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Abstract—Patch testing is a core component of patch manage-
ment and is used to verify that modified software modules (i.e.
an update or patch) work as expected (functional testing) and do
not contain any known vulnerabilities (security testing). Security
patch testing requires a lot of time and a professional security
knowledge from the tester. In recent years, chopped symbolic
execution has been successfully applied in automatic or semi-
automatic program testing, to reduce the amount of testing work.
Chopped symbolic execution (Chopper) allows users to specify
“uninteresting” functions to ignore during analysis, therefore
allowing the testing of software modules without running all
functions of the program. It is an effective solution for path
explosion (one of the main problems of symbolic execution).
The effectiveness of the chopped symbolic execution method in
patch testing depends on how well the ignored functions are
initially chosen. In this paper, we propose a novel method to
automatically exclude functions for chopped symbolic execution
in patch testing, using a control flow graph. Moreover, we use
cyclomatic complexity to optimize the speed of the testing process.
Experimental results show that our method can automatically
choose the ignored functions and reduce the required testing
time, in comparison to typical Chopper techniques.

Index Terms—Security patch testing, Symbolic execution,
Chopper, control flow graph

I. INTRODUCTION

Developers need to continually review software and create
patches to address identified bugs, which can be a labor-
intensive and error-prone process. Users are often reluctant
to upgrade their software to the most recent version because
they’re not sure whether the updated functions are safe [1].
Moreover, code patches have the potential to introduce or
cause new vulnerabilities [2], [3] partly because developers
can’t find all of the bugs. Therefore, a method that can
automatically find the vulnerabilities in the new patch is
necessary.

Various techniques have been proposed for use in automatic
security patch testing. For example, in [4], the authors present
an automatic patch-based vulnerability and fuzzing method. It
specifically focuses on a privilege elevation vulnerability and

fuzz tests to identify unknown bugs. Two-way taint analysis
techniques are used to measure the relevance among address,
object, operation semantic and constraint features. However,
the fuzzing method often has a low efficiency because of
missing too many possible input testing cases.

Symbolic execution is a powerful technique for finding
software vulnerabilities. Many tools were introduced to find
software vulnerabilities [5]–[11]. In theory, this technique
can solve the coverage problem of fuzzing, but it still has
limitations in practice. Symbolic execution often struggles to
reach deep parts of the code due to the well-known path
explosion problem and constraint solving limitations [12].
For security testing, there are some existing solutions using
symbolic execution techniques, such as KLEE [5]. KLEE is
one of the most popular symbolic execution tools. It is a
symbolic virtual machine built on top of the LLVM compiler
infrastructure [5].

There is existing research on the use of KLEE for patch
testing - KATCH [13] but the authors primarily focus on
coverage during testing. There are great solutions for choosing
input or identifying symbolic execution techniques via static
analysis. However, the problem we want to focus on is path
explosion. KLEE and other symbolic execution tools are used
for program testing, but in larger programs it doesn’t yield
good results. The reason for this is the path explosion problem.
Most methods based on the symbolic execution approach
have to test all paths of a program. Therefore, these methods
are influenced by the path explosion problem, one of the
biggest challenges of symbolic execution. Chopped symbolic
execution [12] was introduced to solve this problem with
Chopper - an extended version of KLEE. Authors proposed
the mechanism to define the functions that can be temporarily
ignored during analysis. This mechanism is very useful for the
patch testing methods that use symbolic execution because it
omits many unnecessary paths from analysis, thus helping to
solve the path explosion problem.

Chopper does not actually ignore the excluded functions,
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as this may lead to both false positives and false negatives
in finding bugs. In fact, the excluded parts are executed
lazily, whereby their effects may be observable by code under
analysis. Chopped symbolic execution leverages various on-
demand static analyses at runtime to automatically exclude
code fragments while resolving their side effects [12]. Al-
though chopped symbolic execution is a great idea, it has
one major weakness in automatic patch testing - the excluded
functions have to be determined in advance by the tester.
To identify whether a function is of interest, static source
code analysis is required, thus reducing the advantage of an
automatic analysis tool like Chopper.

Therefore, instead of using expert knowledge to determine
the uninteresting functions, our approach intends to enhance
Chopper by automating the static code analysis used to detect
uninteresting functions. In patch testing, the commits bring the
information about modified code. The modified functions or
additional functions can be determined easily with a version
control or source management system [14]–[18]. However,
finding out which functions are not affected by an update is
not easy. It will take a long time to analyze the source code.
Moreover, if too many functions are excluded, Chopper will
spend a lot of time finding side effects, taking snapshots and
recovering when needed.

