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Abstract—This paper presents a novel method to enhance the
performance of Clustering-based Autoencoder models for net-
work anomaly detection. Previous studies have developed regular-
ized variants of Autoencoders to learn the latent representation of
normal data in a semi-supervised manner, including Shrink Au-
toencoder, Dirac Delta Variational Autoencoder and Clustering-
based Autoencoder. However, there are concerns regarding the
feature selection of the original data, which stronger support
Autoencoders models exploring more intrinsic, meaningful and
latent features at bottleneck. The method proposed involves
combining Principal Component Analysis and Clustering-based
Autoencoder. Specifically, PCA is used for the selection of new
data representation space, aiming to better assist CAE in learning
the latent, prominent features of normal data, which addresses
the aforementioned concerns. The proposed method is evaluated
using the standard benchmark NSL-KDD data set and four sce-
narios of the CTU13 datasets. The promising experimental results
confirm the improvements offered by the proposed approach, in
comparison to existing methods. Therefore, it suggests a strong
potential application within modern network anomaly detection
systems.

Index Terms—Anomaly Detection, Clustering-based Autoen-
coders (CAEs), Principal Component Analysis (PCA), Latent
Representation, Deep Learning

I. INTRODUCTION

Nowadays, with the explosive development of the Internet,
the number of networked devices and network services is
increasing at an exponential rate. Especially, the ubiquitous
presence of Internet of Things (IoT) devices have been bring-
ing many essential benefits to our lives such as healthcare,
transportation, energy and industry. IoTs devices have the
ability to automatically connect, process and transfer data with
each other without human intervention [12]. However, the
widespread use of network devices and IoTs also faces many
security risks [17]. Attackers use diverse and increasingly
complex techniques to break the integrity, confidentiality and
availability of information systems. Zero-day exploits are the
most concerning form of attack, which has the most potential
to cause serious consequences for network infrastructure and

sensitive data [3] [1] [20]. These attacks can be also be referred
to as anomalies or outliers [7] [28]. Anomalies or outliers
are substantial variations, which show significant differences
from behavioural norms [19]. Identifying these anomalies
in large network data streams is always a challenging task,
due to the nature of these anomalies including their rarity,
heterogeneity and low frequency of occurrence [24]. Many
anomaly detection techniques have been researched, deployed
and applied in a variety of domains. These techniques include
statistical techniques, spectral analysis techniques and non-
machine learning techniques [8]. Specifically, in the scope of
network security these techniques face many challenges with
the large amount of data generated by network devices and
the increasing emergence of novel attack techniques.

Many machine learning methods have also been imple-
mented to improve the efficiency of network anomaly detection
systems [22] [15] [25] [27]. However, these methods still have
inherent limitations, such as human intervention in building
feature extractors, using expert knowledge in data labeling
etc. These techniques are not very effective in the era of
big data, with data volume and data dimensions increasing
rapidly. Furthermore, classical machine learning algorithms
fail to unearth and capture the complex structures of big data.

Recent years have seen a proliferation of applications of
deep learning algorithms and unprecedented results in many
different fields. Deep learning techniques have shown superior
results when compared to other classical machine learning
methods, especially when the data volume increases dramati-
cally [7]. Anomaly detection systems based on deep learning
algorithms are increasingly popular and widely applied in
both academic and industrial environments. The selection
of a deep learning neural network architecture for anomaly
detection is basically based on the nature and availability
of the collected data in the training set [7]. In general, the
deep learning algorithms being used for anomaly detection
can belong to one of three main categories: (1). Supervised
learning algorithms; (2). Semi-supervised learning algorithms;
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(3). Unsupervised learning algorithms. The labels are used to
train the deep learning model will indicate which samples are
normal and which observations are outliers. Although there
have been improvements in the performance of supervised
learning models, these solutions still face many obstacles
due to the difficulty of data labeling, notably anomalous
data and training dataset imbalances. In fact, it is much
easier to collect and label normal data than anomalous data,
therefore semi-supervised learning algorithms are becoming
increasingly relied upon. These algorithms depend on the
assumption that normal data and outlier data are generated
from different probability distributions. Subsequent learning
models are trained in a semi-supervised manner with the aim
of capturing the essential characteristics of normal data, so
that it is easier to distinguish from outliers.

