq − µ · (L′eq/2) · ieq = 0 (18a)

∂L/∂µ = iTeq · (L′eq/2) · ieq − T ∗em = 0 (18b)
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The vector equation of (18a) can be rewritten as:

L′eq · ieq = (4/µ) · ieq = ν · ieq (19)

This means that, if the vector i∗eq is the optimal solution of
(16), then the vector L′eq · i∗eq is parallel to i∗eq itself. In other
words, i∗eq is an eigenvector of L′eq, and ν = 4/µ is the
corresponding eigenvalue.

Since L′eq is a 4×4 symmetric matrix, all its eigenvalues are
real numbers, and there are 4 linearly independent eigenvectors
among which to choose. The unitary-norm eigenvectors are
here denoted as ı̂I, ı̂II, ı̂III, ı̂IV, and are ordered according to
their corresponding eigenvalues in a way that νI ≥ νII ≥
νIII ≥ νIV. In other words, ı̂I is used to denote the unitary-
norm eigenvector related to the maximum (positive) eigenvalue
νI of L′eq, and ı̂IV is used to denote the unitary-norm eigen-
vector related to the minimum (negative) eigenvalue νIV of
L′eq. Naturally, it is worth emphasizing that, since L′eq is a
periodic function of θel, its eigenvalues and eigenvectors are
also periodic functions of θel.

Then, the optimization has been simplified from choosing
among any current set to only choosing among the eigen-
vectors of L′eq. The current references set can be therefore
expressed as i∗eq = I∗m · ı̂k, for k = I, II, III or IV.

By substituting i∗eq = I∗m · ı̂k in the torque expression (12b)
and by recalling from (19) that ı̂Tk ·L′eq · ı̂k = νk, it results:

T ∗em = (i∗eq
T ·L′eq · i∗eq)/2 =

= (I∗m
2/2)(ı̂Tk ·L′eq · ı̂k) = νk · I∗m

2/2 (20)

This expression can only be solved if νk has the same sign
of T ∗em, which further restricts the choice of ı̂k. In such case,
(20) can be inverted resulting in:

I∗m =
√

2 · T ∗em/νk (21)

From (21) it can be concluded that the eigenvalue νk must
have the same sign of T ∗em and that, to minimize I∗m:
• if T ∗em ≥ 0, it is convenient to select the eigenvector ı̂I,

related to the most positive eigenvalue νI > 0,
• if T ∗em < 0, it is convenient to select the eigenvector ı̂IV,

related to the most negative eigenvalue νIV < 0,
To sum up, the reference vector i∗eq which solves the MTPA

problem (16) can be computed as:

i∗eq =

{√
2 · T ∗em/νI · ı̂I if T ∗em ≥ 0√
2 · T ∗em/νIV · ı̂IV if T ∗em < 0

(22)

and, as previously mentioned, the corresponding optimal phase
currents i∗ph can be simply found by applying the inverse
transformation (9) (with i∗0 = 0).

C. MTPA Solution Properties and Implementation
Several interesting properties can be found from inspection

of the optimal solution (22).
First, since the torque expression in (12) is a quadratic form

of the currents set, once i∗eq has been computed, the set −i∗eq is
also an optimal solution of the same MTPA problem (16). This
requires some attention to guarantee a smooth behaviour of ı̂I
and ı̂IV for different values of θel. In other words, considering

two positions θel,1 and θel,2, to avoid sharp transitions in the
reference currents set, it must be guaranteed that

ı̂I(θel,1) · ı̂I(θel,2) ≥ 0 (23a)
ı̂IV(θel,1) · ı̂IV(θel,2) ≥ 0 (23b)

This can be easily fulfilled by changing ı̂I(θel,2)→ −ı̂I(θel,2)
or ı̂IV(θel,2)→ −ı̂IV(θel,2) in case one of the inequalities in
(23) is not satisfied.