In this paper, we propose a novel function exclusion method
called chop’s automatic exclusion that can determine suitable
functions that will be excluded with the target function as
input for chopped symbolic execution in patch testing. The
target function is a function that can be modified or added in
this patch. We evaluate the effectiveness of this method using
a prototype implementation and present the results obtained,
which demonstrate its effectiveness in discovering memory
vulnerabilities when patch testing with Chopper.

Our main contributions in this work are as follows:
1. Proposed a novel method to exclude functions automati-

cally for chopped symbolic execution in patch testing (chop’s
automatic exclusion).

2. Built a prototype implementation of our technique as
a dynamic library of opt, a modular LLVM optimizer and
analyzer [19] (that we called ChopperAEx).

II. OVERVIEW OF CHOOSING THE EXCLUDED FUNCTIONS

In this section, we give an overview of choosing the func-
tions that should be excluded in patch testing with chopped
symbolic execution, and how to get the best performance. An
example using a simple program is shown in Fig. 1 and Fig. 2.
Supposing that f is the function which was modified in the
patch, our aim is to test function f with the program’s input
(we also call function f - the target function). Fig. 1 shows a
part of the pseudocode of the program (function main and test)
of a sample program. Fig. 2 shows the Control Flow Graph
(CFG) of the program and the functions will be excluded
(function n and function m).

Starting with the function main, we have a symbolic value
as a parameter which is α. For being called the target function,
the path is from main to test then m and f at the end, as long

1.void test(char* a){
2. char* str1 = "OK";
3. if(str(str1) == str(a)){
4. m();
5. f(a);
6. }
7. else{
8. n();
9. }
10.}
11.
12.int main(int args, char** argv){
13. int x,y;
14. char* a = argv[1] //symbolic
15. test(a);
16.}
17.
18.void f(char *a){
...
}

Fig. 1. Pseudocode of the example program.

Fig. 2. Illustration of the selection excluded functions with chopped symbolic
execution on the example

as we have str(α) equal “OK” condition. It is easy to decide
that function n should be excluded because it is not in the
path which leads to function f. If function n is excluded, the
symbolic execution engine will not waste time and resources
for exploring the useless path from function n. However,
function m is not that easy. According to the program’s flow,
if we want to execute function f, function m will be executed
first. But we can still exclude function m in case all pointers
in function f are not affected by function m. In simpler terms,

2021 8th NAFOSTED Conference on Information and Computer Science (NICS)

91



if no variable in function f is modified by function m, we will
exclude function m. However, it is not simple like that.

Fig. 3. Main process of chopped symbolic execution

Fig. 3 shows the main process of chopped symbolic execu-
tion. We can see that even excluded functions take an amount
of time for finding side effects. But it is performed by the
static analysis technique [12], so it does not matter. However,
taking snapshot task and recovery task are not like that. They
take a long time. In some cases, exploring a function maybe
faster than taking a snapshot if this function has few branches.
Not to mention recovering when catching a function in side
effects or taking a snapshot multiple times in branched cases
(like comparing with if), they will take more time and reduce
performance. Back to our example, if function m is “simple”,
we will not choose it for exclusion and vice versa. We suppose
that function m is a “simple function” (will be explained in
the following section) and we can exclude it for increasing
performance.

The above example showed the effectiveness of the excluded
functions method for patch testing with chopped symbolic
execution (Chopper). Nevertheless, using Chopper tester need
to analyze the program and use the expert knowledge to
determine which function affects the target function and should
be excluded. It is the limitation of chopped symbolic execution
in patch testing that we mentioned in the previous section.
To address this problem, we propose a method that can
automatically choose the excluded function. Our method will
be described in more detail in the following section.