One of the widely deployed solutions is to use deep neural
network autoencoders, which are trained using only normal
data in a one-class training manner [23] [6] [5]. Deep learning
neural network autoencoders (AE) have shown to be a very
effective and efficient method in building anomaly detection
models in many different domains such as network intrusion
detection and IoTs Anomaly Detection [7] [28]. The latent
features discovered and explored in the feature representation
space of AE have improved the efficiency of the network
anomaly detectors. Specifically in the semi-supervised learning
scenarios, these latent representations are a reliable foundation
for clearly distinguishing between normal and abnormal data.
The common limitation of the above approaches is that the
data used to train deep learning autoencoders has not been
properly preprocessed, which greatly affects the model’s abil-
ity to learn the latent representation space at bottleneck.

To overcome such limitations, we propose a novel technique
that combines the use of Principal Component Analysis (PCA)
for preprocessing data, and deep neural network Clustering-
based Autoencoders (CAE) to build semi-supervised anomaly
detector. By utilizing PCA’s power to define new coordinate
axes, the data representation capabilities will improve sig-
nificantly. This will enhance the CAE’s ability to discover
many hidden, yet meaningful architectures that are difficult to
explore in the original space. We will implement a prototype of
our technique and evaluate it using popular benchmark datasets
including NSL-KDD, CTU13-08, CTU13-09, CTU13-10 and
CTU13-13.

The rest of the paper is organized as follows: We will briefly
present the background knowledge of the PCA algorithm and
the deep neural network autoencoder in Section II. Section
III reviews prominent and current studies related to the using
of AE and clustering-based AE for cyber anomaly detection.
Our proposed method is detailed in Section IV. Experiments,
results and discussion are presented in Sections V and VI,
respectively. Finally, we conclude our paper in Section VII
and propose future research directions.

II. BACKGROUND

In this section, we provide the necessary background knowl-
edge to understand concepts related to our proposed models.

A. Principal Component Analysis

PCA is a technique renowned for dimensionality reduc-
tion, data compression and feature extraction in plenty of
research domains [4] [16]. In general, PCA is defined as
an orthogonal projection of data into a lower dimensional
linear space, in which the variance of the projected data is
maximized [14]. We will shortly introduce the mathematical
formulation and the outline the overall procedure of PCA.
Let X = {x1,x2, ...xN} be a collection of observations,
where xi, i = 1, 2...N is a sample in Euclidean space with
dimensionality D, meaning that xi ∈ RD. Our goal is to
project these data points into the new space with the least loss
of information, notably this new space has a significantly lower
intrinsic dimensionality M ≤ D. In other words, we have
to find a new space with dimensionality M that maximizes
the variance of the projected data points. Without loss of
generality, we firstly consider the situation in which we aim to
project data points into one-dimensional space with M = 1.
We use a D-dimensional vector e1 to define the direction
of this new space. Notice that if vector e1 determines the
direction of space, then vector k ∗ e1 also determines the
direction of that space, where ∀k ̸= 0 and k ∈ R. We are only
interested in the direction of the vectors, not the magnitude,
so we will choose the unit vector so that e1

Te1 = 1. The
mean of the dataset is given in equation 1.

x̄ =
1

N

N∑
i=1

xi (1)

The covariance matrix C of the data samples is defined in
equation 2.

C =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T . (2)

The coordinates of the data point xi and the mean x̄ of
samples in the new space are e1

Txi and e1
T x̄, respectively.

The variance of the projected data points in the new space is
calculated by equation 3.

σ̄2 =
1

N

N∑
i=1

(e1
Txi − e1

T x̄)2 = eT1 Ce1 (3)

Our goal is to maximize the variance of the dataset on the
new space. This means we are going to maximize the value
σ̄2 with respect to e1. This is a constrained maximization
problem, where the constraint is derived from the normaliza-
tion of the basic vector e1

Te1 = 1. We use the Lagrange
multiplier method to establish the objective function as given
in the equation 4.

ζ(λ1, e1) = e1
TCe1 + λ1(1− e1

Te1) (4)

By setting the partial derivative of objective function with
respect to e1 equal to zero, we get the equation (5).