Additionally, the current I∗m of the optimal solution, which
is expressed by (21), is proportional to the square root of
the reference torque T ∗em, while the overall stator losses pCu,
which depend on I2m, are proportional to T ∗em. However, this
proportionality depends on the value of νI or νIV. These
eigenvalues may not be constant with respect to θel, meaning
that the development of the same electromagnetic torque for
different rotor positions may require different current magni-
tudes. This can be explained by considering that, in a general
configuration, the variable reluctance torque may not have the
same effectiveness according to the rotor position.

Moreover, in general, it may also result νI 6= −νIV: this
would mean that (according to the position θel) the RMS
current needed to develop a positive torque T ∗em may be
different from the current needed to develop a negative torque
−T ∗em. In other words, due to unequal reluctance effects, the
machine may show (locally) a preferred spinning direction.

Since both the eigenvalues and the eigenvectors appearing
in (22) are periodic functions of θel, the optimal currents sets
i∗eq and i∗ph are also periodic with respect to θel. In general,
the optimal currents may show multiple harmonics even for
the generation of a constant electromagnetic torque.

For practical implementation, to reduce the required com-
putational effort, the proposed algorithm can be executed
offline for different rotor positions and for a reference torque
T ∗em = ±1 N m. Then, the optimal currents, computed as per
(22), can be stored in memory (e.g., through the harmonics of
their Fourier decomposition) and, once applied in a real-time
application, they only need to be multiplied by

√
|T ∗em|.

Finally, it is worth saying that the same approach can also be
applied with no changes to machines with a different number
of phases. However, this method requires a precise knowledge
of the inductances, which should be properly estimated from
a set of preliminary measurements. Moreover, it does not
consider voltage or current limits and, therefore, it is only
suited for operation in the base speed region of the machine.
Note also that, for high loads, SynRMs can show a non-linear
flux linkage behaviour. In that case, the algorithm would still
perform to some extent, but may not be optimal. In general,
the proposed approach could be properly modified to explicitly
tackle the non-linearity and/or other losses, by adding more
terms and/or constraints into (16). However, in that case, the
problem may become extremely complicated, and a general
analytical solution may not exist anymore. These variants and
extensions will be analysed in future works.

IV. ALGORITHM VALIDATION

The proposed algorithm has been validated with respect to
the experimental setup depicted in Fig. 2.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

 

  
Fig. 2. Experimental Setup.

A. Analysed Machine

The considered five-phase SynRM has two pole pairs. The
stator has 40 slots and the windings have a distributed layout
and a symmetrical disposition in a way that the magnetic axes
are mutually shifted by 72◦ electrically between one another.
The variable reluctance rotor has been obtained by cutting an
original squirrel-cage rotor of an induction machine to realize
4 salient poles as in Fig. 3. Table I summarizes the main
geometrical parameters. The mechanical position θ is referred
to the magnetic axis of phase 1. The DC winding resistance
is the same for all the 5 phases and equal to R = 1.8 Ω.

The inductances parameters have been found in the phase
variables domain. The phase 1 of the machine has been
supplied with a sinusoidal voltage with a peak value of 20 V
and a frequency of 50 Hz, while all the other phases have been
left open. The current in phase 1 and the induced voltages in all
the other phase windings {2, 3, 4, 5} have been measured with

 

  Fig. 3. Geometric representation of the five-phase synchronous reluc-
tance machine under analysis.

TABLE I
MACHINE GEOMETRICAL DATA

Pole Pairs 2
Internal stator diameter 127 mm
External stator diameter 180 mm
Stator slot depth 20 mm
Number of wires per slot 54
Number of turns per phase 216
Minimum rotor diameter 86 mm
Maximum rotor diameter 126 mm
Salient poles height 20 mm
Minimum air-gap width 0.5 mm
Maximum air-gap width 20.5 mm
Axial length 101.6 mm

the rotor locked at different positions. From the voltage and
current measurements, it is possible to estimate the induced
fluxes as:

λ1(t) =

∫
(v1(t)−R · i1(t)) dt (24a)

λk(t) =

∫
vk(t) dt, (with k = 2, 3, 4, 5) (24b)

All the fluxes have been plotted with respect to the machine
current i1(t) in a way to obtain different hysteresis loops for
each rotor position under test. The results are depicted in
Fig. 4 for different values of θel = 2 · θ. Then, to line up
with the linearity approximation assumed in Section II, the
parameters Lk,1(θel) (with k = 1, . . . , 5) of the first row of
the inductances matrix Lph(θel) defined in (2) have been found
with a linear regression procedure as the slope of the linear
characteristics λ/i which better approximates the different
hysteresis loops.

Finally, the values of Lk,1(θel) have been extrapolated with
an additional regression procedure based on the computation
of the lowest even-order harmonics in θel. To be more specific,
the inductances have been approximated as the superposition
of a continuous component and of the harmonics varying with
2 ·θel, 6 ·θel, 10 ·θel and 14 ·θel, and the computation of these
harmonic components has been carried out while explicitly
considering the symmetry properties of the machine. The
results of this parameter identification procedure are reported

 

  

Fig. 4. Hysteresis loops obtained for different rotor positions by supply-
ing the phase 1 with all the other phases left in open circuit.
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in Table II for the inductances terms L1,1(θel), L2,1(θel)
and L3,1(θel). Note that, because of the rotor symmetry,
L4,1(θel) = L3,1(−θel) and L5,1(θel) = L2,1(−θel).

The corresponding waveforms for varying θel are shown in
Fig. 5. The top graph shows the inductances functions (solid
lines) and the slopes of the measured hysteresis loops of Fig. 4
(* markers) in the range [−180◦; 180◦] of the electrical angle
θel = 2 · θ. The bottom graph shows the corresponding terms
of the matrix L′ph(θel) = ∂Lph/∂θ, which is responsible for
the torque development.

As can be noted, the self-inductance L1,1(θel) is always
positive. Its maximum value is obtained for θel = 0◦ and
θel = ±180◦ (which is the position of minimum reluctance),
while its minimum value is obtained for θel = ±90◦ (which is
the position of maximum reluctance). The functions L3,1(θel)
and L4,1(θel) have a mirrored symmetry with respect to θel
and are always negative (coherently with the negative slopes
of the corresponding hysteresis loops in Fig. 4). The functions
L2,1(θel) and L5,1(θel) also have a mirrored symmetry with
respect to θel, but both show positive values and negative
values (coherently with the slope change in the corresponding
hysteresis loops of Fig. 4). Given the machine symmetry,
all the other inductances parameters Lh,k(θel) (with h =
2, 3, 4, 5) of the matrix Lph(θel) are obtained by just shifting
the functions L1,k(θel) by 72◦. The same is also true for the
matrix L′ph(θel).

B. Numerical Optimization Results
The MTPA algorithm developed in Section III has been

numerically applied with respect to the machine parameters
described in the previous sub-section.

The implementation has been developed by computing the
optimal currents set i∗eq = [i∗α, i

∗
β , i
∗
x, i
∗
y]T via (22) in the

whole range [−180◦; 180◦] of the electrical angle position
θel. The corresponding optimal phase currents set i∗ph =

[i∗1, i
∗
2, i
∗
3, i
∗
4, i
∗
5]T is then simply computed by the inverse VSD

transformation (9). The results obtained when T ∗em > 0 are
depicted in Fig. 6. The top graph shows the current waveforms
in the VSD domain, the middle graph shows the results
in the phase variable domain, and the bottom graph shows
the equivalent current I∗m defined in (14) and resulting from
(21). Since, as previously discussed, the optimal currents are
proportional to

√
|T ∗em|, they have been normalized by it. The

optimal currents obtained for T ∗em < 0 can also be found by
applying (22). Given the machine symmetry, it can be verified
that they have the same waveform as in Fig. 6 and are only
shifted by 90◦.