III. CHOP’S AUTOMATIC EXCLUSION

In this section, we will present the target algorithms that
we used in the proposed method (chop’s automatic exclu-
sion). Algorithm 1 presents the key step to choose excluded
functions. This algorithm operates on a simple imperative C-
like application. Firstly, our method will find the shortest path
to the target function using the Breadth First Search (BFS)

algorithm with the GETSHORTESTPATH function one line 1.
Secondly, we walk through the shortest path to target function
and try to find all other paths which lead to the target function
via the loops at line 3–5. Thirdly, we checked if the function
created symbolic values or not by list sigFunctions. Before
that, we examine the functions that the users define by using
the IS VALUABLE function. Here, a list of standard libraries
is used as a whitelist to determine which will be chosen
for the next step. Finally, we choose functions that have a
cyclomatic complexity (calculated by Algorithm 2) larger than
the predefined complexity threshold. We scrutinize the basics
block and instructions in paths to find out the position of the
excluded function’s callers from the debug information.

Algorithm 1 Chop’s automatic exclusion
Input: target
Output: excludedFuntions

1: shortestPath← GETSHORTESTPATH()
2: excludedFuntions← ∅
3: for function in shortestPath do
4: for basicBlock in function do
5: for instruction in basicBlock do
6: f ← GETFUNCTION(instruction)
7: if f in shortestPath then
8: continue
9: else if f in sigFuntions then

10: excludeFuntions← ∅
11: else if not IS V ALUABLE(f) then
12: continue
13: else if CY CLOMATICCOMPLEXITY (f) <

MIN COMPLEXITY then
14: continue
15: end if
16: line← DEBUGINFO(f)
17: excludedFuntions ← (excludedFuntions ∪

{(f, line)})
18: end for
19: end for
20: end for
21: return excludedFuntions

The cyclomatic complexity of a structured program is
defined with reference to the CFG of the program. CFG
is a directed graph that its nodes are the basic blocks of
the program. Two nodes in CFG have an edge if they call
each other inside their function [20]. The complexity M is
calculated by the formula:

M = E −N + 2P (1)

Where E: number of edges
N : number of nodes
P : the number of components
P of a function’s CFG or a program’s CFG is always equal

to 1, so we have a simpler formula is:

M = E −N + 2 (2)
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The cyclomatic complexity of a function is the number of
linearly-independent paths which go through it. The time re-
quired to examine a function in symbolic execution depends on
the number of function paths. According to the mechanism of
chopped symbolic execution in Section II, when an excluded
function is determined, chopped symbolic execution must find
side effects of that function via pointer analysis. Moreover, it
must take a snapshot of the current state when catching that
function. This process is time consuming, and in some cases it
takes longer than exploring the same function using dynamic
symbolic execution techniques. Not to mention recovering step
of function’s state if catching that function again afterwards,
it also takes more time and this time also depends on number
of paths which go through that function. The cyclomatic
complexity threshold helps remove simple functions in the
excluded list. Therefore, we use cyclomatic complexity for
filtering excluded functions to improve performance.

Algorithm 2 Calculating the function’s cyclomatic complexity
CYCLOMATICCOMPLEXITY
Input: function
Output: complexity

1: result← 0
2: if GETNAME(function) == target then
3: return −∞
4: end if
5: iteratorStatus← FIND(statusMap, function)
6: iteratorComplex← FIND(complexMap, function)
7: if iteratorStatus == NULL then
8: statusMap = statusMap ∪ {(function,HOLD)}
9: complexMap = complexMap ∪ {(function, 0)}

10: else
11: if iteratorStatus→ second == HOLD then
12: return 1
13: else if iteratorStatus→ second == DONE then
14: return iteratorComplex→ second
15: end if
16: end if
17: result ← result +

INTERNALCOMPLEX(function)
18: for calledFunc in function do
19: if IS V ALUABLE(calledFunc) then
20: result ← result +

CY CLOMATICCOMPLEXITY (calledFunc)
21: end if
22: end for
23: return result

Algorithm 2 presents the method for calculating the func-
tion’s complexity. There are two things that need to be noticed
in Algorithm 2. The first one is the INTERNALCOMPLEX
function that calculates the complexity with the internal basic
blocks inside it. The second one is the recursive algorithm to
calculate complexity from the edges of CFG which lead to the
other functions.

Our implementation works with LLVM bitcode [21], a

dynamic plugin of the LLVM optimizer - opt [19], which is
called ChopperAEx. The result from ChopperAEx will be used
by Chopper as the “–skip-functions” argument. It contains
the functions’ names and line number where the functions
are called. The plugin was compiled by LLVM 3.4 [22] and
CMake version 3.2.2 [23].