Ce1 = λ1e1 (5)
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This shows us that vector e1 must be an eigenvector of the
covariance matrix C and λ1 is the eigenvalue corresponding
to the eigenvector e1. We left-multiply by e1 on the both sides
of the equation 5 and combine with the constraint e1Te1 = 1
to get equation 6.

e1
TCe1 = λ1 (6)

By combining equation 3 and equation 6 we realize that
the variance of the projected data reaches its maximum value
when we set the vector e1 to be the eigenvector with the largest
corresponding eigenvalue λ1. We call this eigenvector e1 the
first principal component. Similarly, we find the next principal
components by selecting new directions that maximize the
value of projected variance amongst all possible directions,
which are orthogonal to the selected principal components.
Using the induction method, we give a solution for the general
case of M-dimensional projection as follows: The best solution
for a linear projection where the variance of the projected
data reaches its maximum value is to determine the M eigen-
vectors (e1, e2...eM) of the covariance matrix C of dataset
corresponding to the M largest eigenvalues (λ1, λ2, ...λM ). In
general, we can summarize the PCA algorithm implementation
procedure as shown in Algorithm 1 and illustrated in Fig.1.

Algorithm 1 Principal Component Analysis
1: Input: Given the dataset X = {x1,x2, ...xN}

where xi ∈ RD, i = 1, 2...N ; M and D are dimensions.
2: Calculate the mean of the dataset by equation (1)
3: Subtracting the mean from each data point: x̂i = xi−x̄
4: Compute Covariance Matrix C by equation (2)
5: Compute eigenvalues and eigenvectors of C

(λ1, e1), ...(λD, eD).
6: Pick up M eigenvectors (e1, e2...eM) with M highest

eigenvalues (λ1, λ2, ...λM ).
7: Project data to selected eigenvectors (e1, e2...eM).
8: Output: Projected points in lower dimensions.

Fig. 1. PCA Procedure

B. Autoencoder

Deep AEs are a type of neural network, which are designed
with purpose of encoding input data into latent and meaningful
representations, then decoding them so that they are as similar
to the input data as possible [2] [10] [13]. In this subsection,
we will present the structure and the loss functions of AE
[13] and CAE [23]. They are the important components of
our proposed model.
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ĥ
(2)
3

ĥ
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Fig. 2. Example Autoencoder Structure

An AE is a neural network used to learn a lower represen-
tation of high dimensional data in an unsupervised manner.
It consists of two parts: an encoder and a decoder, as shown
in Figure 2. Internally, an AE has a hidden layer ĥ, which
denotes a latent representation of the input. The task of the
encoder is to learn the function f , which maps input x to
that latent representation ĥ. The job of the decoder is to learn
the function g, which maps the latent variable ĥ to an output
(called reconstruction) x̂. An AE is trained for the purpose
of copying its input to its output. However, usually they are
designed so that copying is not perfect. They are often forced
to approximately copy the input data, which in turn helps
them learn many potentially meaningful properties of the data.
Giving constraints h to have smaller dimension than x is an
effective way to acquire useful features from an AE. Such AE
are called under-complete. Learning an under-complete latent
representation forces the AE to capture the most important and
prominent features of data. The learning process is presented
as a reconstruction error minimization, which is shown in
equation 7.

LAE(x, x̂) = LAE(x,g(f(x))) (7)

Where LAE is a loss function penalizing x̂ for being not
similar to x. f and g are the encoder and decoder functions re-
spectively. The most popular choice for loss function of an AE
is the Mean-Squared Error (MSE) over all data observations,
as shown in equation 8.
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LAE(X, X̂) =
1

N

N∑
i=0

(xi − x̂i)
2 (8)

where xi is a sample in the training dataset X =
{x1,x2, ...xN}, and N is the number of data samples in the
dataset.

III. EXISTING WORK

Deep learning is achieving very promising results in solving
anomaly detection problems within a variety of research areas
and applied domains. State-of-the-art deep learning techniques
are capable of learning hierarchical discriminative features
from data. This powerful capacity has gradually reduced hu-
man intervention in manual processing of features, especially
in the discovery of latent features, thus improving the quality
of the trained models. Various deep learning neural network
architectures have been proposed for use within network
anomaly detection including Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN), Long Short Term
Memory (LSTM), deep hybrid models and its variants [7].
However, AEs models are showing prominent efficiency in
comparison with other architectures in many circumstances.
Therefore, they are the core of most deep learning-based
unsupervised models applied to the network anomaly detection
problem [7] [6] [23] [11] [9] [21]. In this section, we will
discuss the most current and prominent autoencoder-based
methods.