TABLE II
EXTRAPOLATED INDUCTANCES HARMONICS

Inductance Harmonic Order
Function 0 2 6 10 14

L1,1(θel)
111mH 30.9mH 6.9mH 1.8mH 0.3mH
- 0◦ 180◦ 0◦ 180◦

L2,1(θel)
24.9mH 71.5mH 6.6mH 1.5mH 0.4mH
- −72◦ 144◦ 0◦ −144◦

L3,1(θel)
−68.6mH 55.5mH 6mH 0.7mH 0.3mH
- −144◦ 108◦ 180◦ 72◦

In the VSD domain, it can be noted that the current iα
differs from the current iβ , and the current ix differs from the
current iy . However, given the machine symmetry, the optimal
currents in the phase variable domain have the same waveform
and are just shifted from one another by 72◦.

As can be seen, both in the VSD and in the phase variable
domain, the desired reference currents are periodic but not
sinusoidal, and clearly show a non-negligible contribution of
higher-order harmonic components. For example, from the
Fourier analysis of the phase variable currents, it could be ver-
ified that the odd-order harmonics up to the 13th have a non-

 

  

Fig. 5. Parameters of Lph(θel) and of L′ph(θel) of the examined
SynRM.

 

  

Fig. 6. Numerical optimization results in case of a positive reference
torque (Top: VSD currents; Middle: Phase currents; Bottom: Equivalent
overall machine current). For a negative reference torque, the optimal
results have the same waveforms but shifted by 90◦.
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negligible contribution with respect to the fundamental (i.e.,
higher than 3%). However, since a constant electromagnetic
torque has been imposed as a constraint in the optimization
problem (16), these harmonics would not lead to any torque
ripple. In other words, assuming the modelling hypothesis of
Section II to be valid, the current harmonics would interact
with one another in a way to produce a constant torque in
the whole range of θel. Naturally, in a real prototype, there
may be a torque ripple because of the non-ideal behaviour
of the drive (e.g., non-ideal tracking of the optimal currents,
poor knowledge of the inductances parameters, non-linear
behaviour of the magnetic materials, etc. . . ). The impact of
such effects depends on the specific machine and should be
analysed from case to case.

As previously mentioned, the equivalent current Im defined
in (14) identifies the magnitude of the vector iph (and, from
(15), also of the vectors iVSD and ieq) and it can be directly
associated to the overall machine stator losses. As can be
seen from the bottom graph of Fig. 6, for the considered
machine this current is not constant, but oscillates with a 10·θel
periodicity. This means that, according to the rotor position,
the development of the same electromagnetic torque may
require smaller or higher currents. As an example, to develop a
torque of 1 N m, when θel = 0◦, Im ≈ 1.8 A, when θel = 9◦,
Im ≈ 2.0 A and when θel = −9◦, Im ≈ 1.7 A. Similarly,
according to the rotor position, it could be also verified that
the development of a positive torque may require a different
equivalent current than the development of a negative torque.
As previously mentioned, this indicates a preferred spinning
direction. For example, when θel = 9◦, the development of
T ∗em = 1 N m requires an equivalent current Im ≈ 2.0 A (the
maximum value), while the development of T ∗em = −1 N m
requires Im ≈ 1.7 A (the minimum value). However, this
disparity effect is averaged out in a full rotor cycle, resulting
in the same average value of Im.

C. Experimental Results

The proposed strategy has been experimentally validated
with the setup depicted in Fig. 2. The five-phase SynRM
has been supplied through a custom-made multiphase inverter,
based on Infineon FS50R12KE3 IGBT modules. The DC-bus
voltage has been supplied by a Sorensen SGI600/25 single
quadrant dc-voltage source and has been set to 600 V. The
multiphase SynRM is coupled to a DC machine, which has
been used for mechanical loading by connecting the armature
terminals to an external resistor. A Datum Electronics Torque
meter M425 S1 has been positioned at the joint of the two
machines to measure the torque applied at the shaft.