IV. EVALUATION

For evaluating the proposed method, we reproduced 6 fail-
ure scenarios using information derived from the same CVEs
as used in [12]. Comparing between ChopperAEx’s automated
and Chopper’s manual expert’s knowledge-based methods for
finding “skip functions” demonstrates the possibility of chop’s
automatic exclusion in practice. Moreover, when comparing
between KLEE and Chopper with ChopperAEx, we identified
a significant improvement on resolving the path explosion
problem of symbolic execution techniques in patch testing.

Table I shows the time of finding out the bugs. We used
the computer with the OS Ubuntu 14, 4GB of RAM and an
i3-8100 @ 3.6GHz CPU (only use 1 core 2 threads). All
cases were created as execution drivers for libtasn1 library
to exercise the library from its public interface, simulating
the interactions of an external program (e.g., GnuTLS) [12].
Table I shows the time for detecting the vulnerabilities when
using KLEE, Chopper with the same setup used by its authors
and Chopper with ChopperAEx to find excluded functions
automatically. ChopperAEx uses the function which leads to
the bug directly as the target function and defines 5 as the
complexity threshold in all cases. ChopperAEx’s output used
as the “–skip-functions” argument of Chopper. In the Table I,
timeout means the executing time is over 3 hours and Error
means an error occurred during the runtime of Chopper.

TABLE I
DETAILED RESULTS FOR THE FAILURE REPRODUCTION EXPERIMENTS

CVE Search
Algorithms

KLEE CHOPPER CHOPPER
with

ChopperAEX
Time(s) Time(s) Time(s)

2012-1569
Random 499.94 125.11 16.43

DFS 99.91 27.56 4.96
Coverage 291.72 136.68 10.88

2014-3467(1)
Random Timeout 487.70 12.12

DFS 111.87 7.41 5.32
Coverage Timeout 195.45 8.30

2014-3467(2)
Random 2.29 579.33 67.29

DFS Timeout 159.07 Error
Coverage 2.09 495.18 41.23

2014-3467(3)
Random Timeout 426.40 Timeout

DFS Timeout 13.90 Timeout
Coverage Timeout 259.65 Timeout

2015-2806
Random 281.86 142.68 225.22

DFS 7733.60 584.82 5990.59
Coverage 210.33 54.84 171.25

2015-3622
Random Timeout 64.37 18.03

DFS Timeout 1123.22 20.54
Coverage Timeout 69.59 18.18

As shown in Table I, Chopper with ChopperAEx is able
to complete it’s operations much quicker than the original
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Chopper with author’s setup in 4 of the 6 test cases. For
the CVE 2014-3467(3), we received 3 timeouts when using
Chopper with ChopperAEx’s output because the target func-
tion was suddenly called after the main function. In these
cases, the target function is located right after main function
so ChopperAEx doesn’t work effectively because there is not
any function that can be excluded. Chopper with the original
setup still works on these cases because the excluded functions
which were configured are called from the flaw-functions.
However, it does not fit the purpose of patch testing, where
modified functions (maybe become flaw-functions) are target
of testing. Therefore, we think these cases are out of scope.
For CVE 2015-2806, the result seems worse than the original
Chopper, but it is still better than KLEE. It happens because
the complexity threshold is not optimal. We iteratively tested
threshold values from 2 to 10, and identified that on average,
5 was the most optimal setting to use. However, it must be
noted that although this value is used by default, it is not the
most suitable in every case. Finding the optimal threshold for
every case is something we will pursue in our future work,
as we believe it can be determined by the number of program
paths. We experienced an error during the analysis for CVE
2014-3467(2), the exact reason for this is not clear, but we
found that it happened because STP [23] can not solve the
condition path. We presume that the reason is that Chopper
missed a pointer when finding the side effects.

V. CONCLUSION

Chop’s automatic exclusion is a novel exclude functions
method for finding memory bugs for chopped symbolic exe-
cution with patch testing problems. Our preliminary evaluation
shows that chop’s automatic exclusion has better time running
than the original Chopper in most cases. It proves that chop’s
automatic exclusion can be used in practice. By using our
method, patch testing can be run automatically without prior
expert knowledge of tester as using Chopper. However, our
method still has some limitations, namely that an optimal
complexity threshold cannot be ascertained automatically. Ad-
ditionally, ChopperAEx can currently only work stably on
C-based applications. In the future, we will try to address
these limitations and develop ChopperAEx to support other
languages. We will also seek to improve performance and
find a more exact way to avoid excluding the functions that
may affect the target function (e.g. indirect jump or jump via
address).
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