Cao et al. [6] have proposed two autoencoder-based models
called, Shrink AE (SAE) and Dirac Delta VAE (DVAE) to
learn the latent representation space at the bottleneck of AE.
These models were trained using only normal data in a one-
class training manner to overcome the limitations of traditional
AE and variational AE when dealing with high-dimensional
and sparse network data. Specifically, they introduced regular-
izers to the objective function during training, to force the
normal samples into a very tight region around the origin
in the non-saturating area of the bottleneck unit activations.
Whereas the anomalous data points that are fundamentally
different from the normal observations, will be pushed away
from the normal region. Experimental results have shown that
their method using latent representation can support anomaly
detection algorithms to work effectively with sparse and high-
dimensional data, even with relatively few training samples.

The authors in [21] proposed a network intrusion detection
system based on stacked AEs and deep neural networks
(DNN). In this work, stacked AEs tends to learn the properties
of the input network data in a unsupervised way, in order to
reduce the feature width. After that, the DNN is trained in
a supervised manner to extract the meaningful features for
the classifier. They have evaluated their proposed model using
standard datasets including KDD Cup 99 and NSL-KDD. The
authors claimed that the achieved accuracies on these datasets
were 94.2 and 99.7%, respectively for multiclass classification.

Yang et al. [9] proposed the Self-Organizing Map as-
sisted Deep Autoencoding Gaussian Mixture Model (SOM-

DAGMM) to better preserve the architecture of the input
data topology for more accurate network intrusion detection.
They claimed that the Deep Autoencoding Gaussian Mixture
Model (DAGMM) faces a dilemma of choosing between the
low-dimensional space for Gaussian mixture model, and the
input structure preservation. Therefore, they proposed a two-
stage approach, in which a pre-trained SOM is plugged into
the DAGMM. Experimental results show that this model has
improved performance compared to the original DAGMM.

Researchers in [11] introduced a combination model of
sparse autoencoder with kernel for network attack detection.
Specifically, in this paper they used an iterative method of
adaptive genetic algorithm to optimize the objective function
of a sparse autoencoder with combined kernel. They argued
that this solution will overcome the shortcomings of the
previous models when faced with large-dimensional data. The
model was trained and evaluated using a dataset based on IoT
botnet attacks.

Nguyen et al . [23] introduced a hybrid solution combining
clustering methods and AEs for detecting network anomalies
in a semi-supervised manner. These combined models were
trained using only normal samples. This work is based on the
assumption that normal network data might come from differ-
ent network services or types of devices. Therefore, although
they share some common characteristics, they also have their
own separated features. Their proposed hybrid model tends to
discover clusters in the latent representation of AE. This co-
training strategy supports the revealing of true clusters inside
normal data and improves the performance of the network
anomaly detection model in [6]. The limitation of this method
is that there has not been a way to force AE to learn latent
features that have good clustering characteristics aiming to
stronger support performance of the clustering algorithms at
the bottleneck. Therefore, our work aims to develop novel
solution to help Autoencoders discover more powerful latent
properties, which assists clustering algorithm more quickly,
accurately, easily separate data clusters. Furthermore, our
solution aims to narrow the normal data region, making the
identification of outliers with more stability and high accuracy.
Hence, we believe that the proposed model in this paper will
make a contribution to overcome the current limitations of
one-class training strategy.

IV. PROPOSED METHODOLOGY

A. Clustering-based Autoencoder

Clustering-based Autoencoder (CAE) is a hybrid combina-
tion between clustering methods and AE [23], in which the
clustering algorithms are applied at the bottleneck of AE. Such
combined neural networks are trained to achieve two goals.
Particularly, while AEs are expected to learn the potential
latent properties of the data, the clustering algorithm will split
the data points into appropriate clusters. Both of these goals
are optimized in parallel in the co-training manner. Therefore,
the jointly objective function consists of two components,
including reconstruction loss and clustering loss as shown in
equation 9.
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LCAE(X, X̂) = α1LAE(X,g(f(X))) + α2Ω(H) (9)

Fig. 3. Clustering-based Autoencoder

Where LAE, Ω(H) are reconstruction loss and clustering
loss, respectively and α1, α2 are coefficients used to trade-
off between these components. The general structure of a
clustering-based autoencoder is shown in Fig. 3.