The control has been implemented with a Plexim RT Box 1
platform, working at 10 kHz. The machine currents have been
measured with LEM sensors, and the machine position and
angular speed have been provided by a resolver. The block
diagram of the control algorithm is shown in Fig. 7.

The machine speed has been regulated with a standard PI
controller, that compares the error between the reference speed
ω∗ and the measured speed ω, and computes the reference
electromagnetic torque T ∗em to be developed. The machine

currents have been controlled in the VSD domain with a field-
oriented approach. Given the presence of multiple harmonics
in both the reference currents and in the induced back-EMFs,
the controller has been realized with PI actions implemented
in multiple synchronous reference frames, chosen according
to the harmonic mapping of a five-phase machine [4]. To
be more specific, the α − β current components have been
regulated with PI controllers in rotating frames synchronous
with θel, −9 · θel, 11 · θel and −19 · θel, while the x − y
components have been regulated with PI controllers in rotating
frames synchronous with 3 ·θel, −7 ·θel, 13 ·θel and −17 ·θel.
The rotational matrices shown in the block diagram of Fig. 7
take the standard form:

D(ϑ) =

[
cos (ϑ) sin (ϑ)
− sin (ϑ) cos (ϑ)

]
(25)

with the proper choice of the rotational angle ϑ.
The computed voltage references u∗ph = CT · u∗VSD are

finally applied by using a PWM method. As in standard
multiphase drives, a zero-sequence voltage injection (e.g., min-
max injection) can be used to improve the DC-bus utilization
without affecting the obtained currents [4].

To emphasize the effectiveness of the proposed MTPA
strategy, it has been compared with the sole use of the
fundamental current components and with the third harmonic
injection strategy adopted in [15], [16].

The tests have been carried out by considering the steady-
state results obtained at a constant rotor speed with a fixed
loading torque. The results obtained at the speed of 750 rpm
are depicted in Fig. 8. The figures show the VSD current
components, the machine phase currents, the overall machine
RMS current and the machine angular speed. The solid traces
refer to the measured quantities, while the black dashed
traces are the corresponding references. Fig. 9 shows the
corresponding oscilloscope captures of the currents i1 (dark
blue traces), i2 (light blue traces), and i3 (magenta traces),
and the electromagnetic torque measured at the rotor shaft
(green traces, with a ratio of around 1.667 Nm/V).

The difference between the three methods in the current
waveforms can be immediately noted, both in the VSD and
in the phase variables domain. When only the fundamental
harmonic is exploited, the currents iα and iβ are sinusoidal
in time, while the currents ix and iy are zero. The third
harmonic injection strategy also imposes sinusoidal ix and iy
components, while at the same time still keeping sinusoidal iα
and iβ currents. The proposed MTPA strategy results in the
non-sinusoidal current waveforms depicted in Fig. 6. It can
be also seen that, for the fundamental and the third harmonic
injection strategy, the current Im (defined in (14)) is almost
constant, while it instead shows a visible oscillation at around
10 · ωel with the proposed MTPA strategy, coherently with
the waveform of Fig. 6. Due to the non-idealities of the
experimental setup, there are some instants in time when Im of
the proposed MTPA strategy is not the smallest one. However,
it can be seen that its average value (which is related to the
average RMS currents and losses) is always better than in the
other methods.
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Fig. 7. Schematic block diagram of the five-phase SynRM control algorithm. The eigenvalues νI,νIV and eigenvectors ı̂I, ı̂IV (denoted by double-
line squared blocks) are estimated based on the coefficients of their Fourier decomposition, that have been computed offline and stored in memory.

 

  Fig. 8. Experimental results at the speed of 750 rpm (Left: Fundamental; Center: Third Harmonic Injection; Right: Proposed MTPA).

 

  Fig. 9. Oscilloscope captures at the speed of 750 rpm (Left: Fundamental; Center: Third Harmonic Injection; Right: Proposed MTPA).