B. Proposed Approach

In this section, we describe our proposed approach, which
facilitates CAE in [23] [6] for anomaly identification in a semi-
supervised manner. In one-class learning, the model will be
trained using only normal data, because outliers are rare and
sometimes it is very costly to collect and label them. This
method is based on the assumption that normal data points
have common characteristics and are different from anomalous
data. In the latent representation, the normal observations will
be pushed closer to the origin and into a very tight normal
region, as in SAE [6]. Conversely, abnormal data will be
forced out further from the origin and normal area. Hence,
the model’s ability to detect anomalies is more accurate when
the normal region is as tight as possible. The main limitation in
[23] [6] is that AE has not yet captured the most intrinsic latent
features of normal data, which enables clustering techniques
to separate normal samples into appropriate clusters. The
proposed method aims to overcome such shortcomings. In
particular, we attempt to implement a preprocessing step for
selecting good features of data beforehand, fitting it to the
CAE training process.

Fig. 4. General Flow of Proposed Approach

Our method consists of two stages: (1). We will use the
PCA algorithm for normal data preprocessing. In other words,
we will project the original data down to the new space,
whose bases are orthogonal. In this way, we will find new
representations of the data without much loss of information
through simple linear transformations. More specifically, PCA
is used for better selection of representation space rather than
for dimension reduction purposes. (2). The attributed resulting
from the first stage will be used to train the clustering-
based autoencoder model (CAE) in a co-training manner. The
complete flow of our proposed approach is illustrated in Fig.
4. We hypothesize that given the good features, the AE will
better show its ability to discover other latent representations
that both characterize the normal data, and separate such obser-
vations into appropriate clusters. Then the normal samples will
tend to be distributed more suitably according to its underlying
clusters, thus arranging the normal region much more tightly.
Thanks to this, when an outlier appears, the trained model’s
detection ability will be significantly improved.

V. EXPERIMENTS

In this section, we introduce the anomaly detection datasets
chosen for evaluating our proposed approach, parameter set-
tings and experiments.

A. Datasets

The experiments will be conducted on 5 datasets, as sum-
marised in Table I.

TABLE I
DATASETS FOR EVALUATING THE PROPOSED MODELS

No Dataset Dimension Training
set

Normal
Test

Anomaly
Test

1 NSL-KDD 122 67343 9711 12833
2 Rbot (CTU13-10) 38 6338 9509 63812
3 Murlo (CTU13-8) 40 29128 43694 3677
4 Neris (CTU13-9) 41 11986 17981 110993
5 Virut (CTU13-13) 40 12775 19164 24002

1) NSL-KDD: The NSL-KDD dataset is a newer filtered
version of KDD99 dataset, which was introduced by
Tavallaee et al. to overcome the inherent issues of KDD99
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TABLE II
AUCS OF SAE-OCCS, DVAE-OCCS,CAE AND PCA + CAE MODELS.

Represen-
-tation

One-class
Classifiers

Datasets
NSL-KDD CTU13-08 CTU13-09 CTU13-10 CTU13-13

SAE
λ = 10

CEN 0.963 0.991 0.950 0.999 0.969
MDIS 0.964 0.990 0.950 0.999 0.968

DVAE
λ = 0.05, α = 10−8

CEN 0.960 0.982 0.956 0.999 0.963
MDIS 0.961 0.984 0.957 0.999 0.964

CAE 0.963 0.994 0.959 0.996 0.979
PCA + CAE 0.966 0.996 0.969 0.999 0.984
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Fig. 5. The ROC curves of our proposed model on five datasets

[26]. Although this new dataset still has a number of
issues that have been discussed in [18], current studies
still use this dataset. Therefore, we believe that it is still
a effective enough dataset for the research community
to conduct experiments and evaluate their methods. In
general, NSL-KDD has the same architecture as KDD99,
specifically it has 22 attack patterns and normal traffic.
Each data record contains 41 features; among these
features are three categorical features including protocol
type, service, and flag. They are preprocessed using one-
hot-encoding which increases the number of features to
122.