No sensible difference between the three methods can
be instead appreciated in the measured torque and speed.
This indicates that the electromagnetic torque ripple which,
as previously mentioned, is inevitably due to unmodelled
phenomena (e.g., the iron hysteresis behaviour or mechanical
coupling effects), is not altered by the different strategies.

The same tests have also been carried out at the speeds
of 375 rpm, 500 rpm and 1000 rpm. A comparison of the

average Root Mean Square (RMS) current per phase obtained
in a fundamental period is reported in Table III. As can be
noted, in all the examined conditions the proposed MTPA
strategy leads to the smallest average RMS currents, while
the sinusoidal strategy is characterized by the highest values.
Table IV shows the reduction of the RMS currents and of the
overall stator losses obtained by the third harmonic injection
strategy and by the proposed MTPA approach (when compared
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TABLE III
COMPARISON OF THE AVERAGE RMS CURRENT PER PHASE

Mechanical Sinusoidal Currents Third Harmonic Proposed
Speed Strategy Injection Strategy MTPA

375 rpm 1.147A 1.115A 1.104A
500 rpm 1.303A 1.254A 1.242A
750 rpm 1.537A 1.490A 1.472A
1000 rpm 1.787A 1.714A 1.693A

TABLE IV
RMS CURRENT AND STATOR LOSSES REDUCTION

Mechanical Third Harmonic Injection Proposed MTPA
Speed IRMS pCu IRMS pCu

375 rpm −2.79% −5.50% −3.75% −7.36%
500 rpm −3.75% −7.38% −4.68% −9.14%
750 rpm −3.06% −6.02% −4.23% −8.28%
1000 rpm −4.09% −8.00% −5.26% −10.24%

to the sinusoidal currents strategy) in all the considered tests.
Finally, Fig. 10 shows the performance of the proposed

MTPA approach during a speed transient from −500 rpm to
500 rpm (thus including a speed inversion), while Fig. 11
shows the response after a step change of the loading torque
at 750 rpm (from around 3 N m to around 6 N m). Both results
show the machine currents (in both the VSD and phase
variable domain), the developed electromagnetic torque and
the rotor speed (solid traces represent measured and dashed
traces reference values). As can be noted, the drive shows
a satisfactory dynamic behaviour, and the currents properly
follow the corresponding references even during the transients.
The results also show the aforementioned 90◦ shift between
the currents when T ∗em < 0 (during the initial time interval in
Fig. 10) and when T ∗em > 0 (after the speed inversion).

V. CONCLUSIONS

This paper proposed an MTPA algorithm for a five-phase
synchronous reluctance machine drive. The algorithm has been
addressed considering generalized machine parameters, and
has been formalized as a constrained optimization problem,
aimed at the minimization of an overall equivalent machine
current for a given reference electromagnetic torque to be de-
veloped. The optimal solution has been computed analytically
in the VSD domain, and it depends on the eigenvectors of the
inductance derivatives matrix. The algorithm has been vali-
dated both numerically and experimentally with respect to a
specific five-phase salient-pole SynRM prototype. Considering
the inductances of the machine, the optimal currents are highly
non-sinusoidal, and have been controlled with PI controllers in
multiple rotating reference frames. The proposed approach has
also been compared with other current references computation
strategies, being the use of sinusoidal currents and the third
harmonic injection strategy. The results show that the proposed
MTPA solution is characterized by smaller RMS currents (and
overall stator losses) with respect to the other approaches
applied in the same operating conditions. The same approach
can be applied, with relatively low modifications, also for
a different number of phases. Some extensions for future
investigations include the explicit consideration of the machine

 

  

Fig. 10. Experimental results in the speed inversion test.

 

Fig. 11. Experimental results with a step change of the loading torque.

non-linearities and the adaption of the proposed technique
to different requirements and/or operating conditions (e.g.,
overall losses minimization, voltage/current limits and flux
weakening operations).
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