2) CTU13: The CTU13 is a botnet dataset, which was
captured in 2011 at CTU University, Czech Republic.
This dataset is a huge collection of real botnet traffic,
normal and background traffic. In this work, four sce-
narios (CTU13- 8, CTU13-9, CTU13-10 and CTU13-13)
are chosen. A detailed description of each scenario is
provided in Table I. There are three categorical features
including dTos, sTos and protocol, which are encoded by
using the one-hot encoding technique.

Each of these datasets were split into 40% for training
(normal observations) and 60% for evaluation purposes (both
normal and anomaly samples).

B. Experiments Settings

In this work, we conducted experiments consisting of two
stages. In the first stage, we implement PCA for feature
selection. In the second stage, we implement the proposed
CAE model, the exact configuration of which is as follows.
The number of hidden layers is 5, and the size of latent layer
is defined by using the equation h = [1 +

√
n], where n is

the number of input features as introduced in [5]. We used the
Xavier initialization method to initialize the weights of CAE
to facilitate the convergence process. The chosen activation
function is Tanh, the batch size is set as 100, the optimization
algorithm is Adadelta and the learning rate is set to 0.1. The
early stopping method is also applied, with an evaluation step
at every 5 epochs.

We will conduct two experiments for evaluating our pro-
posed approach. Firstly, the performance of our proposed
model is compared with SAE, DVAE in [6] and CAE in [23].
Therefore, we reproduce the same experiments as in [6] [23],
and report the performance of SAE, DVAE, CAE as shown in
Table II. Secondly, we train and evaluate the proposed model
under the same conditions as in [6] [23] and also visualize
the Area Under the ROC curves when evaluating PCA+CAE
models on the five datasets as shown in Fig 5.

VI. RESULTS AND DISCUSSION

In this section, we present the promising results obtained
from our experiments. The performance of the trained models
was evaluated using the AUC, which is summarized in detail
in the Table (II). The ROC curves generated by our proposed
model on the datasets are also visualized in Fig 5. It can be
seen very clearly in Table II that, in terms of classification
accuracy, the proposed PCA+CAE model in this paper has
outperformed the results of previous SAE, DVAE and CAE
models on all five datasets. Specifically, with the data set NSL-
KDD, when using SAE, DVAE models with two classifiers
CEN and MDIS, the accuracy obtained is 0.963; 0.964;
0.960; 0.961, respectively. While using the original version of
CAE, the accuracy is 0.963, the proposed PCA+CAE model
give a better outcome of 0.966. With the dataset CTU13-
10, most of the methods give very high accuracy results of
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0.999. Experimental results on datasets CTU13-08; CTU13-
09; CTU13-13 show that the proposed model PCA+CAE has
very effective performance clearly outperforming other meth-
ods. The promising results on the above datasets are 0.996;
0.969 and 0.984, respectively. This suggests that the data
preprocessing stage using PCA has well supported the CAE
model in discovering latent features and properly clustering
the data at the bottleneck layer. Then the CAE model tends to
balance very well the two components of the objective function
including reconstruction loss and clustering loss. Therefore,
data points are grouped into more suitable clusters, it results
the normal data region tighter and easier to distinguish outliers.

Overall, the results of experiments confirm that the pro-
posed method in this paper is a promising method and has
contributed greatly to improving the performance of anomaly
detection model based on one-class training strategy.

VII. CONCLUSION AND FUTURE WORK

A novel method is proposed to improve the performance of
network anomaly detection by combining PCA and CAE in a
semi-supervised manner. This method aims to overcome the
limitations of the previous methods in [6] [23]. This method
consists of two specific stages as follows: The first stage is
implementing PCA to find a new representation space of the
original data that is more suitable at describing the normal
data. The second stage is applying a CAE to learn the latent
representation of the normal data and also force the data
points into appropriate clusters in the normal data region.
We have evaluated the proposed model using five different
datasets including NSL-KDD and four scenarios in CTU13.
Experimental results have shown that this new method is
superior to previous methods on all selected datasets. Our
future work will focus on expanding the study to include other
data preprocessing methods and also to investigate methods
for producing more robust, suitable features before training
the CAE models in a one-class training manner.
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